1
|
Zhang Z, Zhang Q, Wang Y. CAF-mediated tumor vascularization: From mechanistic insights to targeted therapies. Cell Signal 2025; 132:111827. [PMID: 40288665 DOI: 10.1016/j.cellsig.2025.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment (TME) and play a crucial role in tumor progression. The biological properties of tumors, such as drug resistance, vascularization, immunosuppression, and metastasis are closely associated with CAFs. During tumor development, CAFs contribute to tumor progression by remodeling the extracellular matrix (ECM), inhibiting immune cell function, promoting angiogenesis, and facilitating tumor cell growth, invasion, and metastasis. Studies have shown that CAFs can promote endothelial cell proliferation by directly secreting cytokines such as vascular endothelial growth factor (VEGF) and fibroblast Growth Factor (FGF), as well as through exosomes. CAFs also secrete the chemokine stromal cell-derived factor 1 (SDF-1) to recruit endothelial progenitor cells (EPCs) into the peripheral blood and guide their migration to the tumor periphery. Additionally, CAFs can induce tumor cells to transform into "endothelial cells" that participate in vascular wall formation. However, the precise mechanisms remain to be further investigated. Due to their widespread presence in various solid tumors and their tumor-promoting function, CAFs are emerging as therapeutic targets. In this review, we summarize the specific mechanisms through which CAFs promote angiogenesis and outline current therapeutic strategies targeting CAF-induced vascularization, ongoing clinical trials targeting CAFs, and discuss potential future treatment approaches. We hope this will contribute to the advancement of CAF-targeted tumor treatment strategies.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Qing Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
2
|
Yang C, Shu J, Li Y, Zhao N, Liu X, Tian X, Sun Z, Tabish MS, Hong Y, Chen K, Sun M. Long non-coding RNAs are involved in the crosstalk between cancer-associated fibroblasts and tumor cells. Front Immunol 2024; 15:1469918. [PMID: 39717771 PMCID: PMC11663902 DOI: 10.3389/fimmu.2024.1469918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The proliferation of tumors is not merely self-regulated by the cancer cells but is also intrinsically connected to the tumor microenvironment (TME). Within this complex TME, cancer-associated fibroblasts (CAFs) are pivotal in the modulation of tumor onset and progression. Rich signaling interactions exist between CAFs and tumor cells, which are crucial for tumor regulation. Long non-coding RNAs (LncRNAs) emerge from cellular transcription as a class of functionally diverse RNA molecules. Recent studies have revealed that LncRNAs are integral to the crosstalk between CAFs and tumor cells, with the capacity to modify cellular transcriptional activity and secretion profiles, thus facilitating CAFs activation, tumor proliferation, metastasis, drug resistance, and other related functionalities. This comprehensive review revisits the latest research on LncRNA-mediated interactions between CAFs and tumor cells, encapsulates the biological roles of LncRNAs, and delves into the molecular pathways from a broader perspective, aspiring to offer novel perspectives for a deeper comprehension of the etiology of tumors and the enhancement of therapeutic approaches.
Collapse
Affiliation(s)
- Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Yiwei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Xiaonan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Xiangyu Tian
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Zexin Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Muhammad Saud Tabish
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Yichen Hong
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Dong JP, Xu YC, Jiang YN, Jiang RZ, Ma L, Li XZ, Zeng WH, Lin Y. Identification of transcriptional signature change and critical transcription factors involved during the differentiation of mouse trophoblast stem cell into maternal blood vessel associated trophoblast giant cell. Cell Signal 2024; 123:111359. [PMID: 39179089 DOI: 10.1016/j.cellsig.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The placenta is essential organ for oxygen and nutrient exchange between the mother and the developing fetus. Trophoblast lineage differentiation is closely related to the normal function of the placenta. Trophoblast stem cells (TSCs) can differentiate into all placental trophoblast subtypes and are widely used as in vitro stem cell models to study placental development and trophoblast lineage differentiation. Although extensive research has been conducted on the differentiation of TSCs, the possible parallels between trophoblast giant cells (TGCs) that are differentiated from TSCs in vitro and the various subtypes of TGC lineages in vivo are still poorly understood. In this study, mouse TSCs (mTSCs) were induced to differentiate into TGCs, and our mRNA sequencing (RNA-seq) data revealed that mTSCs and TGCs have distinct transcriptional signatures. We conducted a comparison of mTSCs and TGCs transcriptomes with the published transcriptomes of TGC lineages in murine placenta detected by single-cell RNA-seq and found that mTSCs tend to differentiate into maternal blood vessel-associated TGCs in vitro. Moreover, we identified the transcription factor (TF) ZMAT1, which may be responsible for the differentiation of mTSCs into sinusoid TGCs, and the TFs EGR1 and MITF, which are likely involved in the differentiation of mTSCs into spiral artery-associated TGCs. Thus, our findings provide a valuable resource for the mechanisms of trophoblast lineage differentiation and placental deficiency-associated diseases development.
Collapse
Affiliation(s)
- Jun-Peng Dong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Chi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Nan Jiang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rong-Zhen Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Ma
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xin-Zhu Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wei-Hong Zeng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yi Lin
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
4
|
Situ Y, Lu X, Cui Y, Xu Q, Deng L, Lin H, Shao Z, Chen J. Systematic Analysis of CXC Chemokine-Vascular Endothelial Growth Factor A Network in Colonic Adenocarcinoma from the Perspective of Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5137301. [PMID: 36246978 PMCID: PMC9553499 DOI: 10.1155/2022/5137301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022]
Abstract
Background Tumor angiogenesis plays a vital role in tumorigenesis, proliferation, and metastasis. Recently, vascular endothelial growth factor A (VEGFA) and CXC chemokines have been shown to play vital roles in angiogenesis. Exploring the expression level, gene regulatory network, prognostic value, and target prediction of the CXC chemokine-VEGFA network in colon adenocarcinoma (COAD) is crucial from the perspective of tumor angiogenesis. Methods In this study, we analyzed gene expression and regulation, prognostic value, target prediction, and immune infiltrates related to the CXC chemokine-VEGFA network in patients with COAD using multiple databases (cBioPortal, UALCAN, Human Protein Atlas, GeneMANIA, GEPIA, TIMER (version 2.0), TRRUST (version 2), LinkedOmics, and Metascape). Results Our results showed that CXCL1/2/3/5/6/8/11/16/17 and VEGFA were markedly overexpressed, while CXCL12/13/14 were underexpressed in patients with COAD. Moreover, genetic alterations in the CXC chemokine-VEGFA network found at varying rates in patients with COAD were as follows: CXCL1/2/17 (2.1%), CXCL3/16 (2.6%), CXCL5/14 (2.4%), CXCL6 (3%), CXCL8 (0.8%), CXCL11/13 (1.9%), CXCL12 (0.6%), and VEGFA (1.3%). Promoter methylation of CXCL1/2/3/11/13/17 was considerably lower in patients with COAD, whereas methylation of CXCL5/6/12/14 and VEGFA was considerably higher. Furthermore, CXCL9/10/11 and VEGFA expression was notably correlated with the pathological stages of COAD. In addition, patients with COAD with high CXCL8/11/14 or low VEGFA expression levels survived longer than patients with dissimilar expression levels. CXC chemokines and VEGFA form a complex regulatory network through coexpression, colocalization, and genetic interactions. Moreover, many transcription factor targets of the CXC chemokine-VEGFA network in patients with COAD were identified: RELA, NFKB1, ZFP36, XBP1, HDAC2, SP1, ATF4, EP300, BRCA1, ESR1, HIF1A, EGR1, STAT3, and JUN. We further identified the top three miRNAs involved in regulating each CXC chemokine within the network: miR-518C, miR-369-3P, and miR-448 regulated CXCL1; miR-518C, miR-218, and miR-493 regulated CXCL2; miR-448, miR-369-3P, and miR-221 regulated CXCL3; miR-423 regulated CXCL13; miR-378, miR-381, and miR-210 regulated CXCL14; miR-369-3P, miR-382, and miR-208 regulated CXCL17; miR-486 and miR-199A regulated VEGFA. Furthermore, the CXC chemokine-VEGFA network in patients with COAD was notably associated with immune infiltration. Conclusions This study revealed that the CXC chemokine-VEGFA network might act as a prognostic biomarker for patients with COAD. Moreover, our study provides new therapeutic targets for COAD, serving as a reference for further research in the future.
Collapse
Affiliation(s)
- Yongli Situ
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Xiaoyong Lu
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Yongshi Cui
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Qinying Xu
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Li Deng
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Hao Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Zheng Shao
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Jv Chen
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong, China
| |
Collapse
|
5
|
Gpx3 and Egr1 Are Involved in Regulating the Differentiation Fate of Cardiac Fibroblasts under Pressure Overload. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3235250. [PMID: 35799890 PMCID: PMC9256463 DOI: 10.1155/2022/3235250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/21/2022] [Accepted: 06/03/2022] [Indexed: 12/04/2022]
Abstract
Objectives Although myocardial fibrosis is a common pathophysiological process associated with many heart diseases, the molecular mechanisms regulating the development of fibrosis have not been fully determined. Recently, single cell RNA sequencing (scRNA-seq) analysis has been used to examine cellular fate and function during cellular differentiation and has contributed to elucidating the mechanisms of various diseases. The main purpose of this study was to characterize the fate of cardiac fibroblasts (CFs) and the dynamic gene expression patterns in a model of cardiac pressure overload using scRNA-seq analysis. Methods The public scRNA-seq dataset of the transverse aortic coarctation (TAC) model in mice was downloaded from the GEO database, GSE155882. First, we performed quality control, dimensionality reduction, clustering, and annotation of the data through the Seurat R package (v4.0.5). Then, we constructed the pseudotime trajectory of cell development and identified key regulatory genes using the Monocle R package (v2.22.0). Different cell fates and groups were fully characterized by Gene Set Enrichment Analysis (GSEA) analysis and Transcription factor (TF) activity analysis. Finally, we used Cytoscape (3.9.1) to extensively examine the gene regulatory network related to cell fate. Results Pseudotime analysis showed that CFs differentiated into two distinct cell fates, one of which produced activated myofibroblasts, and the other which produced protective cells that were associated with reduced fibrosis levels, increased antioxidative stress responses, and the ability to promote angiogenesis. In the TAC model, activated CFs were significantly upregulated, while protective cells were downregulated. Treatment with the bromodomain inhibitor JQ1 reversed this change and improved fibrosis. Analysis of dynamic gene expression revealed that Gpx3 was significantly upregulated during cell differentiation into protective cells. Gpx3 expression was affected by JQ1 treatment. Furthermore, Gpx3 expression levels were negatively correlated with the different levels of fibrosis observed in the various treatment groups. Finally, we found that transcription factors Jun, Fos, Atf3, and Egr1 were upregulated in protective cells, especially Egr1 was predicted to be involved in the regulation of genes related to antioxidant stress and angiogenesis, suggesting a role in promoting differentiation into this cell phenotype. Conclusions The scRNA-seq analysis was used to characterize the dynamic changes associated with fibroblast differentiation and identified Gpx3 as a factor that might be involved in the regulation of myocardial fibrosis under cardiac pressure overload. These findings will help to further understanding of the mechanism of fibrosis and provide potential intervention targets.
Collapse
|
6
|
Guo X, Chen M, Cao L, Hu Y, Li X, Zhang Q, Ren Y, Wu X, Meng Z, Xu K. Cancer-Associated Fibroblasts Promote Migration and Invasion of Non-Small Cell Lung Cancer Cells via miR-101-3p Mediated VEGFA Secretion and AKT/eNOS Pathway. Front Cell Dev Biol 2022; 9:764151. [PMID: 34977016 PMCID: PMC8716726 DOI: 10.3389/fcell.2021.764151] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are major component of tumor microenvironment (TME), which plays crucial roles in tumor growth, invasion and metastasis; however, the underling mechanism is not fully elucidated. Despite many studies are focused on the tumor promoting effect of CAFs-derived cytokines, the upstream regulators of cytokine release in CAFs is largely unknown. Here we found that miR-101-3p was downregulated in primary lung cancer-associated CAFs compared to normal fibroblasts (NFs). Ectopic overexpression of miR-101-3p suppressed CAFs activation, and abrogated the promoting effect of CAFs on migration and invasion of non-small cell lung cancer cells (NSCLC), through attenuating CAFs’ effect on epithelial mesenchymal transition (EMT) process, metastasis-related genes (MMP9, TWIST1) and AKT/endothelial nitric oxide synthase (eNOS) signaling pathway. Further study indicated that vascular endothelial growth factor A (VEGFA) was a novel target of miR-101-3p, and CAFs-derived VEGFA mediated the effect of miR-101-3p on migration and invasion of lung cancer cells, demonstrated by using recombinant VEGFA and VEGFA neutralizing antibody. Interestingly, the analysis of the Cancer Genome Atlas (TCGA) database revealed that lung cancer tissues expressed lower level of miR-101-3p than non-cancerous tissues, and low/medium-expression of miR-101-3p was associated with poor overall survival (OS) rate. Moreover, the mouse xenograft experiment also showed that CAFs accelerated tumor growth whereas miR-101-3p diminished CAFs’ effect. These findings revealed a novel mechanism that CAFs facilitated lung cancer metastasis potential via miR-101-3p/VEGFA/AKT signaling pathway, suggesting miR-101-3p as a potential candidate for metastasis therapy.
Collapse
Affiliation(s)
- Xueru Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiming Hu
- Department of Toxic Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueqin Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinghui Ren
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Gan J, Chen Z, Feng X, Wei Z, Zhang S, Du Y, Xu C, Zhao H. Expression profiling of lncRNAs and mRNAs in placental site trophoblastic tumor (PSTT) by microarray. Int J Med Sci 2022; 19:1-12. [PMID: 34975294 PMCID: PMC8692111 DOI: 10.7150/ijms.65002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
As a rare type of gestational trophoblastic disease, placental site trophoblastic tumor (PSTT) is originated from intermediate trophoblast cells. Long noncoding RNAs (lncRNAs) regulate numerous biological process. However, the role of lncRNAs in PSTT remains poorly understood. In the present study, expression levels of lncRNAs and mRNAs in four human PSTT tissues and four normal placental villi were investigated. The results of microarray were validated by the reverse transcription and quantitative real-time polymerase reaction (RT-qPCR) and immunohistochemistry analyses. Furthermore, GO and KEGG pathway analyses were performed to identify the underlying biological processes and signaling pathways of aberrantly expressed lncRNAs and mRNAs. We also conducted the coding-non-coding gene co-expression (CNC) network to explore the interaction of altered lncRNAs and mRNAs. In total, we identified 1247 up-regulated lncRNAs and 1013 down-regulated lncRNAs as well as 828 up-regulated mRNAs and 1393 down-regulated mRNAs in PSTT tissues compared to normal villi (fold change ≥ 2.0, p < 0.05). GO analysis showed that mitochondrion was the most significantly down-regulated GO term, and immune response was the most significantly up-regulated term. A CNC network profile based on six confirmed lncRNAs (NONHSAT114519, NR_103711, NONHSAT003875, NONHSAT136587, NONHSAT134431, NONHSAT102500) as well as 354 mRNAs was composed of 497 edges. GO and KEGG analyses indicated that interacted mRNAs were enriched in the signal-recognition particle (SRP)-dependent cotranslational protein targeting to membrane and Ribosome pathway. It contributes to expand the understanding of the aberrant lncRNAs and mRNAs profiles of PSTT, which may be helpful for the exploration of new diagnosis and treatment of PSTT.
Collapse
Affiliation(s)
- Jianfeng Gan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China
| | - Zhixian Chen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China
| | - Xuan Feng
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China
| | - Zhi Wei
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China
| | - Sai Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China
| | - Yan Du
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China
| | - Congjian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
8
|
Molecular Changes Induced in Melanoma by Cell Culturing in 3D Alginate Hydrogels. Cancers (Basel) 2021; 13:cancers13164111. [PMID: 34439267 PMCID: PMC8394053 DOI: 10.3390/cancers13164111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary The research field of 3D cell cultivation in hydrogels is continuously growing. To be able to analyze the reaction of melanoma cells to 3D cultivation in alginate hydrogel on a molecular level, whole transcriptome sequencing was performed. Intriguingly, we could not only unravel differences between the gene regulation in 2D and 3D cultures but could also correlate the culture switch to the physiological process of tumor plasticity based on the observed patterns. Thereby, the role of EGR1 in controlling tumor plasticity and progression in melanoma was revealed. We conclude that the combination of cell culture models using biomaterials and whole transcriptome analysis leads to a deeper molecular understanding of cancer cells, herewith defining new therapeutic targets. Abstract Alginate hydrogels have been used as a biomaterial for 3D culturing for several years. Here, gene expression patterns in melanoma cells cultivated in 3D alginate are compared to 2D cultures. It is well-known that 2D cell culture is not resembling the complex in vivo situation well. However, the use of very intricate 3D models does not allow performing high-throughput screening and analysis is highly complex. 3D cell culture strategies in hydrogels will better mimic the in vivo situation while they maintain feasibility for large-scale analysis. As alginate is an easy-to-use material and due to its favorable properties, it is commonly applied as a bioink component in the growing field of cell encapsulation and biofabrication. Yet, only a little information about the transcriptome in 3D cultures in hydrogels like alginate is available. In this study, changes in the transcriptome based on RNA-Seq data by cultivating melanoma cells in 3D alginate are analyzed and reveal marked changes compared to cells cultured on usual 2D tissue culture plastic. Deregulated genes represent valuable cues to signaling pathways and molecules affected by the culture method. Using this as a model system for tumor cell plasticity and heterogeneity, EGR1 is determined to play an important role in melanoma progression.
Collapse
|
9
|
Ren X, Li L, Wu J, Lin K, He Y, Bian L. PDGF-BB regulates the transformation of fibroblasts into cancer-associated fibroblasts via the lncRNA LURAP1L-AS1/LURAP1L/IKK/IκB/NF-κB signaling pathway. Oncol Lett 2021; 22:537. [PMID: 34079593 PMCID: PMC8157341 DOI: 10.3892/ol.2021.12798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The most abundant cells in the tumor microenvironment are cancer-associated fibroblasts (CAFs). They play an important role in oral squamous cell carcinoma (OSCC) angiogenesis, invasion and metastasis. Platelet-derived growth factor (PDGF)-BB has an obvious regulating effect on the formation of CAFs through binding to PDGF receptor (PDGFR)-β, but the role of long non-coding (lnc)RNA in PDGF-BB-induced transformation of fibroblasts into CAFs remains poorly understood. Using an lncRNA ChIP, 370 lncRNA transcripts were identified to be significantly and differentially expressed between fibroblasts and PDGF-BB-induced fibroblasts, including 240 upregulated lncRNAs and 130 downregulated lncRNAs, indicating that lncRNAs are involved in the regulation of the transformation of CAFs. Previous studies have shown that the nuclear factor (NF)-κB signaling pathway plays an important role in the activation of CAFs. Dual-luciferase reporter assay and co-immunoprecipitation were conducted to confirm that the leucine-rich adaptor protein 1-like (LURAP1L), which is the target of lncRNA LURAP1L antisense RNA 1 (LURAP1L-AS1) had a positive regulatory effect on I-κB kinase (IKK)/NF-κB signaling. Therefore, LURAP1L-AS1 was selected and PDGF-BB was demonstrated to upregulate the expression of LURAP1L-AS1 and LURAP1L, which was reversed by a PDGFR-β inhibitor. Subsequently, knocking down LURAP1L-AS1 suppressed the expression of PDGF-BB-induced fibroblast activation marker protein α-smooth muscle actin, fibroblast activation protein-α, PDGFR-β and phosphorylated (p)-PDGFR-β. IKKα, p-IĸB and p-NF-κB were downregulated by the knockdown of LURAP1L-AS1 and upregulated by overexpression of LURAP1L-AS1. The present study indicates that LURAP1L-AS1/LURAP1L/IKK/IĸB/NF-κB plays an important regulatory role in PDGF-BB-induced fibroblast activation and may become a potential target for the treatment of OSCC.
Collapse
Affiliation(s)
- Xiaobin Ren
- Department of Periodontology, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 530102, P.R. China
| | - Lei Li
- Department of Head and Neck Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Jianhua Wu
- Department of Periodontology, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 530102, P.R. China
| | - Ken Lin
- Department of Otolaryngology, Kunming Children's Hospital, Kunming, Yunnan 650034, P.R. China
| | - Yongwen He
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 530102, P.R. China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
10
|
Wang X, Wang X, Xu M, Sheng W. Effects of CAF-Derived MicroRNA on Tumor Biology and Clinical Applications. Cancers (Basel) 2021; 13:cancers13133160. [PMID: 34202583 PMCID: PMC8268754 DOI: 10.3390/cancers13133160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), prominent cell components of the tumor microenvironment (TME) in most types of solid tumor, play an essential role in tumor cell growth, proliferation, invasion, migration, and chemoresistance. MicroRNAs (miRNAs) are small, non-coding, single-strand RNAs that negatively regulate gene expression by post-transcription modification. Increasing evidence has suggested the dysregulation of miRNAs in CAFs, which facilitates the conversion of normal fibroblasts (NFs) into CAFs, then enhances the tumor-promoting capacity of CAFs. To understand the process of tumor progression, as well as the development of chemoresistance, it is important to explore the regulatory function of CAF-derived miRNAs and the associated molecular mechanisms, which may become potential diagnostic and prognostic biomarkers and targets of anti-tumor therapeutics. In this review, we describe miRNAs that are differentially expressed by NFs and CAFs, summarize the modulating role of CAF-derived miRNAs in fibroblast activation and tumor advance, and eventually identify a potential clinical application for CAF-derived miRNAs as diagnostic/prognostic biomarkers and therapeutic targets in several tumors.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 200032, China; (X.W.); (X.W.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 200032, China; (X.W.); (X.W.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 200032, China; (X.W.); (X.W.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: (M.X.); (W.S.); Tel.: +86-21-64175590 (M.X. & W.S.); Fax: +86-21-64174774 (M.X. & W.S.)
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai 200032, China; (X.W.); (X.W.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: (M.X.); (W.S.); Tel.: +86-21-64175590 (M.X. & W.S.); Fax: +86-21-64174774 (M.X. & W.S.)
| |
Collapse
|
11
|
Fang Z, Xu J, Zhang B, Wang W, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. The promising role of noncoding RNAs in cancer-associated fibroblasts: an overview of current status and future perspectives. J Hematol Oncol 2020; 13:154. [PMID: 33213510 PMCID: PMC7678062 DOI: 10.1186/s13045-020-00988-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
As the most important component of the stromal cell population in the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) are crucial players in tumor initiation and progression. The interaction between CAFs and tumor cells, as well as the resulting effect, is much greater than initially expected. Numerous studies have shown that noncoding RNAs (ncRNAs) play an irreplaceable role in this interplay, and related evidence continues to emerge and advance. Under the action of ncRNAs, normal fibroblasts are directly or indirectly activated into CAFs, and their metabolic characteristics are changed; thus, CAFs can more effectively promote tumor progression. Moreover, via ncRNAs, activated CAFs can affect the gene expression and secretory characteristics of cells, alter the TME and enhance malignant biological processes in tumor cells to contribute to tumor promotion. Previously, ncRNA dysregulation was considered the main mechanism by which ncRNAs participate in the crosstalk between CAFs and tumor cells. Recently, however, exosomes containing ncRNAs have been identified as another vital mode of interaction between these two types of cells, with a more direct and clear function. Gaining an in-depth understanding of ncRNAs in CAFs and the complex regulatory network connecting CAFs with tumor cells might help us to establish more effective and safer approaches for cancer therapies targeting ncRNAs and CAFs and offer new hope for cancer patients.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|