1
|
Massie PL, Garcia M, Decker A, Liu R, MazloumiBakhshayesh M, Kulkarni D, Justus MP, Gallardo J, Abrums A, Markle K, Pace C, Campen M, Clark RM. Essential and Non-Essential Metals and Metalloids and Their Role in Atherosclerosis. Cardiovasc Toxicol 2025; 25:841-866. [PMID: 40251456 DOI: 10.1007/s12012-025-09998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Peripheral arterial disease (PAD) is becoming more prevalent in the aging developed world and can have significant functional impacts on patients. There is a recent recognition that environmental toxicants such as circulating metals and metalloids may contribute to the pathogenesis of atherosclerotic disease, but the mechanisms are complex. While the broad toxic biologic effects of metals in human systems have been extensively reviewed, the role of non-essential exposure and essential metal aberrancy in PAD specifically is less frequently discussed. This review of the literature describes current scientific knowledge regarding the individual roles several major metals and metalloids play in atherogenesis and highlights areas where a dearth of data exist. The roles of lead (Pb), arsenic (As), cadmium (Cd), iron (Fe), copper (Cu), selenium (Se) are included. Contemporary outcomes of therapeutic trials aimed at chelation therapy of circulating metals to impact cardiovascular outcomes are also discussed. This review highlights the supported notion of differential metal presence within peripheral plaques themselves, although distinguishing their roles within these plaques requires further illumination.
Collapse
Affiliation(s)
- Pierce L Massie
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Aerlin Decker
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Milad MazloumiBakhshayesh
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Deepali Kulkarni
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew P Justus
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Jorge Gallardo
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Avalon Abrums
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Kristin Markle
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Carolyn Pace
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
2
|
Jiang Z, Kan J, Wang D, Lv Y, Kong C, Wu L, Chen Y, Yang M, Gu Y, Chen S. Inhibition of GRK2 reduced doxorubicin-induced oxidative stress and apoptosis through upregulating ADH1. Toxicol Appl Pharmacol 2025; 497:117261. [PMID: 39914624 DOI: 10.1016/j.taap.2025.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
OBJECTIVE Patients undergoing anti-cancer therapy with doxorubicin (DOX) face the risk of cumulative, irreversible cardiotoxicity. In failing hearts, the overexpressed and activated G protein-coupled receptor kinase 2 (GRK2) initiates pathological signaling, leading to cardiomyocyte death. This study aimed to investigate the potential role of GRK2 in DOX-induced cardiotoxicity (DIC). METHODS Mice were administered intraperitoneal injections of DOX (5 mg/kg) weekly for four weeks to induce DIC. Small interfering RNAs (siRNAs) targeting GRK2, ADH1, and PABPC1 were employed in H9c2 cells. Oxidative stress and cell apoptosis were assessed using Reactive Oxygen Species (ROS) staining and TUNEL staining, respectively. Co-immunoprecipitation (Co-IP) was utilized to detect the interaction between GRK2 and PABPC1. RNA immunoprecipitation (RIP) assay was employed to evaluate the binding between PABPC1 and ADH1 mRNA. RESULTS GRK2 was found to be upregulated in DOX-treated mouse hearts and H9c2 cells. Cardiomyocyte-specific GRK2 knockout partially mitigated oxidative stress, apoptosis, and cardiac dysfunction. Additionally, GRK2 knockdown attenuated DOX-induced oxidative damage and apoptosis both in vivo and in H9c2 cells. Furthermore, a reduction in ADH1 expression was observed in DOX-treated hearts and cardiomyocytes, with a pronounced increase following GRK2 knockdown. Notably, the beneficial effects of GRK2 knockdown in H9c2 cells were abolished after ADH1 knockdown. Mechanistically, GRK2 knockdown promoted the binding of PABPC1 to ADH1 mRNA, thereby inhibiting the degradation of ADH1 mRNA. Increased ADH1 expression alleviated DOX-induced oxidative stress and apoptosis in cardiomyocytes. CONCLUSION In conclusion, our study demonstrates that targeting GRK2 may represent a promising therapeutic strategy for mitigating DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Zihao Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Junyan Kan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Dongchen Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yifei Lv
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Chaohua Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Lida Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yunwei Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Meng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| | - ShaoLiang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
3
|
Wang Z, Wu C, Yin D, Dou K. Ferroptosis: mechanism and role in diabetes-related cardiovascular diseases. Cardiovasc Diabetol 2025; 24:60. [PMID: 39920799 PMCID: PMC11806630 DOI: 10.1186/s12933-025-02614-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
Cardiovascular diseases represent the principal cause of death and comorbidity among people with diabetes. Ferroptosis, an iron-dependent non-apoptotic regulated cellular death characterized by lipid peroxidation, is involved in the pathogenesis of diabetic cardiovascular diseases. The susceptibility to ferroptosis in diabetic hearts is possibly related to myocardial iron accumulation, abnormal lipid metabolism and excess oxidative stress under hyperglycemia conditions. Accumulating evidence suggests ferroptosis can be the therapeutic target for diabetic cardiovascular diseases. This review summarizes ferroptosis-related mechanisms in the pathogenesis of diabetic cardiovascular diseases and novel therapeutic choices targeting ferroptosis-related pathways. Further study on ferroptosis-mediated cardiac injury can enhance our understanding of the pathophysiology of diabetic cardiovascular diseases and provide more potential therapeutic choices.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Yin
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kefei Dou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Zhang Y, Ma K, Fang X, Zhang Y, Miao R, Guan H, Tian J. Targeting ion homeostasis in metabolic diseases: Molecular mechanisms and targeted therapies. Pharmacol Res 2025; 212:107579. [PMID: 39756557 DOI: 10.1016/j.phrs.2025.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
The incidence of metabolic diseases-hypertension, diabetes, obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and atherosclerosis-is increasing annually, imposing a significant burden on both human health and the social economy. The occurrence and development of these diseases are closely related to the disruption of ion homeostasis, which is crucial for maintaining cellular functions and metabolic equilibrium. However, the specific mechanism of ion homeostasis in metabolic diseases is still unclear. This article reviews the role of ion homeostasis in the pathogenesis of metabolic diseases and assesses its potential as a therapeutic target. Furthermore, the article explores pharmacological strategies that target ion channels and transporters, including existing drugs and emerging drugs under development. Lastly, the article discusses the development direction of future therapeutic strategies, including the possibility of gene therapy targeting specific ion channels and personalized therapy using novel biomarkers. In summary, targeting ion homeostasis provides a new perspective and potential therapeutic approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Zhu Y, Wu Q, Guo J, Xu B, Zhao H, Liu C. Ferroptosis-associated alterations in diabetes following ischemic stroke: Insights from RNA sequencing. Brain Res 2024; 1845:149274. [PMID: 39395647 DOI: 10.1016/j.brainres.2024.149274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Ferroptosis is an iron-dependent form of programmed cell death associated with lipid peroxidation. Though diabetes worsens cerebral injury and clinical outcomes in stroke, it is poorly understood whether ferroptosis contributes to diabetes-exacerbated stroke. This study aimed to identify ferroptosis-associated differentially expressed genes in ischemic stroke under diabetic condition and then explore their roles using comprehensive bioinformatics analyses. METHODS Type 1 diabetes (T1D) model was established in male mice at 8-10 weeks of age by one intraperitoneal injection of streptozotocin (110 mg/kg). Ischemic stroke was induced by a transient 45-minute middle cerebral artery occlusion and evaluated three days thereafter. Ischemic brain cortex was dissected 24 h after the reperfusion and subjected to bulk tissue RNA sequencing followed by bioinformatics analysis and verification of key findings via quantitative real-time PCR. RESULTS Enlarged infarct size was seen in diabetic, as compared with non-diabetic mice, in conjunction with worsened neurological behaviors. Both body and spleen weights were reduced in diabetic as compared with non-diabetic mice. There was a trend for reduced survival rate in diabetic mice following the stroke. In RNA sequencing analysis, we identified 1299 differentially expressed genes in ischemic brain between diabetic and non-diabetic mice, with upregulation and downregulation for 732 and 567 genes, respectively. Among these genes, 27 genes were associated with ferroptosis. Further analysis reveals that solute carrier family 25 member 28(SLC25A28) and sterol carrier protein 2(SCP2) were the top genes associated with ferroptosis in diabetic mice following ischemic stroke. In several bioinformatics analyses, we found SLC25A28, one of the top ferroptosis-related genes, is involved in several metabolic and regulatory pathways as well as the regulatory complexity of microRNAs and circular RNAs, which demonstrates the potential role of SLC25A28 in diabetes-exacerbated stroke. Drug network analysis suggests SLC25A28 as a potential therapeutic target for ameliorating ischemic injury in diabetes. CONCLUSIONS Our bulk RNA sequencing and bioinformatics analyses show that altered ferroptosis signaling pathway was associated with the exacerbation of experimental stroke injury under diabetic condition. Especially, additional investigation into the mechanisms of SLC25A28 and SCP2 in diabetes-exacerbated stroke will be explored in the future study.
Collapse
MESH Headings
- Animals
- Ferroptosis/physiology
- Ferroptosis/genetics
- Male
- Mice
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Ischemic Stroke/metabolism
- Ischemic Stroke/genetics
- Sequence Analysis, RNA/methods
- Mice, Inbred C57BL
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/complications
- Brain Ischemia/metabolism
- Brain Ischemia/genetics
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/genetics
- Stroke/genetics
- Stroke/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Ying Zhu
- School of Nursing, Capital Medical University, Beijing, China
| | - Qike Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jiayi Guo
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Baohui Xu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Zhao Y, Yang M, Liang X. The role of mitochondria in iron overload-induced damage. J Transl Med 2024; 22:1057. [PMID: 39587666 PMCID: PMC11587765 DOI: 10.1186/s12967-024-05740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/06/2024] [Indexed: 11/27/2024] Open
Abstract
Iron overload is a pathological condition characterized by the abnormal accumulation of iron within the body, which may result from excessive iron intake, disorders of iron metabolism, or specific disease states. This condition can lead to significant health complications and may pose life-threatening risks. The excessive accumulation of iron can induce cellular stress, adversely affecting the structure and function of mitochondria, thereby compromising overall organ function. Given the critical role of mitochondria in cellular metabolism and homeostasis, it is imperative to investigate how mitochondrial dysfunction induced by iron overload contributes to disease progression, as well as to explore mitochondrial-related pathways as potential therapeutic targets for various iron overload disorders. This review examines the mechanisms by which mitochondria are implicated in iron overload-induced damage, including increased oxidative stress, mitochondrial DNA damage, and disruptions in energy metabolism. Additionally, it addresses the relationship between these processes and various forms of programmed cell death, as well as alterations in mitochondrial dynamics. Furthermore, the review discusses strategies aimed at alleviating and mitigating the complications associated with iron overload in patients by targeting mitochondrial pathways.
Collapse
Affiliation(s)
- Yangyang Zhao
- Department of Transfusion, Affiliated Hospital of North Sichuan Medical college, Nanchong, Sichuan, P.R. China
| | - Mengjiao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical college, Nanchong, Sichuan, P.R. China
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Xiaoxue Liang
- Chengdu Qingbaijiang District People's Hospital, Chengdu, 610300, Sichuan, P.R. China.
| |
Collapse
|
7
|
Gao Y, Wang B, Hu M, Ma Y, Zheng B. The Role of Iron in Atherosclerosis and its Association with Related Diseases. Curr Atheroscler Rep 2024; 27:1. [PMID: 39520606 DOI: 10.1007/s11883-024-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW This review aims to elucidate the multifaceted role of iron in the pathogenesis of atherosclerosis. The primary objective is to summarize recent advances in understanding how iron contributes to atherosclerosis through various cellular mechanisms. Additionally, the review explores the therapeutic implications of targeting iron metabolism in the prevention and treatment of cardiovascular diseases. RECENT FINDINGS A growing body of literature suggests that excess iron accelerates the progression of atherosclerosis, with the deleterious form of iron, non-transferrin-bound iron (NTBI), particularly exacerbating this process. Furthermore, iron overload has been demonstrated to play a pivotal role in endothelial cells, vascular smooth muscle cells, and macrophages, contributing to plaque instability and disease progression by promoting lipid peroxidation, oxidative stress, inflammatory responses, and ferroptosis. Iron plays a complex role in atherosclerosis, influencing multiple cellular processes and promoting disease progression. By promoting oxidative stress, inflammation, and ferroptosis, iron exacerbates endothelial dysfunction, smooth muscle cell calcification, and the formation of macrophage-derived foam cells. Targeted therapies focusing on iron metabolism have proven effective in treating atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
- Yingbo Gao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Boda Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengrui Hu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuhan Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
8
|
Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y, Chang X. Emerging insights into the pathogenesis and therapeutic strategies for vascular endothelial injury-associated diseases: focus on mitochondrial dysfunction. Angiogenesis 2024; 27:623-639. [PMID: 39060773 PMCID: PMC11564294 DOI: 10.1007/s10456-024-09938-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.
Collapse
Affiliation(s)
- Boxian Pang
- Beijing University of Chinese Medicine, Beijing, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | | | - Tieliang Pang
- Beijing Anding hospital, Capital Medical University, Beijing, China
| | - Xinyao Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Xin Liu
- Bioscience Department, University of Nottingham, Nottingham, UK
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiagge, Xicheng District, Beijing, China.
| |
Collapse
|
9
|
Li J, Feng R, Yang W, Liang P, Qiu T, Zhang J, Sun X, Li Q, Yang G, Yao X. Lysosomal iron accumulation and subsequent lysosomes-mitochondria iron transmission mediate PFOS-induced hepatocyte ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116890. [PMID: 39146593 DOI: 10.1016/j.ecoenv.2024.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is known as a persistent organic pollutant. A significant correlation between PFOS and liver ferroptosis has been unveiled, but the precise mechanism needs to be elucidated. In prior research, we found that PFOS treatment provoked mitochondrial iron overload. In this study, we observed a gradual increase in lysosomal iron in L-O2 cells after exposure to PFOS for 0.5-24 h. In PFOS-exposed L-O2 cells, suppressing autophagy relieved the lysosomal iron overload. Inhibiting transient receptor potential mucolipin 1 (TRPML1), a calcium efflux channel on the lysosomal membrane, led to a further rise in lysosomal iron levels and decreased mitochondrial iron overload during PFOS treatment. Suppressing VDAC1, a subtype of voltage-dependent anion-selective channels (VDACs) on the outer mitochondrial membrane, had no impact on PFOS-triggered mitochondrial iron overload, whereas restraining VDAC2/3 relieved this condition. Although silencing VDAC2 relieved PFOS-induced mitochondrial iron overload, it had no effect on PFOS-triggered lysosomal iron overload. Silencing VDAC3 alleviated PFOS-mediated mitochondrial iron overload and led to an additional increase in lysosomal iron. Therefore, we regarded VDAC3 as the specific VDACs subtype that mediated the lysosomes-mitochondria iron transfer. Additionally, in the presence of PFOS, an enhanced association between TRPML1 and VDAC3 was found in mice liver tissue and L-O2 cells. Our research unveils a novel regulatory mechanism of autophagy on the iron homeostasis and the effect of TRPML1-VDAC3 interaction on lysosomes-mitochondria iron transfer, giving an explanation of PFOS-induced ferroptosis and shedding some light on the role of classic calcium channels in iron transmission.
Collapse
Affiliation(s)
- Jixun Li
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Ruzhen Feng
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Wei Yang
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Peiyao Liang
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Tianming Qiu
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Jingyuan Zhang
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Xiance Sun
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Qiujuan Li
- Nutrition and Food Safety Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Guang Yang
- Nutrition and Food Safety Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Xiaofeng Yao
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China.
| |
Collapse
|
10
|
Kan JY, Wang DC, Jiang ZH, Wu LD, Xu K, Gu Y. Progression from cardiomyopathy to heart failure with reduced ejection fraction: A CORIN deficient course. Heliyon 2024; 10:e37838. [PMID: 39315128 PMCID: PMC11417248 DOI: 10.1016/j.heliyon.2024.e37838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiomyopathies, encompassing hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), constitute a diverse spectrum of heart muscle diseases that often culminating in heart failure (HF). The inherent molecular heterogeneity of these conditions has implications for prognosis and therapeutic strategies. Publicly available microarray and RNA sequencing (RNA-seq) data sets of HCM (n = 106 from GSE36961) and DCM (n = 18 from GSE135055 and 166 from GSE141910) patients were employed for our analysis. The Non-negative Matrix Factorization (NMF) algorithm was applied to explore the molecular stratification within HCM and DCM, and enrichment analysis was performed to delineate their biological characteristics. By integrating bulk and single-nucleus RNA-seq (snRNA-seq) data, we identified a potential biomarker for HCM progression and cardiac fibrosis, which was subsequently validated using mendelian randomization and in vitro. Our application of NMF identified two distinct molecular clusters. Particularly, a profibrotic, heart failure with reduced ejection fraction (HFrEF)-resembling Cluster 1 emerged, characterized by diminished expression of CORIN and a high degree of fibroblast activation. This cluster also exhibited lower left ventricular ejection fraction (LVEF) and worse prognostic outcomes, establishing the significance of this molecular subclassification. We further found that overexpression of CORIN could mitigate TGFβ1-induced expression of col1a1 and α-SMA in neonatal rat cardiac fibroblasts. Our results indicated the heterogeneity of HCM population, and further evidenced the participation of corin in the progression of HCM, DCM and HFrEF. Nevertheless, our study is constrained by the lack of corresponding clinical data and experimental validation of the identified subtypes. Therefore, further studies are warranted to elucidate the downstream pathways of corin and to validate these findings in independent patient cohorts.
Collapse
Affiliation(s)
| | | | | | - Li-da Wu
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ke Xu
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Zhu L, Du Y. A promising new approach to cancer therapy: Manipulate ferroptosis by hijacking endogenous iron. Int J Pharm 2024; 662:124517. [PMID: 39084581 DOI: 10.1016/j.ijpharm.2024.124517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Ferroptosis, a form of regulated cell death characterized by iron-dependent phospholipid peroxidation, has emerged as a focal point in the field of cancer therapy. Compared with other cell death modes such as apoptosis and necrosis, ferroptosis exhibits many distinct characteristics in the molecular mechanisms and cell morphology, offering a promising avenue for combating cancers that are resistant to conventional therapeutic modalities. In light of the serious side effects associated with current Fenton-modulating ferroptosis therapies utilizing exogenous iron-based inorganic nanomaterials, hijacking endogenous iron could serve as an effective alternative strategy to trigger ferroptosis through targeting cellular iron regulatory mechanisms. A better understanding of the underlying iron regulatory mechanism in the process of ferroptosis has shed light on the current findings of endogenous ferroptosis-based nanomedicine strategies for cancer therapy. Here in this review article, we provide a comprehensive discussion on the regulatory network of iron metabolism and its pivotal role in ferroptosis, and present recent updates on the application of nanoparticles endowed with the ability to hijack endogenous iron for ferroptosis. We envision that the insights in the study may expedite the development and translation of endogenous ferroptosis-based nanomedicines for effective cancer treatment.
Collapse
Affiliation(s)
- Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China.
| |
Collapse
|
12
|
Polesel M, Wildschut MHE, Doucerain C, Kuhn M, Flace A, Sá Zanetti L, Steck AL, Wilhelm M, Ingles-Prieto A, Wiedmer T, Superti-Furga G, Manolova V, Dürrenberger F. Image-based quantification of mitochondrial iron uptake via Mitoferrin-2. Mitochondrion 2024; 78:101889. [PMID: 38692382 DOI: 10.1016/j.mito.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Iron is a trace element that is critical for most living organisms and plays a key role in a wide variety of metabolic processes. In the mitochondrion, iron is involved in producing iron-sulfur clusters and synthesis of heme and kept within physiological ranges by concerted activity of multiple molecules. Mitochondrial iron uptake is mediated by the solute carrier transporters Mitoferrin-1 (SLC25A37) and Mitoferrin-2 (SLC25A28). While Mitoferrin-1 is mainly involved in erythropoiesis, the cellular function of the ubiquitously expressed Mitoferrin-2 remains less well defined. Furthermore, Mitoferrin-2 is associated with several human diseases, including cancer, cardiovascular and metabolic diseases, hence representing a potential therapeutic target. Here, we developed a robust approach to quantify mitochondrial iron uptake mediated by Mitoferrin-2 in living cells. We utilize HEK293 cells with inducible expression of Mitoferrin-2 and measure iron-induced quenching of rhodamine B[(1,10-phenanthroline-5-yl)-aminocarbonyl]benzyl ester (RPA) fluorescence and validate this assay for medium-throughput screening. This assay may allow identification and characterization of Mitoferrin-2 modulators and could enable drug discovery for this target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
13
|
Zhang J, Nie C, Zhang Y, Yang L, Du X, Liu L, Chen Y, Yang Q, Zhu X, Li Q. Analysis of mechanism, therapeutic strategies, and potential natural compounds against atherosclerosis by targeting iron overload-induced oxidative stress. Biomed Pharmacother 2024; 177:117112. [PMID: 39018869 DOI: 10.1016/j.biopha.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Ferroptosis is a novel form of cell demise characterized primarily by the reduction of trivalent iron to divalent iron, leading to the release of reactive oxygen species (ROS) and consequent induction of intense oxidative stress. In atherosclerosis (AS), highly accumulated lipids are modified by ROS to promote the formation of lipid peroxides, further amplifying cellular oxidative stress damage to influence all stages of atherosclerotic development. Macrophages are regarded as pivotal executors in the progression of AS and the handling of iron, thus targeting macrophage iron metabolism holds significant guiding implications for exploring potential therapeutic strategies against AS. In this comprehensive review, we elucidate the potential interplay among iron overload, inflammation, and lipid dysregulation, summarizing the potential mechanisms underlying the suppression of AS by alleviating iron overload. Furthermore, the application of Traditional Chinese Medicine (TCM) is increasingly widespread. Based on extant research and the pharmacological foundations of active compounds of TCM, we propose alternative therapeutic agents for AS in the context of iron overload, aiming to diversify the therapeutic avenues.
Collapse
Affiliation(s)
- Jing Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Chunxia Nie
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yang Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Lina Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xinke Du
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China; State key laboratory for quality ensurance and sustainable use ofdao-di herbs, Beijing 100700, China.
| |
Collapse
|
14
|
Guan H, Xiao L, Hao K, Zhang Q, Wu D, Geng Z, Duan B, Dai H, Xu R, Feng X. SLC25A28 Overexpression Promotes Adipogenesis by Reducing ATGL. J Diabetes Res 2024; 2024:5511454. [PMID: 38736904 PMCID: PMC11088465 DOI: 10.1155/2024/5511454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.
Collapse
Affiliation(s)
- Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Lin Xiao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Kaikai Hao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Qiang Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Dongliang Wu
- Department of Cardiology, Xianyang Hospital of Yan'an University, Xianyang 712000, China
| | - Zhanyi Geng
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Bowen Duan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Hui Dai
- Department of Clinical Medicine, Gansu Medical College, Pingliang 744000, China
| | - Ruifen Xu
- Department of Anesthesiology, Shaanxi Provincial Peoples Hospital, Xi'an 710068, China
| | - Xuyang Feng
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
- Department of Neurology, Xianyang Hospital of Yan'an University, Xianyang 712000, China
| |
Collapse
|
15
|
Wang D, Jiang Z, Kan J, Jiang X, Pan C, You S, Chang R, Zhang J, Yang H, Zhu L, Gu Y. USP36-mediated PARP1 deubiquitination in doxorubicin-induced cardiomyopathy. Cell Signal 2024; 117:111070. [PMID: 38307305 DOI: 10.1016/j.cellsig.2024.111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Doxorubicin (Dox) is a potent antineoplastic agent, but its use is curtailed by severe cardiotoxicity, known as Dox-induced cardiomyopathy (DIC). The molecular mechanism underlying this cardiotoxicity remains unclear. Our current study investigates the role of Ubiquitin-Specific Protease 36 (USP36), a nucleolar deubiquitinating enzyme (DUB), in the progression of DIC and its mechanism. We found increased USP36 expression in neonatal rat cardiomyocytes and H9C2 cells exposed to Dox. Silencing USP36 significantly mitigated Dox-induced oxidative stress injury and apoptosis in vitro. Mechanistically, USP36 upregulation positively correlated with Poly (ADP-ribose) polymerase 1 (PARP1) expression, and its knockdown led to a reduction in PARP1 levels. Further investigation revealed that USP36 could bind to and mediate the deubiquitination of PARP1, thereby increasing its protein stability in cardiomyocytes upon Dox exposure. Moreover, overexpression of wild-type (WT) USP36 plasmid, but not its catalytically inactive mutant (C131A), stabilized PARP1 in HEK293T cells. We also established a DIC model in mice and observed significant upregulation of USP36 in the heart. Cardiac knockdown of USP36 in mice using a type 9 recombinant adeno-associated virus (rAAV9)-shUSP36 significantly preserved cardiac function after Dox treatment and protected against Dox-induced structural changes within the myocardium. In conclusion, these findings suggest that Dox promotes DIC progression by activating USP36-mediated PARP1 deubiquitination. This novel USP36/PARP1 axis may play a significant regulatory role in the pathogenesis of DIC.
Collapse
Affiliation(s)
- Dongchen Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zihao Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junyan Kan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chang Pan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shijie You
- Dushu Lake Hospital Affiliated to Soochow University (Suzhou Dushu Lake Hospital), Suzhou, China
| | - Ruirui Chang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongfeng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Choi YK. Detrimental Roles of Hypoxia-Inducible Factor-1α in Severe Hypoxic Brain Diseases. Int J Mol Sci 2024; 25:4465. [PMID: 38674050 PMCID: PMC11050730 DOI: 10.3390/ijms25084465] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia stabilizes hypoxia-inducible factors (HIFs), facilitating adaptation to hypoxic conditions. Appropriate hypoxia is pivotal for neurovascular regeneration and immune cell mobilization. However, in central nervous system (CNS) injury, prolonged and severe hypoxia harms the brain by triggering neurovascular inflammation, oxidative stress, glial activation, vascular damage, mitochondrial dysfunction, and cell death. Diminished hypoxia in the brain improves cognitive function in individuals with CNS injuries. This review discusses the current evidence regarding the contribution of severe hypoxia to CNS injuries, with an emphasis on HIF-1α-mediated pathways. During severe hypoxia in the CNS, HIF-1α facilitates inflammasome formation, mitochondrial dysfunction, and cell death. This review presents the molecular mechanisms by which HIF-1α is involved in the pathogenesis of CNS injuries, such as stroke, traumatic brain injury, and Alzheimer's disease. Deciphering the molecular mechanisms of HIF-1α will contribute to the development of therapeutic strategies for severe hypoxic brain diseases.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
17
|
Zhang CH, Yan YJ, Luo Q. The molecular mechanisms and potential drug targets of ferroptosis in myocardial ischemia-reperfusion injury. Life Sci 2024; 340:122439. [PMID: 38278348 DOI: 10.1016/j.lfs.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI), caused by the initial interruption and subsequent restoration of coronary artery blood, results in further damage to cardiac function, affecting the prognosis of patients with acute myocardial infarction. Ferroptosis is an iron-dependent, superoxide-driven, non-apoptotic form of regulated cell death that is involved in the pathogenesis of MIRI. Ferroptosis is characterized by the accumulation of lipid peroxides (LOOH) and redox disequilibrium. Free iron ions can induce lipid oxidative stress as a substrate of the Fenton reaction and lipoxygenase (LOX) and participate in the inactivation of a variety of lipid antioxidants including CoQ10 and GPX4, destroying the redox balance and causing cell death. The metabolism of amino acid, iron, and lipids, including associated pathways, is considered as a specific hallmark of ferroptosis. This review systematically summarizes the latest research progress on the mechanisms of ferroptosis and discusses and analyzes the therapeutic approaches targeting ferroptosis to alleviate MIRI.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Jie Yan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Luo
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
18
|
Linjacki S, Wang Y, Baath N, Mantle D, Yang G. H 2S Protects from Rotenone-Induced Ferroptosis by Stabilizing Fe-S Clusters in Rat Cardiac Cells. Cells 2024; 13:371. [PMID: 38474335 PMCID: PMC10931451 DOI: 10.3390/cells13050371] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Hydrogen sulfide (H2S) has been recently recognized as an important gasotransmitter with cardioprotections, and iron is vital for various cellular activities. This study explored the regulatory role of H2S on iron metabolism and mitochondrial functions in cultured rat cardiac cells. Rotenone, a mitochondrial complex I inhibitor, was used for establishing an in vitro model of ischemic cell damage. It was first found that rotenone induced oxidative stress and lipid peroxidation and decreased mitochondrial membrane potential and ATP generation, eventually causing cell death. The supplement of H2S at a physiologically relevant concentration protected from rotenone-induced ferroptotic cell death by reducing oxidative stress and mitochondrial damage, maintaining GPx4 expression and intracellular iron level. Deferiprone, an iron chelator, would also protect from rotenone-induced ferroptosis. Further studies demonstrated that H2S inhibited ABCB8-mediated iron efflux from mitochondria to cytosol and promoted NFS1-mediated Fe-S cluster biogenesis. It is also found that rotenone stimulated iron-dependent H2S generation. These results indicate that H2S would protect cardiac cells from ischemic damage through preserving mitochondrial functions and intracellular Fe-S cluster homeostasis.
Collapse
Affiliation(s)
- Sara Linjacki
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (S.L.); (Y.W.); (N.B.); (D.M.)
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Yuehong Wang
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (S.L.); (Y.W.); (N.B.); (D.M.)
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Navjeet Baath
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (S.L.); (Y.W.); (N.B.); (D.M.)
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Devin Mantle
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (S.L.); (Y.W.); (N.B.); (D.M.)
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (S.L.); (Y.W.); (N.B.); (D.M.)
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
19
|
Zhu W, Zhu W, Wang S, Liu S, Zhang H. UCHL1 deficiency upon HCMV infection induces vascular endothelial inflammatory injury mediated by mitochondrial iron overload. Free Radic Biol Med 2024; 211:96-113. [PMID: 38081437 DOI: 10.1016/j.freeradbiomed.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Human cytomeglovirus (HCMV) infection predisposes blood vessels to atherosclerosis (AS) and post-transplantation restenosis, but the underlying molecular basis remains elusive. Here, we found that HCMV infection activates AIM2 inflammasome and pyroptosis in vascular endothelial cells by inducing mitochondrial iron overload. Mechanistically, under normal conditions, ubiquitin carboxyl terminal hydrolase-L1 (UCHL1) was identified as a DUB enzyme that interacts with, deubiquitylates, and stabilizes ferredoxin reductase (FDXR), an important mitochondrial protein that regulates mitochondral iron homeostasis. However, HCMV infection induces the aberrantly elevated m6A modification and R-loops, the three-stranded DNA-DNA:RNA hybrid structures. The expression of UCHL1 was remarkably reduced by m6A modification-mediated mRNA decay and R-loop-dependent transcriptional termination after HCMV infection. Deficiency of UCHL1 causes ubiquitination and degradation of FDXR. Loss of FDXR induces the mitochondrial iron overload, which consequently leads to AIM2 inflammasome activation and endothelial injury. Moreover, both downregulation expression of UCHL1 and related inflammatory injury in vascular endothelium was observed in MCMV-infected mice. Notably, STM2457, a METTL3 specific inhibitor, restores the expression of UCHL1 upon HCMV infection, thereby inhibiting the inflammatory injury of vascular endothelial cells. Our findings delineate a novel mechnism involved in HCMV-induced inflammatory injury to vascular endothelium and implicate the role of METTL3 inhibitor as a potential therapeutic approach.
Collapse
Affiliation(s)
- Wenbo Zhu
- The First Affiliated Hospital, Clinical Medical Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wentong Zhu
- Unchained Labs (Shanghai) Trading Co., Ltd, Shanghai 201203, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Science, Fuzhou 350013, China
| | - Shuangquan Liu
- The First Affiliated Hospital, Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hongbo Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States.
| |
Collapse
|
20
|
Halliwell B, Watt F, Minqin R. Iron and atherosclerosis: Lessons learned from rabbits relevant to human disease. Free Radic Biol Med 2023; 209:165-170. [PMID: 37852545 DOI: 10.1016/j.freeradbiomed.2023.10.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
The role of iron in promoting atherosclerosis, and hence the cardiovascular, neurodegenerative and other diseases that result from atherosclerosis, has been fiercely controversial. Many studies have been carried out on various rodent models of atherosclerosis, especially on apoE-knockout (apoE-/-) mice, which develop atherosclerosis more readily than normal mice. These apoE-/- mouse studies generally support a role for iron in atherosclerosis development, although there are conflicting results. The purpose of the current article is to describe studies on another animal model that is not genetically manipulated; New Zealand White (NZW) rabbits fed a high-cholesterol diet. This may be a better model than the apoE-/- mice for human atherosclerosis, although it has been given much less attention. Studies on NZW rabbits support the view that iron promotes atherosclerosis, although some uncertainties remain, which need to be resolved by further experimentation.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Research Programme, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Frank Watt
- Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 117551, Singapore.
| | - Ren Minqin
- Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 117551, Singapore.
| |
Collapse
|
21
|
Pasquadibisceglie A, Bonaccorsi di Patti MC, Musci G, Polticelli F. Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects. Biomolecules 2023; 13:1172. [PMID: 37627237 PMCID: PMC10452680 DOI: 10.3390/biom13081172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
Collapse
Affiliation(s)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
22
|
Mitoferrin, Cellular and Mitochondrial Iron Homeostasis. Cells 2022; 11:cells11213464. [PMID: 36359860 PMCID: PMC9658796 DOI: 10.3390/cells11213464] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Iron is essential for many cellular processes, but cellular iron homeostasis must be maintained to ensure the balance of cellular signaling processes and prevent disease. Iron transport in and out of the cell and cellular organelles is crucial in this regard. The transport of iron into the mitochondria is particularly important, as heme and the majority of iron-sulfur clusters are synthesized in this organelle. Iron is also required for the production of mitochondrial complexes that contain these iron-sulfur clusters and heme. As the principal iron importers in the mitochondria of human cells, the mitoferrins have emerged as critical regulators of cytosolic and mitochondrial iron homeostasis. Here, we review the discovery and structure of the mitoferrins, as well as the significance of these proteins in maintaining cytosolic and mitochondrial iron homeostasis for the prevention of cancer and many other diseases.
Collapse
|
23
|
Iron Overload, Oxidative Stress, and Ferroptosis in the Failing Heart and Liver. Antioxidants (Basel) 2021; 10:antiox10121864. [PMID: 34942967 PMCID: PMC8698778 DOI: 10.3390/antiox10121864] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Iron accumulation is a key mediator of several cytotoxic mechanisms leading to the impairment of redox homeostasis and cellular death. Iron overload is often associated with haematological diseases which require regular blood transfusion/phlebotomy, and it represents a common complication in thalassaemic patients. Major damages predominantly occur in the liver and the heart, leading to a specific form of cell death recently named ferroptosis. Different from apoptosis, necrosis, and autophagy, ferroptosis is strictly dependent on iron and reactive oxygen species, with a dysregulation of mitochondrial structure/function. Susceptibility to ferroptosis is dependent on intracellular antioxidant capacity and varies according to the different cell types. Chemotherapy-induced cardiotoxicity has been proven to be mediated predominantly by iron accumulation and ferroptosis, whereas there is evidence about the role of ferritin in protecting cardiomyocytes from ferroptosis and consequent heart failure. Another paradigmatic organ for transfusion-associated complication due to iron overload is the liver, in which the role of ferroptosis is yet to be elucidated. Some studies report a role of ferroptosis in the initiation of hepatic inflammation processes while others provide evidence about an involvement in several pathologies including immune-related hepatitis and acute liver failure. In this manuscript, we aim to review the literature to address putative common features between the response to ferroptosis in the heart and liver. A better comprehension of (dys)similarities is pivotal for the development of future therapeutic strategies that can be designed to specifically target this type of cell death in an attempt to minimize iron-overload effects in specific organs.
Collapse
|