1
|
Motamedzadeh A, Rahmati-Dehkordi F, Heydari H, Behnam M, Rashidi Noshabad FZ, Tamtaji Z, Taheri AT, Nabavizadeh F, Aschner M, Mirzaei H, Tamtaji OR. Therapeutic potential of Phycocyanin in gastrointestinal cancers and related disorders. Mol Biol Rep 2024; 51:741. [PMID: 38874869 DOI: 10.1007/s11033-024-09675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/β-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoora Heydari
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| |
Collapse
|
2
|
Tamayo SO, Cupitra NI, Narvaez-Sanchez R. Vascular adaptation to cancer beyond angiogenesis: The role of PTEN. Microvasc Res 2023; 147:104492. [PMID: 36709859 DOI: 10.1016/j.mvr.2023.104492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/06/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Cancer is a public health problem, and it needs blood vessels to grow. Knowing more about the processes of vascular adaptation to cancer improves our chances of attacking it, since the tumor for its extension needs such adaptation to satisfy its progressive demand for nutrients. The main objective of this review is to present the reader with some fundamental molecular pathways for vascular adaptation to cancer, highlighting within them the regulatory role of homologous tensin and phosphatase protein (PTEN). Hence the review describes vascular adaptation to cancer through somewhat known processes, such as angiogenesis, but emphasizes others that are much less explored, namely the changes in vascular reactivity and remodeling of the vascular wall -intima-media thickness and adjustments in the extracellular matrix- The role of PTEN in physiological and pathological vascular mechanisms in different types of cancer is deepened, as a crucial mediator in vascular adaptation to cancer, and points pending further exploration in cancer vascularization are suggested.
Collapse
Affiliation(s)
- Sofia Ortiz Tamayo
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Nelson Ivan Cupitra
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
3
|
Phycocyanin Ameliorates Colitis-Associated Colorectal Cancer by Regulating the Gut Microbiota and the IL-17 Signaling Pathway. Mar Drugs 2022; 20:md20040260. [PMID: 35447933 PMCID: PMC9030732 DOI: 10.3390/md20040260] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Phycocyanin (PC) is a pigment-protein complex. It has been reported that PC exerts anti-colorectal cancer activities, although the underlying mechanism has not been fully elucidated. In the present study, azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mice were orally administrated with PC, followed by microbiota and transcriptomic analyses to investigate the effects of PC on colitis-associated cancer (CAC). Our results indicated that PC ameliorated AOM/DSS induced inflammation. PC treatment significantly reduced the number of colorectal tumors and inhibited proliferation of epithelial cell in CAC mice. Moreover, PC reduced the relative abundance of Firmicutes, Deferribacteres, Proteobacteria and Epsilonbacteraeota at phylum level. Transcriptomic analysis showed that the expression of genes involved in the intestinal barrier were altered upon PC administration, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the IL-17 signaling pathway was affected by PC treatment. The study demonstrated the protective therapeutic action of PC on CAC.
Collapse
|
4
|
Silva MROBD, M. da Silva G, Silva ALFD, Lima LRAD, Bezerra RP, Marques DDAV. Bioactive Compounds of Arthrospira spp. (Spirulina) with Potential Anticancer Activities: A Systematic Review. ACS Chem Biol 2021; 16:2057-2067. [PMID: 34597512 DOI: 10.1021/acschembio.1c00568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Arthrospira, a genus of blue-green cyanobacteria, is known for its great biological activity due to the presence of a large number of substances that are potentially active against tumor cells. This review aimed to evaluate the potential of Arthrospira spp. for the treatment or reduction of several types of cancer, in addition to elucidating the mechanism of action by which their compounds act on tumor cells. A systematic review was carried out in PubMed, Science Direct, LILACS, and SciELO databases, including original studies from 2009 to 2020. A total of 1306 articles were independently assessed according to the eligibility criteria, of which 20 articles were selected and assessed for the risk of bias using seven criteria developed by the authors. Arthrospira spp. of cyanobacteria have been evaluated against eight different types of cancer, mainly colon cancer. Among all the compounds, phycocyanin was the most used, followed by peptides and photosensitizers. In general, compounds from Arthrospira spp. act as anticancer agents by inhibiting the proliferation of tumor cells, triggering cell cycle arrest, and inducing apoptosis via different signaling pathways. In addition, these compounds also exhibited antioxidant, antiangiogenic, and antimetastatic activities. Phycocyanin demonstrated better efficacy against several types of cancer via different activities and therapeutic targets. Furthermore, it was the only molecule that functioned in synergy with other drugs that are already well established for the treatment of cancer.
Collapse
Affiliation(s)
- Maria Rafaele O. B. da Silva
- Applied Cellular and Molecular Biology Program, Biological Science Institute, University of Pernambuco (UPE), Arnóbio Marques, 50100-130 Recife, PE, Brazil
- Laboratory of Biotechnology Applied to Infectious and Parasitic Diseases, Biological Science Institute, University of Pernambuco (UPE), Arnóbio Marques, 50100-130 Recife, PE, Brazil
| | - Gisele M. da Silva
- Laboratory of Cell Biology, University of Pernambuco (UPE), Capitão Pedro Rodrigues, 55294-902 Garanhus, PE, Brazil
| | - Amannda L. F. da Silva
- Laboratory of Biotechnology Applied to Infectious and Parasitic Diseases, Biological Science Institute, University of Pernambuco (UPE), Arnóbio Marques, 50100-130 Recife, PE, Brazil
| | - Luiza R. A. de Lima
- Laboratory of Cell Biology, University of Pernambuco (UPE), Capitão Pedro Rodrigues, 55294-902 Garanhus, PE, Brazil
| | - Raquel P. Bezerra
- Animal Morphology and Physiology Department, Federal Rural University of Pernambuco (UFRPE), Dom Manoel de Medeiros Avenue, 52171-900 Recife, PE, Brazil
| | - Daniela de A. V. Marques
- Laboratory of Biotechnology Applied to Infectious and Parasitic Diseases, Biological Science Institute, University of Pernambuco (UPE), Arnóbio Marques, 50100-130 Recife, PE, Brazil
| |
Collapse
|
5
|
Arab S, Ghasemi S, Ghanbari A, Bahraminasab M, Satari A, Mousavi M, Dehcheshme HG, Asgharzade S. Chemopreventive effect of spirulina microalgae on an animal model of glioblastoma via down-regulation of PI3K/AKT/mTOR and up-regulation of miR-34a/miR-125B expression. Phytother Res 2021; 35:6452-6461. [PMID: 34606108 DOI: 10.1002/ptr.7298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
Recent studies suggest that Spirulina may have great therapeutic benefits due to its antioxidant and anti-inflammatory properties. The primary objective of this study was to evaluate the chemopreventive properties of the Spirulina microalgae (Spi) on the regression and survival of tumor, histopathological features of glioblastoma, and detection of the molecular mechanism of Spi. Tumor viability versus Spi was determined using the MTT assay. In vivo antitumor activity of Spi was studied using the glioblastoma model. After tumor induction, the animals were euthanized, and their brains were removed. Histological evaluation was performed for tumor size and manifestation. The mechanisms of the anticancer effects of Spi were investigated by evaluating the microRNAs and their targets. The results demonstrated that Spi inhibited C6 and U87 cell proliferation and induced cell death. Histopathologic results showed that the administration of Spi could delay the development of tumors and prolonged the survival of tumor-bearing animals. Furthermore, Spi significantly upregulated miR-34a and miR-125b that have a key role in the progression of PI3K/AKT/mTOR pathway. This is the first in vivo report on the chemo-preventive effect of Spi against glioblastoma, suggesting its potential use in the chemoprevention of this cancer and the antiglioma molecular mechanism of Spi.
Collapse
Affiliation(s)
- Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sahar Ghasemi
- Student research committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research center of physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Atefeh Satari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahboubeh Mousavi
- Department of Anatomy, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Samira Asgharzade
- Student research committee, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
6
|
Glycogen synthase kinase 3β promotes osteosarcoma invasion and migration via regulating PTEN and phosphorylation of focal adhesion kinase. Biosci Rep 2021; 41:228616. [PMID: 33969873 PMCID: PMC8314432 DOI: 10.1042/bsr20193514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/01/2022] Open
Abstract
Aim: Typical features of human osteosarcoma are highly invasive and migratory capacities. Our study aimed to investigate the roles of glycogen synthase kinase 3β (GSK3β) in human osteosarcoma metastasis. Methods: GSK3β expressions in clinical osteosarcoma tissues with or without metastasis were examined by immunohistochemical staining. The expressions of GSK3β, p-GSK3βSer9, and p-GSK3βTyr216 in human osteoblast cells (hFOB1.19) and human osteosarcoma cells (MG63, SaOS-2, and U2-OS) were detected by Western blotting. The GSK3β activity was measured by non-radio isotopic in vitro kinase assay. Migration and invasion abilities of MG-63 cells treated with small-molecular GSK3β inhibitors were respectively examined by monolayer-based wound-healing assay and transwell assay. The mRNA expressions of GSK3β, matrix metalloproteinase-2 (MMP-2), MMP-9, phosphatase with tensin homology (PTEN), and focal adhesion kinase (FAK) were detected after siRNA transfection for 72 h. Meanwhile, protein expressions of GSK3β, FAK, p-FAKY397, PTEN, MMP-2, and MMP-9 were measured by Western blotting. Results: Clinical osteosarcoma tissues with metastasis showed higher GSK3β expressions. MG63 and U2-OS cells that were easy to occur metastasis showed significantly higher expressions and activities of GSK3β than SaOS-2 cells. Inhibition of GSK3β with small-molecular GSK3β inhibitors in MG63 cells significantly attenuated cell migration and invasion. These effects were associated with reduced expressions of MMP-2 and MMP-9. Moreover, increased PTEN and decreased p-FAKY397 expressions were observed following GSK3β knockdown by siRNA transfection. Conclusion: GSK3β might promote osteosarcoma invasion and migration via pathways associated with PTEN and phosphorylation of FAK.
Collapse
|
7
|
Fan Y, Li Z, Wu L, Lin F, Shao J, Ma X, Yao Y, Zhuang W, Wang Y. Solasodine, Isolated from Solanum sisymbriifolium Fruits, Has a Potent Anti-Tumor Activity Against Pancreatic Cancer. Drug Des Devel Ther 2021; 15:1509-1519. [PMID: 33888977 PMCID: PMC8054575 DOI: 10.2147/dddt.s266746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Increasing evidences have revealed that solasodine, isolated from Solanum sisymbriifolium fruits, has multiple functions such as anti-oxidant, anti-tumor and anti-infection. However, its role in pancreatic cancer has not been well studied. METHODS To explore the role of solasodine in pancreatic cancer, human pancreatic cell lines including SW1990 and PANC1 were treated with different concentrations of solasodine for 48 h, and cell viability was evaluated by MTT assay, cell invasion and migration were evaluated by Transwell assay. The effect of solasodine on the apoptosis of SW1990 and PANC1 cells was detected by flow cytometry. To further explore the antitumor effect of solasodine in vivo, an SW1990 tumor-bearing mouse model was constructed. The effects of solasodine on cytokines in the serum of SW1990 tumor-bearing mice were also evaluated by ELISA assay. RESULTS Specifically, in vitro, solasodine could significantly inhibit the proliferation of pancreatic cancer cell lines SW1990 and PANC1 cells. Flow cytometric analysis indicated that solasodine could induce apoptosis of SW1990 and PANC1 cells. Western blot assay indicated that solasodine could significantly inhibit the activation of Cox-2/Akt/GSK3β signal pathway. Meanwhile, the release of Cytochrome c from mitochondria to cytoplasm which can raise the caspases cascade (C-caspase 3 and C-caspase 9) was significantly enhanced by solasodine. In vivo, the results showed that solasodine had potent anti-tumor activities with a lower cytotoxicity. In addition, the serum TNF-α, IL-2 and IFN-γ levels in SW1990 tumor-bearing mice after the treatment of solasodine was significantly increased. CONCLUSION Taken together, our results suggested that the solasodine could prevent the progression of pancreatic cancer by inhibiting proliferation and promoting apoptosis, as well as stimulating immunity, suggesting that solasodine might be a potential therapeutic strategy for pancreatic cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Fruit/chemistry
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Conformation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Solanaceous Alkaloids/chemistry
- Solanaceous Alkaloids/isolation & purification
- Solanaceous Alkaloids/pharmacology
- Solanum/chemistry
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yingchao Fan
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Zhumeng Li
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Liting Wu
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Feng Lin
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Jinfeng Shao
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Xiaoyan Ma
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Yonghua Yao
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Wenfang Zhuang
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| | - Yuan Wang
- Medical Laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, People’s Republic of China
| |
Collapse
|
8
|
Kabir MT, Uddin MS, Zaman S, Begum Y, Ashraf GM, Bin-Jumah MN, Bungau SG, Mousa SA, Abdel-Daim MM. Molecular Mechanisms of Metal Toxicity in the Pathogenesis of Alzheimer’s Disease. Mol Neurobiol 2020; 58:1-20. [DOI: 10.1007/s12035-020-02096-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
|
9
|
Alizadeh S, Esmaeili A, Omidi Y. Anti-cancer properties of Escherichia coli Nissle 1917 against HT-29 colon cancer cells through regulation of Bax/Bcl-xL and AKT/PTEN signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:886-893. [PMID: 32774810 PMCID: PMC7395184 DOI: 10.22038/ijbms.2020.43016.10115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives Chemotherapies used to treat colon cancer might often fail due to the emergence of chemoresistance and side effects. Escherichia coli Nissle 1917 (EcN) is a beneficial probiotic, whose molecular mechanisms in the prevention of colon cancer are yet to be fully understood. The present study assessed the anti-cancer effects of EcN treatments in human colorectal cancer, HT-29 cell line, with the analysis of related mechanisms. Materials and Methods The co-culture conditioned-media (CM) of EcN with adenocarcinoma HT-29 cells and heat-inactivated bacteria (HIB) were applied for the treatment of the HT-29 cells. To study the inhibition potential of CM and HIB on cancer cells, various cellular/molecular analyses were implemented, including DAPI-staining and DNA ladder assays, flow cytometry and Real-time quantitative PCR (qPCR), as well as Western blotting analyses. Results Our results indicated that EcN could elicit apoptotic impacts on the colon cancer HT-29 cells by up-regulating PTEN and Bax and down-regulating AKT1 and Bcl-xL genes. Conclusion Based on our findings, EcN is proposed as a useful supplemental probiotic treatment against colon cancer.
Collapse
Affiliation(s)
- Siamak Alizadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Zhang S, Xu Z, Yuan J, Chen H. Ubiquitin-specific peptidase 17 promotes cisplatin resistance via PI3K/AKT activation in non-small cell lung cancer. Oncol Lett 2020; 20:67-74. [PMID: 32565935 PMCID: PMC7286115 DOI: 10.3892/ol.2020.11568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
The suppression of ubiquitin-specific peptidase 17 (USP17) has previously been found to result in reduced tumorigenesis and invasion of non-small cell lung cancer (NSCLC) cells. However, the functions and underlying mechanisms of USP17 in NSCLC progression remain unclear. In the present study, cisplatin treatment was found to upregulate USP17 expression in a dose-dependent manner. Furthermore, USP17-overexpressing (USP17-OE) NSCLC A549 and H1299 cells were generated for mechanistic studies. The results from the Cell Counting Kit-8 assay revealed increased cell proliferation in USP17-OE cells compared with that of control cells. Moreover, the viability of USP17-OE cells was significantly higher than that of the control cells, when treated with cisplatin. The results of the biochemical studies demonstrated enhanced PI3K and AKT phosphorylation in USP17-OE NSCLC cells, whereas USP17-knockdown decreased these levels of phosphorylation. By contrast, an AKT inhibitor abolished the USP17-mediated enhancement of proliferation. Moreover, suppression of USP17 or the combination of the AKT inhibitor and cisplatin significantly reduced cell viability. Overall, the results of the present study suggest that PI3K/AKT activation is the underlying mechanism of USP17-mediated cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Shengchao Zhang
- Department of Thoracic Surgery, Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Zhenglang Xu
- Department of Thoracic Surgery, Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Jun Yuan
- Department of Thoracic Surgery, Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| | - Hao Chen
- Department of Thoracic Surgery, Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai 201700, P.R. China
| |
Collapse
|
11
|
Saini RK, Nath Sanyal S, Singh Bhatti J. Chemopreventive action of non-steroidal anti-inflammatory drugs in 9,10-dimethylbenzanthracene induced lung carcinogenesis in BALB/C mice: Expression of COX-1, COX-2 and Nf-κB. J Appl Biomed 2018; 16:320-327. [DOI: 10.1016/j.jab.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Namani A, Li J, Wang XJ, Tang X. A Review of Compounds for Prevention of Colorectal Cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0101-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Wu D, Klaw MC, Connors T, Kholodilov N, Burke RE, Côté MP, Tom VJ. Combining Constitutively Active Rheb Expression and Chondroitinase Promotes Functional Axonal Regeneration after Cervical Spinal Cord Injury. Mol Ther 2017; 25:2715-2726. [PMID: 28967557 DOI: 10.1016/j.ymthe.2017.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
After spinal cord injury (SCI), severed axons in the adult mammalian CNS are unable to mount a robust regenerative response. In addition, the glial scar at the lesion site further restricts the regenerative potential of axons. We hypothesized that a combinatorial approach coincidentally targeting these obstacles would promote axonal regeneration. We combined (1) transplantation of a growth-permissive peripheral nerve graft (PNG) into an incomplete, cervical lesion cavity; (2) transduction of neurons rostral to the SCI site to express constitutively active Rheb (caRheb; a Ras homolog enriched in brain), a GTPase that directly activates the growth-promoting pathway mammalian target of rapamycin (mTOR) via AAV-caRheb injection; and (3) digestion of growth-inhibitory chondroitin sulfate proteoglycans within the glial scar at the distal PNG interface using the bacterial enzyme chondroitinase ABC (ChABC). We found that expressing caRheb in neurons post-SCI results in modestly yet significantly more axons regenerating across a ChABC-treated distal graft interface into caudal spinal cord than either treatment alone. Excitingly, we found that caRheb+ChABC treatment significantly potentiates the formation of synapses in the host spinal cord and improves the animals' ability to use the affected forelimb. Thus, this combination strategy enhances functional axonal regeneration following a cervical SCI.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michelle C Klaw
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Theresa Connors
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | - Robert E Burke
- Department of Neurology, Columbia University, New York, NY, 10032 USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Marie-Pascale Côté
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
14
|
Li C, Yu Y, Li W, Liu B, Jiao X, Song X, Lv C, Qin S. Phycocyanin attenuates pulmonary fibrosis via the TLR2-MyD88-NF-κB signaling pathway. Sci Rep 2017; 7:5843. [PMID: 28725012 PMCID: PMC5517415 DOI: 10.1038/s41598-017-06021-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 06/07/2017] [Indexed: 12/21/2022] Open
Abstract
Our aim was to investigate the effects of phycocyanin (PC) on bleomycin (BLM)-induced pulmonary fibrosis (PF). In this study, C57 BL/6 wild-type (WT) mice and toll-like receptor (TLR) 2 deficient mice were treated with PC for 28 days following BLM exposure. Serum and lung tissues were collected on days 3, 7 and 28. Data shows PC significantly decreased the levels of hydroxyproline (HYP), vimentin, surfactant-associated protein C (SP-C), fibroblast specific protein-1 (S100A4) and α-smooth muscle actin (α-SMA) but dramatically increased E-cadherin and podoplanin (PDPN) expression on day 28. Moreover, PC greatly decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) at the earlier time. Reduced expression of key genes in the TLR2 pathway was also detected. Compared with WT mice, TLR2-deficient mice exhibited less injury, and the protective effect of PC was partly diminished in this background. These data indicate the anti-fibrotic effects of PC may be mediated by reducing W/D ratio, MPO, IL-6, TNF-α, protecting type I alveolar epithelial cells, inhibiting fibroblast proliferation, attenuating epithelial-mesenchymal transitions (EMT) and reducing oxidative stress. The TLR2-MyD88-NF-κB pathway plays an important role in PC-mediated reduction in pulmonary fibrosis.
Collapse
Affiliation(s)
- Chengcheng Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Yan Yu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Bo Liu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Xudong Jiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xinyu Song
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Changjun Lv
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
15
|
Ohkawa K, Asakura T, Tsukada Y, Matsuura T. Antibody to human α-fetoprotein inhibits cell growth of human hepatocellular carcinoma cells by resuscitating the PTEN molecule: in vitro experiments. Int J Oncol 2017; 50:2180-2190. [PMID: 28498467 DOI: 10.3892/ijo.2017.3982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
It has been proposed that α-fetoprotein (AFP) is a new member of the intracellular signaling molecule family of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway via interaction with the phosphatase and tensin homolog (PTEN). In this study, the effects of anti-human AFP antibody on the functions of PTEN were examined using an AFP-producing human hepatoma cell line. The antibody caused significant inhibition of cell growth, compared to a normal IgG control, with the accumulation of intracellular immune complexes followed by significant reduction of cytosolic functional AFP. Decrease in the amount of AKT phosphorylated on serine (S) 473 indicated that PI3K/AKT signaling was suppressed in the cells. S380-phosphorylated PTEN increased markedly by the second day after antibody treatment, with slight but significant increase in the PTEN protein level. Since phosphorylation at S380 is critical for PTEN stability, the increase in S380-phosphorylated PTEN indicated maintenance of the number of PTEN molecules and the related potential to control PI3K/AKT signaling. p53 protein (P53) significantly, but slightly increased during antibody treatment, because PTEN expression increased the stability and function of P53 via both molecular interactions. P53 phosphorylated at S20 or at S392 dramatically increased, suggesting an increase in the stability, accumulation and activation of P53. Glucose transporter 1 (GLUT1) increased immediately after antibody treatment, pointing to a deficiency of glucose in the cells. Immunofluorescence cytology revealed that antibody-treatment re-distributed GLUT1 molecules throughout the cytoplasm with a reduction of their patchy localization on the cell surface. This suggested that translocation of GLUT1 depends on the PI3K/AKT pathway, in particular on PTEN expression. Antibody therapy targeted at AFP-producing tumor cells showed an inhibitory effect on the PI3K/AKT pathway via the liberation, restoration and functional stabilization of PTEN. PTEN simultaneously induced both P53 activation and intracellular translocation of GLUT1, since these are closely associated with PTEN.
Collapse
Affiliation(s)
- Kiyoshi Ohkawa
- Stable Isotope Medical Applications Laboratory, Research Center for Medical Science, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Tadashi Asakura
- Radioisotope Research Facilities, Research Center for Medical Science, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Yutaka Tsukada
- Hachioji Laboratory, SRL Inc., Komiya-cho, Hachioji, Tokyo 192-8535, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
16
|
Salim EI, Hegazi MM, Kang JS, Helmy HM. Expression Patterns of Cancer Stem Cell Markers During Specific Celecoxib Therapy in Multistep Rat Colon Carcinogenesis Bioassays. Asian Pac J Cancer Prev 2017; 17:1023-35. [PMID: 27039721 DOI: 10.7314/apjcp.2016.17.3.1023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The purpose of this study was to investigate the role of colon cancer stem cells (CSCs) during chemicallyinduced rat multi-step colon carcinogenesis with or without the treatment with a specific cyclooxygenase-2 inhibitor drug (celecoxib). Two experiments were performed, the first, a short term 12 week colon carcinogenesis bioassay in which only surrogate markers for colon cancer, aberrant crypt foci (ACF) lesions, were formed. The other experiment was a medium term colon cancer rat assay in which tumors had developed after 32 weeks. Treatment with celecoxib lowered the numbers of ACF, as well as the tumor volumes and multiplicities after 32 weeks. Immunohistochemical proliferating cell nuclear antigen (PCNA) labeling indexes LI (%) were downregulated after treatment by celecoxib. Also different cell surface antigens known to associate with CSCs such as the epithelial cell adhesion molecule (EpCAM), CD44 and CD133 were compared between the two experiments and showed differential expression patterns depending on the stage of carcinogenesis and treatment with celecoxib. Flow cytometric analysis demonstrated that the numbers of CD133 cells were increased in the colonic epithelium after 12 weeks while those of CD44 but not CD133 cells were increased after 32 weeks. Moreover, aldehyde dehydrogenase-1 activity levels in the colonic epithelium (a known CSC marker) detected by ELISA assay were found down-regulated after 12 weeks, but were up-regulated after 32 weeks. The data have also shown that the protective effect of celecoxib on these specific markers and populations of CSCs and on other molecular processes such as apoptosis targeted by this drug may vary depending on the genetic and phenotypic stages of carcinogenesis. Therefore, uncovering these distinction roles of CSCs during different phases of carcinogenesis and during specific treatment could be useful for targeted therapy.
Collapse
Affiliation(s)
- Elsayed I Salim
- Department of Zoology, Faculty of Science, Tanta University, Research Lab. of Molecular Carcinogenesis, Tanta, Egypt E-mail : ,
| | | | | | | |
Collapse
|
17
|
Bordini HP, Kremer JL, Fagundes TR, Melo GP, Conchon-Costa I, da Silva SS, Cecchini AL, Panis C, Luiz RC. Protective effect of metformin in an aberrant crypt foci model induced by 1,2-dimethylhydrazine: Modulation of oxidative stress and inflammatory process. Mol Carcinog 2016; 56:913-922. [PMID: 27585117 DOI: 10.1002/mc.22545] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 11/07/2022]
Abstract
Colorectal Cancer (CRC) is the third most frequent type of cancer worldwide. In the past few years, studies have revealed a protective effect of metformin (MET-an anti-hyperglycemic drug, used to treat type 2 diabetes), against CRC. The protective effect of MET has been associated with AMPK activation (and mTOR inhibition), resulting in suppressed protein synthesis, and reduced cell proliferation in malignant transformed cells. To elucidate new mechanisms for the protective effect of metformin, we evaluated the oxidative stress and inflammatory process modulation, since these processes are strictly involved in colorectal carcinogenesis. The present study evaluated the protective effect of MET in a CRC model induced by 1,2-dimethylhydrazine (DMH) in Balb/c female mice. The simultaneous/continuous treatment (administration of MET and DMH simultaneously), revealed protective activity of MET, preventing the formation of aberrant crypt foci (ACF) in 71.4% at distal colon sections, and was able to restore basal labeling of apoptosis. Treatment with MET also reduced the inflammatory process induced by DMH, resulting in of the reduction of oxidative stress and nitric oxide related parameters. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Heloíza Paranzini Bordini
- Laboratory of Molecular Pathology, Department of Sciences of Pathology, State University of Londrina, Londrina, Brazil
| | - Jean Lucas Kremer
- Laboratory of Molecular Pathology, Department of Sciences of Pathology, State University of Londrina, Londrina, Brazil
| | - Tatiane Renata Fagundes
- Laboratory of Molecular Pathology, Department of Sciences of Pathology, State University of Londrina, Londrina, Brazil
| | - Gabriella Pasqual Melo
- Laboratory of Pathophysiology of Free Radicals, Department of Sciences of Pathology, State University of Londrina, Londrina, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Parasitology, Department of Sciences of Pathology, State University of Londrina, Londrina, Brazil
| | - Suelen Santos da Silva
- Laboratory of Parasitology, Department of Sciences of Pathology, State University of Londrina, Londrina, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Pathophysiology of Free Radicals, Department of Sciences of Pathology, State University of Londrina, Londrina, Brazil
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, Center of Healthy Sciences, State University of West Parana, Francisco Beltrão, Brazil
| | - Rodrigo Cabral Luiz
- Laboratory of Molecular Pathology, Department of Sciences of Pathology, State University of Londrina, Londrina, Brazil
| |
Collapse
|
18
|
Zhu W, Shao Y, Yang M, Jia M, Peng Y. Asparaginyl endopeptidase promotes proliferation and invasiveness of prostate cancer cells via PI3K/AKT signaling pathway. Gene 2016; 594:176-182. [PMID: 27590439 DOI: 10.1016/j.gene.2016.08.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/01/2016] [Accepted: 08/29/2016] [Indexed: 12/27/2022]
Abstract
Recurrence and metastasis are the major lethal causes of prostate cancer. It is urgent to find out the mechanisms and key factors governing prostate cancer progression and metastasis for developing new therapeutic strategies. Asparaginyl endopeptidase (AEP) overexpression has been found in a number of solid tumors. In prostate cancer, AEP has also been shown to exhibit a vesicular staining pattern and significantly associated with advanced tumor stage, high Gleason score, perineural invasion, and larger tumor. Here, we found that AEP was differentially expressed in prostate cancer cells with higher expression in 22RV1 cells and lower expression in PC-3 cells. AEP knockdown in 22RV1 cells significantly inhibited cell proliferation and invasion abilities while overexpression of AEP in PC-3 cells prompted cell proliferation and invasion abilities. Meanwhile, AEP knockdown upregulated cell apoptosis and vice versa. Further, we firstly identified that AEP promotes activation of the PI3K-AKT signaling pathway in prostate cancer cells. Taken together, our results suggest that AEP may be an attractive target for prostate cancer therapy.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqun Shao
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Yang
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Moran Jia
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Peng
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
19
|
Huang JH, Cao Y, Zeng L, Wang G, Cao M, Lu HB, Hu JZ. Tetramethylpyrazine enhances functional recovery after contusion spinal cord injury by modulation of MicroRNA-21, FasL, PDCD4 and PTEN expression. Brain Res 2016; 1648:35-45. [PMID: 27431939 DOI: 10.1016/j.brainres.2016.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022]
Abstract
Our previous study showed Tetramethylpyrazine (TMP) has protective effects against SCI. In this study, we aimed to uncover the mechanism underlying the protective effects of TMP in SCI. SCI was induced in Sprague-Dawley rats with a modified weight-drop device. One group was subjected to SCI in combination with TMP administration at a dose of 200mg/kgd, for 3 days. Concurrently, another group received SCI in combination with an equal volume of 0.9% saline. Locomotor functional recovery was assessed during the 4 weeks post-injury by performing the Basso, Beattie, and Bresnahan (BBB) rating procedure. Lesion size and spared tissue were measured by cresyl violet staining. MicroRNA-21 (miR-21) expression was determined by real-time PCR and in situ hybridization. FasL, PDCD4, and PTEN are direct targets of miR-21 in many diseases and cell types; their levels were analyzed by western blot. Immunohistochemistry was performed to observe the expression of PDCD4 and PTEN. Cell apoptosis was assessed by TUNEL staining and DNA laddering. TMP treatment after contusion SCI significantly improved functional recovery, decreased lesion size, and increased tissue sparing and miR-21 levels; expression of FasL, PDCD4, and PTEN was decreased. TMP treatment also reduced apoptosis after SCI. Thus, TMP administration improved functional recovery and reduced cell apoptosis. Its protective effect may partly based on increasing the expression of miR-21 and decreasing the expression of FasL, PDCD4, and PTEN. These could serve as new exploratory targets for SCI treatment.
Collapse
Affiliation(s)
- Jiang-Hu Huang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China; Department of orthopaedics, Fujian Provincial Hospital, 350001, PR China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Lei Zeng
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Guan Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Min Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hong-Bin Lu
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Jian-Zhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
20
|
Medical Application of Spirulina platensis Derived C-Phycocyanin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7803846. [PMID: 27293463 PMCID: PMC4879233 DOI: 10.1155/2016/7803846] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 01/13/2023]
Abstract
Along with the development of marine biological pharmaceutical research, high-effective and low-toxic drugs and functional foods isolated from marine organisms have become a new field of pharmacy and bromatology. The pharmacological actions, such as anti-inflammation, antioxidation, antitumor, immunological enhancement, and hepatorenal protection of C-phycocyanin (C-PC) from Spirulina platensis, have been reported, and C-PC has important value of development and utilization either as drug or as functional food. There are many researches about the various pharmacological actions and mechanisms of C-PC, but related reports are only to some extent integrated deeply and accurately enough, which put some limitations to the further application of C-PC in medicine. Particularly, with the improvement of living standards and attention to health issues, C-PC being a functional food is preferred by more and more people. C-PC is easy to get, safe, and nontoxic; thus, it has a great potential of research and development as a drug or functional food. Here, the separation and purification, physicochemical properties, physiological and pharmacological activities, safety, and some applications are reviewed to provide relevant basis for the development of natural medicine and applied products.
Collapse
|
21
|
Chu D, Zhang Z, Zhou Y, Li Y, Zhu S, Zhang J, Zhao Q, Ji G, Wang W, Zheng J. NDRG4, a novel candidate tumor suppressor, is a predictor of overall survival of colorectal cancer patients. Oncotarget 2016; 6:7584-96. [PMID: 25749388 PMCID: PMC4480701 DOI: 10.18632/oncotarget.3170] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022] Open
Abstract
The role of NDRG4 in human malignancies is largely unknown. We investigated the role of NDRG4 protein in colorectal cancer and its prognostic value in a hospital-based retrospective training cohort of 272 patients and a prospective validation cohort of 708 patients were. Cell line was transfected with an NDRG4 expression construct to confirm the suppression of PI3K-AKT activity by NDRG4. Appropriate statistical methods were utilized for analysis. Results showed that NDRG4 protein expression was significantly decreased from normal mucosa, chronic colitis, ulcerative colitis, atypical hyperplasia to colorectal cancer. Significant negative correlations were found between NDRG4 staining and p-AKT. Patients with positive NDRG4 staining had favorable survival in both study cohorts. In multivariate analysis, NDRG4 staining proved to be an independent predictor of overall survival. Moreover, the prognostic role of NDRG4 was stratified by p-AKT. Overexpression of NDRG4 in colorectal cancer cell can significantly suppress PI3K-AKT activity, even after EGF stimulation. These results indicated NDRG4 protein expression was decreased in colorectal cancer. It may play its tumor suppressive role in carcinogenesis and progression through attenuation of PI3K-AKT activity. Therefore, high risk colorectal cancer patients could be better identified based on the combination of NDRG4 and PI3K-AKT activity.
Collapse
Affiliation(s)
- Dake Chu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Zixi Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Zhou
- Department of Gastrointestinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yunming Li
- Statistics Office, Chengdu Military General Hospital, Chengdu, Sichuan Province, China
| | - Shaojun Zhu
- Department of Pathology, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weizhong Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianyong Zheng
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
D'Annunzio V, Perez V, Boveris A, Gelpi RJ, Poderoso JJ. Role of thioredoxin-1 in ischemic preconditioning, postconditioning and aged ischemic hearts. Pharmacol Res 2016; 109:24-31. [PMID: 26987940 DOI: 10.1016/j.phrs.2016.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/12/2023]
Abstract
Thioredoxin is one of the most important cellular antioxidant systems known to date, and is responsible of maintaining the reduced state of the intracellular space. Trx-1 is a small cytosolic protein whose transcription is induced by stress. Therefore it is possible that this antioxidant plays a protective role against the oxidative stress caused by an increase of reactive oxygen species concentration, as occurs during the reperfusion after an ischemic episode. However, in addition to its antioxidant properties, it is able to activate other cytoplasmic and nuclear mediators that confer cardioprotection. It is remarkable that Trx-1 also participates in myocardial protection mechanisms such as ischemic preconditioning and postconditioning, activating proteins related to cellular survival. In this sense, it has been shown that Trx-1 inhibition abolished the preconditioning cardioprotective effect, evidenced through apoptosis and infarct size. Furthermore, ischemic postconditioning preserves Trx-1 content at reperfusion, after ischemia. However, comorbidities such as aging can modify this powerful cellular defense leading to decrease cardioprotection. Even ischemic preconditioning and postconditioning protocols performed in aged animal models failed to decrease infarct size. Therefore, the lack of success of antioxidants therapies to treat ischemic heart disease could be solved, at least in part, avoiding the damage of Trx system.
Collapse
Affiliation(s)
- Veronica D'Annunzio
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Virginia Perez
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Alberto Boveris
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina
| | - Ricardo J Gelpi
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina.
| | - Juan J Poderoso
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Argentina
| |
Collapse
|
23
|
Álvarez-González I, Islas-Islas V, Chamorro-Cevallos G, Barrios JP, Paniagua N, Vásquez-Garzón VR, Villa-Treviño S, Osiris-Madrigal-Santillán, Morales-González JA, Madrigal-Bujaidar E. Inhibitory Effect of Spirulina maxima on the Azoxymethane-induced Aberrant Colon Crypts and Oxidative Damage in Mice. Pharmacogn Mag 2015; 11:S619-S624. [PMID: 27013804 PMCID: PMC4787098 DOI: 10.4103/0973-1296.172973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spirulina maxima (Sm) is a cyanobacterium well known because of its high nutritive value, as well as its anti-inflammatory, anti-hyperlipidemic, antioxidant, and anti-genotoxic activities. OBJECTIVE To determine the capacity of Sm to inhibit the induction of aberrant colon crypts (AC), as well as the level of lipid peroxidation and DNA oxidative damage in mice treated with azoxymethane (AOM). MATERIALS AND METHODS Sm (100, 400, and 800 mg/kg) was daily administered to animals by the oral route during 4 weeks, while AOM (10 mg/kg) was intraperitoneally injected to mice twice in weeks 2 and 3 of the assay. We also included a control group of mice orally administered with distilled water along the assay, as well as other group orally administered with the high dose of Sm. RESULTS A significant decrease in the number of AC with the three tested doses of Sm, with a mean protection of 51.6% respect to the damage induced by AOM. Also, with the three doses of the alga, we found a reduction in the level of lipoperoxidation, as well as in regard to the percentage of the DNA adduct 8-hydroxy-2'- deoxyguanosine. CONCLUSION Sm possesses anti-precarcinogenic potential in vivo, as well as capacity to reduce the oxidative damage induced by AOM. SUMMARY Azoxymethane (AOM) induced a high number of colon aberrant crypts in mouse. It also increased the level of peroxidation and of DNA oxidation in the same organ.Spirulina maxima significantly reduced the number of AOM-induced colon aberrant crypts in mouse. It also reduced the AOM-induced lipid and DNA oxidation in mouse.The results suggest a chemopreventive potential for the tested algae.
Collapse
Affiliation(s)
- Isela Álvarez-González
- Department of Morphology, Genetics Laboratory, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| | - Víctor Islas-Islas
- Department of Morphology, Genetics Laboratory, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| | - Germán Chamorro-Cevallos
- Department of Pharmacy, Preclinical Toxicology, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| | - Juan Pablo Barrios
- Department of Pharmacy, Preclinical Toxicology, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| | - Norma Paniagua
- Department of Physiology, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| | - Verónica R. Vásquez-Garzón
- Department of Cellular Biology, Center for Research and Advanced Studies, National Polytechnic Institute, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, D.F. 07360, México
- Cathedra-CONACYT, Faculty of Medicine and Surgery, Autonomous University “Benito Juárez” of Oaxaca, Av. Universidad s/n, Exhacienda de Cinco Señores, Oaxaca de Juárez, 68120, México
| | - Saúl Villa-Treviño
- Department of Cellular Biology, Center for Research and Advanced Studies, National Polytechnic Institute, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, D.F. 07360, México
| | - Osiris-Madrigal-Santillán
- Department of Conservation Medicine, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, D. F. 11340, México
| | - José Antonio Morales-González
- Department of Conservation Medicine, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, D. F. 11340, México
| | - Eduardo Madrigal-Bujaidar
- Department of Morphology, Genetics Laboratory, National School of Biological Sciences, National Polytechnic Institute, Av. Wilfredo Massieu s/n. Lindavista, D. F. 07738, México
| |
Collapse
|
24
|
Chang J, Jiang L, Wang Y, Yao B, Yang S, Zhang B, Zhang MZ. 12/15 Lipoxygenase regulation of colorectal tumorigenesis is determined by the relative tumor levels of its metabolite 12-HETE and 13-HODE in animal models. Oncotarget 2015; 6:2879-88. [PMID: 25576922 PMCID: PMC4413624 DOI: 10.18632/oncotarget.2994] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/12/2014] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) continues to be a major cause of morbidity and mortality. The arachidonic acid (AA) pathway and linoleic acid (LA) pathway have been implicated as important contributors to CRC development and growth. Human 15-lipoxygenase 1 (15-LOX-1) converts LA to anti-tumor 13-S-hydroxyoctadecadienoic acid (13-HODE)and 15-LOX-2 converts AA to 15-hydroxyeicosatetraenoic acid (15-HETE). In addition, human 12-LOX metabolizes AA to pro-tumor 12-HETE. In rodents, the function of 12-LOX and 15-LOX-1 and 15-LOX-2 is carried out by a single enzyme, 12/15-LOX. As a result, conflicting conclusions concerning the role of 12-LOX and 15-LOX have been obtained in animal studies. In the present studies, we determined that PD146176, a selective 15-LOX-1 inhibitor, markedly suppressed 13-HODE generation in human colon cancer HCA-7 cells and HCA-7 tumors, in association with increased tumor growth. In contrast, PD146176 treatment led to decreases in 12-HETE generation in mouse colon cancer MC38 cells and MC38 tumors, in association with tumor inhibition. Surprisingly, deletion of host 12/15-LOX alone led to increased MC38 tumor growth, in association with decreased tumor 13-HODE levels, possibly due to inhibition of 12/15-LOX activity in stroma. Therefore, the effect of 12/15-LOX on colorectal tumorigenesis in mouse models could be affected by tumor cell type (human or mouse), relative 12/15 LOX activity in tumor cells and stroma as well as the relative tumor 13-HODE and 12-HETE levels.
Collapse
Affiliation(s)
- Jian Chang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Jiang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yinqiu Wang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bing Yao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Yang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
25
|
Kanno SI, Kurauchi K, Tomizawa A, Yomogida S, Ishikawa M. Pifithrin-alpha has a p53-independent cytoprotective effect on docosahexaenoic acid-induced cytotoxicity in human hepatocellular carcinoma HepG2 cells. Toxicol Lett 2015; 232:393-402. [DOI: 10.1016/j.toxlet.2014.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/12/2014] [Accepted: 11/16/2014] [Indexed: 12/29/2022]
|
26
|
Piroxicam and c-phycocyanin prevent colon carcinogenesis by inhibition of membrane fluidity and canonical Wnt/β-catenin signaling while up-regulating ligand dependent transcription factor PPARγ. Biomed Pharmacother 2014; 68:537-50. [DOI: 10.1016/j.biopha.2014.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022] Open
|
27
|
Saini MK, Sanyal SN. Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor. Biochem Cell Biol 2014; 92:206-18. [DOI: 10.1139/bcb-2014-0016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An angiogenic pathway was studied that involved stromal tissue degradation with matrix metalloproteinases (MMPs), vesicular endothelial growth factor-A (VEGF-A), and hypoxia inducible factor-1α (HIF-1α) mediated growth regulation in a complex interaction with chemokines, such as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β). Gene and protein expression was studied with real-time PCR, Western immunoblot, and immunofluorescence. Morphological and histopathological analysis of tumor was done, as also the activity of MMPs and HIF-1α by gelatin zymography and ELISA. Binding interactions of proteins were studied by molecular docking. Piroxicam, a traditional NSAID and C-phycocyanin, a biliprotein from Spirulina platensis, were utilized in the chemoprevention of DMH-induced rat colon cancer. A significant number of tumors was evident in DMH treated animals, while with piroxicam and C-phycocyanin, the number and size of tumors/lesions were reduced. Colonic tissues showed severe dysplasia, tubular adenoma, and adenocarcinoma from DMH, with invasive features along with signet ring cell carcinoma. No occurrence of carcinoma was detected in either of the drug treatments or in a combination regimen. An elevated VEGF-A, MMP-2, and MMP-9 level was observed, which is required for metastasis and invasion into surrounding tissues. Drugs induced chemoprevention by down-regulating these proteins. Piroxicam docked in VEGF-A binding site of VEGF-A receptors i.e., VEGFR1 and VEGFR2, while phycocyanobilin (a chromophore of C-phycocyanin) docked with VEGFR1 alone. HIF-1α is up-regulated which is associated with increased oxygen demand and angiogenesis. MCP-1 and MIP-1β expression was also found altered in DMH and regulated by the drugs. Anti-angiogenic role of piroxicam and C-phycocyanin is well demonstrated.
Collapse
|
28
|
Treas J, Tyagi T, Singh KP. Chronic exposure to arsenic, estrogen, and their combination causes increased growth and transformation in human prostate epithelial cells potentially by hypermethylation-mediated silencing of MLH1. Prostate 2013; 73:1660-72. [PMID: 23804311 DOI: 10.1002/pros.22701] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/29/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND Chronic exposure to arsenic and estrogen is associated with risk of prostate cancer, but their mechanism is not fully understood. Additionally, the carcinogenic effects of their co-exposure are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic, estrogen, and their combination, on cell growth and transformation, and identify the mechanism behind these effects. METHODS RWPE-1 human prostate epithelial cells were chronically exposed to arsenic and estrogen alone and in combination. Cell growth was measured by cell count and cell cycle, whereas cell transformation was evaluated by colony formation assay. Gene expression was measured by quantitative real-time PCR and confirmed at protein level by Western blot analysis. MLH1 promoter methylation was determined by pyrosequencing method. RESULTS Exposure to arsenic, estrogen, and their combinations increases cell growth and transformation in RWPE-1 cells. Increased expression of Cyclin D1 and Bcl2, whereas decreased expression of mismatch repair genes MSH4, MSH6, and MLH1 was also observed. Hypermethylation of MLH1 promoter further suggested the epigenetic inactivation of MLH1 expression in arsenic and estrogen treated cells. Arsenic and estrogen combination caused greater changes than their individual treatments. CONCLUSIONS Findings of this study for the first time suggest that arsenic and estrogen exposures cause increased cell growth and survival potentially through epigenetic inactivation of MLH1 resulting in decreased MLH1-mediated apoptotic response, and consequently increased cellular transformation.
Collapse
Affiliation(s)
- Justin Treas
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas
| | | | | |
Collapse
|
29
|
Pandurangan AK. Potential targets for prevention of colorectal cancer: a focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac J Cancer Prev 2013; 14:2201-5. [PMID: 23725112 DOI: 10.7314/apjcp.2013.14.4.2201] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in many parts of the world. Its development is a multi-step process involving three distinct stages, initiation that alters the molecular message of a normal cell, followed by promotion and progression that ultimately generates a phenotypically altered transformed malignant cell. Reports have suggested an association of the phosphoinositide-3-kinase (PI3K)/Akt pathway with colon tumorigenesis. Activation of Akt signaling and impaired expression of phosphatase and tensin homolog (PTEN) (a negative regulator of Akt) has been reported in 60-70% of human colon cancers and inhibitors of PI3K/Akt signaling have been suggested as potential therapeutic agents. Around 80% of human colon tumors possess mutations in the APC gene and half of the remainder feature β-catenin gene mutations which affect downstream signaling of the PI3K/Akt pathway. In recent years, there has been a great focus in targeting these signaling pathways, with natural and synthetic drugs reducing the tumor burden in different experiment models. In this review we survey the role of PI3K/Akt/mTOR and Wnt signaling in CRC.
Collapse
|
30
|
Takeda K, Kermani P, Anastasia A, Obinata Y, Hempstead BL, Kurihara H. BDNF protects human vascular endothelial cells from TNFα-induced apoptosis. Biochem Cell Biol 2013; 91:341-9. [PMID: 24032685 DOI: 10.1139/bcb-2013-0005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration. Tissue regeneration is characterized by inflammation that directs the quality of tissue repair. In this study, we investigated the anti-apoptotic effect of BDNF against the toxicity of tumor necrosis factor α (TNFα), which is known for its pro-apoptotic action in human microvascular endothelial cells (HMVECs). We demonstrate that BDNF attenuates TNFα-increased Annexin V-positive cells, lactic dehydrogenase (LDH) release, and intercellular adhesion molecule 1 (ICAM-1) mRNA and cleaved caspase-3 expression. In addition, biochemical analyses indicate that TNFα increases phosphatase and tensin homolog (PTEN) expression; however, it decreases phosphorylated PTEN. BDNF did not affect PTEN expression, but it did increase the phosphorylation of PTEN. BDNF-induced Akt phosphorylation was inhibited by TNFα. Terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) assay showed that the PTEN inhibitor bpV(pic) rescues HMVECs from TNFα-induced apoptosis. In conclusion, BDNF protects HMVECs from toxicity of TNFα through the regulation of the PTEN/Akt pathway.
Collapse
Affiliation(s)
- Katsuhiro Takeda
- a Division of Frontier Medical Science, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | |
Collapse
|