1
|
Srinivas B, Alluri K, Rhaleb NE, Belmadani S, Matrougui K. Role of plasmacytoid dendritic cells in vascular dysfunction in mice with renovascular hypertension. Heliyon 2024; 10:e31799. [PMID: 38882290 PMCID: PMC11176769 DOI: 10.1016/j.heliyon.2024.e31799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Endothelial dysfunction and inflammation are clinically significant risk factors for cardiovascular diseases in hypertension. Although immune cells play a role in hypertension, the impact of plasmacytoid dendritic cells in established renovascular hypertension-induced cardiovascular complications is not fully understood. We investigated plasmacytoid dendritic cells' contribution to arterial endothelial dysfunction and inflammation in renovascular hypertension. A two-kidney one-clip (2K1C) model for four weeks in both male and female mice was used to induce renovascular hypertension. We treated mice with or without anti-PDCA-1 antibodies for one week to deplete the plasmacytoid dendritic cells. Renovascular hypertension causes cardiac hypertrophy, lung edema, and microvascular endothelial dysfunction associated with inflammation induction in mice. Moreover, renovascular hypertension affects the profile of immune cells, including dendritic cells and macrophages, with variations between male and female mice. Interestingly, the depletion of plasmacytoid dendritic cells significantly reduces blood pressure, cardiac hypertrophy, lung edema, inflammation, and oxidative stress and improves microvascular endothelial function via the endoplasmic reticulum (ER) stress, autophagy, and mTOR-dependent mechanisms. Plasmacytoid dendritic cells significantly contribute to the development of cardiovascular complications in renovascular hypertension by modulating immune cells, inflammation, oxidative stress, and ER stress.
Collapse
Affiliation(s)
- Balaji Srinivas
- Eastern Virginia Medical School, Department of Physiological Sciences, 800 W Olney Rd, Norfolk, VA 23501, USA
| | - Kiran Alluri
- Eastern Virginia Medical School, Department of Physiological Sciences, 800 W Olney Rd, Norfolk, VA 23501, USA
| | - Nour-Eddine Rhaleb
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Souad Belmadani
- Eastern Virginia Medical School, Department of Physiological Sciences, 800 W Olney Rd, Norfolk, VA 23501, USA
| | - Khalid Matrougui
- Eastern Virginia Medical School, Department of Physiological Sciences, 800 W Olney Rd, Norfolk, VA 23501, USA
| |
Collapse
|
2
|
Rodrigues SD, da Silva MLS, Martins LZ, Gomes SEB, Mariani NAP, Silva EJR, Kushima H, Mattos BR, Rizzi E, Dias-Junior CA. Pregnancy hypertension-associated endothelial dysfunction is attenuated by isoflurane anesthesia: Evidence of protective effect related to increases in nitric oxide. Life Sci 2023; 331:122039. [PMID: 37648198 DOI: 10.1016/j.lfs.2023.122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
AIMS Pregnancy hypertension-induced endothelial dysfunction associated with impairment of nitric oxide (NO) bioavailability and hemodynamic derangements is a challenging for urgent procedures requiring maternal anesthesia. The volatile anesthetic isoflurane has demonstrated NO-associated protective effects. However, this isoflurane-induced effect is still unclear in pregnancy hypertension. Therefore, the present study examined the potential protective effects of isoflurane anesthesia on endothelial dysfunction and hemodynamic changes induced by hypertensive pregnancy associated with fetal and placental growth restrictions. MATERIALS AND METHODS Animals were distributed into four groups: normotensive pregnant rats (Preg), anesthetized pregnant rats (Preg+Iso), hypertensive pregnant rats (HTN-Preg), and anesthetized hypertensive pregnant rats (HTN-Preg+Iso). Systolic and diastolic pressures, mean arterial pressure (MAP), heart rate, fetal and placental weights, vascular contraction, endothelium-derived NO-dependent vasodilation, and NO levels were assessed. The vascular endothelial growth factor (VEGF) levels and endothelial NO synthase (eNOS) Serine (1177) phosphorylation (p-eNOS) expression were also examined. KEY FINDINGS Isoflurane produced more expressive hypotensive effects in the HTN-Preg+Iso versus Preg+Iso group, with respective reductions in MAP by 50 ± 13 versus 25 ± 4 mmHg (P < 0.05). Also, HTN-Preg+Iso compared to the HTN-Preg group showed (respectively) preventions against the weight loss of the fetuses (4.0 ± 0.6 versus 2.8 ± 0.6 g, P < 0.05) and placentas (0.37 ± 0.06 versus 0.30 ± 0.06 mg, P < 0.05), hyper-reactive vasocontraction response (1.8 ± 0.4 versus 2.8 ± 0.6 g, P < 0.05), impaired endothelium-derived NO-dependent vasodilation (84 ± 8 versus 50 ± 17 %, P < 0.05), reduced VEGF levels (147 ± 46 versus 25 ± 13 pg/mL, P < 0.05), and decreased p-eNOS expression (0.24 ± 0.07 versus 0.09 ± 0.05 arbitrary units, P < 0.05). SIGNIFICANCE Isoflurane anesthesia protects maternal endothelial function in pregnancy hypertension, and possibly endothelium-derived NO is involved.
Collapse
Affiliation(s)
- Serginara David Rodrigues
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Maria Luiza Santos da Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Laisla Zanetoni Martins
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Sáskia Estela Biasotti Gomes
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Hélio Kushima
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil
| | - Bruna Rahal Mattos
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, SP, Brazil
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, SP, Brazil
| | - Carlos Alan Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, 18618-689, SP, Brazil.
| |
Collapse
|
3
|
Rocha TLA, Borges TF, Rodrigues SD, Martins LZ, da Silva MLS, Bonacio GF, Rizzi E, Dias-Junior CA. Sevoflurane and isoflurane anesthesia induce redox imbalance, but only sevoflurane impairs vascular contraction. Fundam Clin Pharmacol 2023; 37:937-946. [PMID: 37085979 DOI: 10.1111/fcp.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Volatile anesthetics may cause vascular dysfunction; however, underlying effects are unclear. The aim of the present study was to investigate whether sevoflurane and isoflurane affect vascular function, nitric oxide (NO) bioavailability, and biomarkers of oxidative stress and inflammation. Wistar rats were divided into three experimental groups: Not anesthetized (control group) or submitted to anesthesia with isoflurane (Iso group) or sevoflurane (Sevo group). Hemodynamic parameters were monitored during anesthesia, and blood gas values and biochemical determinants were analyzed. Isometric contractions were recorded in aortic rings. Vasoconstriction induced by potassium chloride (KCl) and phenylephrine (Phe) were measured. No differences in hemodynamic parameters and blood gasses variables were observed. Impaired KCl and Phe-induced contractions were observed in endothelium-intact aorta of Sevo compared to Iso and Control groups. Redox imbalance was found in Sevo and Iso groups. Reduced NO bioavailability and increased activity of matrix metalloproteinase 2 (MMP-2) were observed in Sevo, but not in the Iso group. While reduced IL-10 and IL-1β were observed in Sevo, increases in IL-1β in the Iso group were found. Sevoflurane, but not isoflurane, anesthesia impairs vasocontraction, and reduced NO and cytokines and increased MMP-2 activity may be involved in vascular dysfunction after sevoflurane anesthesia.
Collapse
Affiliation(s)
- Thalita L A Rocha
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Teubislete F Borges
- Department of Anesthesiology, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Serginara D Rodrigues
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Laisla Z Martins
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Maria L S da Silva
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Gisele F Bonacio
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos A Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
4
|
Ahmed AA, Mohamed SK, Nofal S, El Morsy EM, Ahmed AAE. Targeting the adenosine monophosphate-activated protein kinase signalling pathway by bempedoic acid attenuates Angiotensin II-induced cardiac remodelling in renovascular hypertension in rats. Life Sci 2023; 329:121963. [PMID: 37473803 DOI: 10.1016/j.lfs.2023.121963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The crosstalk between the renin-angiotensin system and Adenosine monophosphate-activated protein kinase (AMPK) gained significant interest due to their involvement in the pathogenesis of several cardiovascular diseases. Angiotensin II (Ang II) plays a crucial role in developing cardiac remodelling by inducing energy imbalance, inflammation, oxidative and endoplasmic reticulum stress, and transforming growth factor-β (TGF-β)-induced fibrosis. Ang II directly or through extracellular signal-regulated kinase (ERK) activation impairs AMPK signalling with well-known antioxidant, anti-inflammatory, and anti-fibrotic effects. AIM This study aimed to investigate the role of bempedoic acid, a novel antihyperlipidemic drug, in attenuating hypertension-induced cardiac remodelling in rats by modulating Ang II-induced damage and activating the AMPK signalling pathway. METHOD Sixty adult male Sprague Dawley rats were randomly allocated into the Sham control group, Hypertensive group, Captopril group (30 mg/kg), and Bempedoic acid group (30 mg/kg). Hypertension was induced by left renal artery ligation in all groups except the Sham control group. Treatment with captopril and bempedoic acid started 14 days post-surgy and lasted two weeks. Finally, Hemodynamic measurements and electrocardiographic examination were done followed by heart tissue samples collection for biochemical, histopathological, and immunohistochemical examinations. KEY FINDINGS Bempedoic acid preserved the cardiac function and electrocardiogram patterns. It inhibited endoplasmic reticulum stress, exhibited antioxidant activity, and increased endothelial nitric oxide synthase activity. Bempedoic acid interfered with ERK signalling pathways, including nuclear factor-κB and TGF-β, exerting anti-inflammatory and anti-fibrotic effects. SIGNIFICANCE These findings indicate the cardioprotective and antihypertrophic activity of bempedoic acid, which are suggested to result from energy-independent AMPK downstream signalling activation.
Collapse
Affiliation(s)
- Asmaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt.
| | - Shimaa K Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt.
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt.
| | - Engy M El Morsy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt.
| | - Amany A E Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt.
| |
Collapse
|
5
|
Ribeiro Vitorino T, Ferraz do Prado A, Bruno de Assis Cau S, Rizzi E. MMP-2 and its implications on cardiac function and structure: Interplay with inflammation in hypertension. Biochem Pharmacol 2023; 215:115684. [PMID: 37459959 DOI: 10.1016/j.bcp.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Hypertension is one of the leading risk factors for the development of heart failure. Despite being a multifactorial disease, in recent years, preclinical and clinical studies suggest strong evidence of the pivotal role of inflammatory cells and cytokines in the remodeling process and cardiac dysfunction. During the heart remodeling, activation of extracellular matrix metalloproteinases (MMPs) occurs, with MMP-2 being one of the main proteases secreted by cardiomyocytes, fibroblasts, endothelial and inflammatory cells in cardiac tissue. In this review, we will address the process of cardiac remodeling and injury induced by the increase in MMP-2 and the main signaling pathways involving cytokines and inflammatory cells in the process of transcriptional, secretion and activation of MMP-2. In addition, an interaction and coordinated action between MMP-2 and inflammation are explored and significant in maintaining the cardiac cycle. These observations suggest that new therapeutic opportunities targeting MMP-2 could be used to reduce inflammatory biomarkers and reduce cardiac damage in hypertension.
Collapse
Affiliation(s)
- Thaís Ribeiro Vitorino
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil; Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, UNICAMP, Brazil
| | - Alejandro Ferraz do Prado
- Cardiovascular System Pharmacology and Toxicology, Institute of Biological Sciences, Federal University of Para, UFPA, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, UFMG, Brazil.
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil.
| |
Collapse
|
6
|
Toghi CJ, Martins LZ, Pacheco LL, Caetano ESP, Mattos BR, Rizzi E, Dias-Junior CA. Pravastatin Prevents Increases in Activity of Metalloproteinase-2 and Oxidative Stress, and Enhances Endothelium-Derived Nitric Oxide-Dependent Vasodilation in Gestational Hypertension. Antioxidants (Basel) 2023; 12:antiox12040939. [PMID: 37107314 PMCID: PMC10135677 DOI: 10.3390/antiox12040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Pre-eclampsia (PE) is a hypertensive disorder of pregnancy and has been associated with placental growth restriction. The pre-eclamptic placenta releases free radicals to maternal circulation, thus increasing oxidative stress. An impaired redox state leads to reduction in circulating nitric oxide (NO) levels and activation of extracellular matrix metalloproteinases (MMPs). However, activation of MMPs induced by oxidative stress is still unclear in PE. Antioxidant effects have been demonstrated with the use of pravastatin. Therefore, we hypothesized that pravastatin protects against oxidative stress-induced activation of MMPs in a rat model of PE. The animals were divided into four groups: normotensive pregnant rats (Norm-Preg); pregnant rats treated with pravastatin (Norm-Preg + Prava); hypertensive pregnant rats (HTN-Preg); and hypertensive pregnant rats treated with pravastatin (HTN-Preg + Prava). The deoxycorticosterone acetate (DOCA) and sodium chloride (DOCA-salt) model was used to induce hypertension in pregnancy. Blood pressure, and fetal and placental parameters were recorded. The gelatinolytic activity of MMPs, NO metabolites and lipid peroxide levels were also determined. Endothelium function was also examined. Pravastatin attenuated maternal hypertension, prevented placental weight loss, increased NO metabolites, inhibited increases in lipid peroxide levels, and reduced the activity of MMP-2, and these effects were observed along with enhanced endothelium-derived NO-dependent vasodilation. The present results provide evidence that pravastatin protects against activation of MMP-2 induced by oxidative stress in pre-eclamptic rats. These findings may also involve improvement in endothelial function related to NO and antihypertensive effects of pravastatin, thus suggesting pravastatin as a therapeutic intervention for PE.
Collapse
Affiliation(s)
- Cristal Jesus Toghi
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Laisla Zanetoni Martins
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Leonardo Lopes Pacheco
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Edileia Souza Paula Caetano
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Bruna Rahal Mattos
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, SP, Brazil
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, SP, Brazil
| | - Carlos Alan Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
7
|
Bruno AS, Castor RGM, Berg B, Dos Reis Costa DEF, Monteiro ALL, Scalzo S, Oliveira KCM, Bello FLM, Aguiar GC, Melo MB, Santos RAS, Bonaventura D, Guatimosim S, Castor MGM, Ferreira AJ, Cau SBA. Cardiac disturbances and changes in tissue cytokine levels in mice fed with a high-refined carbohydrate diet. Cytokine 2023; 166:156192. [PMID: 37054665 DOI: 10.1016/j.cyto.2023.156192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023]
Abstract
AIMS The consumption of highly refined carbohydrates increases systemic inflammatory markers, but its potential to exert direct myocardial inflammation is uncertain. Herein, we addressed the impact of a high-refined carbohydrate (HC) diet on mice heart and local inflammation over time. MAIN METHODS BALB/c mice were fed with a standard chow (control) or an isocaloric HC diet for 2, 4, or 8 weeks (HC groups), in which the morphometry of heart sections and contractile analyses by invasive catheterization and Langendorff-perfused hearts were assessed. Cytokines levels by ELISA, matrix metalloproteinase (MMP) activity by zymography, in situ reactive oxygen species (ROS) staining and lipid peroxidation-induced TBARS levels, were also determined. KEY FINDINGS HC diet fed mice displayed left ventricular hypertrophy and interstitial fibrosis in all times analyzed, which was confirmed by echocardiographic analyses of 8HC group. Impaired contractility indices of HC groups were observed by left ventricular catheterization, whereas ex vivo and in vitro indices of contraction under isoprenaline-stimulation were higher in HC-fed mice compared with controls. Peak levels of TNF-α, TGF-β, ROS, TBARS, and MMP-2 occur independently of HC diet time. However, a long-lasting local reduction of the anti-inflammatory cytokine IL-10 was found, which was linearly correlated to the decline of systolic function in vivo. SIGNIFICANCE Altogether, the results indicate that short-term consumption of HC diet negatively impacts the balance of anti-inflammatory defenses and proinflammatory/profibrotic mediators in the heart, which can contribute to HC diet-induced morphofunctional cardiac alterations.
Collapse
Affiliation(s)
- Alexandre Santos Bruno
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Renata Gomes Miranda Castor
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Bárbara Berg
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | | | - André Luis Lima Monteiro
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Sérgio Scalzo
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | | | | | - Grazielle Cordeiro Aguiar
- Departments of Morphology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Marcos Barrouin Melo
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Robson Augusto Souza Santos
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Daniella Bonaventura
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Silvia Guatimosim
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Marina Gomes Miranda Castor
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Anderson Jose Ferreira
- Departments of Morphology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Stefany Bruno Assis Cau
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
8
|
Quercetin decreases cardiac hypertrophic mediators and maladaptive coronary arterial remodeling in renovascular hypertensive rats without improving cardiac function. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:939-949. [PMID: 36527481 DOI: 10.1007/s00210-022-02349-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Oxidative stress and MMP activity are found in the hearts and arteries in hypertension and contribute to the resulting hypertrophy and dysfunction. Quercetin is a flavonoid that reduces MMP-2 activity and ameliorates hypertrophic vascular remodeling of hypertension. The hypothesis is that treatment of hypertensive rats with quercetin ameliorates coronary maladaptive remodeling and decreases hypertrophic cardiac dysfunction by decreasing oxidative stress and MMP activity. Male Sprague-Dawley two-kidney, one-clip (2K1C) and Sham rats were treated with quercetin (10 mg/kg/day) or its vehicle for 8 weeks by gavage. Rats were analyzed at 10 weeks of hypertension. Systolic blood pressure (SBP) was examined by tail-cuff plethysmography. Cardiac left ventricles were used to determine MMP activity by in situ zymography and oxidative stress by dihydroethidium. Immunofluorescence was performed to detect transforming growth factor (TGF)-β and nuclear factor kappa B (NFkB). Morphological analyses of heart and coronary arteries were done by H&E and picrosirius red, and cardiac function was measured by Langendorff. SBP was increased in 2K1C rats, and quercetin did not reduce it. However, quercetin decreased both oxidative stress and TGF-β in the left ventricles of 2K1C rats. Quercetin also decreased the accentuated MMP activity in left ventricles and coronary arteries of 2K1C rats. Quercetin ameliorated hypertension-induced coronary arterial hypertrophic remodeling, although it did not reduce cardiac hypertrophic remodeling and dysfunction. Quercetin decreases cardiac oxidative stress and TGF-β and MMP activity in addition to improving coronary remodeling, yet does not ameliorate cardiac dysfunction in 2K1C rats.
Collapse
|
9
|
BmooMPα-I, a Metalloproteinase Isolated from Bothrops moojeni Venom, Reduces Blood Pressure, Reverses Left Ventricular Remodeling and Improves Cardiac Electrical Conduction in Rats with Renovascular Hypertension. Toxins (Basel) 2022; 14:toxins14110766. [PMID: 36356016 PMCID: PMC9697896 DOI: 10.3390/toxins14110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
BmooMPα-I has kininogenase activity, cleaving kininogen releasing bradykinin and can hydrolyze angiotensin I at post-proline and aspartic acid positions, generating an inactive peptide. We evaluated the antihypertensive activity of BmooMPα-I in a model of two-kidney, one-clip (2K1C). Wistar rats were divided into groups: Sham, who underwent sham surgery, and 2K1C, who suffered stenosis of the right renal artery. In the second week of hypertension, we started treatment (Vehicle, BmooMPα-I and Losartan) for two weeks. We performed an electrocardiogram and blood and heart collection in the fourth week of hypertension. The 2K1C BmooMPα-I showed a reduction in blood pressure (systolic pressure: 131 ± 2 mmHg; diastolic pressure: 84 ± 2 mmHg versus 174 ± 3 mmHg; 97 ± 4 mmHg, 2K1C Vehicle, p < 0.05), improvement in electrocardiographic parameters (Heart Rate: 297 ± 4 bpm; QRS: 42 ± 0.1 ms; QT: 92 ± 1 ms versus 332 ± 6 bpm; 48 ± 0.2 ms; 122 ± 1 ms, 2K1C Vehicle, p < 0.05), without changing the hematological profile (platelets: 758 ± 67; leukocytes: 3980 ± 326 versus 758 ± 75; 4400 ± 800, 2K1C Vehicle, p > 0.05), with reversal of hypertrophy (left ventricular area: 12.1 ± 0.3; left ventricle wall thickness: 2.5 ± 0.2; septum wall thickness: 2.3 ± 0.06 versus 10.5 ± 0.3; 2.7 ± 0.2; 2.5 ± 0.04, 2K1C Vehicle, p < 0.05) and fibrosis (3.9 ± 0.2 versus 7.4 ± 0.7, 2K1C Vehicle, p < 0.05). We concluded that BmooMPα-I improved blood pressure levels and cardiac remodeling, having a cardioprotective effect.
Collapse
|
10
|
Vilhena JC, Lopes de Melo Cunha L, Jorge TM, de Lucena Machado M, de Andrade Soares R, Santos IB, Freitas de Bem G, Fernandes-Santos C, Ognibene DT, Soares de Moura R, de Castro Resende A, Aguiar da Costa C. Açaí Reverses Adverse Cardiovascular Remodeling in Renovascular Hypertension: A Comparative Effect With Enalapril. J Cardiovasc Pharmacol 2021; 77:673-684. [PMID: 33661593 DOI: 10.1097/fjc.0000000000001003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT This study aimed to determine if açai seed extract (ASE) could reverse pre-existing cardiovascular and renal injury in an experimental model of renovascular hypertension (2 kidney, 1 clip, 2K1C). Young male rats (Wistar) were used to obtain 2K1C and sham groups. Animals received the vehicle, ASE (200 mg/kg/d), or enalapril (30 mg/kg/d) in drinking water from the third to sixth week after surgery. We evaluated systolic blood pressure by tail plethysmography, vascular reactivity in the rat isolated mesenteric arterial bed (MAB), serum and urinary parameters, plasma inflammatory cytokines by ELISA, MAB expression of endothelial nitric oxide synthase and its active form peNOS by Western blot, plasma and MAB oxidative damage and antioxidant activity by spectrophotometry, and vascular and cardiac structural changes by histological analysis. ASE and enalapril reduced the systolic blood pressure, restored the endothelial and renal functions, and decreased the inflammatory cytokines and the oxidative stress in 2K1C rats. Furthermore, both treatments reduced vascular and cardiac remodeling. ASE substantially reduced cardiovascular remodeling and recovered endothelial dysfunction in 2K1C rats probably through its antihypertensive, antioxidant, and anti-inflammatory actions, supplying a natural resource for the treatment of renovascular hypertension.
Collapse
Affiliation(s)
- Juliana Calfa Vilhena
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| | - Letícia Lopes de Melo Cunha
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| | - Tayenne Moraes Jorge
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| | - Marcella de Lucena Machado
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| | - Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| | - Caroline Fernandes-Santos
- Department of Basic Sciences, Institute of Health, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| | - Angela de Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil ; and
| |
Collapse
|
11
|
Prado AF, Batista RIM, Tanus-Santos JE, Gerlach RF. Matrix Metalloproteinases and Arterial Hypertension: Role of Oxidative Stress and Nitric Oxide in Vascular Functional and Structural Alterations. Biomolecules 2021; 11:biom11040585. [PMID: 33923477 PMCID: PMC8074048 DOI: 10.3390/biom11040585] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Various pathophysiological mechanisms have been implicated in hypertension, but those resulting in vascular dysfunction and remodeling are critical and may help to identify critical pharmacological targets. This mini-review article focuses on central mechanisms contributing to the vascular dysfunction and remodeling of hypertension, increased oxidative stress and impaired nitric oxide (NO) bioavailability, which enhance vascular matrix metalloproteinase (MMP) activity. The relationship between NO, MMP and oxidative stress culminating in the vascular alterations of hypertension is examined. While the alterations of hypertension are not fully attributable to these pathophysiological mechanisms, there is strong evidence that such mechanisms play critical roles in increasing vascular MMP expression and activity, thus resulting in abnormal degradation of extracellular matrix components, receptors, peptides, and intracellular proteins involved in the regulation of vascular function and structure. Imbalanced vascular MMP activity promotes vasoconstriction and impairs vasodilation, stimulating vascular smooth muscle cells (VSMC) to switch from contractile to synthetic phenotypes, thus facilitating cell growth or migration, which is associated with the deposition of extracellular matrix components. Finally, the protective effects of MMP inhibitors, antioxidants and drugs that enhance vascular NO activity are briefly discussed. Newly emerging therapies that address these essential mechanisms may offer significant advantages to prevent vascular remodeling in hypertensive patients.
Collapse
Affiliation(s)
- Alejandro F. Prado
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, PA 66075-110, Brazil;
| | - Rose I. M. Batista
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; (R.I.M.B.); (J.E.T.-S.)
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; (R.I.M.B.); (J.E.T.-S.)
| | - Raquel F. Gerlach
- Department of Morphology, Physiology and Basic Pathology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
- Correspondence: ; Tel.: +55-16-33154065
| |
Collapse
|
12
|
Ding Y, Wang Y, Zhang W, Jia Q, Wang X, Li Y, Lv S, Zhang J. Roles of Biomarkers in Myocardial Fibrosis. Aging Dis 2020; 11:1157-1174. [PMID: 33014530 PMCID: PMC7505259 DOI: 10.14336/ad.2020.0604] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Myocardial fibrosis is observed in various cardiovascular diseases and plays a key role in the impairment of cardiac function. Endomyocardial biopsy, as the gold standard for the diagnosis of myocardial fibrosis, has limitations in terms of clinical application. Therefore, biomarkers have been recommended for noninvasive assessment of myocardial fibrosis. This review discusses the role of biomarkers in myocardial fibrosis from the perspective of collagen.
Collapse
Affiliation(s)
- Yuejia Ding
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuan Wang
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wanqin Zhang
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qiujin Jia
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiaoling Wang
- 3Qian'an Hospital of Traditional Chinese Medicine, Qian'an 064400, China
| | - Yanyang Li
- 4Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shichao Lv
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin 300000, China
| | - Junping Zhang
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
13
|
Guimaraes DA, Batista RIM, Tanus-Santos JE. Nitrate and nitrite-based therapy to attenuate cardiovascular remodelling in arterial hypertension. Basic Clin Pharmacol Toxicol 2020; 128:9-17. [PMID: 32772466 DOI: 10.1111/bcpt.13474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/29/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Abstract
Hypertension is a highly prevalent disease marked by vascular and cardiac maladaptive remodelling induced mainly by renin-angiotensin system activation followed by oxidative stress. Here, we briefly describe these damages and review the current evidence supporting a potential role for nitrate and nitrite as antihypertensive molecules that act via nitric oxide (NO) formation-dependent and NO formation-independent mechanisms and how nitrate/nitrite inhibits cardiovascular remodelling in hypertension. The renin-angiotensin system activation and oxidative stress converge to activate proteases involved in cardiovascular remodelling in hypertension. Besides these proteases, several investigations have demonstrated that reduced endogenous NO bioavailability is a central pathological event in hypertension. In this regard, nitrate/nitrite, long considered inert products of NO, is now known as physiological molecules able to reduce blood pressure in hypertensive patients and in different experimental models of hypertension. These effects are associated with the formation of NO and other NO-related molecules, which could induce S-nitrosylation of target proteins. However, it remains unclear whether S-nitrosylation is an essential mechanism for the anti-remodelling effects of nitrate/nitrite in hypertension. Moreover, nitrate/nitrite produces antioxidant effects associated with the inhibition of signalling pathways involved in cardiovascular remodelling. Together, these findings may help to establish nitrate and nitrite as effective therapies in hypertension-induced cardiovascular remodelling.
Collapse
Affiliation(s)
- Danielle A Guimaraes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rose I M Batista
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
14
|
do Prado AF, Bannwart CM, Shinkai VMT, de Souza Lima IM, Meschiari CA. Phyto-derived Products as Matrix Metalloproteinases Inhibitors in Cardiovascular Diseases. Curr Hypertens Rev 2020; 17:47-58. [PMID: 32386496 DOI: 10.2174/1573402116666200510011356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are enzymes that present a metallic element in their structure. These enzymes are ubiquitously distributed and function as extracellular matrix (ECM) remodelers. MMPs play a broad role in cardiovascular biology regulating processes such as cell adhesion and function, cellular communication and differentiation, integration of mechanical force and force transmission, tissue remodeling, modulation of damaged-tissue structural integrity, cellular survival or apoptosis and regulation of inflammation-related cytokines and growth factors. MMPs inhibition and downregulation are correlated with minimization of cardiac damage, i.e., Chinese herbal medicine has shown to stabilize abdominal aorta aneurysm due to its antiinflammatory, antioxidant and MMP-2 and 9 inhibitory properties. Thus phyto-derived products rise as promising sources for novel therapies focusing on MMPs inhibition and downregulation to treat or prevent cardiovascular disorders.
Collapse
Affiliation(s)
- Alejandro F do Prado
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Cahy M Bannwart
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Victoria M T Shinkai
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | | | - César A Meschiari
- Health and Sports Science Center, Federal University of Acre, Rio Branco, AC, Brazil
| |
Collapse
|
15
|
Mendes AS, Blascke de Mello MM, Parente JM, Omoto ACM, Neto-Neves EM, Fazan R, Tanus-Santos JE, Castro MM. Verapamil decreases calpain-1 and matrix metalloproteinase-2 activities and improves hypertension-induced hypertrophic cardiac remodeling in rats. Life Sci 2020; 244:117153. [DOI: 10.1016/j.lfs.2019.117153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 12/30/2022]
|
16
|
Morphological and Functional Characteristics of Animal Models of Myocardial Fibrosis Induced by Pressure Overload. Int J Hypertens 2020; 2020:3014693. [PMID: 32099670 PMCID: PMC7013318 DOI: 10.1155/2020/3014693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Myocardial fibrosis is characterized by excessive deposition of myocardial interstitial collagen, abnormal distribution, and excessive proliferation of fibroblasts. According to the researches in recent years, myocardial fibrosis, as the pathological basis of various cardiovascular diseases, has been proven to be a core determinant in ventricular remodeling. Pressure load is one of the causes of myocardial fibrosis. In experimental models of pressure-overload-induced myocardial fibrosis, significant increase in left ventricular parameters such as interventricular septal thickness and left ventricular posterior wall thickness and the decrease of ejection fraction are some of the manifestations of cardiac damage. These morphological and functional changes have a serious impact on the maintenance of physiological functions. Therefore, establishing a suitable myocardial fibrosis model is the basis of its pathogenesis research. This paper will discuss the methods of establishing myocardial fibrosis model and compare the advantages and disadvantages of the models in order to provide a strong basis for establishing a myocardial fibrosis model.
Collapse
|
17
|
Ferraz LR, Moreira BC, de Queiroz GDSR, Formigari RDF, Esquisatto MAM, Felonato M, Alves AA, Thomazini BF, de Oliveira CA. Tissue-specific transcriptional regulation of epithelial/endothelial and mesenchymal markers during renovascular hypertension. Mol Med Rep 2019; 20:4467-4476. [PMID: 31702037 PMCID: PMC6797995 DOI: 10.3892/mmr.2019.10722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition are processes that can occur under different biological conditions, including tissue healing due to hypertension and oxidative stress. The purpose of the present study was to evaluate the differences in gene expression of epithelial/endothelial and mesenchymal markers in different tissues. A two-kidney, one-clip (2K1C) renovascular hypertension rat model was used. Hypertension was induced by the clipping of the left renal artery; the rats were randomized into sham and 2K1C groups and monitored for up to 4 weeks. The gene expressions of E-cadherin (E-cad), N-cadherin (N-cad), α-smooth muscle actin (α-SMA), collagen I (COL1A1), collagen III (COL3A1) and hepatocyte growth factor (HGF) were determined by reverse transcription-PCR. The levels of the cytokines transforming growth factor-β1, tumor necrosis factor-α, interleukin (IL)-4, IL-6 and IL-10 were evaluated using ELISAs. The levels of thiobarbituric acid reactive substances and thiol groups were measured to evaluate oxidative stress. All analyses were performed on the liver, heart and kidneys tissues of sham and model rats. The 2K1C animals exhibited a higher systolic blood pressure, as well as cardiac hypertrophy and atrophy of the left kidney. Fibrotic alterations in the heart and kidneys were observed, as was an increase in the collagen fiber areas, and higher levels of inflammatory cytokines, which are associated with the increased expression of fibroproliferative and anti-fibrotic genes. Renovascular hypertension regulated epithelial/endothelial and mesenchymal markers, including E-cad, N-cad, α-SMA and COL1A1 in the kidneys and heart. EMT in the kidneys was mediated by an increased level of inflammatory and profibrotic cytokines, as well as by oxidative stress. The data in the present study suggested that the expression of epithelial/endothelial and mesenchymal markers are differentially regulated by hypertension in the liver, heart and kidneys.
Collapse
Affiliation(s)
- Leandro Ricardo Ferraz
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | - Bianca Caruso Moreira
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | | | - Regiane de Freitas Formigari
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | | | - Maira Felonato
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | - Armindo Antonio Alves
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | - Bruna Fontana Thomazini
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | - Camila Andréa de Oliveira
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| |
Collapse
|
18
|
Nascimento RA, Possomato-Vieira JS, Bonacio GF, Rizzi E, Dias-Junior CA. Reductions of Circulating Nitric Oxide are Followed by Hypertension during Pregnancy and Increased Activity of Matrix Metalloproteinases-2 and -9 in Rats. Cells 2019; 8:cells8111402. [PMID: 31703340 PMCID: PMC6912623 DOI: 10.3390/cells8111402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertensive pregnancy has been associated with reduced nitric oxide (NO), bioavailability, and increased activity of matrix metalloproteinases (MMPs). However, it is unclear if MMPs activation is regulated by NO during pregnancy. To this end, we examined activity of MMP-2 and MMP-9 in plasma, placenta, uterus and aorta, NO bioavailability, oxidative stress, systolic blood pressure (SBP), and fetal-placental development at the early, middle, and late pregnancy stages in normotensive and Nω-Nitro-L-arginine methyl-ester (L-NAME)-induced hypertensive pregnancy in rats. Reduced MMP-2 activity in uterus, placenta, and aorta and reduced MMP-9 activity in plasma and placenta with concomitant increased NO levels were found in normotensive pregnant rats. By contrast, increased MMP-2 activity in uterus, placenta, and aorta, and increased MMP-9 activity in plasma and placenta with concomitant reduced NO levels were observed in hypertensive pregnant rats. Also, elevated oxidative stress was displayed by hypertensive pregnant rats at the middle and late stages. These findings in the L-NAME-treated pregnant rats were also followed by increases in SBP and associated with fetal growth restrictions at the middle and late pregnancy stages. We concluded that NO bioavailability may regulate MMPs activation during normal and hypertensive pregnancy.
Collapse
Affiliation(s)
- Regina A. Nascimento
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University – UNESP, Botucatu, Sao Paulo 18.618-689, Brazil; (R.A.N.); (J.S.P.-V.)
| | - Jose S. Possomato-Vieira
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University – UNESP, Botucatu, Sao Paulo 18.618-689, Brazil; (R.A.N.); (J.S.P.-V.)
| | - Giselle F. Bonacio
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo 14096-900, Brazil; (G.F.B.); (E.R.)
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo 14096-900, Brazil; (G.F.B.); (E.R.)
| | - Carlos A. Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University – UNESP, Botucatu, Sao Paulo 18.618-689, Brazil; (R.A.N.); (J.S.P.-V.)
- Correspondence: ; Tel.: +55 14 3880-0214
| |
Collapse
|
19
|
Lee H, Kim KC, Hong YM. Changes of Bax, Bcl-2, CCR-2, MCP-1, and TGF-β1 genes in the left ventricle of spontaneously hypertensive rat after losartan treatment. KOREAN JOURNAL OF PEDIATRICS 2018; 62:95-101. [PMID: 30360036 PMCID: PMC6434229 DOI: 10.3345/kjp.2018.06856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/15/2018] [Indexed: 01/28/2023]
Abstract
Purpose Increased apoptosis was recently found in the hypertrophied left ventricle of spontaneously hypertensive rats (SHRs). Although the available evidence suggests that apoptosis can be induced in cardiac cells by various insults including pressure overload, cardiac apoptosis appears to result from an exaggerated local production of angiotensin in adult SHRs. Altered expressions of Bcl associated X (Bax), Bcl-2, chemokine receptor (CCR)-2, monocyte chemoattractant protein (MCP)-1, transforming growth factor (TGF)-β1, phosphorylated extracellular signal-regulated kinases (PERK), and connexin 43 proteins, and kallikrein mRNA were investigated to explore the effects of losartan on the SHR model. Methods Twelve-week-old male rats were grouped as follows: control (C), SHR (hypertension: H), and losartan (L; SHRs were treated with losartan [10 mg/kg/day] for 5 weeks). Western blot and reverse transcription polymerase chain reaction assays were performed. Results Expression of Bax, CCR-2, MCP-1, TGF-β1, PERK, and connexin 43 proteins, and kallikrein mRNA was significantly increased in the H group compared to that in the C group at weeks 3 and 5. Expression of Bax, CCR-2, MCP-1, TGF-β1, and connexin 43 proteins and kallikrein mRNA was significantly decreased after losartan treatment at week 5. PERK protein expression was significantly decreased after losartan treatment at weeks 3 and 5. Bcl-2 protein expression was significantly decreased in the H group compared to that in the C group at weeks 3 and 5. Conclusion Losartan treatment reduced expression of Bax, CCR-2, MCP-1, TGF-β1, PERK, and connexin 43 proteins, and kallikrein mRNA in SHRs, along with decreased inflammation and apoptosis.
Collapse
Affiliation(s)
- Hyeryon Lee
- Department of Pediatrics, Ewha Womans University School of College, Seoul, Korea
| | - Kwan Chang Kim
- Department of Thoracic and Cardiovascular Surgery, Ewha Womans University School of College, Seoul, Korea
| | - Young Mi Hong
- Department of Pediatrics, Ewha Womans University School of College, Seoul, Korea
| |
Collapse
|
20
|
Nascimento RA, Possomato-Vieira JS, Gonçalves-Rizzi VH, Bonacio GF, Rizzi E, Dias-Junior CA. Hypertension, augmented activity of matrix metalloproteinases-2 and -9 and angiogenic imbalance in hypertensive pregnancy are attenuated by doxycycline. Eur J Pharmacol 2018; 840:60-69. [PMID: 30336141 DOI: 10.1016/j.ejphar.2018.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023]
Abstract
Preeclampsia is manifested as maternal hypertension and fetal growth restriction. Matrix metalloproteinases (MMPs) are involved in hypertension and doxycycline reduces blood pressure by inhibition of MMPs. Moreover, excessive levels of MMPs and reduced nitric oxide (NO) bioavailability have been related to preeclampsia. We investigated the involvement of MMPs in hypertension in pregnancy induced by Nω-Nitro-L-arginine methyl ester (L-NAME) in rats. To this end, zimography was performed to evaluate the activity of MMPs -2 and -9 in placenta, uterus and thoracic aorta, and systolic blood pressure, feto-placental development and metabolites of NO were evaluated. Also, plasma antioxidant capacity, plasma levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PLGF) were examined. Doxycycline prevented hypertensive pregnancy and significant reductions in number of pups induced by L-NAME. Low NO bioavailability was found in hypertensive pregnant rats treated (or not) with doxycycline. Increased activity of placental MMP-2 and MMP-9 and uterine MMP-2 were attenuated by doxycycline. MMP-2 activity of thoracic aorta showed no change after hypertension. Increases in PLGF with concomitant decreases in sFlt-1 levels were found with doxycycline treatment. Also, plasma antioxidant capacity was improved with doxycycline. Also, elevations of plasma antioxidant capacity were observed in hypertensive rats treated with doxycycline. Therefore, we suggest that L-NAME reduced NO and this triggered the increases in MMP-2 and -9 activities during hypertensive pregnancy. Importantly, increases in MMPs activation and angiogenic imbalance were attenuated by doxycycline and these effects were associated with decreases in systolic blood pressure.
Collapse
Affiliation(s)
- Regina A Nascimento
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - José S Possomato-Vieira
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Victor H Gonçalves-Rizzi
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Gisele F Bonacio
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos A Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
21
|
Li B, Cui Y, Zhang D, Luo X, Luo F, Li B, Tang Y. The characteristics of a porcine mitral regurgitation model. Exp Anim 2018; 67:463-477. [PMID: 29794373 PMCID: PMC6219876 DOI: 10.1538/expanim.18-0045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The porcine mitral regurgitation (MR) model is a common cardiovascular animal model.
Standardized manufacturing processes can improve the uniformity and success rate of the
model, and systematic research can evaluate its potential use. In this study, 17 pigs were
divided into an experimental group (n=11) and a control group (n=6). We used a homemade
retractor to cut the mitral chordae via the left atrial appendage to establish a model of
MR; the control group underwent a sham surgery. The model animals were followed for 30
months after the surgery. Enlargement and fibrosis of the left atrium were significant in
the experimental group compared with those in the control group, and left atrial systolic
function decreased significantly. In addition, model animals showed preserved left
ventricular systolic function. There were no differences in left atrial potential or left
ventricular myocardial fibrosis between the two groups. Atrial fibrillation susceptibility
in the experimental group was higher than that in the control group. Our method enables
the simple and effective production of a MR model with severe reflux that can be used for
pathophysiological studies of MR, as well as for the development of preclinical surgical
instruments and their evaluation. This model could also be used to study atrial
fibrillation and myocardial fibrosis but is not suitable for studies of heart failure.
Collapse
Affiliation(s)
- Bo Li
- Animal Experimental Centre, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North lishi Road, Xicheng District, Beijing 100037, China
| | - Yongchun Cui
- Animal Experimental Centre, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North lishi Road, Xicheng District, Beijing 100037, China
| | - Dong Zhang
- Department of Cardiovascular surgery, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Xiaokang Luo
- Animal Experimental Centre, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North lishi Road, Xicheng District, Beijing 100037, China
| | - Fuliang Luo
- Animal Experimental Centre, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North lishi Road, Xicheng District, Beijing 100037, China
| | - Bin Li
- Animal Experimental Centre, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North lishi Road, Xicheng District, Beijing 100037, China
| | - Yue Tang
- Animal Experimental Centre, Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North lishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
22
|
Guimaraes DA, Dos Passos MA, Rizzi E, Pinheiro LC, Amaral JH, Gerlach RF, Castro MM, Tanus-Santos JE. Nitrite exerts antioxidant effects, inhibits the mTOR pathway and reverses hypertension-induced cardiac hypertrophy. Free Radic Biol Med 2018. [PMID: 29530793 DOI: 10.1016/j.freeradbiomed.2018.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiac hypertrophy is a common consequence of chronic hypertension and leads to heart failure and premature death. The anion nitrite is now considered as a bioactive molecule able to exert beneficial cardiovascular effects. Previous results showed that nitrite attenuates hypertension-induced increases in reactive oxygen species (ROS) production in the vasculature. Whether antioxidant effects induced by nitrite block critical signaling pathways involved in cardiac hypertrophy induced by hypertension has not been determined yet. The Akt/mTOR signaling pathway is responsible to activate protein synthesis during cardiac remodeling and is activated by increased ROS production, which is commonly found in hypertension. Here, we investigated the effects of nitrite treatment on cardiac remodeling and activation of this hypertrophic signaling pathway in 2 kidney-1 clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral nitrite at 1 or 15 mg/kg for four weeks. Nitrite treatment (15 mg/kg) reduced systolic blood pressure and decreased ROS production in the heart tissue from hypertensive rats. This nitrite dose also blunted hypertension-induced activation of mTOR pathway and cardiac hypertrophy. While the lower nitrite dose (1 mg/kg) did not affect blood pressure, it exerted antioxidant effects and tended to attenuate mTOR pathway activation and cardiac hypertrophy induced by hypertension. Our findings provide strong evidence that nitrite treatment decreases cardiac remodeling induced by hypertension as a result of its antioxidant effects and downregulation of mTOR signaling pathway. This study may help to establish nitrite as an effective therapy in hypertension-induced cardiac hypertrophic remodeling.
Collapse
Affiliation(s)
- Danielle A Guimaraes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Madla A Dos Passos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jefferson H Amaral
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Estomatology and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes 3900 14049-900, Ribeirao Preto, SP, Brazil
| | - Michele M Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
23
|
Yang X, Shao H, Chen Y, Ding N, Yang A, Tian J, Jiang Y, Li G, Jiang Y. In renal hypertension, Cirsium japonicum strengthens cardiac function via the intermedin/nitric oxide pathway. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
Electrical and histological remodeling of the pulmonary vein in 2K1C hypertensive rats: Indication of initiation and maintenance of atrial fibrillation. Anatol J Cardiol 2018; 19:169-175. [PMID: 29339676 PMCID: PMC5864765 DOI: 10.14744/anatoljcardiol.2017.7844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective Hypertension is a significant risk factor for atrial fibrillation (AF). The role of pulmonary vein (PV) remodeling in the mechanistic association between hypertension and AF is not definitive. In this study, we aimed to identify changes in the electrophysiology and histology in PVs in two-kidney, one-clip (2K1C) hypertensive rats. Methods Fifty male Sprague-Dawley rats were classified into the 2K1C and sham-operated groups. The systolic blood pressure was measured every 2 weeks. The left atrial diameter was measured by transthoracic echocardiography. Left superior PV (LSPV) and left atrial (LA) fibrosis was evaluated by Masson’s trichrome staining. The expression of fibrosis markers [angiotensin II (Ang II), transforming growth factor-β1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and collagen I (Col I)] and ion channels [Kir2.1, Kir2.3, Cav1.2, and Nav1.5] in LSVP was quantified by western blot. Conventional microelectrodes were used to record the action potential duration at 90% repolarization (APD90) and effective refractory period (ERP) in isolated LA. Results At 4 months, the 2K1C hypertensive rats developed LA dilation. Col deposition in LSPV and left atrium and expression of TGF-β1, MMP-2, and Col I in LSPV were significantly increased in 2K1C hypertensive rats. In addition, hypertension reduced the expression of Nav1.5 and Kir2.1, although there were no significant differences in APD90; ERP; and expression of Ang II, Kir2.3, and Cav1.2 between the two groups. Conclusion Hypertension may lead to changes in the electrophysiology and histology of rats PVs, which is characterized by significant reduction in the expression of Nav1.5 and Kir2.1 and increase in interstitial fibrosis. These observations may clarify the role of PVs in the mechanistic association between hypertension and AF.
Collapse
|
25
|
The Effects of Aqueous Extract from Nardostachys chinensis Batalin on Blood Pressure and Cardiac Hypertrophy in Two-Kidney One-Clip Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4031950. [PMID: 29234388 PMCID: PMC5660807 DOI: 10.1155/2017/4031950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/06/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
Abstract
Aims The aim of this study was to investigate the effects of the aqueous extract of Nardostachys chinensis Batalin (NCBAE) on blood pressure and cardiac hypertrophy using two-kidney one-clip (2K1C) hypertensive rats. Methods 2K1C rat models were set up by clipping the left renal artery. Sham-operated rats underwent the same surgical procedure except for renal arterial clipping. 2K1C hypertensive rats were orally given NCBAE at doses of 210, 420, and 630 mg·kg−1·d−1 for 6 weeks. Twelve weeks after surgery, rat SBP and echocardiographic parameters were measured, cardiac histopathology was assessed, serum NO and LDH were detected, and the expression of Bcl-2 and caspase-3 of left ventricular tissue was assessed by western blot. Results Treatment with NCBAE resulted in a decrease of SBP, LVPWd, LVPWs, IVSd, IVSs, LVW/BW ratio, and cardiomyocyte CSA, an increase of LVEF, and inhibition of 2K1C-induced reduction in serum NO and elevation of LDH compared with 2K1C group. NCBAE intervention also showed a significant increase of Bcl-2 expression and reduction of cleaved caspase-3 level dose-dependently in left ventricular tissue. Conclusion Our data demonstrate that NCBAE has an antihypertensive property and protective effect on 2K1C-induced cardiac hypertrophy especially at the dose of 630 mg·kg−1·d−1.
Collapse
|
26
|
Sodium Ferulate Protects against Angiotensin II-Induced Cardiac Hypertrophy in Mice by Regulating the MAPK/ERK and JNK Pathways. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3754942. [PMID: 28164119 PMCID: PMC5259600 DOI: 10.1155/2017/3754942] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/18/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022]
Abstract
Background and Objective. It has been reported that sodium ferulate (SF) has hematopoietic function against anemia and immune regulation, inflammatory reaction inhibition, inhibition of tumor cell proliferation, cardiovascular and cerebrovascular protection, and other functions. Thus, this study aimed to investigate the effects of SF on angiotensin II- (AngII-) induced cardiac hypertrophy in mice through the MAPK/ERK and JNK signaling pathways. Methods. Seventy-two male C57BL/6J mice were selected and divided into 6 groups: control group, PBS group, model group (AngII), model + low-dose SF group (AngII + 10 mg/kg SF), model + high-dose SF group (AngII + 40 mg/kg SF), and model + high-dose SF + agonist group (AngII + 40 mg/kg SCU + 10 mg/kg TBHQ). After 7 d/14 d/28 days of treatments, the changes of blood pressure and heart rates of mice were compared. The morphology of myocardial tissue and the apoptosis rate of myocardial cells were observed. The mRNA and protein expressions of atrial natriuretic peptide (ANP), transforming growth factor-β (TGF-β), collagen III (Col III), and MAPK/ERK and JNK pathway-related proteins were detected after 28 days of treatments. Results. SF improved the mice's cardiac abnormality and decreased the apoptosis rate of myocardial cells in a time- and dose-dependent manner (all P < 0.05). MAPK/ERK pathway activator inhibited the protective effect of SF in myocardial tissue of mice (P < 0.05). SF could inhibit the expression of p-ERK, p-p38MAPK, and p-JNK and regulate the expressions of ANP, TGF-β, and Col III (all P < 0.05). Conclusion. Our findings provide evidence that SF could protect against AngII-induced cardiac hypertrophy in mice by downregulating the MAPK/ERK and JNK pathways.
Collapse
|
27
|
Serralheiro P, Cairrão E, Maia CJ, João M, Almeida CMC, Verde I. Effect of TGF-beta1 on MMP/TIMP and TGF-beta1 receptors in great saphenous veins and its significance on chronic venous insufficiency. Phlebology 2016; 32:334-341. [DOI: 10.1177/0268355516655067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objectives Transforming growth factor-beta1 (TGF-β1) may participate in local chronic inflammatory processes in varicose veins and in venous wall structure modifications through regulation of matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitor of metalloproteinase (TIMP)). The aim of this study was to analyze the effect of TGF-β1 in the vein wall, namely on the gene expression of selected MMP, TIMP and TGF-β1 receptors. Methods Healthy vein samples were harvested from eight subjects who underwent coronary bypass graft surgery with great saphenous vein. Each vein sample was divided into two segments, which were cultivated separately in vitro (one of the segments had TGF-β1 added) and then submitted to gene expression analysis. Results In the TGF-β1 supplemented group, there was a general increase in the mean gene expression. Specifically, expression of MMP9, MMP12, TIMP1 and TIMP2 were statistically significant. Conclusion The results of this study demonstrate that the gene expression of MMP9, MMP12, TIMP1 and TIMP2 was influenced by the addition of TGF-β1. These results may be translated to chronic venous insufficiency framework and suggest involvement of TGF-β1 in the vein wall pathology.
Collapse
Affiliation(s)
- Pedro Serralheiro
- Department of General Surgery, Norfolk and Norwich University Hospital, UK
- Faculdade de Ciências da Saúde, University of Beira Interior, Portugal
| | - Elisa Cairrão
- Faculdade de Ciências da Saúde, University of Beira Interior, Portugal
| | - Cláudio J Maia
- Faculdade de Ciências da Saúde, University of Beira Interior, Portugal
| | - Marina João
- Faculdade de Ciências da Saúde, University of Beira Interior, Portugal
| | - Carlos M Costa Almeida
- Department of General Surgery, Coimbra University Hospital Centre, Portugal
- Faculdade de Medicina, University of Coimbra, Portugal
| | - Ignacio Verde
- Faculdade de Ciências da Saúde, University of Beira Interior, Portugal
| |
Collapse
|
28
|
Zhou N, Zhu Y, Zhang P, Zhang YU, Zhou M, Wang T, He L. Imperatorin derivative OW1 inhibits the upregulation of TGF-β and MMP-2 in renovascular hypertension-induced cardiac remodeling. Exp Ther Med 2016; 11:1748-1754. [PMID: 27168797 PMCID: PMC4840669 DOI: 10.3892/etm.2016.3172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic hypertension induces vascular and cardiac remodeling. OW1 is a novel imperatorin derivative that was previously reported to inhibit vascular remodeling and improve kidney function affected by hypertension. In the present study, the effect of OW1 on the cardiac remodeling induced by hypertension was investigated. OW1 inhibited vascular smooth muscle cell (VSMC) proliferation and the phenotypic modulation of VSMCs induced by angiotensin II (Ang II). The OW1-induced vasodilatation of rat cardiac arteries was evaluated in vitro. Renovascular hypertensive rats were developed using the two-kidney one-clip method and treated with OW1 (40 or 80 mg/kg/day) or nifedipine (30 mg/kg per day) for 5 weeks. OW1 markedly reduced the systolic and diastolic blood pressure compared with that in the hypertension group or the respective baseline value during the first week. OW1 also reduced cardiac weight, and the concentrations of Ang II, aldosterone and transforming growth factor-β1 (TGF-β1). Histological examination demonstrated that OW1 exerted an inhibitory effect on vascular and cardiac remodeling. These inhibitory effects were associated with decreased cardiac levels of Ang II, matrix metalloproteinase-2 and TGF-β1 in the hypertensive rats. In summary, OW1 exhibited a clear antihypertensive effect. More importantly, it inhibited vascular and cardiovascular remodeling, which may reduce the risk of hypertension-induced cardiovascular diseases. These results have potential implications in the development of new antihypertensive drugs.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yaning Zhu
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Peng Zhang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Y U Zhang
- Institute of Material Medica, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mingyao Zhou
- Xi'an Medical Emergency Center, Xi'an, Shaanxi 710061, P.R. China
| | - Tao Wang
- Institute of Material Medica, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Langchong He
- Institute of Material Medica, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
29
|
AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress. Biochem Biophys Res Commun 2015; 474:621-625. [PMID: 26403967 DOI: 10.1016/j.bbrc.2015.09.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022]
Abstract
AVE 0991, the nonpeptide angiotensin-(1-7) (Ang-(1-7)) analog, is recognized as having beneficial cardiovascular effects. However, the mechanisms have not been fully elucidated. This study was designed to investigate the effects of AVE 0991 on cardiac hypertrophy and the mechanisms involved. Mice were underwent aortic banding to induce cardiac hypertrophy followed by the administration of AVE 0991 (20 mg kg·day (-1)) for 4 weeks. It was shown that AVE 0991 reduced left ventricular hypertrophy and improved heart function, characterized by decreases in left ventricular weight and left ventricular end-diastolic diameter, and increases in ejection fraction. Moreover, AVE 0991 significantly down-regulated mean myocyte diameter and attenuate the gene expression of the hypertrophic markers. Furthermore, AVE 0991 inhibited the expression of NOX 2 and NOX 4, meaning that AVE 0991 reduced oxidative stress of cardiac hypertrophy mice. Our data showed that AVE 0991 treatment could attenuate cardiac hypertrophy and improve heart function, which may be due to reduce oxidative stress.
Collapse
|
30
|
Sun Y, Huang ZY, Wang ZH, Li CP, Meng XL, Zhang YJ, Su F, Ma N. TGF-β1 and TIMP-4 regulate atrial fibrosis in atrial fibrillation secondary to rheumatic heart disease. Mol Cell Biochem 2015; 406:131-8. [PMID: 25971370 DOI: 10.1007/s11010-015-2431-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
To investigate the involvement of transforming growth factor-β1 (TGF-β1) and tissue inhibitor of metalloproteinase 4 (TIMP-4) in influencing the severity of atrial fibrosis in rheumatic heart disease (RHD) patients with atrial fibrillation (AF). The degree of myocardial fibrosis was evaluated using Masson staining. The expression levels of TGF-β1, TIMP-4, matrix metalloproteinase-2 (MMP-2), type I collagen, and type III collagen were estimated by Western blot analysis. Additionally, TGF-β1 and TIMP-4 mRNA levels were quantified by qRT-PCR. The effect of TGF-β1 stimulation on TIMP-4 expression was assessed by in vitro stimulation of freshly isolated human atrial fibroblasts with recombinant human TGF-β1, followed by Western blot analysis to detect changes in TIMP-4 levels. Masson stain revealed that the left atrial diameter and collagen volume fraction were obviously increased in AF patients, compared to sinus rhythm (SR) controls (both P < 0.05). Western blot analysis showed significantly elevated levels of the AF markers MMP-2, type I collagen, and type III collagen in the AF group, in comparison to the SR controls (all P < 0.05). In the AF group, TGF-β1 expression was relatively higher, while TIMP-4 expression was apparently lower than the SR group (all P < 0.05). TIMP-4 expression level showed a negative association with TGF-β1 expression level (r = -0.98, P < 0.01) and TGF-β1 stimulation of atrial fibroblasts led to a sharp decrease in TIMP-4 protein level. Increased TGF-β1 expression and decreased TIMP-4 expression correlated with atrial fibrosis and ECM changes in the atria of RHD patients with AF. Notably, TGF-β1 suppressed TIMP-4 expression, suggesting that selective TGF-β1 inhibitors may be useful therapeutic agents.
Collapse
Affiliation(s)
- Yu Sun
- Cardiovascular Department, Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Zhongshan North Road No.34, Quanzhou, 362000, Fujian Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Xia LH, Chen T, Zhang B, Chen M. Mechanism of Profilin-1 in regulating eNOS/NO signaling pathway and its role in hypertensive myocardial hypertension. ASIAN PAC J TROP MED 2015; 8:399-404. [PMID: 26003601 DOI: 10.1016/s1995-7645(14)60351-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To explore the mechanism of Profilin-1 in regulating eNOS/NO pathway and its role in the development of myocardial hypertrophy. METHODS Spontaneously hypertensive rats (SHR) aged 5 weeks were injected with different adenovirus vectors to induce Profilin-1 expression knockdown (SHR-I) or over express (SHR-H) or to use as control (SHR-C). All these treatment were compared with Wistar-Kyoto rats (SKY) treated with control adenovirus vectors (WKY-C). The same injection was executed at the sixth week during the experiment of 12 weeks. After experiment, the left ventricular weight-to-heart weight ratio (LVW/HW) and left ventricular long axis (LVLA) were measured. Meanwhile, NO contents in blood and myocardium, Profilin-1, eNOS and Caveolin-3 mRNA and protein levels and phosphorylated eNOS (P-eNOS) protein level in myocardium were determined. RESULTS Compared with WKY-C group, the SHR-C group was statistically higher in LVW/HW (0.79±0.03), LVLA (11.82±0.58 mm) and Profilin-1 mRNA and protein level (P<0.05), but lower in NO content [(18.63±6.23) μmol/L] in blood and [(2.71±0.17) μmol/L] in myocardium), eNOS activity and Caveolin-3 expression (P<0.05). The over expressing Profilin-1 led SHR-H group to a higher value of LVW/HW [(0.93±0.03) mm and LVLA (14.17±0.69) mm] in comparison with SHR-C group (P<0.05), and to a lower value of NO content (in myocardium), eNOS activity and Caveolin-3 expression (P<0.05); however, this phenomenon was reversed by the knockdown Profilin-1 expression (SHR-I group). CONCLUSIONS Profilin-1 expression, being negative in regulating Caveolin-3 expression and eNOS/NO pathway activity, promotes the development of myocardial hypertrophy which can be reversed by Profilin-1 silencing.
Collapse
Affiliation(s)
- Liang-Hua Xia
- Department of Ultrasound Medicine, Affiliated East Hospital of Tongji University, Shanghai, China
| | - Tian Chen
- Department of Ultrasound Medicine, Affiliated East Hospital of Tongji University, Shanghai, China
| | - Bo Zhang
- Department of Ultrasound Medicine, Affiliated East Hospital of Tongji University, Shanghai, China.
| | - Ming Chen
- Department of Ultrasound Medicine, Affiliated East Hospital of Tongji University, Shanghai, China
| |
Collapse
|
32
|
Cau SBA, Guimaraes DA, Rizzi E, Ceron CS, Gerlach RF, Tanus-Santos JE. The Nuclear Factor kappaB Inhibitor Pyrrolidine Dithiocarbamate Prevents Cardiac Remodelling and Matrix Metalloproteinase-2 Up-Regulation in Renovascular Hypertension. Basic Clin Pharmacol Toxicol 2015; 117:234-41. [PMID: 25816715 DOI: 10.1111/bcpt.12400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022]
Abstract
Imbalanced matrix metalloproteinase (MMP) activity is involved in hypertensive cardiac hypertrophy. Pharmacological inhibition of nuclear factor kappaB (NF-кB) with pyrrolidine dithiocarbamate (PDTC) can prevent MMP up-regulation. We suggested that treatment with PDTC could prevent 2-kidney, 1-clip (2K1C) hypertension-induced left ventricular remodelling. Sham-operated controls or 2K1C rats with hypertension received either vehicle or PDTC (100 mg/kg/day) by gavage for 8 weeks. Systolic blood pressure was monitored every week. Histological assessment of left ventricles was carried out with haematoxylin/eosin sections, and fibrosis was quantified in picrosirius red-stained sections. Oxidative stress was evaluated in heart samples with the dihydroethidium probe. Cardiac MMP activity was determined by in situ zymography, and cardiac MMP-2 was assessed by immunofluorescence. 2K1C surgery significantly increased systolic blood pressure in the 2K1C vehicle. PDTC exerted antihypertensive effects after 2 weeks of treatment. Histology revealed increased left ventricular and septum wall thickness associated with augmented myocyte diameter in hypertensive rats, which were reversed by treatment with PDTC. Hypertensive rats developed pronounced cardiac fibrosis with increased interstitial collagen area, increased cardiac reactive oxygen species levels, gelatinase activity and MMP-2 expression. PDTC treatment decreased these alterations. These findings show that PDTC modulates myocardial MMP-2 expression and ameliorates cardiac remodelling in renovascular hypertension. These results suggest that interfering with MMP expression at transcriptional level may be an interesting strategy in the therapy of organ damage associated with hypertension.
Collapse
Affiliation(s)
- Stefany B A Cau
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Danielle A Guimaraes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Estomatology and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
33
|
Eirin A, Zhu XY, Ferguson CM, Riester SM, van Wijnen AJ, Lerman A, Lerman LO. Intra-renal delivery of mesenchymal stem cells attenuates myocardial injury after reversal of hypertension in porcine renovascular disease. Stem Cell Res Ther 2015; 6:7. [PMID: 25599803 PMCID: PMC4417319 DOI: 10.1186/scrt541] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 01/01/2023] Open
Abstract
Introduction Percutaneous transluminal renal angioplasty (PTRA) fails to fully improve cardiac injury and dysfunction in patients with renovascular hypertension (RVH). Mesenchymal stem cells (MSCs) restore renal function, but their potential for attenuating cardiac injury after reversal of RVH has not been explored. We hypothesized that replenishment of MSCs during PTRA would improve cardiac function and oxygenation, and decrease myocardial injury in porcine RVH. Methods Pigs were studied after 16 weeks of RVH, RVH treated 4 weeks earlier with PTRA with or without adjunct intra-renal delivery of MSC (10^6 cells), and controls. Cardiac structure, function (fast-computed tomography (CT)), and myocardial oxygenation (Blood-Oxygen-Level-Dependent- magnetic resonance imaging) were assessed in-vivo. Myocardial microvascular density (micro-CT) and myocardial injury were evaluated ex-vivo. Kidney venous and systemic blood levels of inflammatory markers were measured and their renal release calculated. Results PTRA normalized blood pressure, yet stenotic-kidney glomerular filtration rate, similarly blunted in RVH and RVH + PTRA, normalized only in PTRA + MSC-treated pigs. PTRA attenuated left ventricular remodeling, whereas myocardial oxygenation, subendocardial microvascular density, and diastolic function remained decreased in RVH + PTRA, but normalized in RVH + PTRA-MSC. Circulating isoprostane levels and renal release of inflammatory cytokines increased in RVH and RVH + PTRA, but normalized in RVH + PTRA-MSC, as did myocardial oxidative stress, inflammation, collagen deposition, and fibrosis. Conclusions Intra-renal MSC delivery during PTRA preserved stenotic-kidney function, reduced systemic oxidative stress and inflammation, and thereby improved cardiac function, oxygenation, and myocardial injury four weeks after revascularization, suggesting a therapeutic potential for adjunctive MSC delivery to preserve cardiac function and structure after reversal of experimental RVH.
Collapse
Affiliation(s)
- Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Xiang-Yang Zhu
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Christopher M Ferguson
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | | | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Lilach O Lerman
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA. .,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
34
|
Uçar H, Gür M, Börekçi A, Yıldırım A, Baykan AO, Yüksel Kalkan G, Koç M, Şeker T, Coşkun M, Şen Ö, Çaylı M. Relationship between extent and complexity of coronary artery disease and different left ventricular geometric patterns in patients with coronary artery disease and hypertension. Anatol J Cardiol 2015; 15:789-94. [PMID: 25592099 PMCID: PMC5336963 DOI: 10.5152/akd.2014.5747] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The relationship between severity of coronary artery disease (CAD) and left ventricler (LV) hypertrophy in hypertensive patients is well known. However, the association between the extent and complexity of CAD assessed with SYNTAX score (SS) and different LV geometric patterns has not been investigated. We aimed to investigate the association between SYNTAX score and different LV geometric patterns in hypertensive patients. METHODS The study had been made in our clinic between January 2013 and August 2013. We studied 251 CAD patients who had hypertension and who underwent coronary angiography (147 males, 104 females; mean age 61.61±9.9 years). Coronary angiography was performed based on clinical indications. SS was determined in all patients. Echocardiographic examination was performed in all subjects. Four different geometric patterns were determined in patients according to LV mass index (LVMI) and relative wall thickness (RWT) (Groups: NG- normal geometry, CR- concentric remodeling, EH- eccentric hypertrophy, and CH- concentric hypertrophy). Biochemical markers were measured in all participants. RESULTS The highest SS values were observed in the CH group compared with the NG, CR, and EH groups (p<0.05 for all). Also, the SS values of the EH group were higher than in the NG and CR groups (p<0.05 for all). Multivariate linear regression analysis showed that SS was independently associated with LV geometry (β=0.316, p=0.001), as well as age (β=0.163, p=0.007) and diabetes (β=-0.134, p=0.022). CONCLUSION SYNTAX score is independently related with LV geometry in hypertensive patients. This result shows that LV remodeling is parallel to the increase in the extent and complexity of CAD in our study patients.
Collapse
Affiliation(s)
- Hakan Uçar
- Department of Cardiology, Adana Numune Training and Research Hospital; Adana-Turkey.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Folino A, Sprio AE, Di Scipio F, Berta GN, Rastaldo R. Alpha-linolenic acid protects against cardiac injury and remodelling induced by beta-adrenergic overstimulation. Food Funct 2015; 6:2231-9. [DOI: 10.1039/c5fo00034c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Linolenic acid (ALA)-enriched diet prevented isoproterenol (ISO)-induced fibrosis in the ventricular myocardium.
Collapse
Affiliation(s)
- A. Folino
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - A. E. Sprio
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - F. Di Scipio
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - G. N. Berta
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - R. Rastaldo
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| |
Collapse
|
36
|
Alam MA, Chowdhury MRH, Jain P, Sagor MAT, Reza HM. DPP-4 inhibitor sitagliptin prevents inflammation and oxidative stress of heart and kidney in two kidney and one clip (2K1C) rats. Diabetol Metab Syndr 2015; 7:107. [PMID: 26609328 PMCID: PMC4658771 DOI: 10.1186/s13098-015-0095-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hyperglycemia and insulin resistance often develop cardiovascular and nephrological dysfunction in diabetic patients. Sitagliptin is used to treat diabetes and showed potential benefit in lowering increased blood glucose level in diabetes. This investigation reports the effect of sitagliptin treatment on oxidative stress in kidney and heart of 2K1C rats. METHODS Male Long Evans rats underwent unilateral surgical stenosis of the renal artery [2-kidney-1-clip (2K1C) method]. These animals entered a 4-weeks dosing period with sitagliptin. Blood and urine sampling and organ harvesting were finally performed. Blood plasma, heart, kidney tissues and urine were tested for the assessment of inflammation and oxidative stress in kidney and heart of 2K1C rats after 4 weeks of surgery. RESULTS 2K1C rats showed cardiac hypertrophy, increased left ventricular wet weight compared to sham which was not significantly altered by sitagliptin treatment. Uric acid and creatinin concentrations were also increased in 2K1C rats. Sitagliptin significantly prevented the elevation of uric acid and creatinin concentration in plasma and urine in this rat model. Oxidative stress markers in plasma such as malondialdehyde (MDA), nitric oxide (NO), and advanced protein oxidation product (APOP) concentrations were increased in the 2K1C rats as compared to sham-operated animals. Increased concentrations of these oxidative stress markers were also normalized by sitagliptin treatment. 2K1C rats also showed increased level of uric acid and creatinine both in plasma and urine; which are also reduced to normal level in sitagliptin treated rats. Moreover, 2K1C surgery initiated inflammatory cell infiltration, increased MPO activity and fibrosis in both heart and kidneys which were further ameliorated by sitagliptin treatment. CONCLUSION Our study suggests that sitagliptin treatment in 2K1C rats prevented inflammation and fibrosis of heart and kidney by ameliorating elevated oxidative stress in heart and kidney tissues.
Collapse
Affiliation(s)
- Md. Ashraful Alam
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mohammed Riaz Hasan Chowdhury
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Preeti Jain
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Md. Abu Taher Sagor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| |
Collapse
|
37
|
Ding WX, Dong YB, Ding N, Zhang XF, Zhang SJ, Zhang XL, Liu JN, Lu G. Adiponectin protects rat heart from left ventricular remodeling induced by chronic intermittent hypoxia via inhibition of TGF-β/smad2/3 pathway. J Thorac Dis 2014; 6:1278-84. [PMID: 25276370 DOI: 10.3978/j.issn.2072-1439.2014.07.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Obstructive sleep apnea syndrome (OSAS) is associated with many cardiovascular disorders. Chronic intermittent hypoxia (CIH) is the primary player in OSAS of the many associated factors. This study was in order to investigate the effects of the Adiponectin (Ad) on left ventricular remodeling induced by CIH. METHODS Forty-five rats were randomly divided into three groups: normal control (NC) group, CIH group and CIH plus Ad supplemented (CIH + Ad) group. After 35 days' CIH exposure, masson analysis was used to detect the left ventricular fibrosis and western blot was used to measure the protein expression of collagen I, collagen III and TGF-β/smad2/3 pathway. Gene analysis by RT-PCR was used to study the MMP2 and TIMP2. RESULTS After CIH exposure, the fibrosis of left ventricular in CIH group was significantly remarkable than that in both NC and CIH + Ad groups (P<0.05), although statistical difference existed between NC and CIH + Ad groups (P<0.05). In addition, the protein expression of collagen I as well as collagen III and the ratio of mRNA levels of MMP2/TIMP2 were the highest in CIH group but the lowest in NC group, with CIH + Ad group in between. There was a significant difference among three groups (all P<0.05). The TGF-β/smad2/3 pathway was activated obviously in CIH group, but less noticeably in CIH + Ad group (P<0.05) with a significant difference in the two groups. CONCLUSIONS The present study showed that Ad could ameliorate the left ventricular remodeling induced by CIH via inhibition of the expression of TGF-β/smad2/3 pathway.
Collapse
Affiliation(s)
- Wen-Xiao Ding
- 1 Department of Respiratory Medicine, 2 Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Department of Respiratory Diseases, Jiangsu Geriatric Hospital, Nanjing 210024, China
| | - Yan-Bin Dong
- 1 Department of Respiratory Medicine, 2 Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Department of Respiratory Diseases, Jiangsu Geriatric Hospital, Nanjing 210024, China
| | - Ning Ding
- 1 Department of Respiratory Medicine, 2 Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Department of Respiratory Diseases, Jiangsu Geriatric Hospital, Nanjing 210024, China
| | - Xiao-Feng Zhang
- 1 Department of Respiratory Medicine, 2 Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Department of Respiratory Diseases, Jiangsu Geriatric Hospital, Nanjing 210024, China
| | - Shi-Jiang Zhang
- 1 Department of Respiratory Medicine, 2 Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Department of Respiratory Diseases, Jiangsu Geriatric Hospital, Nanjing 210024, China
| | - Xi-Long Zhang
- 1 Department of Respiratory Medicine, 2 Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Department of Respiratory Diseases, Jiangsu Geriatric Hospital, Nanjing 210024, China
| | - Jian-Nan Liu
- 1 Department of Respiratory Medicine, 2 Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Department of Respiratory Diseases, Jiangsu Geriatric Hospital, Nanjing 210024, China
| | - Gan Lu
- 1 Department of Respiratory Medicine, 2 Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Department of Respiratory Diseases, Jiangsu Geriatric Hospital, Nanjing 210024, China
| |
Collapse
|
38
|
Bakker ENTP, Groma G, Spijkers LJA, de Vos J, van Weert A, van Veen H, Everts V, Arribas SM, VanBavel E. Heterogeneity in arterial remodeling among sublines of spontaneously hypertensive rats. PLoS One 2014; 9:e107998. [PMID: 25251068 PMCID: PMC4175999 DOI: 10.1371/journal.pone.0107998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/21/2014] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Spontaneously hypertensive rats (SHR) have been used frequently as a model for human essential hypertension. However, both the SHR and its normotensive control, the Wistar Kyoto rat (WKY), consist of genetically different sublines. We tested the hypothesis that the pathophysiology of vascular remodeling in hypertension differs among rat sublines. METHODS AND RESULTS We studied mesenteric resistance arteries of WKY and SHR from three different sources, at 6 weeks and 5 months of age. Sublines of WKY and SHR showed differences in blood pressure, body weight, vascular remodeling, endothelial function, and vessel ultrastructure. Common features in small mesenteric arteries from SHR were an increase in wall thickness, wall-to-lumen ratio, and internal elastic lamina thickness. CONCLUSIONS Endothelial dysfunction, vascular stiffening, and inward remodeling of small mesenteric arteries are not common features of hypertension, but are subline-dependent. Differences in genetic background associate with different types of vascular remodeling in hypertensive rats.
Collapse
Affiliation(s)
- Erik N. T. P. Bakker
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
- * E-mail:
| | - Gergely Groma
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Léon J. A. Spijkers
- Department of Vascular Medicine and Nephrology, Academic Medical Center, Amsterdam, the Netherlands
| | - Judith de Vos
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Angela van Weert
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Henk van Veen
- Van Leeuwenhoek Center for Advanced Microscopy, Department of Cell Biology, Academic Medical Center, Amsterdam, the Netherlands
| | - Vincent Everts
- Van Leeuwenhoek Center for Advanced Microscopy, Department of Cell Biology, Academic Medical Center, Amsterdam, the Netherlands
| | - Silvia M. Arribas
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ed VanBavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
39
|
Rizzi E, Guimaraes DA, Ceron CS, Prado CM, Pinheiro LC, Martins-Oliveira A, Gerlach RF, Tanus-Santos JE. β1-Adrenergic blockers exert antioxidant effects, reduce matrix metalloproteinase activity, and improve renovascular hypertension-induced cardiac hypertrophy. Free Radic Biol Med 2014; 73:308-17. [PMID: 24933619 DOI: 10.1016/j.freeradbiomed.2014.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 01/13/2023]
Abstract
Hypertension induces left-ventricular hypertrophy (LVH) by mechanisms involving oxidative stress and unbalanced cardiac matrix metalloproteinase (MMP) activity. We hypothesized that β1-adrenergic receptor blockers with antioxidant properties (nebivolol) could reverse hypertension-induced LVH more effectively than conventional β1-blockers (metoprolol) when used at doses that exert similar antihypertensive effects. Two-kidney one-clip (2K1C) hypertension was induced in male Wistar rats. Six weeks after surgery, hypertensive and sham rats were treated with nebivolol (10 mg kg(-1)day(-1)) or metoprolol (20 mg kg(-1)day(-1)) for 4 weeks. Systolic blood pressure was monitored weekly by tail-cuff plethysmography. LV structural changes and fibrosis were studied in hematoxylin/eosin- and picrosirius-stained sections, respectively. Cardiac MMP levels and activity were determined by in situ zymography, gel zymography, and immunofluorescence. Dihydroethidium and lucigenin-derived chemiluminescence assays were used to assess cardiac reactive oxygen species (ROS) production. Nitrotyrosine levels were determined in LV samples by immunohistochemistry and green fluorescence and were evaluated using the ImageJ software. Cardiac protein kinase B/Akt (AKT) phosphorylation state was assessed by Western blot. Both β-blockers exerted similar antihypertensive effects and attenuated hypertension-induced cardiac remodeling. Both drugs reduced myocyte hypertrophy and collagen deposition in 2K1C rats. These effects were associated with lower cardiac ROS and nitrotyrosine levels and attenuation of hypertension-induced increases in cardiac MMP-2 levels and in situ gelatinolytic activity after treatment with both β-blockers. Whereas hypertension increased AKT phosphorylation, no effects were found with β-blockers. In conclusion, we found evidence that two β1-blockers with different properties attenuate hypertension-induced LV hypertrophy and cardiac collagen deposition in association with significant cardiac antioxidant effects and MMP-2 downregulation, thus suggesting a critical role for β1-adrenergic receptors in mediating those effects. Nebivolol is not superior to metoprolol, at least with respect to their capacity to reverse hypertension-induced LVH.
Collapse
Affiliation(s)
- Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Danielle A Guimaraes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Cibele M Prado
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900 Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Alisson Martins-Oliveira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Estomatology, and Physiology, Ribeirao Preto Dental School, University of Sao Paulo, 14049-900 Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
40
|
Azevedo A, Prado AF, Antonio RC, Issa JP, Gerlach RF. Matrix metalloproteinases are involved in cardiovascular diseases. Basic Clin Pharmacol Toxicol 2014; 115:301-14. [PMID: 24974977 DOI: 10.1111/bcpt.12282] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/26/2014] [Indexed: 12/18/2022]
Abstract
This MiniReview describes the essential biochemical and molecular aspects of matrix metalloproteinases (MMPs) and briefly discusses how they engage in different diseases, with particular emphasis on cardiovascular diseases. There is compelling scientific evidence that many MMPs, especially MMP-2, play important roles in the development of cardiovascular diseases; inhibition of these enzymes is beneficial to many cardiovascular conditions, sometimes precluding or postponing end-organ damage and fatal outcomes. Conducting comprehensive discussions and further studies on how MMPs participate in cardiovascular diseases is important, because inhibition of these enzymes may be an alternative or an adjuvant for current cardiovascular disease therapy.
Collapse
Affiliation(s)
- Aline Azevedo
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
41
|
Su Z, Zhu H, Zhang M, Wang L, He H, Jiang S, Hou FF, Li A. Salt-induced changes in cardiac phosphoproteome in a rat model of chronic renal failure. PLoS One 2014; 9:e100331. [PMID: 24945867 PMCID: PMC4063776 DOI: 10.1371/journal.pone.0100331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/23/2014] [Indexed: 01/26/2023] Open
Abstract
Heart damage is widely present in patients with chronic kidney disease. Salt diet is the most important environmental factor affecting development of chronic renal failure and cardiovascular diseases. The proteins involved in chronic kidney disease -induced heart damage, especially their posttranslational modifications, remain largely unknown to date. Sprague-Dawley rats underwent 5/6 nephrectomy (chronic renal failure model) or sham operation were treated for 2 weeks with a normal-(0.4% NaCl), or high-salt (4% NaCl) diet. We employed TiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for phosphoproteomic profiling of left ventricular free walls in these animals. A total of 1724 unique phosphopeptides representing 2551 non-redundant phosphorylation sites corresponding to 763 phosphoproteins were identified. During normal salt feeding, 89 (54%) phosphopeptides upregulated and 76 (46%) phosphopeptides downregulated in chronic renal failure rats relative to sham rats. In chronic renal failure rats, high salt intake induced upregulation of 84 (49%) phosphopeptides and downregulation of 88 (51%) phosphopeptides. Database searches revealed that most of the identified phospholproteins were important signaling molecules such as protein kinases, receptors and phosphatases. These phospholproteins were involved in energy metabolism, cell communication, cell differentiation, cell death and other biological processes. The Search Tool for the Retrieval of Interacting Genes analysis revealed functional links among 15 significantly regulated phosphoproteins in chronic renal failure rats compared to sham group, and 23 altered phosphoproteins induced by high salt intake. The altered phosphorylation levels of two proteins involved in heart damage, lamin A and phospholamban were validated. Expression of the downstream genes of these two proteins, desmin and SERCA2a, were also analyzed.
Collapse
Affiliation(s)
- Zhengxiu Su
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, Guangdong, China
| | - Hongguo Zhu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, Guangdong, China
| | - Menghuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, Guangdong, China
| | - Liangliang Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, Guangdong, China
| | - Hanchang He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, Guangdong, China
| | - Shaoling Jiang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, Guangdong, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, Guangdong, China
- * E-mail: (AQL); (FFH)
| | - Aiqing Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, Guangdong, China
- * E-mail: (AQL); (FFH)
| |
Collapse
|
42
|
Hua Y, Nair S. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta Mol Basis Dis 2014; 1852:195-208. [PMID: 24815358 DOI: 10.1016/j.bbadis.2014.04.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the leading cause of death in the U.S. and other developed countries. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is a major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or over-express proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better understanding of the role of MMPs, cathepsins, calpains and caspases in cardiometabolic diseases process may yield novel therapeutic targets for treating or controlling these diseases. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| | - Sreejayan Nair
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
43
|
Mishra PK, Givvimani S, Chavali V, Tyagi SC. Cardiac matrix: a clue for future therapy. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2271-6. [PMID: 24055000 DOI: 10.1016/j.bbadis.2013.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/30/2022]
Abstract
Cardiac muscle is unique because it contracts ceaselessly throughout the life and is highly resistant to fatigue. The marvelous nature of the cardiac muscle is attributed to its matrix that maintains structural and functional integrity and provides ambient micro-environment required for mechanical, cellular and molecular activities in the heart. Cardiac matrix dictates the endothelium myocyte (EM) coupling and contractility of cardiomyocytes. The matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) regulate matrix degradation that determines cardiac fibrosis and myocardial performance. We have shown that MMP-9 regulates differential expression of micro RNAs (miRNAs), calcium cycling and contractility of cardiomyocytes. The differential expression of miRNAs is associated with angiogenesis, hypertrophy and fibrosis in the heart. MMP-9, which is involved in the degradation of cardiac matrix and induction of fibrosis, is also implicated in inhibition of survival and differentiation of cardiac stem cells (CSC). Cardiac matrix is distinct because it renders mechanical properties and provides a framework essential for differentiation of cardiac progenitor cells (CPC) into specific lineage. Cardiac matrix regulates myocyte contractility by EM coupling and calcium transients and also directs miRNAs required for precise regulation of continuous and synchronized beating of cardiomyocytes that is indispensible for survival. Alteration in the matrix homeostasis due to induction of MMPs, altered expression of specific miRNAs or impaired signaling for contractility of cardiomyocytes leads to catastrophic effects. This review describes the mechanisms by which cardiac matrix regulates myocardial performance and suggests future directions for the development of treatment strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
44
|
Ryou MG, Choudhury GR, Winters A, Xie L, Mallet RT, Yang SH. Pyruvate minimizes rtPA toxicity from in vitro oxygen-glucose deprivation and reoxygenation. Brain Res 2013; 1530:66-75. [PMID: 23891792 DOI: 10.1016/j.brainres.2013.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022]
Abstract
Clinical application of recombinant tissue plasminogen activator (rtPA) for stroke is limited by hemorrhagic transformation, which narrows rtPA's therapeutic window. In addition, mounting evidence indicates that rtPA is potentially neurotoxic if it traverses a compromised blood brain barrier. Here, we demonstrated that pyruvate protects cultured HT22 neuronal and primary microvascular endothelial cells co-cultured with primary astrocytes from oxygen glucose deprivation (OGD)/reoxygenation stress and rtPA cytotoxicity. After 3 or 6h OGD, cells were reoxygenated with 11mmol/L glucose±pyruvate (8mmol/L) and/or rtPA (10µg/ml). Measured variables included cellular viability (calcein AM and annexin-V/propidium iodide), reactive oxygen species (ROS; mitosox red and 2',7'-dichlorofluorescein diacetate), NADPH, NADP(+) and ATP contents (spectrophotometry), matrix metalloproteinase-2 (MMP2) activities (gelatin zymography), and cellular contents of MMP2, tissue inhibitor of metalloproteinase-2 (TIMP2), and phosphor-activation of anti-apoptotic p70s6 kinase, Akt and Erk (immunoblot). Pyruvate prevented the loss of HT22 cells after 3h OGD±rtPA. After 6h OGD, rtPA sharply lowered cell viability; pyruvate dampened this effect. Three hours OGD and 4h reoxygenation with rtPA increased ROS formation by about 50%. Pyruvate prevented this ROS formation and doubled cellular NADPH/NADP(+) ratio and ATP content. In endothelial cell monolayers, 3h OGD and 24h reoxygenation increased FITC-dextran leakage, indicating disruption of intercellular junctions. Although rtPA exacerbated this effect, pyruvate prevented it while sharply lowering MMP2/TIMP2 ratio and increasing phosphorylation of p70s6 kinase, Akt and Erk. Pyruvate protects neuronal cells and microvascular endothelium from hypoxia-reoxygenation and cytotoxic action of rtPA while reducing ROS and activating anti-apoptotic signaling. These results support the proposed use of pyruvate as an adjuvant to dampen the side effects of rtPA treatment, thereby extending rtPA's therapeutic window.
Collapse
Affiliation(s)
- Myoung-Gwi Ryou
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699 USA.
| | | | | | | | | | | |
Collapse
|