1
|
Kaltsouni E, Gu X, Wikström J, Hahn A, Lanzenberger R, Sundström-Poromaa I, Comasco E. White matter integrity upon progesterone antagonism in individuals with premenstrual dysphoric disorder: A randomized placebo-controlled diffusion tensor imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111179. [PMID: 39454851 DOI: 10.1016/j.pnpbp.2024.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/04/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Premenstrual dysphoric disorder (PMDD) is a depressive disorder triggered by fluctuations of progesterone and estradiol during the luteal phase of the menstrual cycle. Selective progesterone receptor modulation (SPRM), while exerting an antagonistic effect on progesterone and maintaining estradiol on moderate levels, has shown beneficial effects on the mental symptoms of PMDD. Progesterone is also known for its neuroprotective effects, while synthetic progestins have been suggested to promote myelination. However, the impact of SPRM treatment on white matter microstructure is unexplored. METHODS Diffusion tensor imaging was employed to collect data on white matter integrity in patients with PMDD, before and after treatment with ulipristal acetate (an SPRM) or placebo, as part of a double-blind randomized controlled-trial. Tract based spatial statistics were performed to investigate SPRM treatment vs. placebo longitudinal effects on fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD), on the whole white matter skeleton. RESULTS Voxel-wise analyses indicated no change over time in any white matter microstructure metrics in individuals treated with SPRM versus placebo. Improvement in PMDD symptoms did not correlate with changes in white matter microstructure. In secondary, exploratory, cross-sectional comparisons during treatment, the SPRM group displayed lower FA and higher MD, RD, and AD than the placebo group in several tracts. CONCLUSION The main findings suggest that SPRM treatment did not impact white matter microstructure compared with placebo. However, secondary exploratory analyses yielded between-group differences after treatment, which call for further investigation on the tracts potentially impacted by progesterone antagonism. CLINICAL TRIAL REGISTRATION EUDRA-CT 2016-001719-19; "Selective progesterone receptor modulators for treatment of premenstrual dysphoric disorder. A randomized, double-blind, placebo-controlled study."; https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-001719-19/SE.
Collapse
Affiliation(s)
- Elisavet Kaltsouni
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| | - Xuan Gu
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| | - Johan Wikström
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden.
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | | | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
2
|
Coyoy-Salgado A, Segura-Uribe J, Salgado-Ceballos H, Castillo-Mendieta T, Sánchez-Torres S, Freyermuth-Trujillo X, Orozco-Barrios C, Orozco-Suarez S, Feria-Romero I, Pinto-Almazán R, Moralí de la Brena G, Guerra-Araiza C. Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic? Biomedicines 2024; 12:1478. [PMID: 39062051 PMCID: PMC11274729 DOI: 10.3390/biomedicines12071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The primary mechanism of traumatic spinal cord injury (SCI) comprises the initial mechanical trauma due to the transmission of energy to the spinal cord, subsequent deformity, and persistent compression. The secondary mechanism of injury, which involves structures that remained undamaged after the initial trauma, triggers alterations in microvascular perfusion, the liberation of free radicals and neurotransmitters, lipid peroxidation, alteration in ionic concentrations, and the consequent cell death by necrosis and apoptosis. Research in the treatment of SCI has sought to develop early therapeutic interventions that mitigate the effects of these pathophysiological mechanisms. Clinical and experimental evidence has demonstrated the therapeutic benefits of sex-steroid hormone administration after traumatic brain injury and SCI. The administration of estradiol, progesterone, and testosterone has been associated with neuroprotective effects, better neurological recovery, and decreased mortality after SCI. This review evaluated evidence supporting hormone-related neuroprotection over SCI and the possible underlying mechanisms in animal models. As neuroprotection has been associated with signaling pathways, the effects of these hormones are observed on astrocytes and microglia, modulating the inflammatory response, cerebral blood flow, and metabolism, mediating glutamate excitotoxicity, and their antioxidant effects. Based on the current evidence, it is essential to analyze the benefit of sex steroid hormone therapy in the clinical management of patients with SCI.
Collapse
Affiliation(s)
- Angélica Coyoy-Salgado
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Carlos Orozco-Barrios
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico
| | - Gabriela Moralí de la Brena
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
3
|
El Baassiri MG, Raouf Z, Badin S, Escobosa A, Sodhi CP, Nasr IW. Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. J Neuroinflammation 2024; 21:124. [PMID: 38730498 PMCID: PMC11083845 DOI: 10.1186/s12974-024-03118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zachariah Raouf
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sarah Badin
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alejandro Escobosa
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chhinder P Sodhi
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Verdoorn TA, Parry TJ, Pinna G, Lifshitz J. Neurosteroid Receptor Modulators for Treating Traumatic Brain Injury. Neurotherapeutics 2023; 20:1603-1615. [PMID: 37653253 PMCID: PMC10684848 DOI: 10.1007/s13311-023-01428-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Traumatic brain injury (TBI) triggers wide-ranging pathology that impacts multiple biochemical and physiological systems, both inside and outside the brain. Functional recovery in patients is impeded by early onset brain edema, acute and chronic inflammation, delayed cell death, and neurovascular disruption. Drug treatments that target these deficits are under active development, but it seems likely that fully effective therapy may require interruption of the multiplicity of TBI-induced pathological processes either by a cocktail of drug treatments or a single pleiotropic drug. The complex and highly interconnected biochemical network embodied by the neurosteroid system offers multiple options for the research and development of pleiotropic drug treatments that may provide benefit for those who have suffered a TBI. This narrative review examines the neurosteroids and their signaling systems and proposes directions for their utility in the next stage of TBI drug research and development.
Collapse
Affiliation(s)
- Todd A Verdoorn
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA.
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, 2655 Northwinds Parkway, Alpharetta, GA 30009, USA
| | - Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago College of Medicine, 1601 W. Taylor Street, Chicago, IL 60612, USA
| | - Jonathan Lifshitz
- Department of Psychiatry, University of Arizona College of Medicine - Phoenix, 475 N. 5th Street, Phoenix, AZ 85004, USA
| |
Collapse
|
5
|
Liu X, Gu C, Lv J, Jiang Q, Ding W, Huang Z, Liu Y, Su Y, Zhang C, Xu Z, Wang X, Su W. Progesterone attenuates Th17-cell pathogenicity in autoimmune uveitis via Id2/Pim1 axis. J Neuroinflammation 2023; 20:144. [PMID: 37344856 PMCID: PMC10286326 DOI: 10.1186/s12974-023-02829-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Autoimmune uveitis (AU) is the most common ophthalmic autoimmune disease (AD) and is characterized by a complex etiology, high morbidity, and high rate of blindness. AU remission has been observed in pregnant female patients. However, the effects of progesterone (PRG), a critical hormone for reproduction, on the treatment of AU and the regulatory mechanisms remain unclear. METHODS To this end, we established experimental autoimmune uveitis (EAU) animal models and constructed a high-dimensional immune atlas of EAU-model mice undergoing PRG treatment to explore the underlying therapeutic mechanisms of PRG using single-cell RNA sequencing. RESULTS We found that PRG ameliorated retinal lesions and inflammatory infiltration in EAU-model mice. Further single-cell analysis indicated that PRG reversed the EAU-induced expression of inflammatory genes (AP-1 family, S100a family, and Cxcr4) and pathological processes related to inflammatory cell migration, activation, and differentiation. Notably, PRG was found to regulate the Th17/Treg imbalance by increasing the reduced regulatory functional mediators of Tregs and diminishing the overactivation of pathological Th17 cells. Moreover, the Id2/Pim1 axis, IL-23/Th17/GM-CSF signaling, and enhanced Th17 pathogenicity during EAU were reversed by PRG treatment, resulting in the alleviation of EAU inflammation and treatment of AD. CONCLUSIONS Our study provides a comprehensive single-cell map of the immunomodulatory effects of PRG therapy on EAU and elaborates on the possible therapeutic mechanisms, providing novel insights into its application for treating autoimmune diseases.
Collapse
Affiliation(s)
- Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Qi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Wen Ding
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuhan Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianggui Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Terrin F, Tesoriere A, Plotegher N, Dalla Valle L. Sex and Brain: The Role of Sex Chromosomes and Hormones in Brain Development and Parkinson's Disease. Cells 2023; 12:1486. [PMID: 37296608 PMCID: PMC10252697 DOI: 10.3390/cells12111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| |
Collapse
|
7
|
Abtin S, Ghasemi R, Manaheji H. Progesterone modulates the expression of spinal ephrin-B2 after peripheral nerve injury: New insights into progesterone mechanisms. Steroids 2023; 190:109155. [PMID: 36529276 DOI: 10.1016/j.steroids.2022.109155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Recent studies have shown that the ephrin/Eph signaling pathway may contribute to the pathology of neuropathic pain. Drugs like progesterone may be used to counteract both thermal hyperalgesia and mechanical allodynia in different models of neuropathic pain. The present study was designed to determine progesterone's modulatory role on neuropathic pain and spinal expression of ephrin-B2 following chronic constriction nerve injury (CCI). Thirty-six adult male Wistar rats were used. The sciatic nerve was chronically constricted. Progesterone (5 mg/kg and 15 mg/kg) was administrated for 10 days (from day 1 up to day10) following sciatic constriction. Behavioral tests were performed before surgery (day 0) and on days 1, 3, 7, and 14 after CCI and before progesterone administration on the same days. Western blotting was performed on days 3, 7, and 14th post-surgery. The findings showed that after CCI, the expression of spinal cord ephrin-B2 increased significantly in parallel with mechanical allodynia and thermal hyperalgesia. Post-injury administration of progesterone (15 mg/kg but not 5) decreased mechanical allodynia, thermal hyperalgesia, and the expression of spinal ephrin-B2. It is concluded that post-injury repeated administration of progesterone could be an effective way of alleviating neuropathic pain by suppressing ephrin-B2 activation and helps to make the better design of steroid-based therapies to inhibit pain after peripheral injury.
Collapse
Affiliation(s)
- Shima Abtin
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Yang X, Cao JF, Chen S, Xiong L, Zhang L, Wu M, Wang C, Xu H, Chen Y, Yang S, Zhong L, Wei X, Xiao Z, Gong Y, Li Y, Zhang X. Molecular docking and molecular dynamics simulation study the mechanism of progesterone in the treatment of spinal cord injury. Steroids 2022; 188:109131. [PMID: 36273543 DOI: 10.1016/j.steroids.2022.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Spinal cord injury can lead to incomplete or complete loss of voluntary movement and sensory function, leading to serious complications. Numerous studies have shown that progesterone exhibits strong therapeutic potential for spinal cord injury. However, the mechanism by which progesterone treats spinal cord injury remains unclear. Therefore, this article explores the mechanism of progesterone in the treatment of spinal cord injury by means of molecular docking and molecular dynamics simulation. METHODS We used bioinformatics to screen active pharmaceutical ingredients and potential targets, and molecular docking and molecular dynamics were used to validate and analysis by the supercomputer platform. RESULTS Progesterone had 3606 gene targets, spinal cord injury had 6560 gene targets, the intersection gene targets were 2355. GO and KEGG analysis showed that the abundant pathways involved multiple pathways related to cell metabolism and inflammation. Molecular docking showed that progesterone played a role in treating spinal cord injury by acting on BDNF, AR, NGF and TNF. Molecular dynamics was used to prove and analyzed the binding stability of active ingredients and protein targets, and AR/Progesterone combination has the strongest binding energy. CONCLUSION Progesterone promotes recovery from spinal cord injury by promoting axonal regeneration, remyelination, neuronal survival and reducing inflammation.
Collapse
Affiliation(s)
- Xingyu Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jun-Feng Cao
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Shengyan Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Li Xiong
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Mei Wu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chaochao Wang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Hengxiang Xu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yijun Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Siqi Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Li Zhong
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaoliang Wei
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zixuan Xiao
- Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yunli Gong
- Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yang Li
- Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
9
|
Rihal V, Khan H, Kaur A, Singh TG, Abdel-Daim MM. Therapeutic and mechanistic intervention of vitamin D in neuropsychiatric disorders. Psychiatry Res 2022; 317:114782. [PMID: 36049434 DOI: 10.1016/j.psychres.2022.114782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022]
Abstract
Vitamin D deficiency is believed to affect between 35 and 55% of the world's population, making it a hidden pandemic. In addition to its role in bone and calcium homeostasis, vitamin D has also been linked in preclinical and clinical research to brain function. These outcomes have also been used for a variety of neuropsychiatric and neurodevelopmental problems. Nevertheless, these individuals are more prone to develop signs of cognitive decline. This review will emphasize the association between vitamin D and neuropsychiatric illnesses such as autism, schizophrenia, depression, and Attention Deficit Hyperactivity Disorder (ADHD). While numerous research show vitamin D's essential role in cognitive function in neuropsychiatric illnesses, it is too early to propose its effect on cognitive symptoms with certainty. It is necessary to conduct additional research into the associations between vitamin D deficiency and cognitive abnormalities, particularly those found in autism, schizophrenia, depression, and ADHD, to develop initiatives that address the pressing need for novel and effective preventative therapeutic strategies.
Collapse
Affiliation(s)
- Vivek Rihal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | | | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
11
|
Huang Y, Su M, Zhang C, Zhan H, Yang F, Gao Z, Zhou X, Liu B. Activation of translocator protein alleviates mechanical allodynia and bladder dysfunction in cyclophosphamide-induced cystitis through repression of BDNF-mediated neuroinflammation. Eur J Pain 2022; 26:1234-1244. [PMID: 35293071 DOI: 10.1002/ejp.1942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Bladder pain syndrome/interstitial cystitis (BPS/IC) is a refractory disease accompanied by bladder-related pain and hyperactivity. Studies have shown that the translocator protein (TSPO) modulates neuroinflammation and central sensitisation associated with pain. Moreover, we previously demonstrated that brain-derived neurotrophic factor (BDNF) regulates neuroinflammation and mechanical allodynia in cyclophosphamide (CYP)-induced cystitis through activation of glial cells. Here, we aimed to explore whether activation of TSPO attenuates mechanical allodynia and bladder dysfunction by regulating BDNF induced neuroinflammation in a CYP-induced cystitis model. METHODS Injection of CYP was performed to form a rat model of BPS/IC. The expression of TSPO was regulated by intrathecal injection of the TSPO agonist Ro5-4864. The von Frey filament test was applied to evaluate suprapubic allodynia. Bladder function was assessed using filling cystometry. Western blotting was used to detect the expression of TSPO, BDNF, GFAP, Iba-1, p-p38, p-JNK, TNF-α, and IL-1β, and double immunofluorescence was performed to localise TSPO in the L6-S1 spinal dorsal horn (SDH). RESULTS TSPO was activated in the SDH after CYP injection and was primarily colocalised with astrocytes. Ro5-4864 reversed mechanical allodynia and bladder dysfunction induced by CYP. Moreover, the upregulation of BDNF and activation of astrocytes and microglia was suppressed by Ro5-4864, resulting in downregulation of p-p38, p-JNK, TNF-α, and IL-1β. CONCLUSIONS Ro5-4864 alleviated mechanical allodynia and bladder dysfunction in the CYP model, possibly by inhibiting the elevation of BDNF and consequent activation of astrocytes and microglia induced neuroinflammation. TSPO may be a potential target for the treatment of BPS/IC.
Collapse
Affiliation(s)
- Yong Huang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Minzhi Su
- Department of Rehabilitation, the Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hailun Zhan
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fei Yang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhentao Gao
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangfu Zhou
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bolong Liu
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Daneri-Becerra C, Patiño-Gaillez MG, Galigniana MD. Proof that the high molecular weight immunophilin FKBP52 mediates the in vivo neuroregenerative effect of the macrolide FK506. Biochem Pharmacol 2020; 182:114204. [PMID: 32828804 DOI: 10.1016/j.bcp.2020.114204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
The immunosuppressant drug FK506 (or tacrolimus) is a macrolide that binds selectively to immunophilins belonging to the FK506-binding protein (FKBP) subfamily, which are abundantly expressed proteins in neurons of the peripheral and central nervous systems. Interestingly, it has been reported that FK506 increases neurite outgrowth in cell cultures, implying a potential impact in putative treatments of neurodegenerative disorders and injuries of the nervous system. Nonetheless, the mechanism of action of this compound is poorly understood and remains to be elucidated, with the only certainty that its neurotrophic effect is independent of its primary immunosuppressant activity. In this study it is demonstrated that FK506 shows efficient neurotrophic action in vitro and profound effects on the recovery of locomotor activity, behavioural features, and erectile function of mice that underwent surgical spinal cord injury. The recovery of the locomotor activity was studied in knock-out mice for either immunophilin, FKBP51 or FKBP52. The experimental evidence demonstrates that the neurotrophic actions of FK506 are the consequence of its binding to FKBP52, whereas FK506 interaction with the close-related partner immunophilin FKBP51 antagonises the function of FKBP52. Importantly, our study also demonstrates that other immunophilins do not replace FKBP52. It is concluded that the final biological response is the resulting outcome of the drug binding to both immunophilins, FKBP51 and FKBP52, the latter being the one that commands the dominant neurotrophic action in vivo.
Collapse
Affiliation(s)
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Colciago A, Bonalume V, Melfi V, Magnaghi V. Genomic and Non-genomic Action of Neurosteroids in the Peripheral Nervous System. Front Neurosci 2020; 14:796. [PMID: 32848567 PMCID: PMC7403499 DOI: 10.3389/fnins.2020.00796] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 01/12/2023] Open
Abstract
Since the former evidence of biologic actions of neurosteroids in the central nervous system, also the peripheral nervous system (PNS) was reported as a structure affected by these substances. Indeed, neurosteroids are synthesized and active in the PNS, exerting many important actions on the different cell types of this system. PNS is a target for neurosteroids, in their native form or as metabolites. In particular, old and recent evidence indicates that the progesterone metabolite allopregnanolone possesses important functions in the PNS, thus contributing to its physiologic processes. In this review, we will survey the more recent findings on the genomic and non-genomic actions of neurosteroids in nerves, ganglia, and cells forming the PNS, focusing on the mechanisms regulating the peripheral neuron-glial crosstalk. Then, we will refer to the physiopathological significance of the neurosteroid signaling disturbances in the PNS, in to identify new molecular targets for promising pharmacotherapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Guennoun R. Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant. Int J Mol Sci 2020; 21:ijms21155271. [PMID: 32722286 PMCID: PMC7432434 DOI: 10.3390/ijms21155271] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke.
Collapse
Affiliation(s)
- Rachida Guennoun
- U 1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| |
Collapse
|
15
|
Frye CA, Chittur SV. Mating Enhances Expression of Hormonal and Trophic Factors in the Midbrain of Female Rats. Front Behav Neurosci 2020; 14:21. [PMID: 32351369 PMCID: PMC7176275 DOI: 10.3389/fnbeh.2020.00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/31/2020] [Indexed: 11/23/2022] Open
Abstract
Among female rats, mating enhances neurosteroid formation in the midbrain ventral tegmental area (VTA; independent of peripheral steroid-secreting glands, ovaries, and adrenals). The sources/targets for these actions are not well understood. In Experiment 1, proestrous rats engaged in a mating paradigm, or did not, and the midbrains had been assessed via the Affymetrix rat genome microarrays. In Experiment 2, the influence of gonadal and adrenal glands on the expression of these genes was assessed in rats that were proestrous, ovariectomized (OVX), or OVX and adrenalectomized (ADX). The microarrays revealed 53 target genes that were significantly up-regulated (>2.0-fold change) in response to mating. Mating significantly enhanced the midbrain mRNA expression of genes involved in hormonal and trophic actions: Gh1, S100g, and Klk1b3 in proestrous, but not OVX and/or ADX, rats; Fshb in all but OVX/ADX rats; and lutenizing hormone β and thyroid-stimulating hormone (TSH) β in all rats. Thus, mating enhances midbrain gene expression independent and dependent of peripheral glands.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY, United States.,Department of Biological Sciences, The University at Albany-SUNY, Albany, NY, United States.,Center for Neuroscience Research, The University at Albany-SUNY, Albany, NY, United States.,Center for Life Sciences Research, The University at Albany-SUNY, Albany, NY, United States
| | - Sridar V Chittur
- Center for Functional Genomics, The University at Albany-SUNY, Albany, NY, United States
| |
Collapse
|
16
|
Abstract
Trauma is the leading cause of nonobstetric maternal mortality and affects up to 8% of all pregnancies. Pregnant patients with traumatic brain injury (TBI) are an especially vulnerable population, and their management is complex, with multiple special considerations that must be taken into account. These include but are not limited to alterations in maternal physiology that occur with pregnancy, potential teratogenicity of pharmacologic therapies and diagnostic studies using ionizing radiation, need for fetal monitoring, Rh immunization status, placental abruption, and preterm labor. Despite these challenges, evidence regarding management of the pregnant patient with a TBI is lacking, limited to only case reports/series and retrospective analyses. Despite this uncertainty, expert opinion on management of these patients seems to be that, overall, the standard therapies for management of TBI are safe and effective in pregnancy, with a few notable exceptions described in this chapter. Significant work is needed to continue to develop best-practice and evidence-based guidelines for the management of TBI pregnancy.
Collapse
Affiliation(s)
- Matthew R Leach
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher G Zammit
- Department of Critical Care Medicine and Neuroscience Institute, TriHealth, Cincinnati, OH, United States.
| |
Collapse
|
17
|
Gargiulo-Monachelli G, Meyer M, Lara A, Garay L, Lima A, Roig P, De Nicola AF, Gonzalez Deniselle MC. Comparative effects of progesterone and the synthetic progestin norethindrone on neuroprotection in a model of spontaneous motoneuron degeneration. J Steroid Biochem Mol Biol 2019; 192:105385. [PMID: 31150830 DOI: 10.1016/j.jsbmb.2019.105385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/21/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
Abstract
The Wobbler mouse has been proposed as an experimental model of the sporadic form of amyotrophic lateral sclerosis (ALS). The administration of natural progesterone (PROG) to Wobbler mice attenuates neuropathology, inhibits oxidative stress, enhances the expression of genes involved in motoneuron function, increases survival and restores axonal transport. However, current pharmacological treatments for ALS patients are still partially effective. This encouraged us to investigate if the synthetic progestin norethindrone (NOR), showing higher potency than PROG and used for birth control and hormone therapy might also afford neuroprotection. Two-month-old Wobbler mice (wr/wr) were left untreated or received either a 20 mg pellet of PROG or a 1 mg pellet of NOR for 18 days. Untreated control NFR/NFR mice (background strain for Wobbler) were also employed. Wobblers showed typical clinical and spinal cord abnormalities, while these abnormalities were normalized with PROG treatment. Surprisingly, we found that NOR did not increase immunoreactivity and gene expression for choline-acetyltransferase, drastically decreased GFAP + astrogliosis, favored proinflammatory mediators, promoted the inflammatory phenotype of IBA1+ microglia, increased the receptor for advanced glycation end products (RAGE) mRNA and protein expression and the activity of nitric oxide synthase (NOS)/NADPH diaphorase in the cervical spinal cord. Additionally, NOR treatment produced atrophy of the thymus. The combined negative effects of NOR on clinical assessments (forelimb atrophy and rotarod performance) suggest a detrimental effect on muscle trophism and motor function. These findings reinforce the evidence that the type of progestin used for contraception, endometriosis or replacement therapy, may condition the outcome of preclinical and clinical studies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Gisella Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Agustina Lara
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Laura Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Depto. de Bioquímica Humana, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Depto. de Bioquímica Humana, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Depto. de Ciencias Fisiológicas, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| |
Collapse
|
18
|
Theis V, Theiss C. Progesterone Effects in the Nervous System. Anat Rec (Hoboken) 2019; 302:1276-1286. [PMID: 30951258 DOI: 10.1002/ar.24121] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022]
Abstract
The sex hormone progesterone is mainly known as a key factor in establishing and maintaining pregnancy. In addition, progesterone has been shown to induce morphological changes in the central and peripheral nervous system by increasing dendrito-, spino-, and synaptogenesis in Purkinje cells (Wessel et al.: Cell Mol Life Sci (2014a) 1723-1740) and increasing axonal outgrowth in dorsal root ganglia (Olbrich et al.: Endocrinology (2013) 3784-3795). These effects mediated mainly by the classical progesterone receptors (PRs) A and B seem to be limited to young neurons. It may be assumed that microRNAs (miRNAs), which are potent regulators of nervous system maturation and degeneration, are also involved in the regulation of progesterone-mediated neuronal plasticity by altering the expression patterns of the corresponding PR A/B receptors (Theis and Theiss: Neural Regen Res (2015) 547-549, Pieczora et al.: Cerebellum (2017) 376-387). This review critically discusses current data on the neuroprotective effect of progesterone and its corresponding receptors in the nervous system, with possible regulatory processes by miRNAs. Preclinical studies on stroke and traumatic brain injury revealed neuroprotective and neuroregenerative effects of progesterone in the treatment of severe neurological diseases in animal models, but have so far failed in humans. In this context, the identification of specific miRNAs that regulate the expression of progesterone and PR could help to exploit the neuroprotective potential of progesterone for the treatment of various neurological disorders. Anat Rec, 302:1276-1286, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
19
|
Progesterone relates to enhanced incisional acute pain and pinprick hyperalgesia in the luteal phase of female volunteers. Pain 2019; 160:1781-1793. [DOI: 10.1097/j.pain.0000000000001561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Arambula SE, Reinl EL, El Demerdash N, McCarthy MM, Robertson CL. Sex differences in pediatric traumatic brain injury. Exp Neurol 2019; 317:168-179. [PMID: 30831070 DOI: 10.1016/j.expneurol.2019.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
Abstract
The response of the developing brain to traumatic injury is different from the response of the mature, adult brain. There are critical developmental trajectories in the young brain, whereby injury can lead to long term functional abnormalities. Emerging preclinical and clinical literature supports the presence of significant sex differences in both the response to and the recovery from pediatric traumatic brain injury (TBI). These sex differences are seen at all pediatric ages, including neonates/infants, pre-pubertal children, and adolescents. As importantly, the response to neuroprotective therapies or treatments can differ between male and females subjects. These sex differences can result from several biologic origins, and may manifest differently during the various phases of brain and body development. Recognizing and understanding these potential sex differences is crucial, and should be considered in both preclinical and clinical studies of pediatric TBI.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin L Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
21
|
Progesterone Is More Effective Than Dexamethasone in Prolonging Overall Survival and Preserving Neurologic Function in Experimental Animals with Orthotopic Glioblastoma Allografts. World Neurosurg 2019; 125:e497-e507. [PMID: 30710720 DOI: 10.1016/j.wneu.2019.01.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Dexamethasone (DEXA) has been widely used in the management of peritumoral brain edema. DEXA, however, has many systemic side effects and can interact negatively with glioma therapy. Progesterone (PROG), however, is a well-tolerated and readily accessible anti-inflammatory and antiedema agent, with potent neuroprotective properties. We investigated whether PROG could serve as a viable alternative to DEXA in the management of peritumoral brain edema. METHODS We used an orthotopic C6 glioblastoma model with male Sprague-Dawley rats. Tumor grafts were allowed to grow for 14 days before drug treatment with DEXA 1 mg/kg, PROG 10 mg/kg, or PROG 20 mg/kg for 5 consecutive days. The overall animal survival and neurologic function were evaluated. Mechanistic studies on blood-brain barrier permeability and angiogenic responses were performed on the ex vivo tumor grafts. RESULTS We found that all drug treatments prolonged overall survival to different extents. PROG 10 mg led to significantly longer survival and better preservation of neurologic function and body weight. The blood-brain barrier permeability was better preserved with PROG 10 mg than with DEXA, possibly through downregulation of matrix metalloproteinase-9 and aquaporin-4 expression. Antiangiogenic responses were also observed in the PROG group. CONCLUSIONS The present proof-of-concept pilot study has provided novel information on the use of PROG as a corticosteroid-sparing agent in brain tumor management. Further translational and clinical studies are warranted.
Collapse
|
22
|
Zhu X, Fréchou M, Schumacher M, Guennoun R. Cerebroprotection by progesterone following ischemic stroke: Multiple effects and role of the neural progesterone receptors. J Steroid Biochem Mol Biol 2019; 185:90-102. [PMID: 30031789 DOI: 10.1016/j.jsbmb.2018.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
Treatment with progesterone limits brain damage after stroke. However, the cellular bases of the cerebroprotective effects of progesterone are not well documented. The aims of this study were to determine neural cells and functions that are affected by progesterone treatment and the role of neural progesterone receptors (PR) after stroke. Adult male PRNesCre mice, selectively lacking PR in the central nervous system, and their control PRloxP/loxP littermates were subjected to transient ischemia by middle cerebral artery occlusion (MCAO) for 30 min. Mice received either progesterone (8 mg/kg) or vehicle at 1-, 6- and 24- hrs post-MCAO and outcomes were analyzed at 48 h post-MCAO. In PRloxP/loxP mice, progesterone exerted multiple effects on different neural cell types, improved motor functional outcomes and reduced total infarct volumes. In the peri-infarct, progesterone increased the density of neurons (NeuN+ cells), of cells of the oligodendroglial lineage (Olig2+ cells) and of oligodendrocyte progenitors (OP, NG2+ cells). Progesterone decreased the density of activated astrocytes (GFAP+ cells) and reactive microglia (Iba1+ cells) coexpressing the mannose receptor type 1 CD206 marker. Progesterone also reduced the expression of aquaporin 4 (AQP4), the water channel involved in both edema formation and resorption. The beneficial effects of progesterone were not observed in PRNesCre mice. Our findings show that progesterone treatment exerts beneficial effects on neurons, oligodendroglial cells and neuroinflammatory responses via PR. These findings demonstrate that progesterone is a pleiotropic cerebroprotective agent and that neural PR represent a therapeutic target for stroke cerebroprotection.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| |
Collapse
|
23
|
Chen S, Kumar N, Mao Z, Sitruk-Ware R, Brinton RD. Therapeutic progestin segesterone acetate promotes neurogenesis: implications for sustaining regeneration in female brain. Menopause 2018; 25:1138-1151. [PMID: 29846284 PMCID: PMC7731586 DOI: 10.1097/gme.0000000000001135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Neurogenesis is the principal regenerative mechanism to sustain the plasticity potential in adult brains. Decreased neurogenesis parallels the cognition decline with aging, and has been suggested as a common hallmark in the progression of many neurodegeneration diseases. We previously reported that acute exposure to segesterone acetate (ST-1435; Nestorone), alone or in combination with 17β-estradiol (E2), increased human neural stem cells proliferation and survival both in vitro and in vivo. The present study expanded our previous findings to investigate the more clinical related chronic exposure in combination with E2 on the regenerative capacity of adult brain. METHODS To mimic the chronic contraception exposure in women, 3-month old female mice (n = 110) were treated with ST-1435, with or without co-administration of E2, for 4 weeks. Neural cell proliferation and survival, and oligodendrocyte generation were assessed. The involvement of insulin-like growth factor 1 signaling was studied. RESULTS Our results demonstrated that chronic ST-1435 and E2 alone or in combination increased neurogenesis by a comparable magnitude, with minimum to no antagonistic or additive effects between ST-1435 and E2. In addition, chronic exposure of ST-1435 or ST-1435 + E2 stimulated oligodendrocyte generation, indicating potential elevated myelination. Insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) were also up-regulated after chronic ST-1435 and E2 exposure, suggesting the involvement of IGF-1 signaling as the potential underlined regulatory pathway transducing ST-1435 effect. CONCLUSION These findings provide preclinical evidence and mechanistic insights for the development of ST-1435 as a neuroregenerative therapy to promote intrinsic regenerative capacity in female brains against aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Narendar Kumar
- Center for Biomedical Research, Population Council,, New York, NY, USA
| | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | | | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
24
|
Sayeed I, Wali B, Guthrie DB, Saindane MT, Natchus MG, Liotta DC, Stein DG. Development of a novel progesterone analog in the treatment of traumatic brain injury. Neuropharmacology 2018; 145:292-298. [PMID: 30222982 DOI: 10.1016/j.neuropharm.2018.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/27/2022]
Abstract
Although systemic progesterone (PROG) treatment has been shown to be neuroprotective by many laboratories and in multiple animal models of brain injury including traumatic brain injury (TBI), PROG's poor aqueous solubility limits its potential for use as a therapeutic agent. The problem of solubility presents challenges for an acute intervention for neural injury, when getting a neuroprotectant to the brain quickly is crucial. Native PROG (nPROG) is hydrophobic and does not readily dissolve in an aqueous-based medium, so this makes it harder to give under emergency field conditions. An agent with properties similar to those of PROG but easier to store, transport, formulate, and administer early in emergency trauma situations could lead to better and more consistent clinical outcomes following TBI. At the same time, the engineering of a new molecule designed to treat a complex systemic injury must anticipate a range of translational issues including solubility and bioavailability. Here we describe the development of EIDD-1723, a novel, highly stable PROG analog with >104-fold higher aqueous solubility than that of nPROG. We think that, with further testing, EIDD-1723 could become an attractive candidate use as a field-ready treatment for TBI patients. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Iqbal Sayeed
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA
| | - Bushra Wali
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA
| | - David B Guthrie
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Manohar T Saindane
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Michael G Natchus
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Dennis C Liotta
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Donald G Stein
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA.
| |
Collapse
|
25
|
Guennoun R, Fréchou M, Gaignard P, Liere P, Slama A, Schumacher M, Denier C, Mattern C. Intranasal administration of progesterone: A potential efficient route of delivery for cerebroprotection after acute brain injuries. Neuropharmacology 2018; 145:283-291. [PMID: 29885423 DOI: 10.1016/j.neuropharm.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/17/2023]
Abstract
Progesterone has been shown to be cerebroprotective in different experimental models of brain injuries and neurodegenerative diseases. The preclinical data provided great hope for its use in humans. The failure of Phase 3 clinical trials to demonstrate the cerebroprotective efficiency of progesterone in traumatic brain injury (TBI) patients emphasizes that different aspects of the design of both experimental and clinical studies should be reviewed and refined. One important aspect to consider is to test different routes of delivery of therapeutic agents. Several studies have shown that the intranasal delivery of drugs could be used in different experimental models of central nervous system diseases. In this review, we will summarize the pharmacokinetic characteristics and practical advantages of intranasal delivery of progesterone. A special emphasis will be placed on describing and discussing our recent findings showing that intranasal delivery of progesterone after transient focal cerebral ischemia: 1) improved motor functions; 2) reduced infarct volume, neuronal loss, blood brain barrier disruption; and 3) reduced brain mitochondrial dysfunctions. Our data suggest that intranasal delivery of progesterone is a potential efficient, safe and non-stressful mode of administration that warrants evaluation for cerebroprotection in patients with brain injuries. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Rachida Guennoun
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| | - Magalie Fréchou
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Pauline Gaignard
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France; Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Christian Denier
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France; Department of Neurology and Stroke Center, Bicêtre Hospital, 94276, Kremlin-Bicêtre, France
| | - Claudia Mattern
- M et P Pharma AG, Schynweg 7, P.O. Box 138, 6376, Emmetten, Switzerland; Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| |
Collapse
|
26
|
Affiliation(s)
- P. Piette
- Consultant at Besins Healthcare Global, Department of R & D, Scientific & Medical Affairs, Brussels, Belgium
| |
Collapse
|
27
|
Stein DG, Sayeed I. Repurposing and repositioning neurosteroids in the treatment of traumatic brain injury: A report from the trenches. Neuropharmacology 2018; 147:66-73. [PMID: 29630902 DOI: 10.1016/j.neuropharm.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023]
Abstract
The field of neuroprotection after brain injuries has been littered with failed clinical trials. Finding a safe and effective treatment for acute traumatic brain injury remains a serious unmet medical need. Repurposing drugs that have been in use for other disorders is receiving increasing attention as a strategy to move candidate drugs more quickly to trial while reducing the very high cost of new drug development. This paper describes our own serendipitous discovery of progesterone's neuroprotective potential, and the strategies we are using in repurposing and developing this hormone for use in brain injuries-applications very different from its classical uses in treating disorders of the reproductive system. We have been screening and testing a novel analog that maintains progesterone's therapeutic properties while overcoming its physiochemical challenges, and testing progesterone in combination treatment with another pleiotropic hormone, vitamin D. Finally, our paper, in the context of the problems and pitfalls we have encountered, surveys some of the factors we found to be critical in the clinical translation of repurposed drugs. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Donald G Stein
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA.
| | - Iqbal Sayeed
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA.
| |
Collapse
|
28
|
Weger M, Diotel N, Weger BD, Beil T, Zaucker A, Eachus HL, Oakes JA, do Rego JL, Storbeck KH, Gut P, Strähle U, Rastegar S, Müller F, Krone N. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish. J Neuroendocrinol 2018; 30:e12586. [PMID: 29486070 DOI: 10.1111/jne.12586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 01/23/2023]
Abstract
The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterised. Because zebrafish are increasingly employed in endocrine and stress research, a better characterisation of steroidogenic pathways is required to target specific steps in the biosynthetic pathways. In the present study, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing ferredoxin co-factors (fdx1, fdx1b), during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, which is the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative reverse transcriptase-PCR and whole-mount in situ hybridisation in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid tetrahydrodeoxycorticosterone in the adult zebrafish brain from radiolabelled pregnenolone. Taken together, the present study comprises a comprehensive characterisation of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesising in the brain of adult zebrafish facilitated by enzymes involved in glucocorticoid biosynthesis. Our study provides a valuable source for establishing the zebrafish as a translational model with respect to understanding the roles of the genes for glucocorticoid biosynthesis and fdx co-factors during embryonic development and stress, as well as in brain homeostasis and function.
Collapse
Affiliation(s)
- M Weger
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Diotel
- INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis de La Réunion, France
| | - B D Weger
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - T Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - A Zaucker
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - H L Eachus
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J A Oakes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J L do Rego
- Plateforme d'Analyse Comportementale (SCAC), Institut de Recherche et d'Innovation Biomédicale, Inserm U1234, Université de Rouen, Rouen Cedex, France
| | - K-H Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - P Gut
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - U Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - S Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - F Müller
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Krone
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| |
Collapse
|
29
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
30
|
Baulieu EE. Steroids and Brain, a Rising Bio-Medical Domain: a Perspective. Front Endocrinol (Lausanne) 2018; 9:316. [PMID: 29963010 PMCID: PMC6013745 DOI: 10.3389/fendo.2018.00316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/25/2018] [Indexed: 11/21/2022] Open
Abstract
Some newly described steroid-related compounds, also found in the rest of the body, are formed and active in the central nervous system, particularly in the brain. Some are of pharmacological and physiopathological interest. We specifically report on two compounds, "MAP4343," a new neurosteroid very efficient antidepressant, and "FKBP52," a protein component of hetero-oligomeric steroid receptors that we found involved in cerebral function, including in Alzheimer's disease.
Collapse
|
31
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
32
|
Effects of Female Sex Steroids Administration on Pathophysiologic Mechanisms in Traumatic Brain Injury. Transl Stroke Res 2017; 9:393-416. [PMID: 29151229 DOI: 10.1007/s12975-017-0588-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Secondary brain damage following initial brain damage in traumatic brain injury (TBI) is a major cause of adverse outcomes. There are many gaps in TBI research and a lack of therapy to limit debilitating outcomes in TBI or enhance the neurogenesis, despite pre-clinical and clinical research performed in TBI. Females show harmful outcomes against brain damage including TBI less than males, independent of different TBI occurrence. A significant reduction in secondary brain damage and improvement in neurologic outcome post-TBI has been reported following the use of progesterone and estrogen in many experimental studies. Although useful features of sex steroids including progesterone have been identified in TBI clinical trials I and II, clinical trials III have been unsuccessful. This review article focuses on evidence of secondary injury mechanisms and neuroprotective effects of estrogen and progesterone in TBI. Understanding these mechanisms may enable researchers to achieve greater success in TBI clinical studies. It seems that the design of clinical studies should be revised due to translation loss of animal studies to clinical studies. The heterogeneous and complex nature of TBI, the endogenous levels of sex hormones at the time of taking these hormones, the therapeutic window of the drug, the dosage of the drug, the selection of appropriate targets in evaluation, the determination of responsive population, gender and age based on animal studies should be considered in the design of TBI human studies in future.
Collapse
|
33
|
Zhu X, Fréchou M, Liere P, Zhang S, Pianos A, Fernandez N, Denier C, Mattern C, Schumacher M, Guennoun R. A Role of Endogenous Progesterone in Stroke Cerebroprotection Revealed by the Neural-Specific Deletion of Its Intracellular Receptors. J Neurosci 2017; 37:10998-11020. [PMID: 28986464 PMCID: PMC6596486 DOI: 10.1523/jneurosci.3874-16.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 11/21/2022] Open
Abstract
Treatment with progesterone protects the male and female brain against damage after middle cerebral artery occlusion (MCAO). However, in both sexes, the brain contains significant amounts of endogenous progesterone. It is not known whether endogenously produced progesterone enhances the resistance of the brain to ischemic insult. Here, we used steroid profiling by gas chromatography-tandem mass spectrometry (GC-MS/MS) for exploring adaptive and sex-specific changes in brain levels of progesterone and its metabolites after MCAO. We show that, in the male mouse brain, progesterone is mainly metabolized via 5α-reduction leading to 5α-dihydroprogesterone (5α-DHP), also a progesterone receptor (PR) agonist ligand in neural cells, then to 3α,5α-tetrahydroprogesterone (3α,5α-THP). In the female mouse brain, levels of 5α-DHP and 3α,5α-THP are lower and levels of 20α-DHP are higher than in males. After MCAO, levels of progesterone and 5α-DHP are upregulated rapidly to pregnancy-like levels in the male but not in the female brain. To assess whether endogenous progesterone and 5α-DHP contribute to the resistance of neural cells to ischemic damage, we inactivated PR selectively in the CNS. Deletion of PR in the brain reduced its resistance to MCAO, resulting in increased infarct volumes and neurological deficits in both sexes. Importantly, endogenous PR ligands continue to protect the brain of aging mice. These results uncover the unexpected importance of endogenous progesterone and its metabolites in cerebroprotection. They also reveal that the female reproductive hormone progesterone is an endogenous cerebroprotective neurosteroid in both sexes.SIGNIFICANCE STATEMENT The brain responds to injury with protective signaling and has a remarkable capacity to protect itself. We show here that, in response to ischemic stroke, levels of progesterone and its neuroactive metabolite 5α-dihydroprogesterone are upregulated rapidly in the male mouse brain but not in the female brain. An important role of endogenous progesterone in cerebroprotection was demonstrated by the conditional inactivation of its receptor in neural cells. These results show the importance of endogenous progesterone, its metabolites, and neural progesterone receptors in acute cerebroprotection after stroke. This new concept could be exploited therapeutically by taking into account the progesterone status of patients and by supplementing and reinforcing endogenous progesterone signaling for attaining its full cerebroprotective potential.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Shaodong Zhang
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Antoine Pianos
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Neïké Fernandez
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Christian Denier
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
- Department of Neurology and Stroke Center, Bicêtre Hospital, 94276 Kremlin-Bicêtre, France, and
| | | | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France,
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France,
| |
Collapse
|
34
|
Meyer M, Garay LI, Kruse MS, Lara A, Gargiulo-Monachelli G, Schumacher M, Guennoun R, Coirini H, De Nicola AF, Gonzalez Deniselle MC. Protective effects of the neurosteroid allopregnanolone in a mouse model of spontaneous motoneuron degeneration. J Steroid Biochem Mol Biol 2017; 174:201-216. [PMID: 28951257 DOI: 10.1016/j.jsbmb.2017.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 01/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by progressive death of motoneurons. The Wobbler (WR) mouse is a preclinical model sharing neuropathological similarities with human ALS. We have shown that progesterone (PROG) prevents the progression of motoneuron degeneration. We now studied if allopregnanolone (ALLO), a reduced metabolite of PROG endowed with gabaergic activity, also prevents WR neuropathology. Sixty-day old WRs remained untreated or received two steroid treatment regimens in order to evaluate the response of several parameters during early or prolonged steroid administration. ALLO was administered s.c. daily for 5days (4mg/kg) or every other day for 32days (3, 3mg/kg), while another group of WRs received a 20mg PROG pellet s.c. for 18 or 60days. ALLO administration to WRs increased ALLO serum levels without changing PROG and 5 alpha dihydroprogesterone (5α-DHP), whereas PROG treatment increased PROG, 5α-DHP and ALLO. Untreated WRs showed higher basal levels of serum 5α-DHP than controls. In the cervical spinal cord we studied markers of oxidative stress or associated to trophic responses. These included nitric oxide synthase (NOS) activity, motoneuron vacuolation, MnSOD immunoreactivity (IR), brain derived neurotrophic factor (BDNF) and TrkB mRNAs, p75 neurotrophin receptor (p75NTR) and, cell survival or death signals such as pAKT and the stress activated kinase JNK. Untreated WRs showed a reduction of MnSOD-IR and BDNF/TrkB mRNAs, associated to high p75NTR in motoneurons, neuronal and glial NOS hyperactivity and neuronal vacuolation. Also, low pAKT, mainly in young WRs, and a high pJNK in the old stage characterized WŔs spinal cord. Except for MnSOD and BDNF, these alterations were prevented by an acute ALLO treatment, while short-term PROG elevated MnSOD. Moreover, after chronic administration both steroids enhanced MnSOD-IR and BDNF mRNA, while attenuated pJNK and NOS in glial cells. Long-term PROG also increased pAKT and reduced neuronal NOS, parameters not modulated by chronic ALLO. Clinically, both steroids improved muscle performance. Thus, ALLO was able to reduce neuropathology in this model. Since high oxidative stress activates p75NTR and pJNK in neurodegeneration, steroid reduction of these molecules may provide adequate neuroprotection. These data yield the first evidence that ALLO, a gabaergic neuroactive steroid, brings neuroprotection in a model of motoneuron degeneration.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - María Sol Kruse
- Laboratory of Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Agustina Lara
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Gisella Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Michael Schumacher
- U1195 INSERM and University Paris Sud: "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules", 94276, Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 INSERM and University Paris Sud: "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules", 94276, Kremlin-Bicêtre, France
| | - Hector Coirini
- Laboratory of Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Ciencias Fisiológicas, Facultad de Medicina, Universidad de, Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Raeissadat SA, Shahraeeni S, Sedighipour L, Vahdatpour B. Randomized controlled trial of local progesterone vs corticosteroid injection for carpal tunnel syndrome. Acta Neurol Scand 2017; 136:365-371. [PMID: 28229457 DOI: 10.1111/ane.12739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES A number of studies have demonstrated the neuroprotective effects of progesterone and its influence on the recovery after neural injury. Few studies investigated the efficacy of local progesterone in carpal tunnel syndrome. The objective of this study was to compare the long-term effects of progesterone vs corticosteroid local injections in patients with mild and moderate carpal tunnel syndrome. METHODS In this randomized clinical trial, 78 patients with carpal tunnel syndrome were assigned to two groups. Patients were treated with a single local injection of triamcinolone acetonide in one group and single local injection of hydroxy progesterone in the other group. Variables including pain (based on visual analogue scale), symptom severity, and functional status (based on Bostone/Levine symptom severity and functional status scale) and nerve conduction study were evaluated before and 6 months after the treatments. RESULTS All outcome measures including pain and electrophysiologic findings, improved in both groups and there were no meaningful differences between two groups regarding mentioned variables except for functional outcome, which was significantly better in progesterone compared with corticosteroid group at 6-month follow-up (P=.04). CONCLUSIONS The efficacy of progesterone local injection in mild and moderate CTS is equal and somehow superior to corticosteroid injection for relieving symptoms and improving functional and electrophysiologic findings at long-term follow-up.
Collapse
Affiliation(s)
- S. A. Raeissadat
- Physical Medicine and Rehabilitation Research Center; Clinical research development center of Shahid Modarres hospital; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - S. Shahraeeni
- Physical Medicine and Rehabilitation Research Center; Clinical research development center of Shahid Modarres hospital; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - L. Sedighipour
- Physical Medicine and Rehabilitation Research Center; Clinical research development center of Shahid Modarres hospital; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - B. Vahdatpour
- Department of Physical Medicine; Alzahra Hospital; Isfahan Iran
| |
Collapse
|
36
|
Cui X, Gooch H, Petty A, McGrath JJ, Eyles D. Vitamin D and the brain: Genomic and non-genomic actions. Mol Cell Endocrinol 2017; 453:131-143. [PMID: 28579120 DOI: 10.1016/j.mce.2017.05.035] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022]
Abstract
1,25(OH)2D3 (vitamin D) is well-recognized as a neurosteroid that modulates multiple brain functions. A growing body of evidence indicates that vitamin D plays a pivotal role in brain development, neurotransmission, neuroprotection and immunomodulation. However, the precise molecular mechanisms by which vitamin D exerts these functions in the brain are still unclear. Vitamin D signalling occurs via the vitamin D receptor (VDR), a zinc-finger protein in the nuclear receptor superfamily. Like other nuclear steroids, vitamin D has both genomic and non-genomic actions. The transcriptional activity of vitamin D occurs via the nuclear VDR. Its faster, non-genomic actions can occur when the VDR is distributed outside the nucleus. The VDR is present in the developing and adult brain where it mediates the effects of vitamin D on brain development and function. The purpose of this review is to summarise the in vitro and in vivo work that has been conducted to characterise the genomic and non-genomic actions of vitamin D in the brain. Additionally we link these processes to functional neurochemical and behavioural outcomes. Elucidation of the precise molecular mechanisms underpinning vitamin D signalling in the brain may prove useful in understanding the role this steroid plays in brain ontogeny and function.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - Helen Gooch
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - Alice Petty
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia
| | - John J McGrath
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia; Queensland Centre for Mental Health Research, Wacol, Qld 4076, Australia; National Centre for Register-based Research, Aarhus BSS, Aarhus University, 8000 Aarhus C, Denmark
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Qld 4072, Australia; Queensland Centre for Mental Health Research, Wacol, Qld 4076, Australia.
| |
Collapse
|
37
|
Preclinical Studies and Translational Applications of Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5135429. [PMID: 28698874 PMCID: PMC5494071 DOI: 10.1155/2017/5135429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/16/2017] [Accepted: 05/02/2017] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) which refers to bleeding in the brain is a very deleterious condition with high mortality and disability rate. Surgery or conservative therapy remains the treatment option. Various studies have divided the disease process of ICH into primary and secondary injury, for which knowledge into these processes has yielded many preclinical and clinical treatment options. The aim of this review is to highlight some of the new experimental drugs as well as other treatment options like stem cell therapy, rehabilitation, and nanomedicine and mention some translational clinical applications that have been done with these treatment options.
Collapse
|
38
|
Politis C, Kluyskens A, Dormaar T. Association of Midfacial Fractures with Ophthalmic Injury. Craniomaxillofac Trauma Reconstr 2017; 10:99-105. [PMID: 28523083 DOI: 10.1055/s-0037-1599228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022] Open
Abstract
The aim of this study is to evaluate the incidence of ophthalmic complications following midfacial fractures and investigate its relation to surgical or nonsurgical treatment. This article is a retrospective study, describing the spectrum and incidence of ophthalmic injury in 106 patients presenting with midfacial fractures at the Department of Oral and Maxillofacial Surgery of the University Hospitals Leuven over a period of 16 months (January 2013 to April 2014). The mean age of the patients was 45.6 years with a gender distribution of 68 men and 38 women. The main cause of trauma was road traffic accidents. Forty-one patients suffered an ophthalmic injury following the fracture. Twelve of them had a persistent ophthalmic problem. Ophthalmic examination is necessary during the initial management. The time window for preservation of sight is small and treatment should be started immediately. Development of an emergency trauma scale that includes fractures, symptoms of visual impairment, and patient history is recommended and should stimulate a multidisciplinary approach of complex cases.
Collapse
Affiliation(s)
- Constantinus Politis
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, Leuven University Hospitals, Leuven, Belgium
| | - Alexandra Kluyskens
- Department of Oral and Maxillofacial Surgery, Leuven University Hospitals, Leuven, Belgium
| | - Titiaan Dormaar
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, Leuven University Hospitals, Leuven, Belgium
| |
Collapse
|
39
|
Brotfain E, Gruenbaum SE, Boyko M, Kutz R, Zlotnik A, Klein M. Neuroprotection by Estrogen and Progesterone in Traumatic Brain Injury and Spinal Cord Injury. Curr Neuropharmacol 2017; 14:641-53. [PMID: 26955967 PMCID: PMC4981744 DOI: 10.2174/1570159x14666160309123554] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/31/2015] [Accepted: 02/25/2016] [Indexed: 12/25/2022] Open
Abstract
In recent years there has been a growing body of clinical and laboratory evidence demonstrating the neuroprotective effects of estrogen and progesterone after traumatic brain injury (TBI) and spinal cord injury (SCI). In humans, women have been shown to have a lower incidence of morbidity and mortality after TBI compared with age-matched men. Similarly, numerous laboratory studies have demonstrated that estrogen and progesterone administration is associated with a mortality reduction, improvement in neurological outcomes, and a reduction in neuronal apoptosis after TBI and SCI. Here, we review the evidence that supports hormone-related neuroprotection and discuss possible underlying mechanisms. Estrogen and progesterone-mediated neuroprotection are thought to be related to their effects on hormone receptors, signaling systems, direct antioxidant effects, effects on astrocytes and microglia, modulation of the inflammatory response, effects on cerebral blood flow and metabolism, and effects on mediating glutamate excitotoxicity. Future laboratory research is needed to better determine the mechanisms underlying the hormones' neuroprotective effects, which will allow for more clinical studies. Furthermore, large randomized clinical control trials are needed to better assess their role in human neurodegenerative conditions.
Collapse
Affiliation(s)
- Evgeni Brotfain
- Department of Anesthesiology and Critical Care, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
40
|
Howard RB, Sayeed I, Stein DG. Suboptimal Dosing Parameters as Possible Factors in the Negative Phase III Clinical Trials of Progesterone for Traumatic Brain Injury. J Neurotrauma 2016; 34:1915-1918. [PMID: 26370183 PMCID: PMC5455214 DOI: 10.1089/neu.2015.4179] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To date, outcomes for all Phase III clinical trials for traumatic brain injury (TBI) have been negative. The recent disappointing results of the Progesterone for the Treatment of Traumatic Brain Injury (ProTECT) and Study of a Neuroprotective Agent, Progesterone, in Severe Traumatic Brain Injury (SyNAPSe) Phase III trials for progesterone in TBI have triggered considerable speculation about the reasons for the negative outcomes of these two studies in particular and for those of all previous Phase III TBI clinical trials in general. Among the factors proposed to explain the ProTECT III and SyNAPSe results, the investigators themselves and others have cited: 1) the pathophysiological complexity of TBI itself; 2) issues with the quality and clinical relevance of the preclinical animal models; 3) insufficiently sensitive clinical endpoints; and 4) inappropriate clinical trial designs and strategies. This paper highlights three critical trial design factors that may have contributed substantially to the negative outcomes: 1) suboptimal doses and treatment durations in the Phase II studies; 2) the strategic decision not to perform Phase IIB studies to optimize these variables before initiating Phase III; and 3) the lack of incorporation of the preclinical and Chinese Phase II results, as well as allometric scaling principles, into the Phase III designs. Given these circumstances and the exceptional pleiotropic potential of progesterone as a TBI (and stroke) therapeutic, we are advocating a return to Phase IIB testing. We advocate the incorporation of dose and schedule optimization focused on lower doses and a longer duration of treatment, combined with the addressing of other potential trial design problems raised by the authors in the recently published trial results.
Collapse
Affiliation(s)
- Randy B Howard
- 1 Pharmacology Consultant, Drug Discovery and Development, Emory University , Atlanta, Georgia
| | - Iqbal Sayeed
- 2 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| | - Donald G Stein
- 2 Department of Emergency Medicine, Emory University , Atlanta, Georgia
| |
Collapse
|
41
|
Gonzalez Deniselle MC, Liere P, Pianos A, Meyer M, Aprahamian F, Cambourg A, Di Giorgio NP, Schumacher M, De Nicola AF, Guennoun R. Steroid Profiling in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Endocrinology 2016; 157:4446-4460. [PMID: 27571131 DOI: 10.1210/en.2016-1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Wobbler mouse is an animal model for human motoneuron diseases, especially amyotrophic lateral sclerosis (ALS), used in the investigation of both pathology and therapeutic treatment. ALS is a fatal neurodegenerative disease, characterized by the selective and progressive death of motoneurons, leading to progressive paralysis. Previous limited studies have reported steroidal hormone dysregulation in Wobbler mouse and in ALS patients, suggesting endocrine dysfunctions which may be involved in the pathogenesis of the disease. In this study, we established a steroid profiling in brain, spinal cord, plasma, adrenal glands, and testes in 2-month-old male Wobbler mice and their littermates by gas chromatography coupled to mass spectrometry. Our results show in Wobbler mice the following: 1) a marked up-regulation of corticosterone levels in adrenal glands, plasma, spinal cord regions (cervical, thoracic, lumbar) and brain; 2) a strong decrease in T levels in the testis, plasma, spinal cord, and brain; and 3) increased levels of progesterone and especially of its reduced metabolites 5α-dihydroprogesterone, allopregnanolone, and 20α-dihydroprogesterone in the brain, spinal cord, and adrenal glands. Furthermore, Wobbler mice showed a hypothalamic-pituitary-gonadal hypoactivity. Interestingly, plasma concentrations of corticosterone and T correlate well with their respective levels in cervical spinal cord in both control and Wobbler mice. T down-regulation is probably the consequence of adrenal hyperactivity, and the up-regulation of progesterone and its reduced metabolites may correspond to an endogenous protective mechanism in response to motoneuron degeneration. Our findings suggest that increased levels of corticosterone and decreased levels of T in plasma could be a signature of motoneuron degeneration.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Philippe Liere
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Antoine Pianos
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Maria Meyer
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Fanny Aprahamian
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Annie Cambourg
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Michael Schumacher
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Rachida Guennoun
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| |
Collapse
|
42
|
Zubeldia-Brenner L, Roselli CE, Recabarren SE, Gonzalez Deniselle MC, Lara HE. Developmental and Functional Effects of Steroid Hormones on the Neuroendocrine Axis and Spinal Cord. J Neuroendocrinol 2016; 28:10.1111/jne.12401. [PMID: 27262161 PMCID: PMC4956521 DOI: 10.1111/jne.12401] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022]
Abstract
This review highlights the principal effects of steroid hormones at central and peripheral levels in the neuroendocrine axis. The data discussed highlight the principal role of oestrogens and testosterone in hormonal programming in relation to sexual orientation, reproductive and metabolic programming, and the neuroendocrine mechanism involved in the development of polycystic ovary syndrome phenotype. Moreover, consistent with the wide range of processes in which steroid hormones take part, we discuss the protective effects of progesterone on neurodegenerative disease and the signalling mechanism involved in the genesis of oestrogen-induced pituitary prolactinomas.
Collapse
Affiliation(s)
- L Zubeldia-Brenner
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | - C E Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, Portland, OR, USA
| | - S E Recabarren
- Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepcion, Chillán, Chile
| | - M C Gonzalez Deniselle
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H E Lara
- Laboratory of Neurobiochemistry Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
43
|
Sordillo PP, Sordillo LA, Helson L. Bifunctional role of pro-inflammatory cytokines after traumatic brain injury. Brain Inj 2016; 30:1043-53. [DOI: 10.3109/02699052.2016.1163618] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Schumacher M, Denier C, Oudinet JP, Adams D, Guennoun R. Progesterone neuroprotection: The background of clinical trial failure. J Steroid Biochem Mol Biol 2016; 160:53-66. [PMID: 26598278 DOI: 10.1016/j.jsbmb.2015.11.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/08/2015] [Accepted: 11/12/2015] [Indexed: 12/12/2022]
Abstract
Since the first pioneering studies in the 1990s, a large number of experimental animal studies have demonstrated the neuroprotective efficacy of progesterone for brain disorders, including traumatic brain injury (TBI). In addition, this steroid has major assets: it easily crosses the blood-brain-barrier, rapidly diffuses throughout the brain and exerts multiple beneficial effects by acting on many molecular and cellular targets. Moreover, progesterone therapies are well tolerated. Notably, increased brain levels of progesterone are part of endogenous neuroprotective responses to injury. The hormone thus emerged as a particularly promising protective candidate for TBI and stroke patients. The positive outcomes of small Phase 2 trials aimed at testing the safety and potential protective efficacy of progesterone in TBI patients then provided support and guidance for two large, multicenter, randomized and placebo-controlled Phase 3 trials, with more than 2000 TBI patients enrolled. The negative outcomes of both trials, named ProTECT III and SyNAPSE, came as a big disappointment. If these trials were successful, progesterone would have become the first efficient neuroprotective drug for brain-injured patients. Thus, progesterone has joined the numerous neuroprotective candidates that have failed in clinical trials. The aim of this review is a reappraisal of the preclinical animal studies, which provided the proof of concept for the clinical trials, and we critically examine the design of the clinical studies. We made efforts to present a balanced view of the strengths and limitations of the translational studies and of some serious issues with the clinical trials. We place particular emphasis on the translational value of animal studies and the relevance of TBI biomarkers. The probability of failure of ProTECT III and SyNAPSE was very high, and we present them within the broader context of other unsuccessful trials.
Collapse
Affiliation(s)
- Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Christian Denier
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; Department of Neurology, CHU Bicêtre, 78 rue du Général Leclerc, 94275 Kremlin-Bicêtre, France
| | - Jean-Paul Oudinet
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - David Adams
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; Department of Neurology, CHU Bicêtre, 78 rue du Général Leclerc, 94275 Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| |
Collapse
|
45
|
Siddiqui AN, Siddiqui N, Khan RA, Kalam A, Jabir NR, Kamal MA, Firoz CK, Tabrez S. Neuroprotective Role of Steroidal Sex Hormones: An Overview. CNS Neurosci Ther 2016; 22:342-50. [PMID: 27012165 PMCID: PMC6492877 DOI: 10.1111/cns.12538] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
Progesterone, estrogens, and testosterone are the well-known steroidal sex hormones, which have been reported to have "nonreproductive "effects in the brain, specifically in the neuroprotection and neurotrophy. In the last one decade, there has been a surge in the research on the role of these hormones in neuroprotection and their positive impact on different brain injuries. The said interest has been sparked by a desire to understand the action and mechanisms of these steroidal sex hormones throughout the body. The aim of this article was to highlight the potential outcome of the steroidal hormones, viz. progesterone, estrogens, and testosterone in terms of their role in neuroprotection and other brain injuries. Their possible mechanism of action at both genomic and nongenomic level will be also discussed. As far as our knowledge goes, we are for the first time reporting neuroprotective effect and possible mechanism of action of these hormones in a single article.
Collapse
Affiliation(s)
- Ali Nasir Siddiqui
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Nahida Siddiqui
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Rashid Ali Khan
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Abul Kalam
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW, Australia
| | | | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
46
|
Aminmansour B, Asnaashari A, Rezvani M, Ghaffarpasand F, Amin Noorian SM, Saboori M, Abdollahzadeh P. Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J Spinal Cord Med 2016; 39:272-280. [PMID: 26832888 PMCID: PMC5073761 DOI: 10.1080/10790268.2015.1114224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Steroid hormones offer promising therapeutic perspectives during the acute phase of spinal cord injury (SCI) while the role of progesterone and vitamin D remain controversial. The aim of the current study was to investigate the effects of progesterone and vitamin D on functional outcome of patients with acute traumatic SCI. METHODS This was a randomized clinical trial including 64 adult patients with acute traumatic SCI admitted within 8 hours of injury. All the patients received methylprednisolone on admission according to standard protocol (30 mg/kg as bolus dose and 15 mg/kg each 3 hours up to 24 hours). Patients were randomly assigned to receive intramuscular injection of 0.5 mg/kg progesterone twice daily and 5µg/kg oral vitamin D3 twice daily up to 5 days (n = 32) or placebo (n = 32). Patients were visited 6 days, 3 and 6 months after injury and motor and sensory function was assessed according to American Spinal Injury Association (ASIA) score. RESULTS There was no significant difference between two study groups regarding age (P = 0.341), sex (P = 0.802) and therapy lag (P = 0.609). The motor powers and sensory function increased significantly after 6 months in both study groups. Those who received progesterone and vitamin D had significantly higher motor powers and sensory function after 6 months of therapy. Those who received the therapy within 4 hours of injury, had significantly higher motor powers and sensory function 6 months after treatment in progesterone and vitamin D group. Therapy lag was negatively associated with 6-month motor powers and sensory function in progesterone and vitamin D group. CONCLUSIONS Administration of progesterone and vitamin D in acute phase of traumatic SCI is associated with better functional recovery and outcome.
Collapse
Affiliation(s)
- Bahram Aminmansour
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Asnaashari
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Rezvani
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Masih Saboori
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Abdollahzadeh
- Department of Psychiatry, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
47
|
Coronel MF, Raggio MC, Adler NS, De Nicola AF, Labombarda F, González SL. Progesterone modulates pro-inflammatory cytokine expression profile after spinal cord injury: Implications for neuropathic pain. J Neuroimmunol 2016; 292:85-92. [DOI: 10.1016/j.jneuroim.2016.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/30/2022]
|
48
|
Schumacher M, Guennoun R, Mattern C, Oudinet JP, Labombarda F, De Nicola AF, Liere P. Analytical challenges for measuring steroid responses to stress, neurodegeneration and injury in the central nervous system. Steroids 2015; 103:42-57. [PMID: 26301525 DOI: 10.1016/j.steroids.2015.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Levels of steroids in the adult central nervous system (CNS) show marked changes in response to stress, degenerative disorders and injury. However, their analysis in complex matrices such as fatty brain and spinal cord tissues, and even in plasma, requires accurate and precise analytical methods. Radioimmunoassays (RIA) and enzyme-linked immunosorbent assays, even with prepurification steps, do not provide sufficient specificity, and they are at the origin of many inconsistent results in the literature. The analysis of steroids by mass spectrometric methods has become the gold standard for accurate and sensitive steroid analysis. However, these technologies involve multiple purification steps prone to errors, and they only provide accurate reference values when combined with careful sample workup. In addition, the interpretation of changes in CNS steroid levels is not an easy task because of their multiple sources: the endocrine glands and the local synthesis by neural cells. In the CNS, decreased steroid levels may reflect alterations of their biosynthesis, as observed in the case of chronic stress, post-traumatic stress disorders or depressive episodes. In such cases, return to normalization by administering exogenous hormones or by stimulating their endogenous production may have beneficial effects. On the other hand, increases in CNS steroids in response to acute stress, degenerative processes or injury may be part of endogenous protective or rescue programs, contributing to the resistance of neural cells to stress and insults. The aim of this review is to encourage a more critical reading of the literature reporting steroid measures, and to draw attention to the absolute need for well-validated methods. We discuss reported findings concerning changing steroid levels in the nervous system by insisting on methodological issues. An important message is that even recent mass spectrometric methods have their limits, and they only become reliable tools if combined with careful sample preparation.
Collapse
Affiliation(s)
| | | | | | | | - Florencia Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
49
|
Bahrami MH, Shahraeeni S, Raeissadat SA. Comparison between the effects of progesterone versus corticosteroid local injections in mild and moderate carpal tunnel syndrome: a randomized clinical trial. BMC Musculoskelet Disord 2015; 16:322. [PMID: 26502966 PMCID: PMC4623292 DOI: 10.1186/s12891-015-0752-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 10/04/2015] [Indexed: 11/22/2022] Open
Abstract
Background The objective of this study was to compare the short-term effects of progesterone and corticosteroid local injections in the treatment of female patients with carpal tunnel syndrome. Methods A randomized clinical trial was used for this study, 60 hands with mild and moderate Carpal Tunnel Syndrome categorized in two groups were used for this study. Patients were treated with a single local injection of triamcinolone acetonide in one group and single local injection of 17-alpha hydroxy progesterone in the other group. Variables such as pain (based on Visual Analogue Scale), symptom severity and functional status (based on Bostone/Levine symptom severity and functional status scale) and nerve conduction study were evaluated before and 10 weeks after the treatments. Results Ten weeks after treatment, pain severity and median nerve sensory and motor latencies decreased while patients’ functional status increased meaningfully in both groups. However, there were no meaningful differences between two groups regarding mentioned variables. Pain severity was milder and duration of post-injection pain was shorter in the corticosteroid group. The rates of patient satisfaction were also meaningfully higher in the corticosteroid group. Conclusions Both treatments were effective in the short-term management of mild and moderate disease, clinically and electrophysiologically. There were no significant differences in therapeutic effects between two groups. Trial registration Current controlled trials IRCT2013101313442N4
Collapse
Affiliation(s)
- Mohammad Hassan Bahrami
- Physical Medicine and Rehabilitation research center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.
| | - Shadi Shahraeeni
- Clinical research development center of Shahid Modarres hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Ahmad Raeissadat
- Clinical research development center of Shahid Modarres hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Allitt BJ, Johnstone VPA, Richards K, Yan EB, Rajan R. Progesterone Exacerbates Short-Term Effects of Traumatic Brain Injury on Supragranular Responses in Sensory Cortex and Over-Excites Infragranular Responses in the Long Term. J Neurotrauma 2015; 33:375-89. [PMID: 26258958 DOI: 10.1089/neu.2015.3946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Progesterone (P4) has been suggested as a neuroprotective agent for traumatic brain injury (TBI) because it ameliorates many post-TBI sequelae. We examined the effects of P4 treatment on the short-term (4 days post-TBI) and long-term (8 weeks post-TBI) aftermath on neuronal processing in the rodent sensory cortex of impact acceleration-induced diffuse TBI. We have previously reported that in sensory cortex, diffuse TBI induces a short-term hypoexcitation that is greatest in the supragranular layers and decreases with depth, but a long-term hyperexcitation that is exclusive to the supragranular layers. Now, adult male TBI-treated rats administered P4 showed, in the short term, even greater suppression in neural responses in supragranular layers but a reversal of the TBI-induced suppression in granular and infragranular layers. In long-term TBI there were only inconsistent effects of P4 on the TBI-induced hyperexcitation in supragranular responses but infragranular responses, which were not affected by TBI alone, were elevated by P4 treatment. Intriguingly, the effects in the injured brain were almost identical to P4 effects in the normal brain, as seen in sham control animals treated with P4: in the short term, P4 effects in the normal brain were identical to those exercised in the injured brain and in the long term, P4 effects in the normal brain were rather similar to what was seen in the TBI brain. Overall, these results provide no support for any protective effects of P4 treatment on neuronal encoding in diffuse TBI, and this was reflected in sensorimotor and other behavior tasks also tested here. Additionally, the effects suggest that mechanisms used for P4 effects in the normal brain are also intact in the injured brain.
Collapse
Affiliation(s)
- Benjamin J Allitt
- 1 Department of Physiology, Monash University , Clayton VIC, Australia
| | - Victoria P A Johnstone
- 1 Department of Physiology, Monash University , Clayton VIC, Australia .,2 Current address: School of Anatomy, Physiology & Human Biology, The University of Western Australia , Crawley WA, Australia
| | - Katrina Richards
- 1 Department of Physiology, Monash University , Clayton VIC, Australia
| | - Edwin B Yan
- 1 Department of Physiology, Monash University , Clayton VIC, Australia
| | - Ramesh Rajan
- 1 Department of Physiology, Monash University , Clayton VIC, Australia
| |
Collapse
|