1
|
Ye J, Shi R, Wu X, Fan H, Zhao Y, Hu X, Wang L, Bo X, Li D, Ge Y, Wang D, Xia B, Zhao Z, Xiao C, Zhao B, Wang Y, Liu X. Stevioside mitigates metabolic dysregulation in offspring induced by maternal high-fat diet: the role of gut microbiota-driven thermogenesis. Gut Microbes 2025; 17:2452241. [PMID: 39838262 DOI: 10.1080/19490976.2025.2452241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Maternal obesity poses a significant threat to the metabolic profiles of offspring. Microorganisms acquired from the mother early in life critically affect the host's metabolic functions. Natural non-nutritive sweeteners, particularly stevioside (STV), play a crucial role in reducing obesity and affecting gut microbiota composition. Based on this, we hypothesized that maternal STV supplementation could improve the health of mothers and offspring by altering their gut microbiota. Our study found that maternal STV supplementation reduced obesity during pregnancy, decreased abnormal lipid accumulation in offspring mice caused by maternal obesity, and modified the gut microbiota of both dams and offspring, notably increasing the abundance of Lactobacillus apodemi (L. apodemi). Co-housing and fecal microbiota transplant experiments confirmed that gut microbiota mediated the effects of STV on metabolic disorders. Furthermore, treatment with L. apodemi alone replicated the beneficial effects of STV, which were associated with increased thermogenesis. In summary, maternal STV supplementation could alleviate lipid metabolic disorders in offspring by enhancing L. apodemi levels and promoting thermogenic activity, potentially involving changes in bile acid metabolism pathways.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yapei Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinyun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lulu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaowei Bo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Dongning Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunshu Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhenting Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Huang A, Yeum D, Sewaybricker LE, Aleksic S, Thomas M, Melhorn SJ, Earley YF, Schur EA. Update on Hypothalamic Inflammation and Gliosis: Expanding Evidence of Relevance Beyond Obesity. Curr Obes Rep 2025; 14:6. [PMID: 39775194 PMCID: PMC11963668 DOI: 10.1007/s13679-024-00595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW To evaluate the role of hypothalamic inflammation and gliosis in human obesity pathogenesis and other disease processes influenced by obesity. RECENT FINDINGS Recent studies using established and novel magnetic resonance imaging (MRI) techniques to assess alterations in hypothalamic microarchitecture in humans support the presence of hypothalamic inflammation and gliosis in adults and children with obesity. Studies also identify prenatal exposure to maternal obesity or diabetes as a risk factor for hypothalamic inflammation and gliosis and increased obesity risk in offspring. Hypothalamic inflammation and gliosis have been further implicated in reproductive dysfunction (specifically polycystic ovarian syndrome and male hypogonadism), cardiovascular disease namely hypertension, and alterations in the gut microbiome, and may also accelerate neurocognitive aging. The most recent translational studies support the link between hypothalamic inflammation and gliosis and obesity pathogenesis in humans and expand our understanding of its influence on broader aspects of human health.
Collapse
Affiliation(s)
- Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dabin Yeum
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Sandra Aleksic
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Melbin Thomas
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yumei Feng Earley
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Sweet SR, Biddinger JE, Zimmermann JB, Yu GL, Simerly RB. Early perturbations to fluid homeostasis alter development of hypothalamic feeding circuits with context-specific changes in ingestive behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620307. [PMID: 39484367 PMCID: PMC11527132 DOI: 10.1101/2024.10.25.620307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Drinking and feeding are tightly coordinated homeostatic events and the paraventricular nucleus of the hypothalamus (PVH) represents a possible node of neural integration for signals related to energy and fluid homeostasis. We used TRAP2;Ai14 and Fos labeling to visualize neurons in the PVH and median preoptic nucleus (MEPO) responding to both water deprivation and hunger. Moreover, we determined that structural and functional development of dehydration-sensitive inputs to the PVH from the MEPO precedes those of agouti-related peptide (AgRP) neurons, which convey hunger signals and are known to be developmentally programmed by nutrition. We also determined that osmotic hyperstimulation of neonatal mice led to enhanced AgRP inputs to the PVH in adulthood, as well as disruptions to ingestive behaviors during high-fat diet feeding and dehydration-anorexia. Thus, development of feeding circuits is impacted not only by nutritional signals, but also by early perturbations to fluid homeostasis with context-specific consequences for coordination of ingestive behavior.
Collapse
|
4
|
Sewaybricker LE, Melhorn SJ, Entringer S, Buss C, Wadhwa PD, Schur EA, Rasmussen JM. Associations of radiologic characteristics of the neonatal hypothalamus with early life adiposity gain. Pediatr Obes 2024; 19:e13114. [PMID: 38477234 PMCID: PMC11081834 DOI: 10.1111/ijpo.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The mediobasal hypothalamus (MBH) is a key brain area for regulation of energy balance. Previous neuroimaging studies suggest that T2-based signal properties indicative of cellular inflammatory response (gliosis) are present in adults and children with obesity, and predicts greater adiposity gain in children at risk of obesity. OBJECTIVES/METHODS The current study aimed to extend this concept to the early life period by considering if, in full-term healthy neonates (up to n = 35), MRI evidence of MBH gliosis is associated with changes in early life (neonatal to six months) body fat percentage measured by DXA. RESULTS In this initial study, neonatal T2 signal in the MBH was positively associated with six-month changes in body fat percentage. CONCLUSION This finding supports the notion that underlying processes in the MBH may play a role in early life growth and, by extension, childhood obesity risk.
Collapse
Affiliation(s)
| | - Susan J. Melhorn
- Dept. of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Pathik D. Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Obstetrics & Gynecology, University of California, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92697, USA
- Department of Epidemiology, University of California, Irvine, CA, 92697, USA
| | - Ellen A. Schur
- Dept. of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jerod M. Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
5
|
Denisova EI, Makarova EN. Influence of leptin administration to pregnant mice on fetal gene expression and adaptation to sweet and fatty food in adult offspring of different sexes. Vavilovskii Zhurnal Genet Selektsii 2024; 28:288-298. [PMID: 38952707 PMCID: PMC11214896 DOI: 10.18699/vjgb-24-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/11/2024] [Accepted: 03/03/2024] [Indexed: 07/03/2024] Open
Abstract
Elevated leptin in pregnant mice improves metabolism in offspring fed high-calorie diet and its influence may be sex-specific. Molecular mechanisms mediating leptin programming action are unknown. We aimed to investigate programming actions of maternal leptin on the signaling function of the placenta and fetal liver and on adaptation to high-calorie diet in male and female offspring. Female C57BL/6J mice received leptin injections in mid-pregnancy. Gene expression was assessed in placentas and in the fetal brain and liver at the end of pregnancy. Metabolic parameters and gene expression in the liver, brown fat and hypothalamus were assessed in adult male and female offspring that had consumed sweet and fatty diet (SFD: chow, lard, sweet biscuits) for 2 weeks. Females had lower blood levels of leptin, glucose, triglycerides and cholesterol than males. Consuming SFD, females had increased Ucp1 expression in brown fat, while males had accumulated fat, decreased blood triglycerides and liver Fasn expression. Leptin administration to mothers increased Igf1 and Dnmt3b expression in fetal liver, decreased post-weaning growth rate, and increased hypothalamic Crh expression in response to SFD in both sexes. Only in male offspring this administration decreased expression of Fasn and Gck in the mature liver, increased fat mass, blood levels of glucose, triglycerides and cholesterol and Dmnt3a expression in the fetal liver. The results suggest that the influence of maternal leptin on the expression of genes encoding growth factors and DNA methyltransferases in the fetal liver may mediate its programming effect on offspring metabolic phenotypes.
Collapse
Affiliation(s)
- E I Denisova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E N Makarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Olerich KLW, Sewaybricker LE, Kee S, Melhorn SJ, Chandrasekaran S, Schur EA. In utero exposure to maternal diabetes or hypertension and childhood hypothalamic gliosis. Int J Obes (Lond) 2024; 48:594-597. [PMID: 38273035 PMCID: PMC11421291 DOI: 10.1038/s41366-024-01463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Exposure to maternal diabetes (DM) or hypertension (HTN) during pregnancy impacts offspring metabolic health in childhood and beyond. Animal models suggest that induction of hypothalamic inflammation and gliosis in the offspring's hypothalamus is a possible mechanism mediating this effect. We tested, in children, whether in utero exposures to maternal DM or HTN were associated with mediobasal hypothalamic (MBH) gliosis as assessed by brain magnetic resonance imaging (MRI). The study included a subsample of 306 children aged 9-11 years enrolled in the ABCD Study®; 49 were DM-exposed, 53 were HTN-exposed, and 204 (2:1 ratio) were age- and sex-matched children unexposed to DM and/or HTN in utero. We found a significant overall effect of group for the primary outcome of MBH/amygdala (AMY) T2 signal ratio (F(2,300):3.51, p = 0.03). Compared to unexposed children, MBH/AMY T2 signal ratios were significantly higher in the DM-exposed (β:0.05, p = 0.02), but not the HTN-exposed children (β:0.03, p = 0.13), findings that were limited to the MBH and independent of adiposity. We concluded that children exposed to maternal DM in utero display evidence of hypothalamic gliosis, suggesting that gestational DM may have a distinct influence on offspring's brain development and, by extension, children's long-term metabolic health.
Collapse
Affiliation(s)
- Kelsey L W Olerich
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Washington, Seattle, WA, USA
| | | | - Sarah Kee
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Rasmussen JM, Wang Y, Graham AM, Fair DA, Posner J, O'Connor TG, Simhan HN, Yen E, Madan N, Entringer S, Wadhwa PD, Buss C. Segmenting hypothalamic subunits in human newborn magnetic resonance imaging data. Hum Brain Mapp 2024; 45:e26582. [PMID: 38339904 PMCID: PMC10826633 DOI: 10.1002/hbm.26582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 02/12/2024] Open
Abstract
Preclinical evidence suggests that inter-individual variation in the structure of the hypothalamus at birth is associated with variation in the intrauterine environment, with downstream implications for future disease susceptibility. However, scientific advancement in humans is limited by a lack of validated methods for the automatic segmentation of the newborn hypothalamus. N = 215 healthy full-term infants with paired T1-/T2-weighted MR images across four sites were considered for primary analyses (mean postmenstrual age = 44.3 ± 3.5 weeks, nmale /nfemale = 110/106). The outputs of FreeSurfer's hypothalamic subunit segmentation tools designed for adults (segFS) were compared against those of a novel registration-based pipeline developed here (segATLAS) and against manually edited segmentations (segMAN) as reference. Comparisons were made using Dice Similarity Coefficients (DSCs) and through expected associations with postmenstrual age at scan. In addition, we aimed to demonstrate the validity of the segATLAS pipeline by testing for the stability of inter-individual variation in hypothalamic volume across the first year of life (n = 41 longitudinal datasets available). SegFS and segATLAS segmentations demonstrated a wide spread in agreement (mean DSC = 0.65 ± 0.14 SD; range = {0.03-0.80}). SegATLAS volumes were more highly correlated with postmenstrual age at scan than segFS volumes (n = 215 infants; RsegATLAS 2 = 65% vs. RsegFS 2 = 40%), and segATLAS volumes demonstrated a higher degree of agreement with segMAN reference segmentations at the whole hypothalamus (segATLAS DSC = 0.89 ± 0.06 SD; segFS DSC = 0.68 ± 0.14 SD) and subunit levels (segATLAS DSC = 0.80 ± 0.16 SD; segFS DSC = 0.40 ± 0.26 SD). In addition, segATLAS (but not segFS) volumes demonstrated stability from near birth to ~1 years age (n = 41; R2 = 25%; p < 10-3 ). These findings highlight segATLAS as a valid and publicly available (https://github.com/jerodras/neonate_hypothalamus_seg) pipeline for the segmentation of hypothalamic subunits using human newborn MRI up to 3 months of age collected at resolutions on the order of 1 mm isotropic. Because the hypothalamus is traditionally understudied due to a lack of high-quality segmentation tools during the early life period, and because the hypothalamus is of high biological relevance to human growth and development, this tool may stimulate developmental and clinical research by providing new insight into the unique role of the hypothalamus and its subunits in shaping trajectories of early life health and disease.
Collapse
Affiliation(s)
- Jerod M. Rasmussen
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Yun Wang
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Alice M. Graham
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Damien A. Fair
- Masonic Institute for the Developing BrainUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jonathan Posner
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Thomas G. O'Connor
- Departments of Psychiatry, Psychology, Neuroscience and Obstetrics and GynecologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Hyagriv N. Simhan
- Department of Obstetrics and GynecologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Elizabeth Yen
- Department of PediatricsTufts Medical CenterBostonMassachusettsUSA
| | - Neel Madan
- Department of RadiologyTufts Medical CenterBostonMassachusettsUSA
| | - Sonja Entringer
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Medical PsychologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Pathik D. Wadhwa
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Obstetrics and GynecologyUniversity of CaliforniaIrvineCaliforniaUSA
- Department of EpidemiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Claudia Buss
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Medical PsychologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | | |
Collapse
|
8
|
Adibi JJ, Zhao Y, Koistinen H, Mitchell RT, Barrett ES, Miller R, O'Connor TG, Xun X, Liang HW, Birru R, Smith M, Moog NK. Molecular pathways in placental-fetal development and disruption. Mol Cell Endocrinol 2024; 581:112075. [PMID: 37852527 PMCID: PMC10958409 DOI: 10.1016/j.mce.2023.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
The first trimester of pregnancy ranks high in priority when minimizing harmful exposures, given the wide-ranging types of organogenesis occurring between 4- and 12-weeks' gestation. One way to quantify potential harm to the fetus in the first trimester is to measure a corollary effect on the placenta. Placental biomarkers are widely present in maternal circulation, cord blood, and placental tissue biopsied at birth or at the time of pregnancy termination. Here we evaluate ten diverse pathways involving molecules expressed in the first trimester human placenta based on their relevance to normal fetal development and to the hypothesis of placental-fetal endocrine disruption (perturbation in development that results in abnormal endocrine function in the offspring), namely: human chorionic gonadotropin (hCG), thyroid hormone regulation, peroxisome proliferator activated receptor protein gamma (PPARγ), leptin, transforming growth factor beta, epiregulin, growth differentiation factor 15, small nucleolar RNAs, serotonin, and vitamin D. Some of these are well-established as biomarkers of placental-fetal endocrine disruption, while others are not well studied and were selected based on discovery analyses of the placental transcriptome. A literature search on these biomarkers summarizes evidence of placenta-specific production and regulation of each biomarker, and their role in fetal reproductive tract, brain, and other specific domains of fetal development. In this review, we extend the theory of fetal programming to placental-fetal programming.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, University of Pittsburgh School of Public Health, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yaqi Zhao
- St. Jude's Research Hospital, Memphis, TN, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Rod T Mitchell
- Department of Paediatric Endocrinology, Royal Hospital for Children and Young People, Edinburgh BioQuarter, Edinburgh, UK
| | - Emily S Barrett
- Environmental and Population Health Bio-Sciences, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Richard Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Hai-Wei Liang
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rahel Birru
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Megan Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora K Moog
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Xu Y, Yang D, Wang L, Król E, Mazidi M, Li L, Huang Y, Niu C, Liu X, Lam SM, Shui G, Douglas A, Speakman JR. Maternal High Fat Diet in Lactation Impacts Hypothalamic Neurogenesis and Neurotrophic Development, Leading to Later Life Susceptibility to Obesity in Male but Not Female Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305472. [PMID: 37867217 PMCID: PMC10724448 DOI: 10.1002/advs.202305472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Early life nutrition can reprogram development and exert long-term consequences on body weight regulation. In mice, maternal high-fat diet (HFD) during lactation predisposed male but not female offspring to diet-induced obesity when adult. Molecular and cellular changes in the hypothalamus at important time points are examined in the early postnatal life in relation to maternal diet and demonstrated sex-differential hypothalamic reprogramming. Maternal HFD in lactation decreased the neurotropic development of neurons formed at the embryo stage (e12.5) and impaired early postnatal neurogenesis in the hypothalamic regions of both males and females. Males show a larger increased ratio of Neuropeptide Y (NPY) to Pro-opiomelanocortin (POMC) neurons in early postnatal neurogenesis, in response to maternal HFD, setting an obese tone for male offspring. These data provide insights into the mechanisms by which hypothalamic reprograming by early life overnutrition contributes to the sex-dependent susceptibility to obesity in adult life in mice.
Collapse
Affiliation(s)
- Yanchao Xu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationYantai UniversityYantai264005P. R. China
| | - Elżbieta Król
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Li Li
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Yi Huang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Chaoqun Niu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Xue Liu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Alex Douglas
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - John R. Speakman
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- China medical universityShenyang110000P. R. China
| |
Collapse
|
10
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
11
|
Xhonneux I, Marei WFA, Meulders B, Andries S, Leroy JLMR. The impact of a maternal and offspring obesogenic diet on daughter's oocyte mitochondrial ultrastructure and bioenergetic responses. Insights from an outbred mouse model. Front Physiol 2023; 14:1288472. [PMID: 37965107 PMCID: PMC10642210 DOI: 10.3389/fphys.2023.1288472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Obesity affects oocyte mitochondrial functions and reduces oocyte quality and fertility. Obesity may also increase the risk of metabolic disorders in the offspring. Children are likely to follow their parents lifestyle and diet, which also contributes to the increased prevelance of obesity across generations. We hypothesise that the impact of obesogenic (OB) diet and obesity on oocyte mitochondrial functions is different in offspring born to obese mothers compared to those born to healthy mothers. To test this hypothesis, we fed a control (C, 10% fat, 7% sugar) or an OB diet (60% fat, 20% sugar) to female mice (for 7 weeks (w)) and then to their female offspring (for 7w after weaning) in a 2 × 2 factorial design (C » C, n = 35, C » OB, n = 35, OB » C n = 49 and OB » OB, n = 50). Unlike many other studies, we used an outbred Swiss mouse model to increase the human pathophysiological relevance. Offspring were sacrificed at 10w and their oocytes were collected. Offspring OB diet increased oocyte lipid droplet content, mitochondrial activity and reactive oxygen species (ROS) levels, altered mitochondrial ultrastructure and reduced oocyte pyruvate consumption. Mitochondrial DNA copy numbers and lactate production remained unaffected. Mitochondrial ultrastructure was the only factor where a significant interaction between maternal and offspring diet effect was detected. The maternal OB background resulted in a small but significant increase in offspring's oocyte mitochondrial ultrastructural abnormalities without altering mitochondrial inner membrane potential, active mitochondrial distribution, mitochondrial DNA copy numbers, or ROS production. This was associated with reduced mitochondrial complex III and V expression and reduced pyruvate consumption which may be compensatory mechanisms to control mitochondrial inner membrane potential and ROS levels. Therefore, in this Swiss outbred model, while offspring OB diet had the largest functional impact on oocyte mitochondrial features, the mitochondrial changes due to the maternal background appear to be adaptive and compensatory rather than dysfunctional.
Collapse
Affiliation(s)
- Inne Xhonneux
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Waleed F. A. Marei
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ben Meulders
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Silke Andries
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Jo L. M. R. Leroy
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
12
|
Martins MG, Silver Z, Ayoub K, Hyland L, Woodside B, Kiss ACI, Abizaid A. Maternal glucose intolerance during pregnancy affects offspring POMC expression and results in adult metabolic alterations in a sex-dependent manner. Front Endocrinol (Lausanne) 2023; 14:1189207. [PMID: 37396180 PMCID: PMC10311085 DOI: 10.3389/fendo.2023.1189207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Gestational diabetes (GDM) is associated with negative outcomes in mothers and their offspring, including greater risks of macrosomia at birth and the development of metabolic disorders. While these outcomes are well-established, the mechanisms by which this increased metabolic vulnerability is conferred on the offspring are comparatively lacking. One proposed mechanism is that maternal glycemic dysregulation alters the development of the hypothalamic regions related to metabolism and energy balance. Methods To investigate this possibility, in this study, we first examined the effects of STZ-induced maternal glucose intolerance on the offspring on pregnancy day (PD) 19, and, in a second experiment, in early adulthood (postnatal day (PND) 60). Whether effects would be influenced by sex, or exposure of offspring to a high-fat diet was also investigated. The impact of maternal STZ treatment on POMC neuron number in the ARC of offspring at both time points was also examined. Results As expected, STZ administration on PD 7 decreased maternal glucose tolerance, and increased risk for macrosomia, and loss of pups at birth. Offspring of STZ-treated mothers were also more vulnerable to developing metabolic impairments in adulthood. These were accompanied by sex-specific effects of maternal STZ treatment in the offspring, including fewer POMC neurons in the ARC of female but not male infants in late pregnancy and a higher number of POMC neurons in the ARC of both male and female adult offspring of STZ-treated dams, which was exacerbated in females exposed to a high-fat diet after weaning. Discussion This work suggests that maternal hyperglycemia induced by STZ treatment, in combination with early-life exposure to an obesogenic diet, leads to adult metabolic alterations that correlate with the increased hypothalamic expression of POMC, showing that maternal glycemic dysregulation can impact the development of hypothalamic circuits regulating energy state with a stronger impact on female offspring.
Collapse
Affiliation(s)
- Marina Galleazzo Martins
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), São Paulo, São Paulo, Brazil
| | - Zachary Silver
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Kiara Ayoub
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Lindsay Hyland
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ana Carolina Inhasz Kiss
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), São Paulo, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
13
|
Rasmussen JM, Tuulari JJ, Nolvi S, Thompson PM, Merisaari H, Lavonius M, Karlsson L, Entringer S, Wadhwa PD, Karlsson H, Buss C. Maternal pre-pregnancy body mass index is associated with newborn offspring hypothalamic mean diffusivity: a prospective dual-cohort study. BMC Med 2023; 21:57. [PMID: 36788536 PMCID: PMC9930241 DOI: 10.1186/s12916-023-02743-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND An extensive body of animal literature supports the premise that maternal obesity during pregnancy can alter the development of the fetal hypothalamus (HTH, a critical regulator of energy balance) with implications for offspring obesity risk (i.e., long-term energy imbalance). Yet, the relationship in humans between maternal overweight/obesity during pregnancy and fetal hypothalamic development remains largely unknown. Here, using an international (Finland and California, USA) multi-site diffusion tensor imaging (DTI) dataset, we test the hypothesis that maternal pre-pregnancy BMI is associated with newborn offspring HTH mean diffusivity (HTH MD, a replicable neural correlate of BMI in adults). METHODS HTH MD was independently quantified in two separate BMI-matched cohorts (up to class II obesity; BMIRange = 17-35) using a high-resolution atlas-based definition of HTH. A total of n = 231 mother-child dyads were available for this analysis (nSite,1 = 152, age at MRI = 26.7 ± 8.1 days, gestational age at birth = 39.9 ± 1.2 weeks, nM/F = 82/70, BMI = 24.2 ± 3.8; nSite,2 = 79, age at MRI = 25.6 ± 12.5 days, gestational age at birth = 39.3 ± 1.5 weeks, nM/F = 45/34, BMI = 25.1 ± 4.0). The association between maternal pre-pregnancy BMI and newborn offspring HTH MD was examined separately in each cohort using linear regression adjusting for gestational age at birth, postnatal age at scan, sex, whole white matter mean diffusivity, and DTI quality control criteria. In post hoc analyses, additional potentially confounding factors including socioeconomic status, ethnicity, and obstetric risk were adjusted where appropriate. RESULTS The distribution of maternal pre-pregnancy BMI was comparable across sites but differed by ethnicity and socioeconomic status. A positive linear association between maternal pre-pregnancy BMI and newborn offspring HTH MD was observed at both sites ([Formula: see text]Site,1 = 0.17, pSite,1 = 0.01; [Formula: see text]Site,2 = 0.22, pSite,2 = 0.03) and remained significant after adjusting for cohort-relevant covariates. CONCLUSIONS These findings translate the preclinically established association between maternal obesity during pregnancy and offspring hypothalamic microstructure to the human context. In addition to further replication/generalization, future efforts to identify biological mediators of the association between maternal obesity and fetal HTH development are warranted to develop targeted strategies for the primary prevention of childhood obesity.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA.
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA.
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Turku Collegium for Science Technology and Medicine (TCSMT), University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Oxford (Sigrid Juselius Fellowship), Oxford, UK
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Turku Institute for Advanced Studies, Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Maria Lavonius
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92697, USA
- Department of Obstetrics & Gynecology, University of California, Irvine, CA, 92697, USA
- Department of Epidemiology, University of California, Irvine, CA, 92697, USA
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
14
|
Zhang J, Li S, Luo X, Zhang C. Emerging role of hypothalamus in the metabolic regulation in the offspring of maternal obesity. Front Nutr 2023; 10:1094616. [PMID: 36819678 PMCID: PMC9928869 DOI: 10.3389/fnut.2023.1094616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity has a significant impact on the metabolism of offspring both in childhood and adulthood. The metabolic regulation of offspring is influenced by the intrauterine metabolic programming induced by maternal obesity. Nevertheless, the precise mechanisms remain unclear. The hypothalamus is the primary target of metabolic programming and the principal regulatory center of energy metabolism. Accumulating evidence has indicated the crucial role of hypothalamic regulation in the metabolism of offspring exposed to maternal obesity. This article reviews the development of hypothalamus, the role of the hypothalamic regulations in energy homeostasis, possible mechanisms underlying the developmental programming of energy metabolism in offspring, and the potential therapeutic approaches for preventing metabolic diseases later in life. Lastly, we discuss the challenges and future directions of hypothalamic regulation in the metabolism of children born to obese mothers.
Collapse
|
15
|
Associations between Cord Blood Leptin Levels and Childhood Adiposity Differ by Sex and Age at Adiposity Assessment. Life (Basel) 2022; 12:life12122060. [PMID: 36556424 PMCID: PMC9780853 DOI: 10.3390/life12122060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Lower cord blood leptin levels have been associated with lower and higher adiposity in childhood and associations seem to differ according to the child’s age, methods of adiposity assessment and sex. Our aim was to investigate sex-specific associations of cord blood leptinemia with childhood adiposity at birth, 3 and 5 years of age. We measured cord blood leptin using Luminex immunoassays in 520 offspring from the Gen3G cohort. We tested associations between cord blood leptin and body mass index (BMI) z-score, skinfolds thicknesses (SFT), and body composition using dual-energy X-ray absorptiometry, adjusted for confounders. At birth, girls had almost twice as much leptin in cord blood as boys (15.5 [8.9; 25.6] vs. 8.6 [4.9; 15.0] ng/mL; p < 0.0001) as well as significantly greater adiposity. Lower levels of cord blood leptin were associated with higher sum of SFT (β = −0.05 ± 0.02; p = 0.03) and higher BMI z-score (β= −0.22 ± 0.08; p = 0.01) in 3-year-old boys only. We did not observe these associations at age 5, or in girls. Our results suggest a sexual dimorphism in the programming of leptin sensitivity and childhood adiposity, but further observational and functional studies are needed to better understand the role of leptin in early life.
Collapse
|
16
|
Kulhanek D, Abrahante Llorens JE, Buckley L, Tkac I, Rao R, Paulsen ME. Female and male C57BL/6J offspring exposed to maternal obesogenic diet develop altered hypothalamic energy metabolism in adulthood. Am J Physiol Endocrinol Metab 2022; 323:E448-E466. [PMID: 36342228 PMCID: PMC9639756 DOI: 10.1152/ajpendo.00100.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Maternal obesity is exceedingly common and strongly linked to offspring obesity and metabolic disease. Hypothalamic function is critical to obesity development. Hypothalamic mechanisms causing obesity following exposure to maternal obesity have not been elucidated. Therefore, we studied a cohort of C57BL/6J dams, treated with a control or high-fat-high-sugar diet, and their adult offspring to explore potential hypothalamic mechanisms to explain the link between maternal and offspring obesity. Dams treated with obesogenic diet were heavier with mild insulin resistance, which is reflective of the most common metabolic disease in pregnancy. Adult offspring exposed to maternal obesogenic diet had no change in body weight but significant increase in fat mass, decreased glucose tolerance, decreased insulin sensitivity, elevated plasma leptin, and elevated plasma thyroid-stimulating hormone. In addition, offspring exposed to maternal obesity had decreased energy intake and activity without change in basal metabolic rate. Hypothalamic neurochemical profile and transcriptome demonstrated decreased neuronal activity and inhibition of oxidative phosphorylation. Collectively, these results indicate that maternal obesity without diabetes is associated with adiposity and decreased hypothalamic energy production in offspring. We hypothesize that altered hypothalamic function significantly contributes to obesity development. Future studies focused on neuroprotective strategies aimed to improve hypothalamic function may decrease obesity development.NEW & NOTEWORTHY Offspring exposed to maternal diet-induced obesity demonstrate a phenotype consistent with energy excess. Contrary to previous studies, the observed energy phenotype was not associated with hyperphagia or decreased basal metabolic rate but rather decreased hypothalamic neuronal activity and energy production. This was supported by neurochemical changes in the hypothalamus as well as inhibition of hypothalamic oxidative phosphorylation pathway. These results highlight the potential for neuroprotective interventions in the prevention of obesity with fetal origins.
Collapse
Affiliation(s)
- Debra Kulhanek
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | | | - Lauren Buckley
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ivan Tkac
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Megan E Paulsen
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Minnesota Institute for the Developing Brain, Minneapolis, Minnesota
| |
Collapse
|
17
|
Rajamoorthi A, LeDuc CA, Thaker VV. The metabolic conditioning of obesity: A review of the pathogenesis of obesity and the epigenetic pathways that "program" obesity from conception. Front Endocrinol (Lausanne) 2022; 13:1032491. [PMID: 36329895 PMCID: PMC9622759 DOI: 10.3389/fendo.2022.1032491] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the developmental origins of health and disease is integral to overcome the global tide of obesity and its metabolic consequences, including atherosclerotic cardiovascular disease, type 2 diabetes, hyperlipidemia, and nonalcoholic fatty liver disease. The rising prevalence of obesity has been attributed, in part, to environmental factors including the globalization of the western diet and unhealthy lifestyle choices. In this review we argue that how and when such exposures come into play from conception significantly impact overall risk of obesity and later health outcomes. While the laws of thermodynamics dictate that obesity is caused by an imbalance between caloric intake and energy expenditure, the drivers of each of these may be laid down before the manifestation of the phenotype. We present evidence over the last half-century that suggests that the temporospatial evolution of obesity from intrauterine life and beyond is, in part, due to the conditioning of physiological processes at critical developmental periods that results in maladaptive responses to obesogenic exposures later in life. We begin the review by introducing studies that describe an association between perinatal factors and later risk of obesity. After a brief discussion of the pathogenesis of obesity, including the systemic regulation of appetite, adiposity, and basal metabolic rate, we delve into the mechanics of how intrauterine, postnatal and early childhood metabolic environments may contribute to adult obesity risk through the process of metabolic conditioning. Finally, we detail the specific epigenetic pathways identified both in preclinical and clinical studies that synergistically "program" obesity.
Collapse
Affiliation(s)
- Ananthi Rajamoorthi
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Charles A. LeDuc
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
- The Naomi Berrie Diabetes Center, Columbia University IRVING Medical Center, New York, NY, United States
| | - Vidhu V. Thaker
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
- The Naomi Berrie Diabetes Center, Columbia University IRVING Medical Center, New York, NY, United States
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
18
|
Effects of maternal controlled exercise on offspring adiposity and glucose tolerance. J Dev Orig Health Dis 2022; 13:455-462. [PMID: 34503602 PMCID: PMC8907328 DOI: 10.1017/s2040174421000489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While metabolic disorders such as obesity and diabetes are costly and deadly to the current population, they are also extremely detrimental to the next generation. Much of the current literature focuses on the negative impact of poor maternal choices on offspring disease, while there is little work examining maternal behaviors that may improve offspring health. Research has shown that voluntary maternal exercise in mouse models improves metabolic function in offspring. In this study, we hypothesized that controlled maternal exercise in a mouse model will effect positive change on offspring obesity and glucose homeostasis. Female mice were separated into three groups: home cage, sedentary, and exercise. The sedentary home cage group was not removed from the home cage, while the sedentary wheel group was removed from the cage and placed in an immobile wheel apparatus. The exercise group was removed from the home cage and run on the same wheel apparatus but with the motor activated at 5-10 m/min for 1 h/d prior to and during pregnancy. Offspring were subjected to oral glucose tolerance testing and body composition analysis. There was no significant difference in offspring glucose tolerance or body composition as a consequence of the maternal exercise intervention compared to the sedentary wheel group. There were no marked negative consequences of the maternal controlled exercise intervention. Further research should clarify the potential advantages of the controlled exercise model and improve experimental techniques to facilitate translation of this research to human applications.
Collapse
|
19
|
Félix-Soriano E, Stanford KI. Prolonged lactation benefits offspring metabolism. Nat Metab 2022; 4:798-799. [PMID: 35879460 DOI: 10.1038/s42255-022-00604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
20
|
Rasmussen JM, Thompson PM, Gyllenhammer LE, Lindsay KL, O'Connor TG, Koletzko B, Entringer S, Wadhwa PD, Buss C. Maternal free fatty acid concentration during pregnancy is associated with newborn hypothalamic microstructure in humans. Obesity (Silver Spring) 2022; 30:1462-1471. [PMID: 35785481 PMCID: PMC9541037 DOI: 10.1002/oby.23452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study tested the hypothesis, in a prospective cohort study design, that maternal saturated free fatty acid (sFFA) concentration during pregnancy is prospectively associated with offspring (newborn) hypothalamic (HTH) microstructure and to explore the functional relevance of this association with respect to early-childhood body fat percentage (BF%). METHODS In N = 94 healthy newborns (born mean 39.3 [SD 1.5] weeks gestation), diffusion-weighted magnetic resonance imaging was performed shortly after birth (25.3 [12.5] postnatal days), and a subgroup (n = 37) underwent a dual-energy x-ray absorptiometry scan in early childhood (4.7 [SD 0.7] years). Maternal sFFA concentration during pregnancy was quantified in fasting blood samples via liquid chromatography-mass spectrometry. Infant HTH microstructural integrity was characterized using mean diffusivity (MD). Multiple linear regression was used to test the association between maternal sFFA and HTH MD, accounting for newborn sex, age at scan, mean white matter MD, and image quality. Multiple linear regression models also tested the association between HTH MD and early-childhood BF%, accounting for breastfeeding status. RESULTS Maternal sFFA during pregnancy accounted for 8.3% of the variation in newborn HTH MD (β-std = 0.25; p = 0.006). Furthermore, newborn HTH MD prospectively accounted for 15% of the variation in early-childhood BF% (β-std = 0.32; p = 0.019). CONCLUSIONS These findings suggest that maternal overnutrition during pregnancy may influence the development of the fetal hypothalamus, which, in turn, may have clinical relevance for childhood obesity risk.
Collapse
Affiliation(s)
- Jerod M. Rasmussen
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Lauren E. Gyllenhammer
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
| | - Karen L. Lindsay
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- University of California, Irvine Susan Samueli Integrative Health InstituteCollege of Health Sciences, University of California, IrvineIrvineCaliforniaUSA
| | - Thomas G. O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, and Obstetrics and GynecologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr von Hauner Children's HospitalLudwig‐Maximillian University Munich, University HospitalsMunichGermany
| | - Sonja Entringer
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- Institute of Medical PsychologyCharité University Hospital Berlin, corporate member of Free University of Berlin, Humboldt‐University of BerlinBerlinGermany
| | - Pathik D. Wadhwa
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Psychiatry and Human BehaviorUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Obstetrics and GynecologyUniversity of California, IrvineIrvineCaliforniaUSA
- Department of EpidemiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Claudia Buss
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- Institute of Medical PsychologyCharité University Hospital Berlin, corporate member of Free University of Berlin, Humboldt‐University of BerlinBerlinGermany
| |
Collapse
|
21
|
Blanco N, Fernández-García JM, Carrillo B, Ballesta A, García-Úbeda R, Collado P, Pinos H. Prenatal Low-Protein and Low-Calorie Diets Differentially Alter Arcuate Nucleus Morphology in Newborn Male Rats. Front Neuroanat 2022; 16:896732. [PMID: 35783578 PMCID: PMC9243364 DOI: 10.3389/fnana.2022.896732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMalnutrition during the early stages of development produces alterations that can compromise the functioning of the hypothalamic circuits that regulate food intake. The purpose of this study is to analyze the effects that a low-protein and low-calorie diet has on the morphology of the arcuate nucleus (ARC) of the hypothalamus in newborn male and female rats.MethodsOn gestational day 6 (G6), six pregnant rats were divided into two groups. One group was made up of three pregnant rats, which were fed ad libitum with a control diet (20% casein), and the other one was made up of three pregnant rats, which were fed ad libitum with a low-protein diet (8% casein) and 30% of a calorie-restricted diet. On the day of birth, pups were sacrificed, resulting in four experimental groups: control male, control female, low-protein and low-calorie diet male, and low-protein and low-calorie diet female (n = 5 in each group). The volume and number of neurons, together with the neuronal density and number of apoptotic cells, were measured.ResultsMales on a low-protein and low-calorie diet showed a significant increase in the number of neurons and in the neuronal density of the ARC with regard to the rest of the groups studied. These increases were also reflected in the posterior part of the nucleus. Although the existence of sexual dimorphism was not detected in any of the parameters studied in the control groups, the number of neurons and neuronal density showed differences between males and females fed with a low-protein and low-calorie diets due to the increase in the number of neurons shown by the male. No significant differences were found in the number of apoptotic cells.ConclusionOur results show that a low-protein and low-calorie diet during the prenatal stage produces alterations in the ARC of the hypothalamus in newborn animals and, more importantly, that the effects of malnutrition are evident in males but not in females. Therefore, it is essential to follow a balanced diet during the early stages of life to ensure optimal development of the neural circuits that regulate eating.
Collapse
Affiliation(s)
- Noemí Blanco
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Jose Manuel Fernández-García
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
- Faculty of Psychology, Universidad Villanueva Madrid, Madrid, Spain
| | - Beatriz Carrillo
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Antonio Ballesta
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Department of Psychology, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Rocío García-Úbeda
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
- *Correspondence: Helena Pinos,
| |
Collapse
|
22
|
Lippert RN, Brüning JC. Maternal Metabolic Programming of the Developing Central Nervous System: Unified Pathways to Metabolic and Psychiatric Disorders. Biol Psychiatry 2022; 91:898-906. [PMID: 34330407 DOI: 10.1016/j.biopsych.2021.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period presents a critical time in offspring development where environmental insults can have damaging impacts on the future health of the offspring. This can lead to sustained alterations in offspring development, metabolism, and predisposition to both metabolic and psychiatric diseases. The central nervous system is one of the most sensitive targets in response to maternal obesity and/or type 2 diabetes mellitus. While many of the effects of obesity on brain function in adults are known, we are only now beginning to understand the multitude of changes that occur in the brain during development on exposure to maternal overnutrition. Specifically, given recent links between maternal metabolic state and onset of neurodevelopmental diseases, the specific changes that are occurring in the offspring are even more relevant for the study of disease onset. It is therefore critical to understand the developmental effects of maternal obesity and/or type 2 diabetes mellitus and further to define the underlying cellular and molecular changes in the fetal brain. This review focuses on the current advancements in the study of maternal programming of brain development with particular emphasis on brain connectivity, specific regional effects, newly studied peripheral contributors, and key windows of interventions where maternal bodyweight and food intake may drive the most detrimental effects on the brain and associated metabolic and behavioral consequences.
Collapse
Affiliation(s)
- Rachel N Lippert
- German Institute of Human Nutrition Potsdam Rehbrücke, Potsdam, Germany; German Center for Diabetes Research, Neuherberg, Germany; Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- German Center for Diabetes Research, Neuherberg, Germany; Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
23
|
Hufnagel A, Dearden L, Fernandez-Twinn DS, Ozanne SE. Programming of cardiometabolic health: the role of maternal and fetal hyperinsulinaemia. J Endocrinol 2022; 253:R47-R63. [PMID: 35258482 PMCID: PMC9066586 DOI: 10.1530/joe-21-0332] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022]
Abstract
Obesity and gestational diabetes during pregnancy have multiple short- and long-term consequences for both mother and child. One common feature of pregnancies complicated by maternal obesity and gestational diabetes is maternal hyperinsulinaemia, which has effects on the mother and her adaptation to pregnancy. Even though insulin does not cross the placenta insulin can act on the placenta as well affecting placental growth, angiogenesis and lipid metabolism. Obese and gestational diabetic pregnancies are often characterised by maternal hyperglycaemia resulting in exposure of the fetus to high levels of glucose, which freely crosses the placenta. This leads to stimulation of fetal ß-cells and insulin secretion in the fetus. Fetal hyperglycaemia/hyperinsulinaemia has been shown to cause multiple complications in fetal development, such as altered growth trajectories, impaired neuronal and cardiac development and early exhaustion of the pancreas. These changes could increase the susceptibility of the offspring to develop cardiometabolic diseases later in life. In this review, we aim to summarize and review the mechanisms by which maternal and fetal hyperinsulinaemia impact on (i) maternal health during pregnancy; (ii) placental and fetal development; (iii) offspring energy homeostasis and long-term cardiometabolic health; (iv) how interventions can alleviate these effects.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| |
Collapse
|
24
|
Leibold S, Bagivalu Lakshminarasimha A, Gremse F, Hammerschmidt M, Michel M. Long-term obesogenic diet leads to metabolic phenotypes which are not exacerbated by catch-up growth in zebrafish. PLoS One 2022; 17:e0267933. [PMID: 35544474 PMCID: PMC9094543 DOI: 10.1371/journal.pone.0267933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity and metabolic syndrome are of increasing global concern. In order to understand the basic biology and etiology of obesity, research has turned to animals across the vertebrate spectrum including zebrafish. Here, we carefully characterize zebrafish in a long-term obesogenic environment as well as zebrafish that went through early lifetime caloric restriction. We found that long-term obesity in zebrafish leads to metabolic endpoints comparable to mammals including increased adiposity, weight, hepatic steatosis and hepatic lesions but not signs of glucose dysregulation or differences in metabolic rate or mitochondrial function. Malnutrition in early life has been linked to an increased likelihood to develop and an exacerbation of metabolic syndrome, however fish that were calorically restricted from five days after fertilization until three to nine months of age did not show signs of an exacerbated phenotype. In contrast, the groups that were shifted later in life from caloric restriction to the obesogenic environment did not completely catch up to the long-term obesity group by the end of our experiment. This dataset provides insight into a slowly exacerbating time-course of obesity phenotypes.
Collapse
Affiliation(s)
- Sandra Leibold
- Institute of Zoology, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | - Felix Gremse
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Gremse-IT GmbH, Aachen, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Maximilian Michel
- Institute of Zoology, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
25
|
Kim DW, Place E, Chinnaiya K, Manning E, Sun C, Dai W, Groves I, Ohyama K, Burbridge S, Placzek M, Blackshaw S. Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors. Cell Rep 2022; 38:110251. [PMID: 35045288 PMCID: PMC8918062 DOI: 10.1016/j.celrep.2021.110251] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/13/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Affiliation(s)
- Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elsie Place
- School of Biosciences, University of Sheffield, Sheffield, UK; Bateson Centre, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Kavitha Chinnaiya
- School of Biosciences, University of Sheffield, Sheffield, UK; Bateson Centre, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield, UK; Bateson Centre, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Changyu Sun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weina Dai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian Groves
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Kyoji Ohyama
- School of Biosciences, University of Sheffield, Sheffield, UK; Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Sarah Burbridge
- School of Biosciences, University of Sheffield, Sheffield, UK; Bateson Centre, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK; Bateson Centre, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Schoonejans JM, Ozanne SE. Developmental programming by maternal obesity: Lessons from animal models. Diabet Med 2021; 38:e14694. [PMID: 34553414 DOI: 10.1111/dme.14694] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
The obesity epidemic has led to more women entering pregnancy overweight or obese. In addition to adverse short-term outcomes, maternal obesity and/or gestational diabetes predispose offspring to developing obesity, type 2 diabetes and cardiovascular disease in adulthood through developmental programming. Human epidemiological studies, although vital in identifying associations, are often unable to address causality and mechanistic studies can be limited by the lack of accessibility of key metabolic tissues. Furthermore, multi-generational studies take many years to complete. Integration of findings from human studies with those from animal models has therefore been critical in moving forward this field that has been termed the 'Developmental Origins of Health and Disease'. This review summarises the evidence from animal models and highlights how animal models provide valuable insight into the maternal factors responsible for developmental programming, potential critical developmental windows, sexual dimorphism, molecular mechanisms and age-related offspring outcomes throughout life. Moreover, we describe how animal models are vital to explore clinically relevant interventions to prevent adverse offspring outcomes in obese or glucose intolerant pregnancy, such as antioxidant supplementation, exercise and maternal metformin treatment.
Collapse
Affiliation(s)
- Josca Mariëtte Schoonejans
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Susan Elizabeth Ozanne
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Hagström H, Simon TG, Roelstraete B, Stephansson O, Söderling J, Ludvigsson JF. Maternal obesity increases the risk and severity of NAFLD in offspring. J Hepatol 2021; 75:1042-1048. [PMID: 34289397 DOI: 10.1016/j.jhep.2021.06.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Maternal obesity has been linked to the development of cardiovascular disease and diabetes in offspring, but its relationship to non-alcoholic fatty liver disease (NAFLD) is unclear. METHODS Through the nationwide ESPRESSO cohort study we identified all individuals ≤25 years of age in Sweden with biopsy-verified NAFLD diagnosed between 1992 and 2016 (n = 165). These were matched by age, sex, and calendar year with up to 5 controls (n = 717). Through linkage with the nationwide Swedish Medical Birth Register (MBR) we retrieved data on maternal early-pregnancy BMI, and possible confounders, in order to calculate adjusted odds ratios (aORs) for NAFLD in offspring. RESULTS Maternal BMI was associated with NAFLD in offspring: underweight (aOR 0.84; 95% CI 0.14-5.15), normal weight (reference, aOR 1), overweight (aOR 1.51; 0.95-2.40), and obese (aOR 3.26; 1.72-6.19) women. Severe NAFLD (biopsy-proven fibrosis or cirrhosis) was also more common in offspring of overweight (aOR 1.94; 95% CI 0.96-3.90) and obese (aOR 3.67; 95% CI 1.61-8.38) mothers. Associations were similar after adjusting for maternal pre-eclampsia and gestational diabetes. Socio-economic parameters (smoking, mother born outside the Nordic countries and less than 10 years of basic education) were also associated with NAFLD in offspring but did not materially alter the effect size of maternal BMI in a multivariable model. CONCLUSIONS This nationwide study found a strong association between maternal overweight/obesity and future NAFLD in offspring. Adjusting for socio-economic and metabolic parameters in the mother did not affect this finding, suggesting that maternal obesity is an independent risk factor for NAFLD in offspring. LAY SUMMARY In a study of all young persons in Sweden with a liver biopsy consistent with fatty liver, the authors found that compared to matched controls, the risk of fatty liver was much higher in those with obese mothers. This was independent of available confounders and suggests that the high prevalence of obesity in younger persons might lead to a higher risk of fatty liver in their offspring.
Collapse
Affiliation(s)
- Hannes Hagström
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden; Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Tracey G Simon
- Division of Gastroenterology and Hepatology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, MA, USA
| | - Bjorn Roelstraete
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Olof Stephansson
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Division of Women's Health, Department of Obstetrics, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Söderling
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Pediatrics, Orebro University Hospital, Orebro, Sweden; Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, UK; Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
28
|
Bariani MV, Correa F, Rubio APD, Wolfson ML, Schander JA, Cella M, Aisemberg J, Franchi AM. Maternal obesity reverses the resistance to LPS-induced adverse pregnancy outcome and increases female offspring metabolic alterations in cannabinoid receptor 1 knockout mice. J Nutr Biochem 2021; 96:108805. [PMID: 34147601 DOI: 10.1016/j.jnutbio.2021.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Maternal overnutrition negatively impacts the offspring's health leading to an increased risk of developing chronic diseases or metabolic syndrome in adulthood. What we eat affects the endocannabinoid system (eCS) activity, which in turn modulates lipogenesis and fatty acids utilization in hepatic, muscle, and adipose tissues. This study aimed to evaluate the transgenerational effect of maternal obesity on cannabinoid receptor 1 knock-out (CB1 KO) animals in combination with a postnatal obesogenic diet on the development of metabolic disturbances on their offspring. CB1 KO mice were fed a control diet (CD) or a high-fat diet (HFD; 33% more energy from fat) for 3 months. Offspring born to control and obese mothers were also fed with CD or HFD. We observed that pups born to an HFD-fed mother presented higher postnatal weight, lower hepatic fatty acid amide hydrolase activity, and increased blood cholesterol levels when compared to the offspring born to CD-fed mothers. When female mice born to HFD-fed CB1 KO mothers were exposed to an HFD, they gained more weight, presented elevated blood cholesterol levels, and more abdominal adipose tissue accumulation than control-fed adult offspring. The eCS is involved in several reproductive physiological processes. Interestingly, we showed that CB1 KO mice in gestational day 15 presented resistance to LPS-induced deleterious effects on pregnancy outcome, which was overcome when these mice were obese. Our results suggest that an HFD in CB1 receptor-deficient mice contributes to a "nutritional programming" of the offspring resulting in increased susceptibility to metabolic challenges both perinatally and during adulthood.
Collapse
Affiliation(s)
- María Victoria Bariani
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel Luis Wolfson
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aylen Schander
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Cella
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ana María Franchi
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
29
|
Martins MG, Cruz AGD, Oliveira GPD, Woodside B, Horta-Júnior JDADCE, Kiss ACI. Effects of snack intake during pregnancy and lactation on reproductive outcome in mild hyperglycemic rats. Physiol Behav 2021; 240:113544. [PMID: 34332976 DOI: 10.1016/j.physbeh.2021.113544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022]
Abstract
Metabolic disorders, like diabetes, as well as maternal diet, alter nutrient availability in utero, inducing adaptations in the offspring. Whether the effects of maternal hyperglycemia are modulated by diet, however, has yet to be explored. In the current study, we examined this issue by giving females rats, treated neonatally with STZ to induce mild hyperglycemia, and control littermates either ad libitum access to standard chow (Control n = 17; STZ n = 16) or standard chow and snacks (Control-snack n = 18; STZ-snack n = 19) (potato chips and a red fruit-flavored sucrose syrup solution 1.5%) throughout pregnancy and lactation. We hypothesized that the maternal glucose intolerance typically seen in female rats treated neonatally with STZ would be exacerbated by snack intake, and that the combination of snack intake and STZ treatment would lead to alterations in maternal behavior and offspring development. Maternal body weight and food intake were measured daily through pregnancy and lactation and litter weight throughout lactation. At birth, litter size, offspring weight, body length, and anogenital distance were obtained and offspring were classified according to their weight. Measures of nursing and retrieval behavior, as well as exploration in the open field and the elevated plus-maze were also recorded. As predicted, snack intake tended to aggravate the glucose intolerance of STZ-treated rats during pregnancy. Both Control and STZ-treated females that had access to snacks ate more calories and fat, but less carbohydrate and protein than females having access to chow alone. Overall, STZ-treated dams gave birth to fewer pups. Chow-fed STZ females gave birth to a greater proportion of large for pregnancy age pups, whereas dams in the Control-snack group gave birth to a greater proportion of small pups. The birth weight classification of pups born to STZ-snack rats, however, resembled that of the Control chow-fed females. Although all litters gained weight during lactation, litters from snack-fed dams gained less weight regardless of maternal hyperglycemia and did not show catch-up growth by weaning. Overall, STZ rats spent more time nest building, whereas the average inter milk ejection interval was higher in snack-fed females. STZ-snack dams retrieved the complete litter faster than dams in the other groups. Together, these data suggest that when mild hyperglycemic females are given access to snacks throughout pregnancy and lactation their intake is similar to that of Control females given snack access. The combination of hyperglycemia and snack access tended to decrease glucose tolerance in pregnancy, and normalized birth weight classification, but produced few other effects that were not seen as a function of snack intake or hyperglycemia alone. Since birth weight is a strong predictor of health issues, future studies will further investigate offspring behavioral and metabolic outcomes later in life.
Collapse
Affiliation(s)
- Marina Galleazzo Martins
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), Rua do Matão, trav. 14, 321, Cidade Universitária, São Paulo, São Paulo, 05508-090, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil.
| | - Alessandra Gonçalves da Cruz
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), Rua do Matão, trav. 14, 321, Cidade Universitária, São Paulo, São Paulo, 05508-090, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil
| | - Giovana Pereira de Oliveira
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), Rua do Matão, trav. 14, 321, Cidade Universitária, São Paulo, São Paulo, 05508-090, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil
| | - Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Psychology Department, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada H4B 1R6
| | - José de Anchieta de Castro E Horta-Júnior
- São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil
| | - Ana Carolina Inhasz Kiss
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), Rua do Matão, trav. 14, 321, Cidade Universitária, São Paulo, São Paulo, 05508-090, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil
| |
Collapse
|
30
|
Ruigrok SR, Stöberl N, Yam KY, de Lucia C, Lucassen PJ, Thuret S, Korosi A. Modulation of the Hypothalamic Nutrient Sensing Pathways by Sex and Early-Life Stress. Front Neurosci 2021; 15:695367. [PMID: 34366778 PMCID: PMC8342927 DOI: 10.3389/fnins.2021.695367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
There are sex differences in metabolic disease risk, and early-life stress (ES) increases the risk to develop such diseases, potentially in a sex-specific manner. It remains to be understood, however, how sex and ES affect such metabolic vulnerability. The hypothalamus regulates food intake and energy expenditure by sensing the organism's energy state via metabolic hormones (leptin, insulin, ghrelin) and nutrients (glucose, fatty acids). Here, we investigated if and how sex and ES alter hypothalamic nutrient sensing short and long-term. ES was induced in mice by limiting the bedding and nesting material from postnatal day (P)2-P9, and the expression of genes critical for hypothalamic nutrient sensing were studied in male and female offspring, both at P9 and in adulthood (P180). At P9, we observed a sex difference in both Ppargc1a and Lepr expression, while the latter was also increased in ES-exposed animals relative to controls. In adulthood, we found sex differences in Acacb, Agrp, and Npy expression, whereas ES did not affect the expression of genes involved in hypothalamic nutrient sensing. Thus, we observe a pervasive sex difference in nutrient sensing pathways and a targeted modulation of this pathway by ES early in life. Future research is needed to address if the modulation of these pathways by sex and ES is involved in the differential vulnerability to metabolic diseases.
Collapse
Affiliation(s)
- Silvie R. Ruigrok
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nina Stöberl
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Kit-Yi Yam
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Chiara de Lucia
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Paul J. Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Kasper P, Breuer S, Hoffmann T, Vohlen C, Janoschek R, Schmitz L, Appel S, Fink G, Hünseler C, Quaas A, Demir M, Lang S, Steffen HM, Martin A, Schramm C, Bürger M, Mahabir E, Goeser T, Dötsch J, Hucklenbruch-Rother E, Bae-Gartz I. Maternal Exercise Mediates Hepatic Metabolic Programming via Activation of AMPK-PGC1α Axis in the Offspring of Obese Mothers. Cells 2021; 10:1247. [PMID: 34069390 PMCID: PMC8158724 DOI: 10.3390/cells10051247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is associated with an increased risk of hepatic metabolic dysfunction for both mother and offspring and targeted interventions to address this growing metabolic disease burden are urgently needed. This study investigates whether maternal exercise (ME) could reverse the detrimental effects of hepatic metabolic dysfunction in obese dams and their offspring while focusing on the AMP-activated protein kinase (AMPK), representing a key regulator of hepatic metabolism. In a mouse model of maternal western-style-diet (WSD)-induced obesity, we established an exercise intervention of voluntary wheel-running before and during pregnancy and analyzed its effects on hepatic energy metabolism during developmental organ programming. ME prevented WSD-induced hepatic steatosis in obese dams by alterations of key hepatic metabolic processes, including activation of hepatic ß-oxidation and inhibition of lipogenesis following increased AMPK and peroxisome-proliferator-activated-receptor-γ-coactivator-1α (PGC-1α)-signaling. Offspring of exercised dams exhibited a comparable hepatic metabolic signature to their mothers with increased AMPK-PGC1α-activity and beneficial changes in hepatic lipid metabolism and were protected from WSD-induced adipose tissue accumulation and hepatic steatosis in later life. In conclusion, this study demonstrates that ME provides a promising strategy to improve the metabolic health of both obese mothers and their offspring and highlights AMPK as a potential metabolic target for therapeutic interventions.
Collapse
Affiliation(s)
- Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Saida Breuer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Thorben Hoffmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Lisa Schmitz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Christoph Hünseler
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Alexander Quaas
- Department of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany;
| | - Münevver Demir
- Charité Campus Mitte and Campus Virchow Clinic, Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, D-13353 Berlin, Germany;
| | - Sonja Lang
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hans-Michael Steffen
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Anna Martin
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Christoph Schramm
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Martin Bürger
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, D-50937 Cologne, Germany;
| | - Tobias Goeser
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (P.K.); (S.L.); (H.-M.S.); (A.M.); (C.S.); (M.B.); (T.G.)
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (T.H.); (C.V.); (R.J.); (L.S.); (S.A.); (G.F.); (C.H.); (J.D.); (E.H.-R.)
| |
Collapse
|
32
|
Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chin Med J (Engl) 2021; 133:1961-1970. [PMID: 32826460 PMCID: PMC7462214 DOI: 10.1097/cm9.0000000000000976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes mellitus and metabolic disorders have become an epidemic globally. However, the pathogenesis remains largely unclear and the prevention and treatment are still limited. In addition to environmental factors during adulthood, early life is the critical developmental window with high tissue plasticity, which might be modified by external environmental cues. Substantial evidence has demonstrated the vital role of early-life nutrition in programming the metabolic disorders in later life. In this review, we aim to overview the concepts of fetal programming and investigate the effects of early-life nutrition on energy metabolism in later life and the potential epigenetic mechanism. The related studies published on PubMed database up to March 2020 were included. The results showed that both maternal overnutrition and undernutrition increased the riskes of metabolic disorders in offspring and epigenetic modifications, including DNA methylation, miRNAs, and histone modification, might be the vital mediators. The beneficial effects of early-life lifestyle modifications as well as dietary and nutritional interventions on these deleterious metabolic remolding were initially observed. Overall, characterizing the early-life malnutrition that reshapes metabolic disease trajectories may yield novel targets for early prevention and intervention and provide a new point of view to the energy metabolism.
Collapse
|
33
|
Lassi M, Tomar A, Comas-Armangué G, Vogtmann R, Dijkstra DJ, Corujo D, Gerlini R, Darr J, Scheid F, Rozman J, Aguilar-Pimentel A, Koren O, Buschbeck M, Fuchs H, Marschall S, Gailus-Durner V, Hrabe de Angelis M, Plösch T, Gellhaus A, Teperino R. Disruption of paternal circadian rhythm affects metabolic health in male offspring via nongerm cell factors. SCIENCE ADVANCES 2021; 7:7/22/eabg6424. [PMID: 34039610 PMCID: PMC8153725 DOI: 10.1126/sciadv.abg6424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Circadian rhythm synchronizes each body function with the environment and regulates physiology. Disruption of normal circadian rhythm alters organismal physiology and increases disease risk. Recent epidemiological data and studies in model organisms have shown that maternal circadian disruption is important for offspring health and adult phenotypes. Less is known about the role of paternal circadian rhythm for offspring health. Here, we disrupted circadian rhythm in male mice by night-restricted feeding and showed that paternal circadian disruption at conception is important for offspring feeding behavior, metabolic health, and oscillatory transcription. Mechanistically, our data suggest that the effect of paternal circadian disruption is not transferred to the offspring via the germ cells but initiated by corticosterone-based parental communication at conception and programmed during in utero development through a state of fetal growth restriction. These findings indicate paternal circadian health at conception as a newly identified determinant of offspring phenotypes.
Collapse
Affiliation(s)
- Maximilian Lassi
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Archana Tomar
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Gemma Comas-Armangué
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Rebekka Vogtmann
- Department of Gynecology and Obstetrics-University Hospital Essen - Essen, Germany
| | - Dorieke J Dijkstra
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, Netherlands
| | - David Corujo
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Institute for Leukemia Research (IJC) Badalona, Spain
| | - Raffaele Gerlini
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Jonatan Darr
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Fabienne Scheid
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Marcus Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Institute for Leukemia Research (IJC) Badalona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Spain
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München Freising, Germany
| | - Torsten Plösch
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, Netherlands
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics-University Hospital Essen - Essen, Germany
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health Neuherberg, Germany.
- German Center for Diabetes Research (DZD) Neuherberg, Germany
| |
Collapse
|
34
|
Lippert RN, Hess S, Klemm P, Burgeno LM, Jahans-Price T, Walton ME, Kloppenburg P, Brüning JC. Maternal high-fat diet during lactation reprograms the dopaminergic circuitry in mice. J Clin Invest 2021; 130:3761-3776. [PMID: 32510473 DOI: 10.1172/jci134412] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/26/2020] [Indexed: 12/31/2022] Open
Abstract
The maternal perinatal environment modulates brain formation, and altered maternal nutrition has been linked to the development of metabolic and psychiatric disorders in the offspring. Here, we showed that maternal high-fat diet (HFD) feeding during lactation in mice elicits long-lasting changes in gene expression in the offspring's dopaminergic circuitry. This translated into silencing of dopaminergic midbrain neurons, reduced connectivity to their downstream targets, and reduced stimulus-evoked dopamine (DA) release in the striatum. Despite the attenuated activity of DA midbrain neurons, offspring from mothers exposed to HFD feeding exhibited a sexually dimorphic expression of DA-related phenotypes, i.e., hyperlocomotion in males and increased intake of palatable food and sucrose in females. These phenotypes arose from concomitantly increased spontaneous activity of D1 medium spiny neurons (MSNs) and profoundly decreased D2 MSN projections. Overall, we have unraveled a fundamental restructuring of dopaminergic circuitries upon time-restricted altered maternal nutrition to induce persistent behavioral changes in the offspring.
Collapse
Affiliation(s)
- R N Lippert
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - S Hess
- Biocenter, Institute for Zoology, and.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - P Klemm
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - L M Burgeno
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - T Jahans-Price
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - M E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - P Kloppenburg
- Biocenter, Institute for Zoology, and.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - J C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,National Center for Diabetes Research (DZD), Neuherberg, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Maugeri A. The Effects of Dietary Interventions on DNA Methylation: Implications for Obesity Management. Int J Mol Sci 2020; 21:ijms21228670. [PMID: 33212948 PMCID: PMC7698434 DOI: 10.3390/ijms21228670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Previous evidence from in vivo and observational research suggested how dietary factors might affect DNA methylation signatures involved in obesity risk. However, findings from experimental studies are still scarce and, if present, not so clear. The current review summarizes studies investigating the effect of dietary interventions on DNA methylation in the general population and especially in people at risk for or with obesity. Overall, these studies suggest how dietary interventions may induce DNA methylation changes, which in turn are likely related to the risk of obesity and to different response to weight loss programs. These findings might explain the high interindividual variation in weight loss after a dietary intervention, with some people losing a lot of weight while others much less so. However, the interactions between genetic, epigenetic, environmental and lifestyle factors make the whole framework even more complex and further studies are needed to support the hypothesis of personalized interventions against obesity.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
36
|
Bae-Gartz I, Kasper P, Großmann N, Breuer S, Janoschek R, Kretschmer T, Appel S, Schmitz L, Vohlen C, Quaas A, Schweiger MR, Grimm C, Fischer A, Ferrari N, Graf C, Frese CK, Lang S, Demir M, Schramm C, Fink G, Goeser T, Dötsch J, Hucklenbruch-Rother E. Maternal exercise conveys protection against NAFLD in the offspring via hepatic metabolic programming. Sci Rep 2020; 10:15424. [PMID: 32963289 PMCID: PMC7508970 DOI: 10.1038/s41598-020-72022-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Maternal exercise (ME) during pregnancy has been shown to improve metabolic health in offspring and confers protection against the development of non-alcoholic fatty liver disease (NAFLD). However, its underlying mechanism are still poorly understood, and it remains unclear whether protective effects on hepatic metabolism are already seen in the offspring early life. This study aimed at determining the effects of ME during pregnancy on offspring body composition and development of NAFLD while focusing on proteomic-based analysis of the hepatic energy metabolism during developmental organ programming in early life. Under an obesogenic high-fat diet (HFD), male offspring of exercised C57BL/6J-mouse dams were protected from body weight gain and NAFLD in adulthood (postnatal day (P) 112). This was associated with a significant activation of hepatic AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPARα) and PPAR coactivator-1 alpha (PGC1α) signaling with reduced hepatic lipogenesis and increased hepatic β-oxidation at organ programming peak in early life (P21). Concomitant proteomic analysis revealed a characteristic hepatic expression pattern in offspring as a result of ME with the most prominent impact on Cholesterol 7 alpha-hydroxylase (CYP7A1). Thus, ME may offer protection against offspring HFD-induced NAFLD by shaping hepatic proteomics signature and metabolism in early life. The results highlight the potential of exercise during pregnancy for preventing the early origins of NAFLD.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany.
| | - Philipp Kasper
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nora Großmann
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Tobias Kretschmer
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Alexander Quaas
- Department of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Michal R Schweiger
- Translational Epigenetics and Tumor Genetic, University Hospital of Cologne, Cologne, Germany
| | - Christina Grimm
- Translational Epigenetics and Tumor Genetic, University Hospital of Cologne, Cologne, Germany
| | | | - Nina Ferrari
- Cologne Center for Prevention in Childhood and Youth / Heart Center Cologne, University Hospital of Cologne, Cologne, Germany.,Institute of Movement and Neuroscience, Department of Movement and Health Promotion, German Sport University, Cologne, Germany
| | - Christine Graf
- Institute of Movement and Neuroscience, Department of Movement and Health Promotion, German Sport University, Cologne, Germany
| | - Christian K Frese
- Proteomics Core Facility, CECAD Research Center, University Hospital of Cologne, Cologne, Germany.,Max-Planck-Unit for the Science of Pathogens, Charité University Medicine Berlin, Berlin, Germany
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité Campus Mitte and Campus Virchow Clinic, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Schramm
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Robert-Koch Str. 16, Building 44a, 50931, Cologne, Germany
| |
Collapse
|
37
|
Dearden L, Buller S, Furigo IC, Fernandez-Twinn DS, Ozanne SE. Maternal obesity causes fetal hypothalamic insulin resistance and disrupts development of hypothalamic feeding pathways. Mol Metab 2020; 42:101079. [PMID: 32919096 PMCID: PMC7549144 DOI: 10.1016/j.molmet.2020.101079] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Perinatal exposure to maternal obesity results in predisposition of offspring to develop obesity later in life. Increased weight gain in offspring exposed to maternal obesity is usually associated with hyperphagia, implicating altered central regulation of food intake as a cause. We aimed to define how maternal obesity impacts early development of the hypothalamus to program lasting dysfunction in feeding regulatory pathways. Methods Mice offspring of diet-induced obese mothers were compared to the offspring of lean control mothers. We analysed gene expression in the fetal hypothalamus, alongside neurosphere assays to investigate the effects of maternal obesity on neural progenitor cell proliferation in vitro. Western blotting was used to investigate the insulin signalling pathway in the fetal hypothalamus. Characterisation of cell type and neuropeptide profile in adulthood was linked with analyses of feeding behaviour. Results There was a reduction in the expression of proliferative genes in the fetal hypothalamus of offspring exposed to maternal obesity. This reduction in proliferation was maintained in vitro when hypothalamic neural progenitor cells were grown as neurospheres. Hypothalamic fetal gene expression and neurosphere growth correlated with maternal body weight and insulin levels. Foetuses of obese mothers showed hypothalamic insulin resistance, which may be causative of reduced proliferation. Furthermore, maternal obesity activated the Notch signalling pathway in neonatal offspring hypothalamus, resulting in decreased neurogenesis. Adult offspring of obese mothers displayed an altered ratio of anorexigenic and orexigenic signals in the arcuate nucleus, associated with an inability to maintain energy homeostasis when metabolically challenged. Conclusions These findings show that maternal obesity alters the molecular signature in the developing hypothalamus, which is associated with disrupted growth and development of hypothalamic precursor cells and defective feeding regulation in adulthood. This is the first report of fetal hypothalamic insulin resistance in an obese pregnancy and suggests a mechanism by which maternal obesity causes permanent changes to hypothalamic structure and function. Exposure to maternal obesity reduces hypothalamic neural progenitor cell growth. Maternal obesity activates hypothalamic Notch signalling and reduces neurogenesis. Maternal obesity causes fetal hypothalamic insulin resistance. Maternal obesity alters the ratio of anorexigenic/orexigenic signals in ARC. Changes in food intake precede increased adiposity in offspring of obese dams.
Collapse
Affiliation(s)
- L Dearden
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom.
| | - S Buller
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - I C Furigo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - D S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - S E Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| |
Collapse
|
38
|
Early overnutrition sensitizes the growth hormone axis to the impact of diet-induced obesity via sex-divergent mechanisms. Sci Rep 2020; 10:13898. [PMID: 32807904 PMCID: PMC7431568 DOI: 10.1038/s41598-020-70898-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/13/2020] [Indexed: 12/30/2022] Open
Abstract
In addition to its essential role in the physiological control of longitudinal growth, growth-hormone (GH) is endowed with relevant metabolic functions, including anabolic actions in muscle, lipolysis in adipose-tissue and glycemic modulation. Adult obesity is known to negatively impact GH-axis, thereby promoting a vicious circle that may contribute to the exacerbation of the metabolic complications of overweight. Yet, to what extent early-overnutrition sensitizes the somatotropic-axis to the deleterious effects of obesity remains largely unexplored. Using a rat-model of sequential exposure to obesogenic insults, namely postnatal-overfeeding during lactation and high-fat diet (HFD) after weaning, we evaluated in both sexes the individual and combined impact of these nutritional challenges upon key elements of the somatotropic-axis. While feeding HFD per se had a modest impact on the adult GH-axis, early overnutrition had durable effects on key elements of the somatotropic-system, which were sexually different, with a significant inhibition of pituitary gene expression of GH-releasing hormone-receptor (GHRH-R) and somatostatin receptor-5 (SST5) in males, but an increase in pituitary GHRH-R, SST2, SST5, GH secretagogue-receptor (GHS-R) and ghrelin expression in females. Notably, early-overnutrition sensitized the GH-axis to the deleterious impact of HFD, with a significant suppression of pituitary GH expression in both sexes and lowering of circulating GH levels in females. Yet, despite their similar metabolic perturbations, males and females displayed rather distinct alterations of key somatotropic-regulators/ mediators. Our data document a synergistic effect of postnatal-overnutrition on the detrimental impact of HFD-induced obesity on key elements of the adult GH-axis, which is conducted via mechanisms that are sexually-divergent.
Collapse
|
39
|
Nemeth M, Wallner B, Schuster D, Siutz C, Quint R, Wagner KH, Millesi E. Effects of dietary fatty acids on the social life of male Guinea pigs from adolescence to adulthood. Horm Behav 2020; 124:104784. [PMID: 32504693 DOI: 10.1016/j.yhbeh.2020.104784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Abstract
Dietary intake of polyunsaturated fatty acids (PUFAs) or saturated fatty acids (SFAs) differently modulates neurophysiological and behavioral functions in response to altered hypothalamic-pituitary-adrenal (HPA)-axis activity and an individual's development. In this context, an individual's social environment, including social interactions and social hierarchies, is closely related to hormone concentrations and possibly interacts with dietary fatty acid effects. We investigated if dietary supplementation with walnut oil (high in PUFAs) and coconut fat (high in SFAs), compared to a control group, affects body mass gain, cortisol and testosterone concentrations, plasma fatty acids, and social behavior in male domestic guinea pigs from adolescence to adulthood. For analyses of cortisol and testosterone concentrations, social interactions were included as covariates in order to consider effects of social behavior on hormone concentrations. Our results revealed that SFAs increased escalated conflicts like fights and stimulated cortisol and testosterone concentrations, which limited body mass gain and first-year survival. PUFAs did not remarkably affect social behavior and hormone concentrations, but enabled the strongest body mass gain, which probably resulted from an energetic advantage. Neither sociopositive nor agonistic behaviors explained age-specific differences in hormone concentrations between groups. However, a high number of subdominant individuals and lower testosterone concentrations were related to increased cortisol concentrations in adult PUFA males. Our findings demonstrate the importance of dietary fatty acids regarding behavioral and endocrine developmental processes and adaptations to the social environment by modulating HPA-axis function and body homeostasis.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Daniela Schuster
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Carina Siutz
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ruth Quint
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
40
|
Camilleri-Carter TL, Dowling DK, L Robker R, Piper MDW. Transgenerational Obesity and Healthy Aging in Drosophila. J Gerontol A Biol Sci Med Sci 2020; 74:1582-1589. [PMID: 31231757 DOI: 10.1093/gerona/glz154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Substantial evidence suggests that individuals born to overweight and obese parents suffer detrimental health consequences that dramatically decrease healthy aging. The number of obese individuals worldwide now exceeds the number of under- and malnourished individuals. This obesity epidemic is responsible for approximately 4 million deaths worldwide each year, and predisposes sufferers to a range of age-related diseases such as cardiovascular diseases, and metabolic syndrome. Additionally, obesity is associated with an accelerated onset of age-related ailments, such as cancers and inflammation. The importance of dietary interventions to reduce the incidence of obesity is magnified by emerging evidence that parental physiology can predispose future generations to poor health outcomes. Characterizing and understanding these effects, and how they are mediated, is important if we are to continue to drive improvements to population health. In this article, we synthesize evidence for the intergenerational and transgenerational phenotypic effects of parental obesity. We concentrate on how the fruit fly Drosophila melanogaster can be used as a model to study these effects. Fruit flies are highly tractable, and their conserved nutrient signaling and metabolic pathways make them an ideal model for studying nutritional effects on metabolic, reproductive, and aging phenotypes.
Collapse
Affiliation(s)
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Rebecca L Robker
- School of Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Australia.,School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
41
|
Gawlińska K, Gawliński D, Filip M, Przegaliński E. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutr Rev 2020; 79:709-725. [PMID: 32447401 DOI: 10.1093/nutrit/nuaa020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A balanced maternal diet is essential for proper fetal development, and the consumption of a nutritionally inadequate diet during intrauterine development and early childhood is associated with a significantly increased risk of metabolic and brain disorders in offspring. The current literature indicates that maternal exposure to a high-fat diet exerts an irreversible influence on the general health of the offspring. This review of preclinical research examines the relationship between a maternal high-fat diet during pregnancy or lactation and metabolic changes, molecular alterations in the brain, and behavioral disorders in offspring. Animal models indicate that offspring exposed to a maternal high-fat diet during pregnancy and lactation manifest increased depressive-like and aggressive behaviors, reduced cognitive development, and symptoms of metabolic syndrome. Recently, epigenetic and molecular studies have shown that maternal nutrition during pregnancy and the suckling period modifies the development of neurotransmitter circuits and many other factors important to central nervous system development. This finding confirms the importance of a balanced maternal diet for the health of offspring.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Edmund Przegaliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
42
|
Palliyaguru DL, Rudderow AL, Sossong AM, Lewis KN, Younts C, Pearson KJ, Bernier M, de Cabo R. Perinatal diet influences health and survival in a mouse model of leukemia. GeroScience 2020; 42:1147-1155. [PMID: 32394346 DOI: 10.1007/s11357-020-00199-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022] Open
Abstract
The goal of the current study was to determine the role of maternal diet in the perinatal period on the health and survival of the offspring. AKR/J mice, a model described to be susceptible to leukemia development, was used where females were maintained on either standard diet (SD), high sucrose diet, Western diet, or calorie restriction (CR) as they were mated with SD-fed males. Body weights, pregnancy rates, litter size, and litter survival were used as markers of successful pregnancy and pup health. Data indicated that maternal diet had significant effects on litter size, early pup survival, and early pup body weights. As pups matured, the makeup of their respective maternal diet was a predictor of adult metabolic health and survival. Overall, these results suggest that perinatal maternal diet is an important determinant of the health and survival of the offspring and that these effects continue well into adulthood, strongly correlating with lifespan.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Annamaria L Rudderow
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Alex M Sossong
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Kaitlyn N Lewis
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Caitlin Younts
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| |
Collapse
|
43
|
Cox B, Luyten LJ, Dockx Y, Provost E, Madhloum N, De Boever P, Neven KY, Sassi F, Sleurs H, Vrijens K, Vineis P, Plusquin M, Nawrot TS. Association Between Maternal Prepregnancy Body Mass Index and Anthropometric Parameters, Blood Pressure, and Retinal Microvasculature in Children Age 4 to 6 Years. JAMA Netw Open 2020; 3:e204662. [PMID: 32396192 PMCID: PMC7218490 DOI: 10.1001/jamanetworkopen.2020.4662] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IMPORTANCE Maternal prepregnancy body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) has previously been associated with offspring cardiometabolic risk factors, such as fat mass, glucose and insulin levels, and blood pressure, but these associations appear to be largely mediated by offspring BMI. To our knowledge, no studies have assessed alterations in the retinal microvasculature in association with maternal prepregnancy BMI. OBJECTIVE To investigate the association between maternal prepregnancy BMI and anthropometric parameters, blood pressure, and retinal vessel parameters in children age 4 to 6 years. DESIGN, SETTING, AND PARTICIPANTS Participants included mother-child pairs of the population-based Environmental Influence on Early Aging (ENVIRONAGE) birth cohort study (Flanders, Belgium) who were recruited at birth from February 2010 to June 2014 and followed-up at age 4 to 6 years between October 2014 and July 2018. Data were analyzed from February 2019 to April 2019. EXPOSURES Maternal prepregnancy BMI based on height and weight measurements at the first antenatal visit (weeks 7-9 of gestation). MAIN OUTCOMES AND MEASURES Children's anthropometric, blood pressure, and retinal microcirculation measurements at age 4 to 6 years. Retinal vessel diameters and the tortuosity index, a measure for the curvature of the retinal vasculature, were obtained by fundus image analysis. RESULTS This study included 240 mothers and children with a mean (SD) age of 29. 9 (4.2) years and 54.8 (4.7) months, respectively. Of these, 114 children (47.5%) were boys. Maternal prepregnancy BMI was positively associated with the child's birth weight, BMI, waist circumference, blood pressure, and retinal vessel tortuosity. A 1-point increase in maternal prepregnancy BMI was associated with a 0.26-mm Hg (95% CI, 0.08-0.44) higher mean arterial pressure for their children, with similar estimates for systolic and diastolic blood pressure. Independent from the association with blood pressure, a 1-point increase in maternal prepregnancy BMI was associated with a 0.40 (95% CI, 0.01-0.80) higher retinal tortuosity index (× 103). The hypothesis that these associations reflect direct intrauterine mechanisms is supported by the following observations: associations were independent of the current child's BMI and the estimates for paternal BMI at the follow-up visit did not reach significance. CONCLUSIONS AND RELEVANCE Considering that blood pressure tracks from childhood into adulthood and microvascular changes may be early markers of cardiometabolic disease development, our results suggest that maternal prepregnancy BMI is an important modifiable risk factor for later-life cardiovascular health of the offspring.
Collapse
Affiliation(s)
- Bianca Cox
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Leen J. Luyten
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Unité de Recherche en Biologie Cellulaire, Namur Research Institute for Life Sciences, Namur University, Namur, Belgium
| | - Yinthe Dockx
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Eline Provost
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Health Unit, Flemish Institute for Technological Research, Mol, Belgium
| | - Narjes Madhloum
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Patrick De Boever
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Health Unit, Flemish Institute for Technological Research, Mol, Belgium
| | - Kristof Y. Neven
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Franco Sassi
- Imperial College Business School, Centre for Health Economics and Policy Innovation, London, England
| | - Hanne Sleurs
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Karen Vrijens
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Paolo Vineis
- School of Public Health, Imperial College, London, England
| | - Michelle Plusquin
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S. Nawrot
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Environment & Health Unit, Department of Public Health, Leuven University, Leuven, Belgium
| |
Collapse
|
44
|
Debarba LK, Marangon PB, Borges BC, Veida-Silva H, Venâncio JC, Almeida-Pereira G, Antunes-Rodrigues J, Elias LLK. Neonatal nutritional programming induces gliosis and alters the expression of T-cell protein tyrosine phosphatase and connexins in male rats. Horm Behav 2020; 120:104690. [PMID: 31954709 DOI: 10.1016/j.yhbeh.2020.104690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/20/2019] [Accepted: 01/12/2020] [Indexed: 01/17/2023]
Abstract
Changes to neonatal nutrition result in long-lasting impairments in energy balance, which may be described as metabolic programing. Astrocytes, which are interconnected by gap junctions, have emerged as important players in the hypothalamic control of food intake. In order to study the effects of nutritional programming on glial morphology and protein expression, cross-fostered male Wistar rats at postnatal day 3 were assigned to three groups based on litter size: small litter (3 pups per dam, SL), normal litter (10 pups per dam, NL), and large litter (16 pups per dam, LL). Rats from the SL group exhibited higher body weight throughout the study and hyperphagia after weaning. LL animals exhibited hyperphagia, high energy efficiency and catch-up of body weight after weaning. Both the SL and LL groups at postnatal day 60 (PN60) exhibited increased levels of plasma leptin, the Lee index (as an index of obesity), adiposity content, immunoreactivity toward T-cell protein tyrosine phosphatase (TCPTP), and glial fibrillary acidic protein (GFAP) in the arcuate nucleus (ARC) of the hypothalamus. Astrocyte morphology was altered in the ARC of SL and LL animals, and this effect occurred in parallel with a reduction in immunoreactivity toward connexin 30 (CX30). The data obtained demonstrate that both neonatal over- and underfeeding promote not only alterations in the metabolic status but also morphological changes in glial cells in parallel with increasing TCPTP and changes in connexin expression.
Collapse
Affiliation(s)
- Lucas Kniess Debarba
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900.
| | - Paula Beatriz Marangon
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - Beatriz C Borges
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - Hellen Veida-Silva
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - Jade Cabestre Venâncio
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - Gislaine Almeida-Pereira
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| | - Lucila Leico Kagohara Elias
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil. 14049-900
| |
Collapse
|
45
|
Qian J, Chen Q, Ward SM, Duan E, Zhang Y. Impacts of Caffeine during Pregnancy. Trends Endocrinol Metab 2020; 31:218-227. [PMID: 31818639 PMCID: PMC7035149 DOI: 10.1016/j.tem.2019.11.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Epidemiological studies have revealed that caffeine consumption during pregnancy is associated with adverse gestational outcomes, yet the underlying mechanisms remain obscure. Recent animal studies with physiologically relevant dosages have begun to dissect adverse effects of caffeine during pregnancy with respect to oviduct contractility, embryo development, uterine receptivity, and placentation that jointly contribute to pregnancy complications. Interestingly, caffeine's effects are highly variable between individual animals under well-controlled experimental settings, suggesting the possibility of epigenetic regulation of these phenotypes, in addition to genetic variants. Moreover, caffeine exposure during sensitive windows of pregnancy may induce epigenetic changes in the developing fetus or even the germ cells to cause adult-onset diseases in subsequent generations. We discuss these research frontiers in light of emerging data.
Collapse
Affiliation(s)
- Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
46
|
Carrillo B, Collado P, Díaz F, Chowen JA, Grassi D, Pinos H. Blocking of Estradiol Receptors ERα, ERβ and GPER During Development, Differentially Alters Energy Metabolism in Male and Female Rats. Neuroscience 2019; 426:59-68. [PMID: 31805254 DOI: 10.1016/j.neuroscience.2019.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/25/2022]
Abstract
Estradiol not only participates in the regulation of energy metabolism in adulthood, but also during the first stages of life as it modulates the alterations induced by under- and over-nutrition. The objectives of the present study were to determine: 1) If estradiol is involved in the normal programming of energy metabolism in rats; 2) If there is a specific window of time for this programming and 3) If males and females are differentially vulnerable to the action of this hormone. Estrogen receptors (ER) α, ERβ and GPER were blocked by their specific antagonists MPP, PHTPP and G15, respectively, from postnatal day (P) 1 (the day of birth) to P5 or from P5 to P13. Physiological parameters such as body weight, fat depots and caloric intake were then analysed at P90. Hypothalamic AgRP, POMC, MC4R, ERα, ERβ and GPER mRNA levels and plasma levels of estradiol, were also studied. We found that blocking ER receptors from P5 to P13 significantly decreases long-term body weight in males and hypothalamic POMC mRNA levels in females. The blocking of ERs from P1 to P5 only affected plasma estradiol levels in females. The present results indicate programming actions of estradiol from P5 to P13 on body weight in male and POMC expression in female rats and emphasize the importance of including both sexes in metabolic studies. It is necessary to unravel the mechanisms that underlie the actions of estradiol on food intake, both during development and in adulthood, and to determine how this programming differentially takes place in males and females.
Collapse
Affiliation(s)
- Beatriz Carrillo
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| | - Paloma Collado
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| | - Francisca Díaz
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Avda. Menéndez Pelayo, N° 65 28009 Madrid, Spain, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, IMDEA Food Institute, CEI UAM + CSIC.
| | - Julie A Chowen
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Avda. Menéndez Pelayo, N° 65 28009 Madrid, Spain, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, IMDEA Food Institute, CEI UAM + CSIC.
| | - Daniela Grassi
- Department of Preclinical odontology, Faculty of Biomedical Science and Health Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón, Madrid, Spain.
| | - Helena Pinos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain, Instituto Mixto de Investigación Escuela Nacional de Sanidad (IMIENS).
| |
Collapse
|
47
|
Bae-Gartz I, Janoschek R, Breuer S, Schmitz L, Hoffmann T, Ferrari N, Branik L, Oberthuer A, Kloppe CS, Appel S, Vohlen C, Dötsch J, Hucklenbruch-Rother E. Maternal Obesity Alters Neurotrophin-Associated MAPK Signaling in the Hypothalamus of Male Mouse Offspring. Front Neurosci 2019; 13:962. [PMID: 31572115 PMCID: PMC6753176 DOI: 10.3389/fnins.2019.00962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose Maternal obesity has emerged as an important risk factor for the development of metabolic disorders in the offspring. The hypothalamus as the center of energy homeostasis regulation is known to function based on complex neuronal networks that evolve during fetal and early postnatal development and maintain their plasticity into adulthood. Development of hypothalamic feeding networks and their functional plasticity can be modulated by various metabolic cues, especially in early stages of development. Here, we aimed at determining the underlying molecular mechanisms that contribute to disturbed hypothalamic network formation in offspring of obese mouse dams. Methods Female mice were fed either a control diet (CO) or a high-fat diet (HFD) after weaning until mating and during pregnancy and gestation. Male offspring was sacrificed at postnatal day (P) 21. The hypothalamus was subjected to gene array analysis, quantitative PCR and western blot analysis. Results P21 HFD offspring displayed increased body weight, circulating insulin levels, and strongly increased activation of the hypothalamic insulin signaling cascade with a concomitant increase in ionized calcium binding adapter molecule 1 (IBA1) expression. At the same time, the global gene expression profile in CO and HFD offspring differed significantly. More specifically, manifest influences on several key pathways of hypothalamic neurogenesis, axogenesis, and regulation of synaptic transmission and plasticity were detectable. Target gene expression analysis revealed significantly decreased mRNA expression of several neurotrophic factors and co-factors and their receptors, accompanied by decreased activation of their respective intracellular signal transduction. Conclusion Taken together, these results suggest a potential role for disturbed neurotrophin signaling and thus impaired neurogenesis, axogenesis, and synaptic plasticity in the pathogenesis of the offspring’s hypothalamic feeding network dysfunction due to maternal obesity.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Thorben Hoffmann
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Nina Ferrari
- Heart Center, Cologne Center for Prevention in Childhood and Youth, University Hospital of Cologne, Cologne, Germany
| | - Lena Branik
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Andre Oberthuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Cora-Sophia Kloppe
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
48
|
Feeding circuit development and early-life influences on future feeding behaviour. Nat Rev Neurosci 2019; 19:302-316. [PMID: 29662204 DOI: 10.1038/nrn.2018.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A wide range of maternal exposures - undernutrition, obesity, diabetes, stress and infection - are associated with an increased risk of metabolic disease in offspring. Developmental influences can cause persistent structural changes in hypothalamic circuits regulating food intake in the service of energy balance. The physiological relevance of these alterations has been called into question because maternal impacts on daily caloric intake do not persist to adulthood. Recent behavioural and epidemiological studies in humans provide evidence that the relative contribution of appetitive traits related to satiety, reward and the emotional aspects of food intake regulation changes across the lifespan. This Opinion article outlines a neurodevelopmental framework to explore the possibility that crosstalk between developing circuits regulating different modalities of food intake shapes future behavioural responses to environmental challenges.
Collapse
|
49
|
Xiong LG, Pan LY, Gong YS, Huang JA, Liu ZH. Fuzhuan Tea protects Caenorhabditis elegans from glucose and advanced glycation end products via distinct pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
50
|
Goran MI, Plows JF, Ventura EE. Effects of consuming sugars and alternative sweeteners during pregnancy on maternal and child health: evidence for a secondhand sugar effect. Proc Nutr Soc 2019; 78:262-271. [PMID: 30501650 PMCID: PMC7441786 DOI: 10.1017/s002966511800263x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Consumption of sugar and alternative low- or no-energy sweeteners has increased in recent decades. However, it is still uncertain how consumption of sugar and alternative sweeteners during pregnancy affects pregnancy outcomes and long-term offspring health. This review aims to collate the available evidence surrounding the consequences of sugar and alternative sweetener consumption during pregnancy, a so-called secondhand sugar effect. We found evidence that sugar consumption during pregnancy may contribute to increased gestational weight gain and the development of pregnancy complications, including gestational diabetes, preeclampsia and preterm birth. Further, we found a growing body of the animal and human evidence that maternal sugar intake during pregnancy may impact neonatal and childhood metabolism, taste perception and obesity risk. Emerging evidence also suggests that both maternal and paternal preconception sugar intakes are linked to offspring metabolic outcomes, perhaps via epigenetic alterations to the germline. While there have been fewer studies of the impacts of alternative sweetener consumption before and during pregnancy, there is some evidence to suggest effects on infant outcomes including preterm birth risk, increased infant body composition and offspring preference for sweet foods, although mechanisms are unclear. We conclude that preconception and gestational sugar and alternative sweetener consumption may negatively impact pregnancy outcomes and offspring health and that there is a need for further observational, mechanistic and intervention research in this area.
Collapse
Affiliation(s)
- M. I. Goran
- Department of Preventive Medicine, University of Southern California Health Sciences Campus, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - J. F. Plows
- Department of Preventive Medicine, University of Southern California Health Sciences Campus, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - E. E. Ventura
- Department of Preventive Medicine, University of Southern California Health Sciences Campus, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| |
Collapse
|