1
|
Andree KB, Loi B, Vallainc D, Concu D, Duncan N, Carboni S. Investigation of the utility of PCR-RFLP as a rapid alternative to DNA sequencing for interrogation of the genetic sex of Mugil cephalus. Anim Reprod Sci 2024; 270:107614. [PMID: 39366166 DOI: 10.1016/j.anireprosci.2024.107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Mugil cephalus is a species of considerable interest for aquaculture. As a species that is not sexually dimorphic, when building a brood stock with a balanced sex ratio there is difficulty for identification of sex until the animals are quite mature. When mono-sex populations of this species is desired, as in the case of production of females for "bottarga", considerable resource expenditure could be saved if early sorting of sexes were possible to enable selection of a single sex. A recently described sex-associated loci within the follicle stimulating hormone receptor gene (fshr) was identified using genomic DNA sequencing and shown to contain some non-synonymous mutations wherein the females have a tendency to be homozygous and the males heterozygous. The loci identification method is time-consuming and somewhat expensive. We propose that the method described for the identification of the genetic sex of Mugil cephalus, prior to sexual maturation should be rapid and not require DNA sequencing. In this work, we demonstrate the utilization of one of these fshr mutations within this genetic marker in a PCR-RFLP assay. Using this new method, the loci in question shows 77.8 % partitioning with males and 88.9 % partition with females, as referenced to phenotypic sex characterized by histology, thus confirming the partitioning of the genetic marker as seen previously using DNA sequencing. Future applications of this relatively rapid and inexpensive method could contribute to the production of mono-sex farmed stock and open new opportunities for more efficient broodstock management practices in the species.
Collapse
Affiliation(s)
- Karl B Andree
- Institute for Research and Technology in Agroalimentaries, Crta. Poble Nou. Km 5.5, La Ràpita, Tarragona 43540, Spain.
| | - Barbara Loi
- IMC - International Marine Centre, Località Sa Mardini 09170, Torregrande, Oristano, Sardinia, Italy
| | - Dario Vallainc
- IMC - International Marine Centre, Località Sa Mardini 09170, Torregrande, Oristano, Sardinia, Italy
| | - Danilo Concu
- IMC - International Marine Centre, Località Sa Mardini 09170, Torregrande, Oristano, Sardinia, Italy
| | - Neil Duncan
- Institute for Research and Technology in Agroalimentaries, Crta. Poble Nou. Km 5.5, La Ràpita, Tarragona 43540, Spain
| | - Stefano Carboni
- IMC - International Marine Centre, Località Sa Mardini 09170, Torregrande, Oristano, Sardinia, Italy
| |
Collapse
|
2
|
Porceddu R, Porcu C, Mulas G, Spiga S, Follesa MC. Ontogenetic changes in the tyrosine hydroxylase immunoreactive preoptic area in the small-spotted catshark Scyliorhinus canicula (L., 1758) females: catecholaminergic involvement in sexual maturation. Front Neuroanat 2024; 17:1301651. [PMID: 38239387 PMCID: PMC10794776 DOI: 10.3389/fnana.2023.1301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The catecholaminergic component of the brain-pituitary-gonadal axis, which mediates the influence of external and internal stimuli on the central nervous system and gonad development in vertebrates, is largely unexplored in Chondrichthyes. We considered Scyliorhinus canicula (L., 1758) females as a model for this vertebrate's class, to assess the involvement of the catecholaminergic system of the brain in its reproduction. Along the S. canicula reproductive cycle, we characterized and evaluated differences in somata morphometry and the number of putative catecholaminergic neurons in two brain nuclei: the periventricular preoptic nucleus, hypothesized to be a positive control for ovarian development, and the suprachiasmatic nucleus, examined as a negative control. Materials and methods 16 S. canicula wild females were sampled and grouped in maturity stages (immature, maturing, mature, and mature egg-laying). The ovary was histologically processed for the qualitative description of maturity stages. Anti-tyrosine hydroxylase immunofluorescence was performed on the diencephalic brain sections. The immunoreactive somata were investigated for morphometry and counted using the optical fractionator method, throughout the confocal microscopy. Results and discussions Qualitative and quantitative research confirmed two separate populations of immunoreactive neurons. The modifications detected in the preoptic nucleus revealed that somata were more numerous, significantly smaller in size, and more excitable during the maturing phase but decreased, becoming slightly bigger and less excitable in the egg-laying stage. This may indicate that the catecholaminergic preoptic nucleus is involved in the control of reproduction, regulating both the onset of puberty and the imminent spawning. In contrast, somata in the suprachiasmatic nucleus grew in size and underwent turnover in morphometry, increasing the total number from the immature-virgin to maturing stage, with similar values in the more advanced maturity stages. These changes were not linked to a reproductive role. These findings provide new valuable information on Chondrichthyes, suggesting the existence of an additional brain system implicated in the integration of internal and environmental cues for reproduction.
Collapse
Affiliation(s)
- Riccardo Porceddu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Cristina Porcu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Giovanna Mulas
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Maria Cristina Follesa
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| |
Collapse
|
3
|
Quirós-Pozo R, Concu D, Robaina L, Vallainc D, Loi B, Roo J. Effects of Different Co-Feeding Protocols on the Early Weaning of Flathead Grey Mullet ( Mugil cephalus) Larvae. Animals (Basel) 2023; 13:ani13101685. [PMID: 37238115 DOI: 10.3390/ani13101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The sustainable expansion of aquaculture relies on a sufficient supply of eggs and larvae, which are the first step of life cycle management. However, marine fish larval rearing generally depends on live feed production, which needs additional facilities and labor. The flathead grey mullet (Mugil cephalus), a promising species for aquaculture diversification, has a precocious digestive system development, supporting the feasibility of early weaning strategies. For these reasons, this study evaluated survival, growth, proximate and fatty acid composition, and gene expression of Mugil cephalus larvae reared under three different weaning protocols. Three co-feeding treatments, two with different Artemia sp. concentrations (A100 and A50, 2 and 1 Artemia sp. mL-1 day-1, respectively) and one with only rotifers administered as live feed along the feeding trial (A0), were assessed from 22 to 36 days post-hatching (dph). The A0 treatment performed better in survival (64.79 ± 7.40%) than the A100 protocol (32.46 ± 12.82%). In contrast, the larvae of the A100 treatment presented significantly higher final length (15.51 ± 0.86 mm) than those of the A0 treatment (12.19 ± 1.45 mm) and higher final weight (41.28 ± 1.48 mg) than those of the A50 and A0 treatments (31.23 ± 3.65 mg and 24.03 ± 7.99 mg, respectively). On the other hand, the expression of digestive enzyme- and somatotropic factor-related genes did not show differences between treatments. The present results support the convenience of treatment A0 in maximizing survival, as rotifers should be maintained until 30-32 dph (until a total larval length of at least 10 mm). However, to improve growth and minimize size dispersion, Artemia sp. addition is recommended from day 26 to day 29 post-hatching (total larval length of 8 to 9 mm).
Collapse
Affiliation(s)
- Raquel Quirós-Pozo
- Grupo de Investigación en Acuicultura, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain
| | - Danilo Concu
- International Marine Centre-IMC Foundation, Loc. Sa Mardini, Torregrande, 09170 Oristano, Italy
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain
| | - Dario Vallainc
- International Marine Centre-IMC Foundation, Loc. Sa Mardini, Torregrande, 09170 Oristano, Italy
| | - Barbara Loi
- International Marine Centre-IMC Foundation, Loc. Sa Mardini, Torregrande, 09170 Oristano, Italy
| | - Javier Roo
- Grupo de Investigación en Acuicultura, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain
| |
Collapse
|
4
|
Gonad recrudescence and annual sex steroid patterns in female goldspot mullet, Liza parsia reared in brackishwater pond. Anim Reprod Sci 2023; 248:107161. [PMID: 36542925 DOI: 10.1016/j.anireprosci.2022.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Goldspot mullet, Liza parsia is a commercially important fish of South East Asia, where its farming depends on wild seed resources due to unavailability of hatchery technology. It, therefore, is important to understand the annual reproductive cycle of female L. parsia in captivity. In this study, adult male and female L. parsia (body weight ranges: 45-90 g; total length ranges: 100-125 mm, age >1 year) were collected from the wild and reared in a brackishwater pond. Thereafter, fish were randomly sampled at monthly intervals to measure the hepatosomatic index (HSI), gonadosomatic index (GSI), levels of serum steroids (testosterone, T; 17β-estradiol, E2 and 17α-hydroxyprogesterone, 17-OHP), and oocyte growth. Results exhibited that female L. parsia undergoes six different maturation stages, namely I (oocyte diameter, OD: <100 µm), II (OD: 100-350 µm), III (OD: 350-400 µm), IV (vitellogenic oocyte, OD: 400-450 µm), V (ripe oocyte, OD: 450-550 µm) and VI (atretic oocyte, OD: 60-150 µm), with synchronous oocyte development. The highest (P < 0.05) HSI (1.96 ± 0.24) and GSI (12.01 ± 0.73) were recorded in December and January, respectively. Concentration of E2 gradually increased from August and reached its peak (807.67 ± 25.98 pg mL-1, P < 0.05) in December. The level of 17-OHP (85.87 ± 0.91 pg mL-1) was at its peak during the normal spawning month (January) (P < 0.05). Overall, the results indicated that L. parsia attains maturity in brackishwater pond, which is consistent with previous observations, and altogether provide the basis to develop a breeding technology in captivity through hormonal and environmental manipulations.
Collapse
|
5
|
Strem RI, Ehrlich R, Shashar N, Sharon G. First description of Vibrio harveyi as the causative agent of morbidity and mortality in farmed flathead grey mullet Mugil cephalus. DISEASES OF AQUATIC ORGANISMS 2022; 154:33-48. [PMID: 37318383 DOI: 10.3354/dao03724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flathead grey mullet Mugil cephalus is an important species in the aquaculture industry in the Mediterranean basin and throughout the world. During the last 10 yr, M. cephalus breeding stocks, larvae, and juveniles cultured in Eilat (Israel) have shown neurological signs such as uncoordinated circular swimming, while also presenting oral hemorrhages. Death follows days after the onset of the clinical signs, and mortality rates may reach 80% in some cases, causing high economical losses. Bacteriology isolations from different organs, including the brain, and a Koch's postulate experiment, confirmed Vibrio harveyi as the causative agent. Histological analyses showed the presence of the bacterium in different organs. However, in the brain, the bacterium was observed only within blood vessels and meninges. In some samples, mild to severe brain tissue damage was seen. In order to understand the virulence and lethality of V. harveyi, a median lethal dose was calculated, and the result was 106 colony-forming units fish-1. To the best of our knowledge, this is the first report that describes V. harveyi isolated from the brain of M. cephalus and validates it as an etiological agent causing neurological signs in this fish species.
Collapse
Affiliation(s)
- Rosa Ines Strem
- Department of Life Sciences, Eilat Campus, Ben Gurion University of the Negev, 8855630 Israel
| | | | | | | |
Collapse
|
6
|
Ramos-Júdez S, Giménez I, Gumbau-Pous J, Arnold-Cruañes LS, Estévez A, Duncan N. Recombinant Fsh and Lh therapy for spawning induction of previtellogenic and early spermatogenic arrested teleost, the flathead grey mullet (Mugil cephalus). Sci Rep 2022; 12:6563. [PMID: 35449146 PMCID: PMC9023507 DOI: 10.1038/s41598-022-10371-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
With the expansion and diversification of global aquaculture, efforts continue to develop new bio-technologies for assisted reproduction in species that present reproductive dysfunctions. Flathead grey mullet (Mugil cephalus) males held in intensive conditions in the Mediterranean region do not produce fluent milt and most females are arrested at previtellogenesis. The weekly injections of recombinant follicle stimulating hormone (rFsh) and luteinizing hormone (rLh) induced and completed vitellogenesis in treated females (n = 21), and treated males produced fluent sperm (n = 9). The application of a priming dose of 30 µg kg-1 rLh and resolving dose of 40 mg kg-1 Progesterone, or priming and resolving doses of 30 µg kg-1 rLh, resulted in the induction of maturation, ovulation, and spontaneous spawns with a spawning success of the 85% (8 of 9 females) and 100% (n = 6), respectively. The eggs collected had 63 ± 21% fertilization with embryo development and 58 ± 23% hatching. In comparison, control individuals did not show advances in gonadal development and did not produce fluent sperm. The present results confirm the possibility of controlling oogenesis from previtellogenesis to the completion of maturation and fertilised tank spawning using exclusively rFsh and rLh in a teleost species.
Collapse
Affiliation(s)
- Sandra Ramos-Júdez
- IRTA, Sant Carles de la Ràpita, Ctra. de Poble Nou km. 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain. .,S2AQUAcoLAB, Av. Do Parque Natural da Ria Formosa s/n, 8700-194, Olhão, Portugal.
| | | | - Josep Gumbau-Pous
- IRTA, Sant Carles de la Ràpita, Ctra. de Poble Nou km. 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain
| | | | - Alicia Estévez
- IRTA, Sant Carles de la Ràpita, Ctra. de Poble Nou km. 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain
| | - Neil Duncan
- IRTA, Sant Carles de la Ràpita, Ctra. de Poble Nou km. 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain.
| |
Collapse
|
7
|
Kalarani A, Vinodha V, Moses IR. Inter-relations of brain neurosteroids and monoamines towards reproduction in fish. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
8
|
Curzon AY, Dor L, Shirak A, Meiri-Ashkenazi I, Rosenfeld H, Ron M, Seroussi E. A novel c.1759T>G variant in follicle-stimulating hormone-receptor gene is concordant with male determination in the flathead grey mullet (Mugil cephalus). G3-GENES GENOMES GENETICS 2021; 11:6046932. [PMID: 33589926 PMCID: PMC8022982 DOI: 10.1093/g3journal/jkaa044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
Various master key regulators (MKRs) that control a binary switch of sex determination (SD) have been found in fish; these provide an excellent model for the study of vertebrate genetic SD. The SD region in flathead grey mullet has been previously mapped to a 1 Mbp region harboring 27 genes, of which one is follicle-stimulating hormone receptor (fshr). Although this gene is involved in gonad differentiation and function, it has not been considered as an MKR of SD. We systematically investigated polymorphism in mullet fshr using DNA shotgun sequences, and compared them between males and females. Capable of encoding nonconservative amino acid substitutions, c.1732G>A and c.1759T>G exhibited association with sex on a population level (N = 83; P ≤ 6.7 × 10-19). Hence, 1732 A and 1759 G represent a male-specific haplotype of the gene, designated as "fshry." Additional flanking SNPs showed a weaker degree of association with sex, delimiting the SD critical region to 143 nucleotides on exon 14. Lack of homozygotes for fshry, and the resulting divergence from Hardy-Weinberg equilibrium (N = 170; P ≤ 3.9 × 10-5), were compatible with a male heterogametic model (XY/XX). Capable of replacing a phenylalanine with valine, c.1759T>G alters a conserved position across the sixth transmembrane domain of vertebrate FSHRs. Amino acid substitutions in this position in vertebrates are frequently associated with constant receptor activation and consequently with FSH/FSHR signaling alteration; thus, indicating a potential role of fshr as an MKR of SD.
Collapse
Affiliation(s)
- Arie Y Curzon
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Lior Dor
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| | - Iris Meiri-Ashkenazi
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat 88112, Israel
| | - Hana Rosenfeld
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat 88112, Israel
| | - Micha Ron
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| | - Eyal Seroussi
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| |
Collapse
|
9
|
Abdel-Latif HMR, Shukry M, Saad MF, Mohamed NA, Nowosad J, Kucharczyk D. Effects of GnRHa and hCG with or without dopamine receptor antagonists on the spawning efficiency of African catfish (Clarias gariepinus) reared in hatchery conditions. Anim Reprod Sci 2021; 231:106798. [PMID: 34225238 DOI: 10.1016/j.anireprosci.2021.106798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
Optimization of artificial reproduction is essential for minimizing genetic diversity, especially when fish are captured from their natural habitats and spawned in controlled conditions. In the present study, there was evaluation of the effects of gonadotropin-releasing hormone analogue (GnRHa) and human chorionic gonadotropin (hCG) with or without dopamine receptor antagonists such as domperidone (DOM) and metoclopramide (MET) on the spawning efficiency of African catfish (Clarias gariepinus) reared in captivity. The control group was intramuscularly (IM) injected with 1 mL of sterile saline solution. The fish specimens of the other six groups were injected IM with GnRHa or hCG, or in combination with either DOM or MET. None of the specimens had ovulations in the control group. There was the longest latency period in specimens treated with only GnRHa or hCG. There were the largest egg mass weight, fecundity, and hatchability (%) in specimens of the GnRHa + MET group. These findings indicate that GnRHa or hCG combined with dopamine receptor antagonists such as DOM and MET resulted in a marked enhancement of ovulation rate and increased the egg mass, fecundity, and hatchability of the treated C. gariepinus, and the values when there was inclusion of the MET treatment exceeded those when there was treatment with DOM.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt.
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Michel F Saad
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nesreen A Mohamed
- Department of Biochemistry, Nutritional Deficiency Diseases and Toxicology, Animal Health Institute, Kafrelsheikh, Egypt
| | - Joanna Nowosad
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, Warmia and Mazury University in Olsztyn, Poland
| | - Dariusz Kucharczyk
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, Warmia and Mazury University in Olsztyn, Poland
| |
Collapse
|
10
|
Kookaram K, Mojazi Amiri B, Dorkoosh FA, Nematollahi MA, Mortazavian E, Abed Elmdoust A. Effect of oral administration of GnRHa+nanoparticles of chitosan in oogenesis acceleration of goldfish Carassius auratus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:477-486. [PMID: 33569680 DOI: 10.1007/s10695-021-00926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Several methods have been used to accelerate previtellogenesis and vitellogenesis stages in fish, including hormonal induction, sustained-release delivery systems, and oral delivery of gonadotropin-releasing hormone (GnRH). In this study, we proposed the oral administration of GnRH analog + nanoparticles of chitosan to accelerate oogenesis in goldfish as a model fish in reproductive biology and aquaculture. In this regard, adult female goldfish were fed with six experimental groups: chitosan, 50 μg GnRHa/kg b.w., 100 μg GnRHa/kg b.w., chitosan + 50 μg GnRHa/kg b.w., and chitosan + 100 μg GnRHa/kg b.w., and diet without any additive as the control for 40 days in triplicate. Every 10 days, ovarian samples were collected, and gonadosomatic index (GSI), oocyte diameter (OD), zona radiata thickness (Zr), and diameter of the follicular layer (Fl) were measured to assess ovarian developmental stage for each treatment. Additionally, blood sampling was done to measure serum 17β-estradiol concentration at the end of the experiment. All parameters remained unchanged during the experiment in the chitosan-fed group. In the group fed with 100 μg GnRH or chitosan nanoparticle + 100 μg GnRHa, these parameters in general were increased. However, the effects in 50 μg GnRHa or chitosan nanoparticle + 50 μg GnRHa treatments were uncertain; they affected serum E2 levels as a trend toward a significant increase was observed in goldfish treated with chitosan nanoparticle + 100 μg GnRHa. Finally, the results indicated the oral administration of chitosan + 100 μg GnRHa/kg b.w. significantly accelerated the oocyte development and growth of ovary.
Collapse
Affiliation(s)
- Kazem Kookaram
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, 31585-4314, Iran
| | - Bagher Mojazi Amiri
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, 31585-4314, Iran.
| | | | - Mohammad Ali Nematollahi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, 31585-4314, Iran
| | - Elaheh Mortazavian
- Department of Pharmaceutics, Tehran University of Medical Science, Tehran, Iran
| | - Amirreza Abed Elmdoust
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, 31585-4314, Iran
| |
Collapse
|
11
|
Badruzzaman M, Shahjahan M, Roy PK, Islam MT. Rotenone alters behavior and reproductive functions of freshwater catfish, Mystus cavasius, through deficits of dopaminergic neurons in the brain. CHEMOSPHERE 2021; 263:128355. [PMID: 33297277 DOI: 10.1016/j.chemosphere.2020.128355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Rotenone, commonly used as a pesticide in agriculture and as a piscicide in aquaculture, is a toxic compound that causes dopaminergic neuronal cell loss in the substantia nigra pars compacta of the brain. At the neuroendocrine level, dopamine (DA) drives behavioral (locomotion, emotion, feeding, and social interactions, etc.) and reproductive functions of fish. In the current investigation, we examined effects of rotenone toxicity on neurobehavioral and reproductive functions in whole brain and in selected brain regions in an Indian freshwater catfish, locally known as gulsha (Mystus cavasius). After fish were exposed to water containing rotenone at 0, 2.5, 25, and 250 μg/L for 2 days, significant reductions of DA, 3,4-dihydroxyphenylacetic acid (DOPAC; a DA metabolite), and their ratio (DOPAC/DA) were observed in whole brain at 250 μg/L ambient concentrations of rotenone. When fish were treated with rotenone at 250 μg/L concentration for 2 days, there was a significant reduction of DA, DOPAC and DOPAC/DA in diencephalon, DA and DOPAC in pituitary, and only DA in the telencephalon, compared with control fish. In parallel, numbers of tyrosine hydroxylase-positive (TH+) neurons declined significantly in the diencephalon and pituitary after rotenone treatment. Slowed, spontaneous movement and reduced feeding behavior were observed in rotenone-treated fish. Rotenone treatment resulted in a significantly higher gonadosomatic index with many mature vitellogenic oocytes in ovaries and lowered dopaminergic activity in these fish. These results indicate that rotenone influences neurobehavioral and reproductive functions through dopaminergic neuronal cell loss in gulsha brain.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706, Bangladesh.
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Prodip Kumar Roy
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Md Taimur Islam
- Department of Pathobiology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706, Bangladesh
| |
Collapse
|
12
|
The stress - Reproductive axis in fish: The involvement of functional neuroanatomical systems in the brain. J Chem Neuroanat 2020; 112:101904. [PMID: 33278567 DOI: 10.1016/j.jchemneu.2020.101904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 01/26/2023]
Abstract
The neuroendocrine-stress axis of nonmammalian species is evolutionarily conserved, which makes them useful to serve as important model systems for elucidating the function of the vertebrate stress response. The involvement of hypothalamo-pituitary-adrenal (HPA) axis hormones in regulation of stress and reproduction is well described in different vertebrates. However, the stress response is a complex process, which appears to be controlled by a number of neurochemicals in association with hypothalamo-pituitary-interrenal (HPI) axis or independent of HPI axis in fish. In recent years, the participation of neurohormones other than HPI axis in regulation of stress and reproduction is gaining more attention. This review mainly focuses on the involvement of functional neuroanatomical systems such as the catecholaminergic neurotransmitter dopamine (DA) and opioid peptides in regulation of the stress-reproductive axis in fish. Occurrences of DA and opioid peptides like β-endorphin, enkephalins, dynorphin, and endomorphins have been demonstrated in fish brain, and diverse roles such as pain modulation, social behaviour and reproduction are implicated for these hormones. Neuroanatomical studies using retrograde tracing, immunohistochemical staining and lesion methods have demonstrated that the neurons originating in the preoptic region and the nucleus lateralis tuberis directly innervate the pituitary gland and, therefore, the hypophysiotrophic role of these hormones. In addition, heightened synthetic and secretory activity of the opioidergic and the dopaminergic neurons in hypothalamic areas of the brain during stress exposure suggest potentially intricate relationship with the stress-reproductive axis in fish. Current evidence in early vertebrates like fish provides a novel insight into the underlying neuroendocrine mechanisms as additional pathways along the stress-reproductive axis that seem to be conserved during the course of evolution.
Collapse
|
13
|
Dor L, Shirak A, Curzon AY, Rosenfeld H, Ashkenazi IM, Nixon O, Seroussi E, Weller JI, Ron M. Preferential Mapping of Sex-Biased Differentially-Expressed Genes of Larvae to the Sex-Determining Region of Flathead Grey Mullet ( Mugil cephalus). Front Genet 2020; 11:839. [PMID: 32973865 PMCID: PMC7472742 DOI: 10.3389/fgene.2020.00839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Flathead gray mullet (Mugil cephalus) is a cosmopolitan mugilid species popular in fishery and aquaculture with an economic preference for all-female population. However, it displays neither sexual dimorphisms nor heteromorphic sex chromosomes. We have previously presented a microsatellite-based linkage map for this species locating a single sex determination region (SDR) on linkage group 9 (LG9) with evidence for XX/XY sex determination (SD) mechanism. In this work, we refine the critical SDR on LG9, and propose positional- and functional- candidate genes for SD. To elucidate the genetic mechanism of SD, we assembled and compared male and female genomic sequences of 19 syntenic genes within the putative SDR on mullet's LG9, based on orthology to tilapia's LG8 (tLG8) physical map. A total of 25 sequence-based markers in 12 genes were developed. For all markers, we observed association with sex in at least one of the two analyzed M. cephalus full-sib families, but not in the wild-type population. Recombination events were inferred within families thus setting the SDR boundaries to a region orthologous to ∼0.9 Mbp with 27 genes on tLG8. As the sexual phenotype is evident only in adults, larvae were assigned into two putative sex-groups according to their paternal haplotypes, following a model of XY/XX SD-system. A total of 107 sex-biased differentially expressed genes in larvae were observed, of which 51 were mapped to tLG8 (48% enrichment), as compared to 5% in random control. Furthermore, 23 of the 107 genes displayed sex-specific expression; and 22 of these genes were positioned to tLG8, indicating 96% enrichment. Of the 27 SDR genes, BCCIP, DHX32A, DOCK1, and FSHR (GTH-RI) are suggested as positional and functional gene candidates for SD.
Collapse
Affiliation(s)
- Lior Dor
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Andrey Shirak
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Arie Y. Curzon
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hana Rosenfeld
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel
| | - Iris M. Ashkenazi
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel
| | - Oriya Nixon
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, Israel
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
| | - Joel I. Weller
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
14
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
15
|
Daily variation of D2 dopamine receptor transcription in the brain of the Japanese eel Anguilla japonica and its regulation with dopamine and melatonin. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110581. [PMID: 31634572 DOI: 10.1016/j.cbpa.2019.110581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022]
Abstract
Dopamine plays a crucial role in controlling reproduction in eels, and its action is mediated through D2-type dopamine receptors. D2A and D2B receptors in the Japanese eel Anguilla japonica were cloned and characterized in the present study. Attention (daily expression patterns in the brain and endogenous regulation) was paid to D2B receptor because it is considered to play a crucial role in eel reproduction. The cDNAs of D2A and D2B receptors had open reading frames comprising 456 and 454 amino acid residues, respectively, which were phylogenetically clustered with those of other teleost species. Both receptors were highly expressed in the brain. D2B receptor transcript levels exhibited high day/low night variation in the midbrain and pituitary, suggesting that its transcription in these tissues is regulated in a daily manner, possibly under influence of melatonin. Intraperitoneal injection of dopamine downregulated D2B receptor transcription significantly in the midbrain and moderately in the pituitary within 1 h, but upregulated its transcription in the forebrain. Co-injection of dopamine with its antagonist (domperidone) reversed the effect of dopamine in the pituitary and forebrain, but not in the midbrain, suggesting that the effect of dopamine on D2B receptor transcription differs among brain regions. The same treatment with melatonin resulted in decreased D2B receptor transcription in the midbrain. These findings indicate that dopamine and melatonin have key roles in the daily variation in D2B receptor transcription in the brain of Japanese eel, and that they are related to a daily base secretion of hormones in the hypothalamic-pituitary-gonadal axis in this species.
Collapse
|
16
|
Fukunaga K, Yamashina F, Ohta N, Mizuno H, Takeuchi Y, Yamauchi C, Takemura A. Involvement of melatonin in transducing moon-related signals into the reproductive network of the female honeycomb grouper Epinephelus merra. Gen Comp Endocrinol 2019; 282:113211. [PMID: 31238075 DOI: 10.1016/j.ygcen.2019.113211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
Abstract
Most groupers (genus Epinephelus) inhabiting tropical and subtropical waters exhibit lunar-related reproductive cycles. Their gametes develop synchronously toward and are released around the species-selected moon phase. Periodical changes in cues from the moon are likely used as zeitgeber, and the hypothalamic-pituitary-gonadal (HPG) axis may be activated after cues are perceived by the sensory organ and transduced as internal signals. The objective of this study was to examine weekly changes in mRNA expression profiles of gonadotropin-releasing hormones (gnrh1 and gnrh2) and the β-subunit of gonadotropins (fshβ and lhβ) during the spawning season (May to June) of the female honeycomb grouper Epinephelus merra, which spawns around the full moon period. When mature females were collected based on the lunar cycle, the gonadosomatic index peaked around the full moon. Ovarian histology revealed that oocytes laden with yolk developed toward the full moon and, subsequently, ovulatory follicles appeared around the last quarter moon, confirming lunar-related spawning with a full moon preference. Real-time quantitative polymerase chain reaction analyses revealed high abundances of fshβ and lhβ toward the first quarter moon, whereas concentrations of gnrh1 and gnrh2 increased around the last quarter moon and the first quarter moon, respectively, suggesting that transcription levels of these hormones fluctuate with the lunar cycle. The measurement of melatonin in the eye around the new moon and the full moon revealed that the ocular melatonin content was higher around the new moon than around the full moon, suggesting that the honeycomb grouper can perceive changes in moonlight. In addition, implantation of an osmotic pump containing melatonin into the body cavity of E. merra reduced the transcription levels of gonadotropins, suggesting that melatonin negatively affects hormonal synthesis at the HPG axis. We concluded that melatonin plays an essential role in transducing periodical changes in moonlight and that decreases in melatonin levels from the new moon to the full moon activate the HPG axis for entrainment of gonadal development and spawning.
Collapse
Affiliation(s)
- Kodai Fukunaga
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Fumika Yamashina
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Natsuki Ohta
- Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Hiromasa Mizuno
- Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Yuki Takeuchi
- Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan; Okinawa Institute of Science and Technology Graduate School, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Chihiro Yamauchi
- Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Akihiro Takemura
- Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
17
|
Ameliorative effect of chitosan-conjugated 17α-methyltestosterone on testicular development in Clarias batrachus. Anim Reprod Sci 2018; 193:245-254. [PMID: 29728276 DOI: 10.1016/j.anireprosci.2018.04.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/13/2018] [Accepted: 04/25/2018] [Indexed: 12/15/2022]
Abstract
Chitosan nanoparticles conjugated with 17α-methyltestosterone (CS + MT) were used for studying their effect on the testicular development of Clarias batrachus during different reproductive phases. The size of chitosan nanoparticles was 127.2 nm and the nano-conjugated 17α methyltestosterone (17α-MT) was 196.1 nm (20 mg/100 ml of chitosan). Single injections of CS + MT at different doses such as 0.01, 0.1 and 0.5 μg/g body weight were administered to adults during the pre-spawning, spawning and post-spawning phase. Nano-conjugated steroid was effective at the lower dose; showing an increase in the Gonadosomatic Index (GSI) and 11-ketotestosterone level compared to the control group. Histological observations confirmed the dose-dependent advancement in spermatogenesis. These findings indicate the possibility of using CS + MT for enhancing gonadal maturity of C. batrachus.
Collapse
|
18
|
Chaiyamoon A, Tinikul R, Chaichotranunt S, Poomthong T, Suphamungmee W, Sobhon P, Tinikul Y. Distribution and dynamic expression of serotonin and dopamine in the nervous system and ovary of Holothuria scabra during ovarian maturation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:391-407. [PMID: 29344679 DOI: 10.1007/s00359-018-1247-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
Abstract
In the present study, the distribution and dynamic expression of serotonin and dopamine in the nervous system and ovary of the sea cucumber, Holothuria scabra, during different ovarian stages were investigated. We found that serotonin-immunoreactivity was more intense in the neurons and neuropils of the outer ectoneural part, the inner hyponeural part, and the wall of hyponeural canal of radial nerve cord during the mature stages of ovarian cycle, whereas dopamine-immunoreactivity was detected at a higher intensity in these tissues during the early stages. Both neurotransmitters were detected in the ectoneural part of the nerve ring. In the ovary, serotonin intensity was more intense in the cytoplasm of late oocytes, while dopamine-immunoreactivity was more intense in the early stages. The changes in the levels serotonin in the radial nerve cord and oocytes are incremental towards the late stages of ovarian maturation. In contrast, dopamine levels in the nervous tissues and oocytes were more intense in early stages and became decremental towards the late stages. These findings suggest that serotonin and dopamine may have opposing effects on ovarian development in this sea cucumber species.
Collapse
Affiliation(s)
- Arada Chaiyamoon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Supakant Chaichotranunt
- Coastal Fisheries Research and Development Center, Klongwan, Prachuabkirikhan, 77000, Thailand
| | - Tanes Poomthong
- Coastal Fisheries Research and Development Center, Klongwan, Prachuabkirikhan, 77000, Thailand
| | - Worawit Suphamungmee
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Rd, Mueang District, Chonburi, 20131, Thailand
| | - Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand.
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand.
| |
Collapse
|
19
|
Passini G, Sterzelecki FC, de Carvalho CVA, Baloi MF, Naide V, Cerqueira VR. 17α-Methyltestosterone implants accelerate spermatogenesis in common snook, Centropomus undecimalis, during first sexual maturation. Theriogenology 2018; 106:134-140. [DOI: 10.1016/j.theriogenology.2017.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/29/2017] [Accepted: 10/07/2017] [Indexed: 01/14/2023]
|
20
|
Balamurugan R, Munuswamy N. Cryopreservation of sperm in Grey mullet Mugil cephalus (Linnaeus, 1758). Anim Reprod Sci 2017; 185:205-213. [PMID: 28869108 DOI: 10.1016/j.anireprosci.2017.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/29/2017] [Accepted: 08/23/2017] [Indexed: 11/29/2022]
Abstract
The aim of this study was to document the effects of cryopreservation on sperm motility and viability in Grey mullet Mugil cephalus. Cryopreservation of sperm was attempted by using two extenders ringer solution for marine fish (RSMF) and V2 extender (V2E) and cryoprotectants dimethylacetamide (DMA), dimethylsulfoxide (DMSO), ethylene glycol (EG), glycerol (GLY), propylene glycol (PG) and methanol (MeOH). Cryoprotectants were assessed at different concentrations individually as well as in combination with varying equilibration times (10 and 30min). For optimization of freezing rate, four freezing protocols (-5, -10, -20 and -30°C/min) were evaluated. After achieving final temperature, samples were plunged in liquid nitrogen (-196°C) and stored for a week. Samples were subsequently thawed in a water bath at 30°C for assessment of sperm motility and viability. Results indicated that cryomedium constituting of V2E extender+10% glycerol with a dilution ratio of 1:1 (sperm: cryomedium) at an equilibration time of 5 to- 10min and freezing rate of -20°C/min was more desirable compared with other factors that were assessed. Use of this protocol resulted in retaining the greatest sperm motility grade 3.0±0.0 (50%-80% sperm movement, fast swimming) and 48.19±3.12% of sperm viability. The results of the present study, therefore, provide base-line data for establishing a protocol for sperm cryopreservation in M.cephalus. Further studies are, however, required for optimization of most suitable sperm cryopreservation protocol.
Collapse
Affiliation(s)
- Ramachandran Balamurugan
- Unit of Aquaculture & Cryobiology, Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Natesan Munuswamy
- Unit of Aquaculture & Cryobiology, Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
21
|
Kakoolaki S, Akbary P, Zorriehzahra MJ, Salehi H, Sepahdari A, Afsharnasab M, Mehrabi MR, Jadgal S. Camellia sinensis supplemented diet enhances the innate non-specific responses, haematological parameters and growth performance in Mugil cephalus against Photobacterium damselae. FISH & SHELLFISH IMMUNOLOGY 2016; 57:379-385. [PMID: 27582289 DOI: 10.1016/j.fsi.2016.08.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/18/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
This study evaluated the effect of dietary supplementation of Camellia sinensis leaf-extract on non-specific immune responses and disease resistance of Mugil cephalus fingerling against P. damselae. Fish were fed with 0 (unsupplemented), 50, 100 and 200 mg/kg of green tea extract (GTE) supplemented diets. Results indicated that GTE decreased mortality in M. cephalus in a dose-dependent manner after challenge with P. damselae. Haematological parameters containing RBC, Hct, Hb and WBC and growth performance (weight gain) showed remarkable changes in comparison with control group. In addition, the phagocytic (PA) and respiratory burst activity (RBA) significantly increased in M. cephalus, fed 100 and 50, 100 and 200 mg/kg GTE, respectively. Lysozyme statistically increased in GTE supplemented fish. Overall, our results indicated that incorporation of C. sinensis supplemented diet at 100 and 200 mg/kg doses significantly enhanced the immune responses in M. cephalus and that the mortality percentage could be remarkably reduced after challenging the fish against P. damselae.
Collapse
Affiliation(s)
- Shapour Kakoolaki
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Tehran, Iran.
| | - Paria Akbary
- Department of Marine Sciences, Chabahar Maritime University, Fisheries Group, Chabahar, Iran
| | - Mohamad Jalil Zorriehzahra
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Tehran, Iran
| | - Hasan Salehi
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Tehran, Iran
| | - Abolfazl Sepahdari
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Tehran, Iran
| | - Mohamad Afsharnasab
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Tehran, Iran
| | - Mohamad Reza Mehrabi
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Tehran, Iran
| | - Salim Jadgal
- Offshore Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Chabahar, Iran
| |
Collapse
|
22
|
Dor L, Shirak A, Rosenfeld H, Ashkenazi IM, Band MR, Korol A, Ronin Y, Seroussi E, Weller JI, Ron M. Identification of the sex-determining region in flathead grey mullet (Mugil cephalus). Anim Genet 2016; 47:698-707. [PMID: 27611243 DOI: 10.1111/age.12486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/29/2022]
Abstract
Elucidation of the sex-determination mechanism in flathead grey mullet (Mugil cephalus) is required to exploit its economic potential by production of genetically determined monosex populations and application of hormonal treatment to parents rather than to the marketed progeny. Our objective was to construct a first-generation linkage map of the M. cephalus in order to identify the sex-determining region and sex-determination system. Deep-sequencing data of a single male was assembled and aligned to the genome of Nile tilapia (Oreochromis niloticus). A total 245 M. cephalus microsatellite markers were designed, spanning the syntenic tilapia genome assembly at intervals of 10 Mb. In the mapping family of full-sib progeny, 156 segregating markers were used to construct a first-generation linkage map of 24 linkage groups (LGs), corresponding to the number of chromosomes. The linkage map spanned approximately 1200 cM with an average inter-marker distance of 10.6 cM. Markers segregating on LG9 in two independent mapping families showed nearly complete concordance with gender (R2 = 0.95). The sex determining locus was fine mapped within an interval of 8.6 cM on LG9. The sex of offspring was determined only by the alleles transmitted from the father, thus indicating an XY sex-determination system.
Collapse
Affiliation(s)
- L Dor
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - A Shirak
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - H Rosenfeld
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, 88112, Israel
| | - I M Ashkenazi
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat, 88112, Israel
| | - M R Band
- The Carver Biotechnology Center, University of Illinois, Urbana, IL, 61801, USA
| | - A Korol
- Faculty of Science, Institute of Evolution, University Haifa, Haifa, 31905, Israel
| | - Y Ronin
- Faculty of Science, Institute of Evolution, University Haifa, Haifa, 31905, Israel
| | - E Seroussi
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - J I Weller
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel
| | - M Ron
- Institute of Animal Science, Agricultural Research Organization, Bet Dagan, 50250, Israel.
| |
Collapse
|
23
|
Jolly C, Rousseau K, Prézeau L, Vol C, Tomkiewicz J, Dufour S, Pasqualini C. Functional Characterisation of Eel Dopamine D2 Receptors and Involvement in the Direct Inhibition of Pituitary Gonadotrophins. J Neuroendocrinol 2016; 28. [PMID: 27453551 DOI: 10.1111/jne.12411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/21/2016] [Accepted: 07/20/2016] [Indexed: 01/11/2023]
Abstract
In various vertebrate species, dopamine (DA) exerts an inhibitory action on reproduction. In the European eel, DA plays a pivotal role in the inhibitory control of gonadotroph function and the blockade of puberty. In vivo studies have suggested that this effect is mediated by receptors pharmacologically related to the D2 family. In the European eel, two distinct D2 receptor (D2-R) paralogous genes have been identified (D2A-R and D2B-R) and both were shown to be expressed in the pituitary. We investigated the potential role of each paralogue in the control of gonadotroph function in this species. Eel recombinant D2A-R or D2B-R were expressed in HEK 293 cells, with a universal Gα subunit, and receptor activation was followed by inositol phosphate production. Recombinant D2-Rs exhibited a comparable affinity for DA, although they had differential affinities for mammalian D2-R agonists and antagonists, supporting subtle structure/activity differences. Furthermore, using eel pituitary cell primary cultures, the expression by gonadotroph cells of both native eel D2-R paralogues was examined by in situ hybridisation of D2A-R or D2B-R transcripts, coupled with immunofluorescence of luteinising hormone (LH)β or follicle-stimulating (FSH)β. LH and to a lesser extent, FSH cells expressed both D2-R transcripts but with a clear predominance of D2B-R. Notably, D2B-R transcripts were detected for the majority of LH cells. Accordingly, using these cultures, we showed that DA potently inhibited basal and testosterone-stimulated LHβ expression and less potently basal and activin-stimulated FSHβ expression. We also tested some D2-R antagonists, aiming to select the most adequate one to be used in innovative protocols for induction of eel sexual maturation. We identified eticlopride as the most potent inhibitor of DA action on basal and stimulated LH expression in vitro. Our data suggest a differential functionalisation of the duplicated receptor genes and demonstrate that mainly D2B-R is involved in the dopaminergic inhibitory control of eel gonadotroph function.
Collapse
Affiliation(s)
- C Jolly
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - K Rousseau
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France
| | - L Prézeau
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM U661, Montpellier, France
- Université de Montpellier 1 & 2, Montpellier, France
| | - C Vol
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM U661, Montpellier, France
- Université de Montpellier 1 & 2, Montpellier, France
| | - J Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| | - S Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biologie des Organismes et Ecosystèmes Aquatiques, CNRS 7208, IRD207, UPMC, UCN, UA, Paris, France.
| | - C Pasqualini
- Institut des Neurosciences Paris-Saclay, Développement et Evolution de la Neurotransmission, Département Dev-Evo, Université Paris Sud, CNRS UMR 9197, Gif-Sur-Yvette, France.
| |
Collapse
|
24
|
Solé M, Mañanós E, Blázquez M. Vitellogenin, sex steroid levels and gonadal biomarkers in wild Solea solea and Solea senegalensis from NW Mediterranean fishing grounds. MARINE ENVIRONMENTAL RESEARCH 2016; 117:63-74. [PMID: 27088613 DOI: 10.1016/j.marenvres.2016.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Specimens of Solea solea and Solea senegalenesis at different developmental stages were obtained from seven fishing grounds along the NW Mediterranean. Gonad development in males was classified into five stages, from early spermatogenesis to recovery, while four stages were considered in females, from growth to maturation. Vitellogenin (VTG) and sex steroid levels including an estrogen (estradiol, E2), two androgens (testosterone, T and 11-ketotestosterone, 11KT) and a progestin (17,20β-dihydroxy pregn-4-en-3-one, 17,20β-P or maturation inducing steroid, MIS) were analysed in plasma. Their levels were more clearly related to the developmental stage of the gonads than to the sampling site characteristics. In addition, enzyme activities in gonads, such as acetylcholinesterase (AChE) and carboxylesterase (CbE) were gender-dependent and higher in males than in females. Gonadal glutathione S-transferase (GST) activity was enhanced in the most anthropogenic impacted sites. VTG was absent in males and very low or undetectable in immature females, while mature females exhibited high VTG levels, clearly related to the gonado-somatic index. Sex steroid levels (ng/ml) varied in males and females regardless of the species. E2 levels in females ranged from 0.22 to 6.98 while in males ranged from 0.11 to 0.27. T varied from 0.12 to 0.93 in females and from 0.56 to 1.36 in males, while 11KT in females fluctuated from 0.03 to 0.57 and from 0.26 to 6.42 in males. Similarly, MIS in females ranged from 0.75 to 3.71 and from 1.12 to 5.61 in males. The lack of endocrine disturbances was confirmed by histological examination of the gonads. This study informs on basal sex hormone levels and enzyme activities during gonadal maturation of wild Solea spp. that can be useful in the identification and further remediation of possible pollution events.
Collapse
Affiliation(s)
- M Solé
- Institut de Ciencies del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - E Mañanós
- Instituto de Acuicultura Torre la Sal (IATS-CSIC), Ribera de Cabanes s/n, 12595, Torre de la Sal, Castellón, Spain
| | - M Blázquez
- Institut de Ciencies del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| |
Collapse
|
25
|
Guzmán JM, Luckenbach JA, da Silva DAM, Ylitalo GM, Swanson P. Development of approaches to induce puberty in cultured female sablefish (Anoplopoma fimbria). Gen Comp Endocrinol 2015; 221:101-13. [PMID: 25843684 DOI: 10.1016/j.ygcen.2015.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/13/2022]
Abstract
Efforts to establish sustainable and efficient aquaculture production of sablefish (Anoplopoma fimbria) have been constrained by delayed puberty in cultured females. This study integrates a series of experiments aimed at gaining an understanding of the reproductive physiology of puberty in female sablefish. We detected transcripts for the dopamine D2 receptor (drd2) in brain, pituitary and ovary of sablefish, and prepubertal females exhibited significantly elevated brain and pituitary drd2 expression relative to wild maturing females. Treatments with sustained-release cholesterol pellets containing testosterone (T) and the dopamine D2 receptor antagonist, metoclopramide (Met), stimulated expression of pituitary luteinizing hormone beta subunit (lhb) and follicle-stimulating hormone beta subunit (fshb), respectively, in prepubertal females, whereas a combination of T and gonadotropin-releasing hormone agonist (GnRHa) had a strong synergistic effect on lhb expression (2000-fold higher than control). Although T induced a significant increase in the maximum ovarian follicle volume, none of the treatments tested stimulated onset of vitellogenesis. Using liquid chromatography/tandem mass spectrometry, we demonstrated that Met stimulated production of T by previtellogenic ovarian follicles in vitro, whereas gonadotropin preparations enhanced 17α-hydroxyprogesterone, androstenedione (A4), T and 17β-estradiol (E2) production. Treatment with T increased production of A4, 11β-hydroxyandrostenedione, 11β-hydroxytestosterone, E2, 11-ketotestosterone, and 5α-dihydrotestosterone (DHT). Interestingly, in the presence of high doses of T the previtellogenic ovary preferentially produced A4 and DHT over any other metabolite. Our data suggest the existence of dopamine inhibition of the reproductive axis in female sablefish. Treatments with Met and T elevated gonadotropin mRNAs in prepubertal females but failed to stimulate the transition into vitellogenic growth, suggesting a possible failure in pituitary gonadotropin protein synthesis/release. Previtellogenic ovarian follicles of sablefish are equipped to synthesize steroids, including those required for vitellogenic growth, and DHT, a steroid hormone whose role in reproduction of fishes remains unknown.
Collapse
Affiliation(s)
- José M Guzmán
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA.
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Denis A M da Silva
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration - National Marine Fisheries Service, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
26
|
Chi ML, Ni M, Li JF, He F, Qian K, Zhang P, Chai SH, Wen HS. Molecular cloning and characterization of gonadotropin subunits (GTHα, FSHβ and LHβ) and their regulation by hCG and GnRHa in Japanese sea bass (Lateolabrax japonicas) in vivo. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:587-601. [PMID: 25724868 DOI: 10.1007/s10695-014-9992-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
In this study, three cDNA sequences encoding common glycoprotein α subunit (GTHα), follicle-stimulating hormone β subunit (FSHβ) and luteinizing hormone β subunit (LHβ) were isolated from Japanese sea bass (Lateolabrax japonicas). Comparison of the deduced amino acid sequences with other gonadotropic hormones (GTHs) indicated that their cysteine residues and potential N-linked glycosylation sites were highly conserved, and high homology with those of other perciformes was showed in phylogenetic analysis. GTHs transcripts were present highly in the pituitary and brain and weakly in testis and other tissues. During testicular development, GTHs transcriptional levels in pituitary and brain (expect FSHβ subunit in brain) were significantly increased at spermiation period, stage V. Subsequently, the effects of hCG and GnRHa on the mRNA levels of GTHs subunits were examined. In brain, both hormones were detected to improve the expression of GTHα subunit mRNA. In pituitary, three GTHs subunits increased parallelly and abruptly in two hormone treatment groups. In testis, hCG was suggested to improve three GTHs subunits expression in Japanese sea bass for the first time. These results suggest that both gonadotropins are probably involved in the control of Japanese sea bass spermatogenesis and provide a framework for better understanding of the mechanisms of hormone-mediated reproduction control in Japanese sea bass and other teleosts.
Collapse
Affiliation(s)
- Mei L Chi
- Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chabbi A, Ganesh CB. Evidence for the involvement of dopamine in stress-induced suppression of reproduction in the cichlid fish Oreochromis mossambicus. J Neuroendocrinol 2015; 27:343-56. [PMID: 25712855 DOI: 10.1111/jne.12269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 01/23/2023]
Abstract
In the present study, we examined whether stress-induced suppression of reproduction is mediated through the catecholaminergic neurotransmitter dopamine (DA) in the female cichlid fish Oreochromis mossambicus. In the first experiment, application of antibody against tyrosine hydroxylase (TH; a marker for DA) in brain sections revealed the presence of intensely stained TH immunoreactive cells in the preoptic area (POA) and nucleus preopticus (NPO) during the previtellogenic phase. These cells showed weak immunoreactivity during the vitellogenic and prespawning phases concomitant with darkly stained luteinising hormone (LH) immunoreactive content in the proximal pars distalis (PPD) of the pituitary gland and fully ripened follicles (stage V) in the ovary of control fish. However, in fish exposed to aquacultural stressors, TH secreting cells remained intensely stained in POA and NPO regions during the prespawning phase, indicating increased synthetic and secretory activity, which was reflected by a significantly higher DA content compared to controls. Increased DA activity as a result of stress was associated with a decrease in the LH immunoreactive content in the PPD and an absence of stage V follicles in the ovary. In the second experiment, administration of DA caused effects similar to those in stressed fish, whereas DA receptor antagonist domperidone (DOM) treatment significantly increased the LH content in the PPD and the number of stage V follicles in unstressed fish. On the other hand, treatment of stressed fish with DOM resulted in dark accumulations of LH immunoreactive content in the PPD accompanied by the presence of stage V follicles in the ovary. Taken together, these results suggest an additional pathway for the inhibitory effects of stress through dopaminergic neurones along the reproductive axis.
Collapse
Affiliation(s)
- A Chabbi
- Neuroendocrinology Research Lab, Department of Studies in Zoology, Karnatak University, Dharwad, Karnataka, India
| | | |
Collapse
|
28
|
Badruzzaman M, Imamura S, Takeuchi Y, Ikegami T, Takemura A. Effects of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment on ovarian development of the sapphire devil, Chrysiptera cyanea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:61-71. [PMID: 25362562 DOI: 10.1007/s10695-014-0006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
In the neuroendocrine system controlling fish reproduction, dopamine (DA) acts as a gonadotropin inhibitory factor and plays a role in regulating gonadal development of certain species. The present study examined the effects of chemical destruction of dopaminergic neurons in the brain on DA production and ovarian development in the sapphire devil Chrysiptera cyanea, a reef-associated damselfish. The avidin-biotin-peroxidase complex method using an antibody against tyrosine hydroxylase (TH), a critical enzyme in the DA synthesis pathway, identified a population of dopaminergic neurons with somata in the anteroventral preoptic nucleus of the diencephalon and fibers terminating in the proximal pars distalis of the pituitary. Maintaining fish in seawater containing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 0.02 and 0.2 µg/mL for 2 days resulted in decreases in DA, 3,4-dihydroxyphenylacetic acid (DOPAC; DA metabolite), and DA metabolic rate in the whole brain. The number of TH-positive neurons in the diencephalon decreased after 0.02 µg/mL MPTP treatment for 2 days. These results suggest that MPTP treatment destroys TH-positive neurons in the diencephalon, thereby decreasing the synthesis and release of DA from the brain. This treatment rescued ovarian development in fish with artificially retracted ovaries during the spawning season. The gonadosomatic index of MPTP-treated fish 5 and 7 days after treatment was significantly higher than that of control fish. Oocytes in the vitellogenic stages were observed in the ovaries of MPTP-treated fish, but not in control fish. These results suggest that DA in the brain drives ovarian development in the sapphire devil.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | | | | | | | | |
Collapse
|
29
|
Ortiz-Zarragoitia M, Bizarro C, Rojo-Bartolomé I, de Cerio OD, Cajaraville MP, Cancio I. Mugilid fish are sentinels of exposure to endocrine disrupting compounds in coastal and estuarine environments. Mar Drugs 2014; 12:4756-82. [PMID: 25222666 PMCID: PMC4178482 DOI: 10.3390/md12094756] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/11/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023] Open
Abstract
Effects on fish reproduction can result from a variety of toxicity mechanisms first operating at the molecular level. Notably, the presence in the environment of some compounds termed endocrine disrupting chemicals (EDCs) can cause adverse effects on reproduction by interfering with the endocrine system. In some cases, exposure to EDCs leads to the animal feminization and male fish may develop oocytes in testis (intersex condition). Mugilid fish are well suited sentinel organisms to study the effects of reproductive EDCs in the monitoring of estuarine/marine environments. Up-regulation of aromatases and vitellogenins in males and juveniles and the presence of intersex individuals have been described in a wide array of mullet species worldwide. There is a need to develop new molecular markers to identify early feminization responses and intersex condition in fish populations, studying mechanisms that regulate gonad differentiation under exposure to xenoestrogens. Interestingly, an electrophoresis of gonad RNA, shows a strong expression of 5S rRNA in oocytes, indicating the potential of 5S rRNA and its regulating proteins to become useful molecular makers of oocyte presence in testis. Therefore, the use of these oocyte markers to sex and identify intersex mullets could constitute powerful molecular biomarkers to assess xenoestrogenicity in field conditions.
Collapse
Affiliation(s)
- Maren Ortiz-Zarragoitia
- Research Centre for Experimental Marine Biology and Biotechnology, Plentzia Marine Station (PIE-UPV/EHU) and Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), E-48080 Bilbao PO Box 644, Basque Country, Spain.
| | - Cristina Bizarro
- Research Centre for Experimental Marine Biology and Biotechnology, Plentzia Marine Station (PIE-UPV/EHU) and Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), E-48080 Bilbao PO Box 644, Basque Country, Spain.
| | - Iratxe Rojo-Bartolomé
- Research Centre for Experimental Marine Biology and Biotechnology, Plentzia Marine Station (PIE-UPV/EHU) and Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), E-48080 Bilbao PO Box 644, Basque Country, Spain.
| | - Oihane Diaz de Cerio
- Research Centre for Experimental Marine Biology and Biotechnology, Plentzia Marine Station (PIE-UPV/EHU) and Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), E-48080 Bilbao PO Box 644, Basque Country, Spain.
| | - Miren P Cajaraville
- Research Centre for Experimental Marine Biology and Biotechnology, Plentzia Marine Station (PIE-UPV/EHU) and Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), E-48080 Bilbao PO Box 644, Basque Country, Spain.
| | - Ibon Cancio
- Research Centre for Experimental Marine Biology and Biotechnology, Plentzia Marine Station (PIE-UPV/EHU) and Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), E-48080 Bilbao PO Box 644, Basque Country, Spain.
| |
Collapse
|
30
|
Badruzzaman M, Bapary MAJ, Takemura A. Possible roles of photoperiod and melatonin in reproductive activity via changes in dopaminergic activity in the brain of a tropical damselfish, Chrysiptera cyanea. Gen Comp Endocrinol 2013; 194:240-7. [PMID: 24090612 DOI: 10.1016/j.ygcen.2013.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 12/20/2022]
Abstract
The perception of periodical change in photoperiodic conditions by photosensory organs is the first step to initiating reproductive activity in fish. To date, it is not known how photoperiodic cues are endogenously transduced to the endocrine network of the brain-pituitary-gonad axis after the perception of photoperiodic stimuli. Because dopamine (DA) inhibits gonadotropin release from the pituitary in certain teleosts, it is likely that it is a key mediator of photoperiodic stimulation. We examined the relationship between photoperiodicity and dopaminergic activity in the brain of the sapphire devil Chrysiptera cyanea, which is a reef-associated damselfish and uses long-day conditions for triggering gonadal development. DA and 3,4-dihydroxyphenylacetic acid (DOPAC; DA metabolite) were measured electrochemically with a high-performance liquid chromatography (HPLC) system, and then DOPAC/DA (metabolic rate of DA activity) was determined. Daily fluctuations in DA, DOPAC, and DOPAC/DA were observed under LD 12:12. Light-dark cycles, but not constant conditions, influenced DA and DOPAC contents as well as DOPAC/DA in the brain; DOPAC content and DOPAC/DA increased under LD 14:10, while DA increased under LD 10:14. When fish were reared in melatonin-containing water, DOPAC and DOPAC/DA, but not DA, decreased within 6h after treatment. Culturing the isolated brain with melatonin stimulated DA release into the medium. Active vitellogenesis in females during the reproductive season was suppressed by melatonin treatment. These results suggest that day length alters DA metabolism in the brain of the sapphire devil through fluctuations in melatonin caused by external light stimuli, and that inhibitory effects on gonadal development are partially controlled by interactions within the melatonin-DA system.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | | | | |
Collapse
|
31
|
Pham HQ, Arukwe A. Effects of dopamine 2 receptor antagonist on sex steroid levels, oocyte maturation and spawning performances in Waigieu seaperch (Psammoperca waigiensis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:403-411. [PMID: 22911104 DOI: 10.1007/s10695-012-9708-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 08/11/2012] [Indexed: 06/01/2023]
Abstract
The present study has investigated the effects of domperidone (DOM), a dopamine 2 receptor antagonist, on plasma steroid hormone levels and reproductive performances of a female tropical marine finfish, Waigieu seaperch (Psammoperca waigiensis), with potential for cultivation in Vietnam. We showed that oral treatment of DOM during early stage of the reproductive cycle had no significant effects on the maturation and reproductive performances of the female fish, while plasma steroid hormone (testosterone (T), 11-ketotestosterone (11-KT), 17β-estradiol (E2) and progesterone (P)) levels were modulated based on month, DOM dose and the individual hormones measured. Overall, these findings suggest that DOM may not be needed for the induction of maturation and spawning of this species under aquaculture conditions. The data in the present study are significant in highlighting practical efforts for reducing drug use, production costs and for a sustainable aquaculture in a developing country such as Vietnam.
Collapse
Affiliation(s)
- Hung Quoc Pham
- Faculty of Aquaculture, Nha Trang University, Nha Trang City, Vietnam
| | | |
Collapse
|
32
|
Blazer VS, Pinkney AE, Jenkins JA, Iwanowicz LR, Minkkinen S, Draugelis-Dale RO, Uphoff JH. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:198-209. [PMID: 23384644 DOI: 10.1016/j.scitotenv.2012.12.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007-2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed.
Collapse
Affiliation(s)
- Vicki S Blazer
- U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Fontaine R, Affaticati P, Yamamoto K, Jolly C, Bureau C, Baloche S, Gonnet F, Vernier P, Dufour S, Pasqualini C. Dopamine inhibits reproduction in female zebrafish (Danio rerio) via three pituitary D2 receptor subtypes. Endocrinology 2013; 154:807-18. [PMID: 23295741 DOI: 10.1210/en.2012-1759] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In many teleosts, the stimulatory control of gonadotrope axis by GnRH is opposed by an inhibitory control by dopamine (DA). The functional importance of this inhibitory pathway differs widely from one teleostean species to another. The zebrafish (Danio rerio) is a teleost fish that has become increasingly popular as an experimental vertebrate model. However, the role of DA in the neuroendocrine control of its reproduction has never been studied. Here the authors evaluated in sexually regressed female zebrafish the effects of in vivo treatments with a DA D2 receptor (D2-R) antagonist domperidone, or a GnRH agonist, alone and in combination, on the pituitary level of FSHβ and LHβ transcripts, the gonadosomatic index, and the ovarian histology. Only the double treatment with GnRH agonist and domperidone could induce an increase in the expression of LHβ, in the gonadosomatic index, and a stimulation of ovarian vitellogenesis, indicating that removal of dopaminergic inhibition is required for the stimulatory action of GnRH and reactivation of ovarian function to occur. Using double immunofluorescent staining on pituitary, the authors showed in this species the innervation of LH cells by tyrosine-hydroxylase immunoreactive fibers. Finally, using in situ hybridization and immunofluorescence, the authors showed that the three subtypes of zebrafish DA D2-R (D2a, D2b, and D2c) were expressed in LH-producing cells, suggesting that they all may be involved in mediating this inhibition. These results show for the first time that, in zebrafish, DA has a direct and potent inhibitory action capable of opposing the stimulatory effect of GnRH in the neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Romain Fontaine
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 3294, Neurobiologie et Développement, Avenue de la Terrasse, bat 5E, Gif-sur-Yvette, 91198 Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Takemura A, Shibata Y, Takeuchi Y, Hur SP, Sugama N, Badruzzaman M. Effects of hydrostatic pressure on monoaminergic activity in the brain of a tropical wrasse, Halicoeres trimaculatus: possible implication for controlling tidal-related reproductive activity. Gen Comp Endocrinol 2012; 175:173-9. [PMID: 22134178 DOI: 10.1016/j.ygcen.2011.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/05/2011] [Accepted: 11/09/2011] [Indexed: 11/24/2022]
Abstract
Most wrasse species in tropical waters exhibit daily spawning synchrony with a preference for high tide. Fish perceive tidal rhythm cues through sensory organs and activate the brain-pituitary-gonadal endocrine axis for synchronous gonadal maturation, although how the tidal-related spawning cycle is controlled endogenously is not known. The purpose of this study was to examine whether hydrostatic pressure has an impact on brain monoamine levels and reproductive activities in the threespot wrasse Halichoeres trimaculatus. The contents of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the brain were measured using high-performance liquid chromatography and an electrochemical detection system. Exposing the fish to hydrostatic pressure occurring at a 3-m depth (~30 kPa) resulted in an increase in 5-HIAA/5-HT over 3h and a decrease in DOPAC/DA over 6h. No changes in gonadosomatic index or oocyte diameter were observed between the groups when female fish were reared at 0-m and 3-m depth for 3h. Hydrostatic pressure did not alter pituitary mRNA abundance of follicle stimulating hormone-β or luteinizing hormone-β. However, in vitro culture of ovaries from pressurized fish in the presence of human chorionic gonadotropin resulted in an increase in 17α,20β-dihydroxy-4-pregnen-3-one in the medium. These results suggest that hydrostatic pressure activates oocyte maturation through brain monoaminergic activity in this tropical wrasse species.
Collapse
Affiliation(s)
- Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Azuadi N, Siraj S, Daud S, Christianu A, Harmin S, Sungan S, Britin R. Enhancing Ovulation of Malaysian Mahseer (Tor tambroides) in Captivity by Removal of Dopaminergic Inhibition. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jfas.2011.740.750] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Guzmán JM, Cal R, García-López Á, Chereguini O, Kight K, Olmedo M, Sarasquete C, Mylonas CC, Peleteiro JB, Zohar Y, Mañanós EL. Effects of in vivo treatment with the dopamine antagonist pimozide and gonadotropin-releasing hormone agonist (GnRHa) on the reproductive axis of Senegalese sole (Solea senegalensis). Comp Biochem Physiol A Mol Integr Physiol 2011; 158:235-45. [DOI: 10.1016/j.cbpa.2010.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 01/04/2023]
|
37
|
Popesku JT, Martyniuk CJ, Denslow ND, Trudeau VL. Rapid dopaminergic modulation of the fish hypothalamic transcriptome and proteome. PLoS One 2010; 5:e12338. [PMID: 20808832 PMCID: PMC2924890 DOI: 10.1371/journal.pone.0012338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/10/2010] [Indexed: 11/25/2022] Open
Abstract
Background Dopamine (DA) is a major neurotransmitter playing an important role in the regulation of vertebrate reproduction. We developed a novel method for the comparison of transcriptomic and proteomic data obtained from in vivo experiments designed to study the neuroendocrine actions of DA. Methods and Findings Female goldfish were injected (i.p.) with DA agonists (D1-specific; SKF 38393, or D2-specific; LY 171555) and sacrificed after 5 h. Serum LH levels were reduced by 57% and 75% by SKF 38393 and LY 171555, respectively, indicating that the treatments produced physiologically relevant responses in vivo. Bioinformatic strategies and a ray-finned fish database were established for microarray and iTRAQ proteomic analysis of the hypothalamus, revealing a total of 3088 mRNAs and 42 proteins as being differentially regulated by the treatments. Twenty one proteins and mRNAs corresponding to these proteins appeared on both lists. Many of the mRNAs and proteins affected by the treatments were grouped into the Gene Ontology categorizations of protein complex, signal transduction, response to stimulus, and regulation of cellular processes. There was a 57% and 14% directional agreement between the differentially-regulated mRNAs and proteins for SKF 38393 and LY 171555, respectively. Conclusions The results demonstrate the applicability of advanced high-throughput genomic and proteomic analyses in an amendable well-studied teleost model species whose genome has yet to be sequenced. We demonstrate that DA rapidly regulates multiple hypothalamic pathways and processes that are also known to be involved in pathologies of the central nervous system.
Collapse
Affiliation(s)
- Jason T. Popesku
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - Vance L. Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Takemura A, Uchimura M, Shibata Y. Dopaminergic activity in the brain of a tropical wrasse in response to changes in light and hydrostatic pressure. Gen Comp Endocrinol 2010; 166:513-9. [PMID: 20064517 DOI: 10.1016/j.ygcen.2010.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/08/2009] [Accepted: 01/02/2010] [Indexed: 10/20/2022]
Abstract
Many tropical wrasses show a daily pattern of spawning with gamete release typically near daytime high tide. The environmental cues the fish obtains from day-night and tidal cycles to ensure spawning synchrony and how those cues are transduced, however, are not fully understood. To gain insight into these issues, the involvement of monoamines in mediating endogenous day-night and tidal rhythms in the threespot wrasse, Halichoeres trimaculatus, were examined. Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC, a metabolite of DA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT) in the brain of the fish were measured with high-performance liquid chromatography and electrochemical detection. DOPAC and the metabolic rate of DA activity (DOPAC/DA) were found to increase during the day and decrease during the night for fish held under a natural photoperiod. Fish acclimated to a 12:12 light-dark cycle and to constant dark conditions exhibited similar changes, whereas fish acclimated to constant light conditions exhibited little or no change. Intraperitoneal injection of melatonin resulted in a significant reduction in DOPAC/DA. Furthermore, DOPAC/DA was significantly lower in fish held at 3m compared to 0m depth, suggesting that hydrostatic pressure influences DA metabolic rate. These results indicate that light and hydrostatic pressure control dopaminergic turnover in the brain of threespot wrasse. Day-night and tidal changes in these two factors therefore may be the main environmental cues the fish uses to synchronize its spawning activity.
Collapse
Affiliation(s)
- Akihiro Takemura
- Department of Biology, Chemistry, and Marine Science, Faculty of Science, University of the Ryukyus. Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| | | | | |
Collapse
|
39
|
Villeneuve DL, Garcia-Reyero N, Martinović D, Mueller ND, Cavallin JE, Durhan EJ, Makynen EA, Jensen KM, Kahl MD, Blake LS, Perkins EJ, Ankley GT. I. Effects of a dopamine receptor antagonist on fathead minnow, Pimephales promelas, reproduction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:472-477. [PMID: 19783049 DOI: 10.1016/j.ecoenv.2009.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 05/28/2023]
Abstract
Neurotransmitters such as dopamine play an important role in regulating fish reproduction. However, the potential for neuroendocrine active chemicals to disrupt fish reproduction has not been well studied, despite emerging evidence of their discharge into aquatic environments. This study is the first to apply the fathead minnow 21 d reproduction assay developed for the US Endocrine Disruptor Screening Program to evaluate the reproductive toxicity of a model neuroendocrine active chemical, the dopamine 2 receptor antagonist, haloperidol. Continuous exposure to up to 20 imcrog haloperidol/L had no significant effects on fathead minnow fecundity, secondary sex characteristics, gonad histology, or plasma steroid and vitellogenin concentrations. The only significant effect observed was an increase in gonadotropin-releasing hormone (cGnRH) transcripts in the male brain. Results suggest that non-lethal concentrations of haloperidol do not directly impair fish reproduction. Potential effects of haloperidol on reproductive behaviors and gene expression were examined in a companion study.
Collapse
Affiliation(s)
- Daniel L Villeneuve
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN 55804, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Levavi-Sivan B, Bogerd J, Mañanós EL, Gómez A, Lareyre JJ. Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol 2010; 165:412-37. [PMID: 19686749 DOI: 10.1016/j.ygcen.2009.07.019] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/10/2009] [Accepted: 07/16/2009] [Indexed: 12/19/2022]
Abstract
Teleosts lack a hypophyseal portal system and hence neurohormones are carried by nerve fibers from the preoptic region to the pituitary. The various cell types in the teleost pituitary are organized in discrete domains. Fish possess two gonadotropins (GtH) similar to FSH and LH in other vertebrates; they are heterodimeric hormones that consist of a common alpha subunit non-covalently associated with a hormone-specific beta subunit. In recent years the availability of molecular cloning techniques allowed the isolation of the genes coding for the GtH subunits in 56 fish species representing at least 14 teleost orders. Advanced molecular engineering provides the technology to produce recombinant GtHs from isolated cDNAs. Various expression systems have been used for the production of recombinant proteins. Recombinant fish GtHs were produced for carp, seabream, channel and African catfish, goldfish, eel, tilapia, zebrafish, Manchurian trout and Orange-spotted grouper. The hypothalamus in fishes exerts its regulation on the release of the GtHs via several neurohormones such as GnRH, dopamine, GABA, PACAP, IGF-I, norepinephrine, NPY, kisspeptin, leptin and ghrelin. In addition, gonadal steroids and peptides exert their effects on the gonadotropins either directly or via the hypothalamus. All these are discussed in detail in this review. In mammals, the biological activities of FSH and LH are directed to different gonadal target cells through the cell-specific expression of the FSH receptor (FSHR) and LH receptor (LHR), respectively, and the interaction between each gonadotropin-receptor couple is highly selective. In contrast, the bioactivity of fish gonadotropins seems to be less specific as a result of promiscuous hormone-receptor interactions, while FSHR expression in Leydig cells explains the strong steroidogenic activity of FSH in certain fish species.
Collapse
Affiliation(s)
- B Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | | | | | |
Collapse
|
41
|
Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien FA, Dufour S, Karlsen O, Norberg B, Andersson E, Hansen T. Control of puberty in farmed fish. Gen Comp Endocrinol 2010; 165:483-515. [PMID: 19442666 DOI: 10.1016/j.ygcen.2009.05.004] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/17/2009] [Accepted: 05/06/2009] [Indexed: 11/30/2022]
Abstract
Puberty comprises the transition from an immature juvenile to a mature adult state of the reproductive system, i.e. the individual becomes capable of reproducing sexually for the first time, which implies functional competence of the brain-pituitary-gonad (BPG) axis. Early puberty is a major problem in many farmed fish species due to negative effects on growth performance, flesh composition, external appearance, behaviour, health, welfare and survival, as well as possible genetic impact on wild populations. Late puberty can also be a problem for broodstock management in some species, while some species completely fail to enter puberty under farming conditions. Age and size at puberty varies between and within species and strains, and are modulated by genetic and environmental factors. Puberty onset is controlled by activation of the BPG axis, and a range of internal and external factors are hypothesised to stimulate and/or modulate this activation such as growth, adiposity, feed intake, photoperiod, temperature and social factors. For example, there is a positive correlation between rapid growth and early puberty in fish. Age at puberty can be controlled by selective breeding or control of photoperiod, feeding or temperature. Monosex stocks can exploit sex dimorphic growth patterns and sterility can be achieved by triploidisation. However, all these techniques have limitations under commercial farming conditions. Further knowledge is needed on both basic and applied aspects of puberty control to refine existing methods and to develop new methods that are efficient in terms of production and acceptable in terms of fish welfare and sustainability.
Collapse
|
42
|
Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 2010; 165:438-55. [PMID: 19393655 DOI: 10.1016/j.ygcen.2009.04.017] [Citation(s) in RCA: 519] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/08/2009] [Accepted: 04/17/2009] [Indexed: 11/28/2022]
Abstract
This review aims at synthesizing the most relevant information regarding the neuroendocrine circuits controlling reproduction, mainly gonadotropin release, in teleost fish. In teleosts, the pituitary receives a more or less direct innervation by neurons sending projections to the vicinity of the pituitary gonadotrophs. Among the neurotransmitters and neuropeptides released by these nerve endings are gonadotrophin-releasing hormones (GnRH) and dopamine, acting as stimulatory and inhibitory factors (in many but not all fish) on the liberation of LH and to a lesser extent that of FSH. The activity of the corresponding neurons depends on a complex interplay between external and internal factors that will ultimately influence the triggering of puberty and sexual maturation. Among these factors are sex steroids and other peripheral hormones and growth factors, but little is known regarding their targets. However, very recently a new actor has entered the field of reproductive physiology. KiSS1, first known as a tumor suppressor called metastin, and its receptor GPR54, are now central to the regulation of GnRH, and consequently LH and FSH secretion in mammals. The KiSS system is notably viewed as instrumental in integrating both environmental cues and metabolic signals and passing this information onto the reproductive axis. In fish, there are two KiSS genes, KiSS1 and KiSS2, expressed in neurons of the preoptic area and mediobasal hypothalamus. Pionneer studies indicate that KiSS and GPR54 expression seem to be activated at puberty. Although precise information as to the physiological effects of KiSS1 in fish, notably on GnRH neurons and gonadotropin release, is still limited, KiSS neurons may emerge as the "gatekeeper" of puberty and reproduction in fish as in mammals.
Collapse
Affiliation(s)
- Yonathan Zohar
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
43
|
Mylonas CC, Fostier A, Zanuy S. Broodstock management and hormonal manipulations of fish reproduction. Gen Comp Endocrinol 2010; 165:516-34. [PMID: 19318108 DOI: 10.1016/j.ygcen.2009.03.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/12/2009] [Accepted: 03/16/2009] [Indexed: 11/17/2022]
Abstract
Control of reproductive function in captivity is essential for the sustainability of commercial aquaculture production, and in many fishes it can be achieved by manipulating photoperiod, water temperature or spawning substrate. The fish reproductive cycle is separated in the growth (gametogenesis) and maturation phase (oocyte maturation and spermiation), both controlled by the reproductive hormones of the brain, pituitary and gonad. Although the growth phase of reproductive development is concluded in captivity in most fishes-the major exemption being the freshwater eel (Anguilla spp.), oocyte maturation (OM) and ovulation in females, and spermiation in males may require exogenous hormonal therapies. In some fishes, these hormonal manipulations are used only as a management tool to enhance the efficiency of egg production and facilitate hatchery operations, but in others exogenous hormones are the only way to produce fertilized eggs reliably. Hormonal manipulations of reproductive function in cultured fishes have focused on the use of either exogenous luteinizing hormone (LH) preparations that act directly at the level of the gonad, or synthetic agonists of gonadotropin-releasing hormone (GnRHa) that act at the level of the pituitary to induce release of the endogenous LH stores, which, in turn act at the level of the gonad to induce steroidogenesis and the process of OM and spermiation. After hormonal induction of maturation, broodstock should spawn spontaneously in their rearing enclosures, however, the natural breeding behavior followed by spontaneous spawning may be lost in aquaculture conditions. Therefore, for many species it is also necessary to employ artificial gamete collection and fertilization. Finally, a common question in regards to hormonal therapies is their effect on gamete quality, compared to naturally maturing or spawning broodfish. The main factors that may have significant consequences on gamete quality-mainly on eggs-and should be considered when choosing a spawning induction procedure include (a) the developmental stage of the gonads at the time the hormonal therapy is applied, (b) the type of hormonal therapy, (c) the possible stress induced by the manipulation necessary for the hormone administration and (d) in the case of artificial insemination, the latency period between hormonal stimulation and stripping for in vitro fertilization.
Collapse
Affiliation(s)
- Constantinos C Mylonas
- Institute of Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece.
| | | | | |
Collapse
|
44
|
Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C. Neuroendocrine control by dopamine of teleost reproduction. JOURNAL OF FISH BIOLOGY 2010; 76:129-160. [PMID: 20738703 DOI: 10.1111/j.1095-8649.2009.02499.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While gonadotropin-releasing hormone (GnRH) is considered as the major hypothalamic factor controlling pituitary gonadotrophins in mammals and most other vertebrates, its stimulatory actions may be opposed by the potent inhibitory actions of dopamine (DA) in teleosts. This dual neuroendocrine control of reproduction by GnRH and DA has been demonstrated in various, but not all, adult teleosts, where DA participates in an inhibitory role in the neuroendocrine regulation of the last steps of gametogenesis (final oocyte maturation and ovulation in females and spermiation in males). This has major implications for inducing spawning in aquaculture. In addition, DA may also play an inhibitory role during the early steps of gametogenesis in some teleost species, and thus interact with GnRH in the control of puberty. Various neuroanatomical investigations have shown that DA neurones responsible for the inhibitory control of reproduction originate in a specific nucleus of the preoptic area (NPOav) and project directly to the region of the pituitary where gonadotrophic cells are located. Pharmacological studies showed that the inhibitory effects of DA on pituitary gonadotrophin production are mediated by DA-D2 type receptors. DA-D2 receptors have now been sequenced in several teleosts, and the coexistence of several DA-D2 subtypes has been demonstrated in a few species. Hypophysiotropic DA activity varies with development and reproductive cycle and probably is controlled by environmental cues as well as endogenous signals. Sex steroids have been shown to regulate dopaminergic systems in several teleost species, affecting both DA synthesis and DA-D2 receptor expression. This demonstrates that sex steroid feedbacks target DA hypophysiotropic system, as well as the other components of the brain-pituitary gonadotrophic axis, GnRH and gonadotrophins. Recent studies have revealed that melatonin modulates the activity of DA systems in some teleosts, making the melatonin-DA pathway a prominent relay between environmental cues and control of reproduction. The recruitment of DA neurons for the neuroendocrine control of reproduction provides an additional brain pathway for the integration of various internal and environmental cues. The plasticity of the DA neuroendocrine role observed in teleosts may have contributed to their large diversity of reproductive cycles.
Collapse
Affiliation(s)
- S Dufour
- Muséum National d'Histoire Naturelle, UMR Biologie des Organismes et Ecosystèmes Aquatiques" MNHN-CNRS-IRD-UPMC, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
45
|
Takemura A, Rahman MS, Park YJ. External and internal controls of lunar-related reproductive rhythms in fishes. JOURNAL OF FISH BIOLOGY 2010; 76:7-26. [PMID: 20738698 DOI: 10.1111/j.1095-8649.2009.02481.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Reproductive activities of many fish species are, to some extent, entrained to cues from the moon. During the spawning season, synchronous spawning is repeated at intervals of c. 1 month (lunar spawning cycle) and 2 weeks (semi-lunar spawning cycle) or daily according to tidal changes (tidal spawning cycle). In species showing lunar-related spawning cycles, oocytes in the ovary develop towards and mature around a specific moon phase for lunar spawners, around spring tides for semi-lunar spawners and at daytime high tides for tidal spawners. The production of sex steroid hormones also changes in accordance with synchronous oocyte development. Since the production of the steroid hormones with lunar-related reproductive periodicity is regulated by gonadotropins, it is considered that the higher parts of the hypothalamus-pituitary-gonad axis play important roles in the perception and regulation of lunar-related periodicity. It is likely that fishes perceive cues from the moon by sensory organs; however, it is still unknown how lunar cues are transduced as an endogenous rhythm exerting lunar-related spawning rhythmicity. Recent research has revealed that melatonin fluctuated according to the brightness at night, magnetic fields and the tidal cycle. In addition, cyclic changes in hydrostatic pressure had an effect on monoamine contents in the brain. These factors may be indirectly related to the exertion of lunar-related periodicity. Molecular approaches have revealed that mRNA expressions of light-sensitive clock genes change with moonlight, suggesting that brightness at night plays a role in phase-shifting or resetting of biological clocks. Some species may have evolved biological clocks in relation to lunar cycles, although it is still not known how lunar periodicities are endogenously regulated in fishes. This review demonstrates that lunar-related periodicity is utilized and incorporated by ecological and physiological mechanisms governing the reproductive success of fishes.
Collapse
Affiliation(s)
- A Takemura
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan.
| | | | | |
Collapse
|
46
|
van der Kraak G. Chapter 3 The GnRH System and the Neuroendocrine Regulation of Reproduction. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28003-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Tinikul Y, Joffre Mercier A, Soonklang N, Sobhon P. Changes in the levels of serotonin and dopamine in the central nervous system and ovary, and their possible roles in the ovarian development in the giant freshwater prawn, Macrobrachium rosenbergii. Gen Comp Endocrinol 2008; 158:250-8. [PMID: 18713629 DOI: 10.1016/j.ygcen.2008.07.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/14/2008] [Accepted: 07/22/2008] [Indexed: 11/26/2022]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) and dopamine (DA) are the two key neurotransmitters that control gonadal development in decapod crustaceans. This study investigated changes in the levels of 5-HT and DA in the CNS and ovary during different phases of the ovarian cycle of the freshwater prawn, Macrobrachium rosenbergii. The levels of 5-HT and DA were quantified by using High Performance Liquid Chromatography with electrochemical detection (HPLC-ECD). Moreover, changes of vitellogenin (Vg) concentrations in the hemolymph after treatment with 5-HT and DA (at doses of 2.5 x 10(-6) and 2.5 x 10(-7)mol per prawn) were also examined. 5-HT exhibited a gradual increase in concentration in the brain and thoracic ganglia from ovarian stage I (0.12+/-0.01 nmol/mg, 0.22+/-0.01 nmol/mg, respectively) to reach a maximum (0.66+/-0.03 nmol/mg, 1.48+/-0.03 nmol/mg, respectively) at ovarian stage IV. In contrast, DA in the brain and thoracic ganglia showed the highest concentrations at ovarian stage II (0.20+/-0.01 nmol/mg, 1.27+/-0.06 nmol/mg, respectively) and then decreased to the lowest concentrations (0.06+/-0.01 nmol/mg, 0.28+/-0.04 nmol/mg, respectively) at ovarian stage IV. The ovarian concentration of 5-HT was 0.53+/-0.11 nmol/mg at ovarian stage I and gradually increased to 1.63+/-0.16 nmol/mg at ovarian stage IV. In contrast, the concentration of DA was highest at ovarian stage I (29.05+/-1.31 nmol/mg), and lowest at the ovarian stage IV (11.43+/-0.74 nmol/mg). Injecting 5-HT into prawns significantly increased Vg concentration in the hemolymph at ovarian stage IV compared to control groups, and injecting DA into prawns had the opposite effect. The inverse relationship between 5-HT and DA levels in neural ganglia and ovaries, and their opposing effects on hemolymph Vg levels suggest that these two transmitters play opposite regulatory roles in controlling ovarian maturation and oocyte development in this species.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | | | | | |
Collapse
|
48
|
Sébert ME, Legros C, Weltzien FA, Malpaux B, Chemineau P, Dufour S. Melatonin activates brain dopaminergic systems in the eel with an inhibitory impact on reproductive function. J Neuroendocrinol 2008; 20:917-29. [PMID: 18445127 DOI: 10.1111/j.1365-2826.2008.01744.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the eel, a deficit in gonadotrophin-releasing hormone (GnRH) and a strong dopaminergic (DA) inhibition are responsible for the blockade of gonad development if silver eels are prevented from their reproductive migration. Environmental factors that eels encounter during their oceanic reproductive migration are thought to play an important role in the stimulation of eel pubertal development. We investigated the potential role of melatonin, a known mediator of the effects of external factors on reproductive function in vertebrates. We demonstrated that a long-term melatonin treatment increased brain tyrosine hydroxylase (TH, the rate limiting enzyme of DA synthesis) mRNA expression in a region-dependent way. Melatonin stimulated the dopaminergic system of the preoptic area, which is involved in the inhibitory control of gonadotrophin [luteinising hormone (LH) and follicle-stimulating hormone (FSH)] synthesis and release. Moreover, we showed that the increased TH expression appeared to be consistent with melatonin binding site distribution as shown by 2[(125)I]-melatonin labelling studies. On the other hand, melatonin had no effects on the two eel native forms of GnRH (mGnRH and cGnRH-II) mRNA expression. Concerning the pituitary-gonad axis, we showed that melatonin treatment decreased both gonadotrophin beta-subunit (LHbeta, FSHbeta) mRNA expression and reduced sexual steroid (11-ketotestosterone, oestradiol) plasma levels. This indicates that melatonin treatment had a negative effect on eel reproductive function. To our knowledge, the results of the present study provide the first evidence that melatonin enhances TH expression in specific brain regions in a non-mammalian species. By this mechanism melatonin could represent one pathway by which environmental factors could modulate reproductive function in the eel.
Collapse
Affiliation(s)
- M-E Sébert
- USM 0401, UMR 5178 CNRS/MNHN/UPMC Biologie des Organismes Marins et Ecosystèmes, Département des Milieux et Peuplements Aquatiques, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | |
Collapse
|
49
|
Nocillado JN, Elizur A. Neuroendocrine regulation of puberty in fish: insights from the grey mullet (Mugil cephalus) model. Mol Reprod Dev 2008; 75:355-61. [PMID: 17721924 DOI: 10.1002/mrd.20744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the molecular regulation of pubertal development in the grey mullet, Mugil cephalus, a relatively late-maturing teleost fish. We have isolated and characterized the cDNAs of key reproductive genes along the brain-pituitary-gonadal (BPG) axis as well as the promoters of genes that modulate the axis at multiple levels. Together with relevant findings from other model species, we propose a conceptual model of the neuroendocrine regulation of puberty in the female grey mullet. Research areas that warrant further investigation are identified in the model.
Collapse
Affiliation(s)
- Josephine N Nocillado
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Australia
| | | |
Collapse
|
50
|
García-López A, Couto E, Canario AVM, Sarasquete C, Martínez-Rodríguez G. Ovarian development and plasma sex steroid levels in cultured female Senegalese sole Solea senegalensis. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:342-54. [PMID: 17208478 DOI: 10.1016/j.cbpa.2006.11.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 10/30/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Ovarian development was studied in cultured female Senegalese sole Solea senegalensis. Females with regressed ovaries, mainly occupied by perinucleolar oocytes, predominated throughout summer exhibiting low condition factor (K), gonadosomatic index (I(G)), and plasma 17beta-estradiol and testosterone levels. Throughout autumn and winter (ovaries at early and intermediate maturation), oocytes progressed to cortical alveoli and vitellogenic stages accompanied by increasing K, I(G), and plasma 17beta-estradiol and testosterone levels. At late winter/early spring, ovarian development reached its maximum with the predominance of females at intermediate and final maturation (the latter occupied by late vitellogenic oocytes and few early maturation oocytes) and peak values of K, I(G), and 17beta-estradiol and testosterone concentrations. Steroid levels were lower (especially testosterone) than those for naturally-spawning females, which might cause extensive atresia without final oocyte maturation (no spawning was observed). This degenerative process reduced de size of the ovary (initial and intermediate phases of regression) in association with declining K, I(G), and plasma 17beta-estradiol and testosterone levels and increasing proportions of perinucleolar oocytes. The circulating 17,20beta-dihydroxy-4-pregnen-3-one levels, the proposed maturation-inducing steroid, remained relatively constant throughout the experimental period, suggesting that oocytes were unable to respond adequately to its stimulation. We propose the inadequate seasonal thermal regime as the main cause of such dysfunction.
Collapse
Affiliation(s)
- Angel García-López
- Instituto de Ciencias Marinas de Andalucía, CSIC, 11510 Puerto Real, Cádiz, Spain.
| | | | | | | | | |
Collapse
|