1
|
Jeng SR, Wu GC, Yueh WS, Liu PH, Kuo SF, Dufour S, Chang CF. The expression profiles of cyp19a1, sf-1, esrs and gths in the brain-pituitary during gonadal sex differentiation in juvenile Japanese eels. Gen Comp Endocrinol 2024; 353:114512. [PMID: 38582176 DOI: 10.1016/j.ygcen.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17β (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Pei-Hua Liu
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Shu-Fen Kuo
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Sylvie Dufour
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, IRD, Paris, France; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
2
|
Li Z, Liu R, Liu J, Jiang Z, Ba X, Li K, Liu L. Effects of flowing water stimulation on hormone regulation during the maturation process of Conger myriaster ovaries. Front Physiol 2024; 15:1404834. [PMID: 38764859 PMCID: PMC11100330 DOI: 10.3389/fphys.2024.1404834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024] Open
Abstract
Conger eel (Conger myriaster) is an economically important species in China. Due to the complex life history of the conger eel, achieving artificial reproduction has remained elusive. This study aimed to explore the effect of water stimulation on hormonal regulation during the artificial reproduction of conger eel. The experiment was divided into four groups: A1 (no hormone injection, still water), A2 (no hormone injection, flowing water), B1 (hormone injection, still water), and B2 (hormone injection, flowing water). The flowing water group maintained a flow velocity of 0.4 ± 0.05 m/s for 12 h daily throughout the 60-day period. Steroid hormone levels in the serum and ovaries of conger eels were analyzed using UPLC-MS/MS and ELISA on the 30th and 60th days of the experiment. The relative expression levels of follicle-stimulating hormone (FSHβ) and luteinizing hormone (LHβ) in the pituitary were determined by quantitative PCR. The results showed a significantly lower gonadosomatic index (GSI) in B2 compared to B1 (p < 0.05) on the 30th day. FSH was found to act only in the early stages of ovarian development, with water stimulation significantly enhancing FSH synthesis (p < 0.05), while FSHβ gene was not expressed after hormone injection. Conversely, LH was highly expressed in late ovarian development, with flowing water stimulation significantly promoting LH synthesis (p < 0.05). Serum cortisol (COR) levels were significantly higher in the flowing water group than in the still water group (p < 0.05). Furthermore, estradiol (E2) content of B2 was significantly lower than that of B1 on the 30th and 60th day. Overall, flowing water stimulation enhanced the synthesis of FSH in early ovarian development and LH in late ovarian development, while reducing E2 accumulation in the ovaries. In this study, the effect of flowing water stimulation on hormone regulation during the artificial reproduction of conger eel was initially investigated to provide a theoretical basis for optimizing artificial reproduction techniques.
Collapse
Affiliation(s)
- Zhengcheng Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Rucong Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Jingwei Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zhixin Jiang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Xubing Ba
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Liping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Ribeiro DLS, Ribeiro LSS, Bezerra NPC, Silva JM, Noleto KS, Souza FA, Carvalho-Neta AV, Almeida ZS, Chaves DP, Torres Junior JRS. Differential gene expression pattern and plasma sex steroids during testicular development in Genyatremus luteus (Perciforme: Haemulidae) (Bloch, 1790). BRAZ J BIOL 2022; 82:e262017. [DOI: 10.1590/1519-6984.262017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract The aim of the current study is to evaluate gene expression patterns of LH (lhr) and estrogen (er) receptors and plasma steroid levels during testicular development in Genyatremus luteus. Males were histologically classified as immature (n=7), maturing (n=7) and mature (n=7), based on the cellular structure of their testes. Plasma 11-KT concentration recorded peak at the final maturation stage. The highest plasma 17α-OHP concentrations were observed at the immature stage; they decreased at the maturation and mature stages. On the other hand, 17β-estradiol (E2) recorded higher concentrations at the maturation stage. Er expression has significantly increased along the maturational development of animals’ testes. The mRNA observed for the LH receptor has decreased from immature to maturing stage; it presented expression peak at the mature stage. There was high association between receptor gene expression and plasma steroid levels, mainly E2. The current study was the first to feature different reproductive maturation stages in male G. luteus specimens, based on cellular, endocrine and molecular aspects. In addition, it has shown that the gene expression profile for er and lhr receptors, as well as plasma 11-KT and E2 concentrations, are directly linked to testicular maturation, although they are not necessarily associated with the gonadosomatic index.
Collapse
|
4
|
Li X, Shen Y, Lang B, Zhao J, Wang H, Zhang Y. Influence of octylphenol on gene expression of gonadotropins and their receptors, testicular structure and mating behavior of male Rana chensinensis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103694. [PMID: 34153509 DOI: 10.1016/j.etap.2021.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
In the present study, responses of the Chinese brown frog (Rana chensinensis) to exposure to different doses and duration of Octyphenol (OP) which degraded from alkylphenol ethoxylates (APEs) were characterized during the adult periods. The effects of OP on growth, development and reproduction and the expression of genes in gonad were investigated. The expression levels of fshβ, lhβ, fshr and lhr had significant differences as the exposure time increased. The pathological and morphological changes were also observed in the OP treatments. Furthermore, the number of TUNEL positive cells and the TUNEL index was elevated after exposed to OP. Besides that, OP treatment could influence its mating behavior and reduce the fertilization rates. Taken together, these results indicated that OP disrupt sex steroid signaling, normal development of spermatogenesis, courtship behavior of male frogs and decline fertilization rate in R. chensinensis.
Collapse
Affiliation(s)
- Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Baiyan Lang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Jingjing Zhao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
5
|
Jeng SR, Thomas P, Pang Y, Dufour S, Lin CJ, Yueh WS, Chang CF. Elevated estradiol-17β levels inhibit final oocyte maturation via G protein-coupled estrogen receptor (Gper) in yellowfin porgy, Acanthopagrus latus. Gen Comp Endocrinol 2020; 299:113587. [PMID: 32827512 DOI: 10.1016/j.ygcen.2020.113587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Yellowfin porgy a protandrous teleost, exhibits asynchronous oocyte development and multiple spawning. Seasonal profiles of plasma estradiol-17β (E2) levels showed a peak in three-year-old females during the spawning season, when batches of fully-grown oocytes undergo final oocyte maturation (FOM). Because E2 has been shown to inhibit FOM via the G protein-coupled estrogen receptor (Gper) in several teleost species, we investigated the role of this "paradoxical" increase in E2 during FOM in yellowfin porgy. In vivo treatment with a GnRH-agonist stimulated germinal vesicle breakdown (GVBD) and increased E2 plasma levels, and ovarian cyp19a1a transcripts, confirming the increase in E2 production at the time of FOM. Ovarian transcripts of gper peaked at the time of FOM, indicating an increase in ovarian responsiveness to Gper-mediated E2 effects. In vitro, E2 and the Gper agonist, G-1, inhibited the stimulatory effect of maturation-inducing steroids (MIS) on GVBD, while an aromatase inhibitor enhanced the MIS effect, in agreement with a physiological inhibitory role of E2 on FOM via Gper. Immunohistological studies showed that the Gper protein was specifically located on the oocyte plasma membrane. Ovarian membranes displayed high-affinity and limited-capacity specific [3H]-E2 receptor binding which was displaced by G-1, characteristic of Gper. Expression of gper increased at the time of FOM in mid-vitellogenic oocytes, but not in larger oocytes undergoing GVBD. These results suggest increases in both E2 production and E2 responsiveness via Gper upregulation in mid-vitellogenic oocytes, may maintain meiotic arrest in this oocyte stage class during the period when full-grown oocytes are undergoing FOM. This study indicates a critical involvement of E2 in the control of asynchronous oocyte maturation and the multiple spawning pattern in Sparidae.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Yefei Pang
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
6
|
Tuan Nguyen A, Chia JHZ, Kazeto Y, Wylie MJ, Mark Lokman P. Induction of oocyte development in previtellogenic eel, Anguilla australis. Gen Comp Endocrinol 2020; 291:113404. [PMID: 32001324 DOI: 10.1016/j.ygcen.2020.113404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022]
Abstract
The role of gonadotropins during early ovarian development in fish remains little understood. Concentrations of gonadotropins were therefore experimentally elevated in vivo by administration of recombinant follicle-stimulating hormone (rec-Fsh) or human chorionic gonadotropin (hCG) and the effects on ovarian morphology, sex steroid levels and mRNA levels of genes expressed in pituitary and ovary examined. Hormones were injected thrice at weekly intervals in different doses (20, 100 or 500 µg/kg BW for rec-Fsh and 20, 100 or 500 IU/kg BW for hCG). All treatments, especially at the highest doses of either rec-Fsh or hCG, induced ovarian development, reflected in increased oocyte size and lipid uptake. Both gonadotropins up-regulated follicle-stimulating hormone receptor (fshr) mRNA levels and plasma levels of estradiol-17β (E2). Exogenous gonadotropins largely decreased the expression of follicle-stimulating hormone β-subunit (fshb) and had little effect on those of luteinizing hormone β-subunit (lhb) in the pituitary. It is proposed that the effects of hCG on ovarian development in previtellogenic eels could be indirect as a significant increase in plasma levels of 11-ketotestosterone (11-KT) was found in eels treated with hCG. Using rec-Fsh and hCG has potential for inducing puberty in eels in captivity, and indeed, in teleost fish at large.
Collapse
Affiliation(s)
- Anh Tuan Nguyen
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand; University of Agriculture and Forestry, Hue University, 6 Le Loi Street, Hue, Viet Nam.
| | - Jolyn H Z Chia
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - Yukinori Kazeto
- Kamiura Laboratory, National Research Institute of Aquaculture, Fisheries Research and Education Agency, 422-1 Nakatsuhamaura, Oita 879-2602, Japan
| | - Matthew J Wylie
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - P Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
7
|
Valencia A, Andrieu J, Nzioka A, Cancio I, Ortiz-Zarragoitia M. Transcription pattern of reproduction relevant genes along the brain-pituitary-gonad axis of female, male and intersex thicklip grey mullets, Chelon labrosus, from a polluted harbor. Gen Comp Endocrinol 2020; 287:113339. [PMID: 31759976 DOI: 10.1016/j.ygcen.2019.113339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/19/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023]
Abstract
The reproductive cycle of teleost fishes is regulated by the brain-pituitary-gonad (BPG) axis. The transcription profile of genes involved in the reproduction signalling in the BPG-axis differs in females and males during the gametogenic cycle. Impacts of endocrine disrupting chemicals on these signalling pathways in fish are known, but the participation of the BPG-axis in the development of the intersex condition is not well understood. Intersex thicklip grey mullets (Chelon labrosus) have been identified in several estuaries from the SE Bay of Biscay, revealing the presence of feminizing contaminants in the area. In previous studies, transcription patterns of genes related with steroidogenesis and gamete growth have been shown to differ among female, male and intersex mullets. However, many components of the reproduction control have not been studied yet. The aim of this study was to assess the transcription levels of target BPG-axis genes in female, male and intersex mullets captured in the polluted harbour of Pasaia, during their gametogenic cycle. After histologically examining the gonads, the transcription levels of previously sequenced target genes were measured by qPCR: kiss2, gpr54 and gnrh1 in brain, fshβ and lhβ in pituitary and fshr and lhr in gonads. In both females and males, brain genes were most transcribed in early gametogenesis, proving their relevance in the onset of both oogenesis and spermatogenesis. Pituitary gonadotropins in females showed upregulation as oogenesis progressed, reaching the highest transcription levels at vitellogenic stage, while in males transcript levels were constant during spermatogenesis. Transcription levels of gonadotropin receptors showed different patterns in ovaries and testes, suggesting differing function in relation to gametogenesis and maturation. Intersex mullets showed transcription levels of brain target genes similar to those observed in females at cortical alveoli stage and to those in mid spermatogenic males. In intersex testes the transcription pattern of gonadotropin receptor fshr was downregulated in comparison to non-intersex testes.
Collapse
Affiliation(s)
- Ainara Valencia
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept, (Faculty of Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - Josu Andrieu
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept, (Faculty of Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - Anthony Nzioka
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept, (Faculty of Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - Ibon Cancio
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept, (Faculty of Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Zoology and Cell Biology Dept, (Faculty of Science and Technology), University of the Basque Country (UPV/EHU), E-48080, Bilbao, PO Box 644, Basque Country, Spain.
| |
Collapse
|
8
|
Blanco AM. Hypothalamic- and pituitary-derived growth and reproductive hormones and the control of energy balance in fish. Gen Comp Endocrinol 2020; 287:113322. [PMID: 31738909 DOI: 10.1016/j.ygcen.2019.113322] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/20/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Most endocrine systems in the body are influenced by the hypothalamic-pituitary axis. Within this axis, the hypothalamus delivers precise signals to the pituitary gland, which in turn releases hormones that directly affect target tissues including the liver, thyroid gland, adrenal glands and gonads. This action modulates the release of additional hormones from the sites of action, regulating key physiological processes, including growth, metabolism, stress and reproduction. Pituitary hormones are released by five distinct hormone-producing cell types: somatotropes (which produce growth hormone), thyrotropes (thyrotropin), corticotropes (adrenocorticotropin), lactotropes (prolactin) and gonadotropes (follicle stimulating hormone and luteinizing hormone), each modulated by specific hypothalamic signals. This careful and distinct organization of the hypothalamo-pituitary axis has been classically associated with the existence of many lineal axes (e.g., the hypothalamic-pituitary-gonadal axis) in charge of the control of the different physiological processes. While this traditional concept is valid, it is becoming apparent that hormones produced by the hypothalamo-pituitary axis have diverse effects. For instance, gonadotropin-releasing hormone II has been associated with a suppressive effect on food intake in fish. Likewise, growth hormone has been shown to influence appetite, swimming activity and aggressive behavior in fish. This review will focus on the hypothalamic and pituitary hormones classically involved in regulating growth and reproduction, and will attempt to provide a general overview of the current knowledge on their actions on energy balance and appetite in fish. It will also give a brief perspective of the role of some of these peptides in integrating feeding, metabolism, growth and reproduction.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain; Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
9
|
Burow S, Mizrahi N, Maugars G, von Krogh K, Nourizadeh-Lillabadi R, Hollander-Cohen L, Shpilman M, Atre I, Weltzien FA, Levavi-Sivan B. Characterization of gonadotropin receptors Fshr and Lhr in Japanese medaka, Oryzias latipes. Gen Comp Endocrinol 2020; 285:113276. [PMID: 31536722 DOI: 10.1016/j.ygcen.2019.113276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
Reproduction in vertebrates is controlled by the brain-pituitary-gonad axis, where the two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) play vital parts by activating their cognate receptors in the gonads. The main purpose of this work was to study intra- and interspecies ligand promiscuity of teleost gonadotropin receptors, since teleost receptor specificity is unclear, in contrast to mammalian receptors. Receptor activation was investigated by transfecting COS-7 cells with either Fsh receptor (mdFshr, tiFshr) or Lh receptor (mdLhr, tiLhr), and tested for activation by recombinant homologous and heterologous ligands (mdFshβα, mdLhβα, tiFshβα, tiLhβα) from two representative fish orders, Japanese medaka (Oryzias latipes, Beloniformes) and Nile tilapia (Oreochromis niloticus, Cichliformes). Results showed that each gonadotropin preferentially activates its own cognate receptor. Cross-reactivity was detected to some extent as mdFshβα was able to activate the mdLhr, and mdLhβα the mdFshr. Medaka pituitary extract (MPE) stimulated CRE-LUC activity in COS-7 cells expressing mdlhr, but could not stimulate cells expressing mdfshr. Recombinant tiLhβα, tiFshβα and tilapia pituitary extract (TPE) could activate the mdLhr, suggesting cross-species reactivity for mdLhr. Cross-species reactivity was also detected for mdFshr due to activation by tiFshβα, tiLhβα, and TPE, as well as for tiFshr and tiLhr due to stimulation by mdFshβα, mdLhβα, and MPE. Tissue distribution analysis of gene expression revealed that medaka receptors, fshr and lhr, are highly expressed in both ovary and testis. High expression levels were found for lhr also in brain, while fshr was expressed at low levels. Both fshr and lhr mRNA levels increased significantly during testis development. Amino acid sequence alignment and three-dimensional modelling of ligands and receptors highlighted conserved beta sheet domains of both Fsh and Lh between Japanese medaka and Nile tilapia. It also showed a higher structural homology and similarity of transmembrane regions of Lhr between both species, in contrast to Fshr, possibly related to the substitution of the conserved cysteine residue in the transmembrane domain 6 in medaka Fshr with glycine. Taken together, this is the first characterization of medaka Fshr and Lhr using homologous ligands, enabling to better understand teleost hormone-receptor interactions and specificities. The data suggest partial ligand promiscuity and cross-species reactivity between gonadotropins and their receptors in medaka and tilapia.
Collapse
Affiliation(s)
- Susann Burow
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Naama Mizrahi
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Gersende Maugars
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lian Hollander-Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Ishwar Atre
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
10
|
Jéhannet P, Kruijt L, Damsteegt EL, Swinkels W, Heinsbroek LTN, Lokman PM, Palstra AP. A mechanistic model for studying the initiation of anguillid vitellogenesis by comparing the European eel (Anguilla anguilla) and the shortfinned eel (A. australis). Gen Comp Endocrinol 2019; 279:129-138. [PMID: 30796898 DOI: 10.1016/j.ygcen.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
An inverse relation exists between the maturation stage at the start of the oceanic reproductive migration and the migration distance to the spawning grounds for the various eel species. The European eel Anguilla anguilla migrates up to 5-6000 km and leaves in a previtellogenic state. The shortfinned eel A. australis migrates 2-4000 km and leaves in an early vitellogenic state. In this study, we compared the early pubertal events in European silver eels with those in silver shortfinned eels to gain insights into the initiation of vitellogenesis. Immediately after being caught, yellow and silver eels of both species were measured and sampled for blood and tissues. Eye index (EI), gonadosomatic index (GSI) and hepatosomatic index (HSI) were calculated. Plasma 11-ketotestosterone (11-KT) and 17β-estradiol (E2) levels were measured by radioimmunoassay. Pituitary, liver and ovaries were dissected for quantitative real-time PCR analyses (pituitary dopamine 2b receptor d2br, gonadotropin-releasing hormone receptors 1 and 2 gnrhr1 and gnrhr2, growth hormone gh and follicle-stimulating hormone-β fshb; liver estrogen receptor 1 esr1; gonad follicle-stimulating hormone receptor fshr, androgen receptors α and β ara and arb, vitellogenin receptor vtgr and P450 aromatase cyp19). Silver eels of both species showed a drop in pituitary gh expression, progressing gonadal development (GSI of ∼1.5 in European eels and ∼3.0 in shortfinned eels) and steroid level increases. In shortfinned eels, but not European eels, expression of fshb, gnrhr1 and gnrhr2, and d2br in the pituitary was up-regulated in the silver-stage as compared to yellow-stage females, as was expression of fshr, ara and arb in the ovaries. Expression of esr1 in European eels remained low while esr1 expression was up-regulated over 100-fold in silver shortfinned eels. The mechanistic model for anguillid vitellogenesis that we present suggests a first step that involves a drop in Gh and a second step that involves Fsh increase when switching in the life history trade-off from growth to reproduction. The drop in Gh is associated with gonadal development and plasma steroid increase but precedes brain-pituitary-gonad axis (BPG) activation. The Fsh increase marks BPG activation and increased sensitivity of the liver to estrogenic stimulation, but also an increase in D2br-mediated dopaminergic signaling to the pituitary.
Collapse
Affiliation(s)
- P Jéhannet
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - L Kruijt
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - E L Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - W Swinkels
- DUPAN Foundation, Bronland 12-D, 6700 AE Wageningen, The Netherlands
| | - L T N Heinsbroek
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands; Wageningen Eel Reproduction Experts B.V., Mennonietenweg 13, 6702 AB Wageningen, The Netherlands
| | - P M Lokman
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - A P Palstra
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
11
|
Yuan LJ, Peng C, Liu BH, Feng JB, Qiu GF. Identification and Characterization of a Luteinizing Hormone Receptor (LHR) Homolog from the Chinese Mitten Crab Eriocheir sinensis. Int J Mol Sci 2019; 20:ijms20071736. [PMID: 30965614 PMCID: PMC6480239 DOI: 10.3390/ijms20071736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
Luteinizing hormone (LH), a pituitary gonadotropin, coupled with LH receptor (LHR) is essential for the regulation of the gonadal maturation in vertebrates. Although LH homolog has been detected by immunocytochemical analysis, and its possible role in ovarian maturation was revealed in decapod crustacean, so far there is no molecular evidence for the existence of LHR. In this study, we cloned a novel LHR homolog (named EsLHR) from the Chinese mitten crab Eriocheir sinensis. The complete sequence of the EsLHR cDNA was 2775bp, encoding a protein of 924 amino acids, sharing 71% amino acids identity with the ant Zootermopsis nevadensis LHR. EsLHR expression was found to be high in the ovary, while low in testis, gill, brain, and heart, and no expression in the thoracic ganglion, eye stalk, muscle, and hepatopancreas. Quantitative PCR revealed that the expression level of EsLHR mRNA was significantly higher in the ovaries in previtellogenic (Pvt), late vitellogenic (Lvt), and germinal vesicle breakdown (GVBD) stages than that in the vitellogenic (Mvt) and early vitellogenic (Evt) stages (P < 0.05), and, the highest and the lowest expression were in Lvt, and Evt, respectively. The strong signal was mainly localized in the ooplasm of Pvt oocyte as detected by in situ hybridization. The crab GnRH homolog can significantly induce the expression of EsLHR mRNA at 36 hours post injection in vivo (P < 0.01), suggesting that EsLHR may be involved in regulating ovarian development through GnRH signaling pathway in the mitten crab.
Collapse
Affiliation(s)
- Li-Juan Yuan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Chao Peng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Bi-Hai Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jiang-Bin Feng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
12
|
Nguyen AT, Chia JHZ, Kazeto Y, Lokman PM. Expression of gonadotropin subunit and gonadotropin receptor genes in wild female New Zealand shortfinned eel (Anguilla australis) during yellow and silver stages. Gen Comp Endocrinol 2019; 272:83-92. [PMID: 30529311 DOI: 10.1016/j.ygcen.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/13/2023]
Abstract
Despite tremendous importance of follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) as primary controllers of reproductive development, information on the expression profiles of the genes encoding gonadotropin subunits and gonadotropin receptors (Fshr and Lhr) in wild eels are essentially non-existent. This study investigated pituitary fshb and lhb mRNA levels and ovarian fshr and lhr mRNA levels of wild shortfinned eels, Anguilla australis at different stages of oogenesis. Protein expression of Fsh in the pituitary was also quantified and visualized using slot blot and immunohistochemistry. Pituitary fshb and lhb mRNA levels showed a differential expression pattern, fshb mRNA levels increasing significantly from the perinucleolus (PN) to the oil droplet stage (OD) before slightly decreasing (not significantly) in the early vitellogenic stage (EV). A similar trend was observed in relative Fsh protein levels analyzed by slot blot and immunohistochemistry, but this trend was not reflected in the plasma levels of sex steroids. In contrast, pituitary lhb mRNA levels increased significantly from the PN to EV stage. A higher expression of Fsh at both mRNA and protein levels in the pituitary of eels at the OD stage compared to other investigated stages suggests that synthesis of Fsh production in the pituitary may reach a peak at the OD stage. In the ovary, transcript abundances of fshr and lhr gradually increased during previtellogenic follicle growth, but markedly and significantly increased thereafter. Taken together, our data suggest i) that Fsh release may be very limited, or absent, prior to onset of puberty in shortfinned eels and ii) that Lh is not functionally important in this fish during the EV stage.
Collapse
Affiliation(s)
- Anh Tuan Nguyen
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand.
| | - Jolyn H Z Chia
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - Yukinori Kazeto
- Kamiura Laboratory, National Research Institute of Aquaculture, Fisheries Research and Education Agency, Oita 879-2602, Japan
| | - P Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
13
|
Differential expression of gonadotropin and estrogen receptors and oocyte cytology during follicular maturation associated with egg viability in European eel (Anguilla anguilla). Comp Biochem Physiol A Mol Integr Physiol 2018; 221:44-54. [DOI: 10.1016/j.cbpa.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 11/21/2022]
|
14
|
Basak R, Roy A, Rai U. In silico analysis, temporal expression and gonadotropic regulation of receptors for follicle-stimulating hormone and luteinizing hormone in testis of spotted snakehead Channa punctata. JOURNAL OF FISH BIOLOGY 2018; 93:53-71. [PMID: 29931764 DOI: 10.1111/jfb.13727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
This study in spotted snakehead Channa punctata was aimed to develop a comprehensive understanding of testicular gonadotropin receptors, from their sequence characterization, temporal expression to gonadotropic regulation, in seasonally breeding teleosts. A single form of follicle-stimulating hormone receptor (cpfshra) and luteinizing hormone/choriogonadotropin receptor (cplhcgr), was identified from testicular transcriptome data of C. punctata. Although deduced full-length protein sequence for cpFshra (694 amino acids) and cpLhcgr (691 amino acids) showed homology with their counterparts of other vertebrates, multiple insertion-deletion-substitution of residues suggest marked alterations in their structure and ligand specificity. The absolute quantification of testicular cpfshra and cplhcgr was estimated along the reproductive cycle following real-time PCR. The temporal expression profile showed highest testicular expression of both the gonadotropin receptors during resting phase. Their expression progressively decreased during preparatory and spawning phases concomitant with spermatogonial proliferation and differentiation and spermiogenesis. However, levels of cpfshra and cplhcgr sharply increased during post-spawning when seminiferous lobules were largely devoid of germ cells. To explore gonadotropic regulation of testicular cpfshra and cplhcgr, one group of fish of resting phase was administered with single dose of human chorionic gonadotropin (hCG; 5,000 IU/kg body mass) on day 0 and sacrificed on day 3 and day 5, while another group receiving two injections of hCG (day 0 and day 7) was sacrificed on day 14. The expression pattern of testicular gonadotropin receptors in hCG-treated fish sacrificed after 3, 5 and 14 days was similar to that of preparatory, spawning and postspawning phases, respectively. Likewise, testicular histology of hCG-treated fish sacrificed on day 3, day 5 and day 14 was comparable with that of preparatory, early spawning and late spawning phases, respectively. In light of the fact that gonadotropin receptors are largely expressed on somatic cells, an apparent decrease in testicular cpfshra and cplhcgr levels during preparatory and spawning phases or after 3 and 5 days from first hCG injection might not be due to downregulation of their expression. Rather, this could be due to dilution of somatic cell mRNA by large amount of germ cell mRNA. To verify this assumption, effect of hCG on plasma level of androgens was investigated employing enzyme-linked immunosorbent assay. A marked increase in plasma level of testosterone and 11-ketotestosterone was observed after hCG treatment in C. punctata. This would have been possible only when hCG upregulated the expression of testicular gonadotropin receptors.
Collapse
Affiliation(s)
| | - Alivia Roy
- Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
15
|
Pradhan A, Nayak M, Samanta M, Panda RP, Rath SC, Giri SS, Saha A. Gonadotropin receptors of Labeo rohita: Cloning and characterization of full-length cDNAs and their expression analysis during annual reproductive cycle. Gen Comp Endocrinol 2018; 263:21-31. [PMID: 29660307 DOI: 10.1016/j.ygcen.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022]
Abstract
Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), secreted from pituitary, stimulate gonadal function by binding to their cognate receptors FSH receptor (FSHR), and LH/choriogonadotropin receptor (LHCGR). Rohu (Labeo rohita) is a commercially important seasonal breeder freshwater fish species, but till date, the regulation of expression of gonadotropins and their receptors gene during different phases of annual reproductive cycle has not been investigated. We envisaged the critical role of these molecules during seasonal gonadal development in this carp species. We cloned full- length cDNAs of fshra and lhcgrba from rohu testis using RACE (Rapid amplification of cDNA ends) and analyzed their expression along with fsh and lh by quantitative real time PCR (qRT-PCR) assay at various gonadal developmental stages of the annual reproductive cycle. Full-length rohu fshra and lhcgrba cDNA encodes 670 and 716 amino acids respectively, and in adult fish, they were widely expressed in brain, pituitary, gonad, liver, kidney, head kidney, heart, muscle, gill, fin, eye and intestine. In male, both fsh and fshra transcripts showed high level of expression during spermatogenesis, however, in female, expression level was found to be higher in the fully grown oocyte stages. The expression of rohu lh and lhcgrba mRNA increased with increment of gonadosomatic index and showed highest level during spermiation stage in male and fully matured oocyte stage in female. These results together may suggest the involvement of fshra and lhcgrba in regulating function of seasonal gonadal development in rohu.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- Cyprinidae/genetics
- Cyprinidae/metabolism
- DNA, Complementary/isolation & purification
- DNA, Complementary/metabolism
- Female
- Gene Expression Profiling/veterinary
- Gonads/metabolism
- Male
- Pituitary Gland/metabolism
- Receptors, FSH/metabolism
- Receptors, Gonadotropin/genetics
- Receptors, Gonadotropin/isolation & purification
- Receptors, Gonadotropin/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Reproduction/genetics
- Sequence Analysis, DNA/veterinary
- Transcriptome
Collapse
Affiliation(s)
- Avinash Pradhan
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Madhusmita Nayak
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Mrinal Samanta
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Rudra Prasanna Panda
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Suresh Chandra Rath
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Shiba Shankar Giri
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Ashis Saha
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India.
| |
Collapse
|
16
|
Li G, Tang H, Chen Y, Yin Y, Ogawa S, Liu M, Guo Y, Qi X, Liu Y, Parhar IS, Liu X, Lin H. Estrogen directly stimulates LHb expression at the pituitary level during puberty in female zebrafish. Mol Cell Endocrinol 2018; 461:1-11. [PMID: 28801227 DOI: 10.1016/j.mce.2017.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/05/2017] [Accepted: 08/06/2017] [Indexed: 11/16/2022]
Abstract
The LHb expression is up-regulated during puberty in female zebrafish. However, the molecular mechanism underlying how LHb expression is regulated during puberty remains largely unknown. In this study, we found that the mRNA expression levels of lhb, fshb and cyp19a1b were up-regulated along with the puberty onset in zebrafish. Among the three nuclear estrogen receptors (nERs), the esr2b is the only type whose expression is significantly up-regulated during puberty onset in the pituitary. However, in situ hybridization results revealed that lhb mRNA was colocalized with esr1 and esr2a but not esr2b. Exposure to estradiol (E2) significantly stimulates LHb expression in both wild-type and kiss1-/-;kiss2-/-;gnrh3-/- triple knockout pubertal zebrafish. Moreover, exposure of cultured pituitary cells to E2 increased the LHb expression, indicating that the estrogenic effect on LHb expression could be acted at the pituitary level. Finally, we cloned and analyzed the promoter of lhb by luciferase assay. Our results indicated that the E2 responsive regions of lhb promoter for ERα and ERβ2 are identical, suggesting that ERα and ERβ2 could bind to the same half ERE region of the promoter of lhb, exhibiting a classical ERE-dependent pathway. In summary, we demonstrate that E2 could directly act on the pituitary level to stimulate LHb transcription during puberty in zebrafish.
Collapse
Affiliation(s)
- Gaofei Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yike Yin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Meifeng Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Qi
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China.
| |
Collapse
|
17
|
Qin X, Xiao Y, Ye C, Jia J, Liu X, Liang H, Zou G, Hu G. Pituitary Action of E2 in Prepubertal Grass Carp: Receptor Specificity and Signal Transduction for Luteinizing Hormone and Follicle-Stimulating Hormone Regulation. Front Endocrinol (Lausanne) 2018; 9:308. [PMID: 29937753 PMCID: PMC6002485 DOI: 10.3389/fendo.2018.00308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022] Open
Abstract
17β-estradiol (E2) is an important sex steroid produced by ovary and brain. In mammals, E2 plays an important role in hypothalamus-pituitary-gonad axis to regulate puberty onset, however, little is known about the functional role of E2 in teleost pituitary. Using prepubertal grass carp as model, three nuclear estrogen receptors (nERs: estrogen receptor alpha, estrogen receptor beta 1, and estrogen receptor beta 2) and two G protein-coupled estrogen receptors (GPER1: GPER1a and GPER1b) were isolated from grass carp pituitary. Tissue distribution analysis indicated that both nERs and GPERs were highly detected in grass carp pituitary, which suggested that E2 should play an important role in grass carp pituitary. Using primary cultured grass carp pituitary cells as model, high-throughput RNA-seq was used to examine the E2-induced differentially expressed genes (DEGs). Transcriptomic analysis showed that E2 could significantly upregulate the expression of 28 genes in grass carp pituitary cells, which were characterized into different functions including reproduction, gonad development, and central nervous system development. Further studies confirmed that E2 could induce luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion and mRNA expression in prepubertal grass carp pituitary in vivo and in vitro. In the pituitary, LH and FSH regulation by E2 were mediated by both ERβ and GPER1. Apparently, E2-induced LHβ and FSHβ mRNA expression were mediated by adenylyl cyclase/cAMP/protein kinase A, phospholipase C/inositol 1,4,5-triphosphate/protein kinase C, and Ca2+/calmodulin/CaM-dependent protein kinase II pathways. In addition to LH and FSH, E2 could also induce growth regulation by estrogen in breast cancer 1 (a novel regulator for pituitary development) mRNA expression in grass carp pituitary cells. These results, as a whole, suggested that E2 could play an important role in gonadotropin hormone release and pituitary development in prepubertal grass carp.
Collapse
Affiliation(s)
- Xiangfeng Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yaqian Xiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Cheng Ye
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jingyi Jia
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xiangjiang Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hongwei Liang
- Key Laboratory of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fishery Sciences, Wuhan, China
| | - Guiwei Zou
- Key Laboratory of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fishery Sciences, Wuhan, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Guangfu Hu,
| |
Collapse
|
18
|
Molecular analysis and bioactivity of luteinizing hormone from Japanese eel, Anguilla japonica, produced in silkworm pupae. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0042-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Moreira RG, Honji RM, Melo RG, Narcizo ADM, Amaral JS, Araújo RDC, Hilsdorf AWS. The involvement of gonadotropins and gonadal steroids in the ovulatory dysfunction of the potamodromous Salminus hilarii (Teleostei: Characidae) in captivity. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1435-1447. [PMID: 26183262 DOI: 10.1007/s10695-015-0097-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
Potamodromous teleosts that require migration to reproduce show dysfunctions that block ovulation and spawning while in captivity. To understand the physiological basis of these reproductive dysfunctions, follicle-stimulating hormone b subunit (fshb) and luteinizing hormone b subunit (lhb) gene expression analyses by real-time quantitative PCR, together with measurements of estradiol (E 2), 17α-hydroxyprogesterone (17α-OHP) and 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DHP) levels, were carried out throughout the reproductive cycle of the potamodromous Salminus hilarii. The following reproductive stages were evaluated in captive and wild females: previtellogenic (PV), advanced maturation/mature (AM) and regression/spent (REG/SPENT). In the wild females, fshb expression decreased from the PV to the AM stage, and the opposite pattern was detected for E 2, which increased from the PV to the AM stage. fshb was expressed at lower levels in captive than in wild females, and this difference did not change during the reproductive cycle. lhb expression also increased from the PV to the AM stage in both groups, but the wild females at the AM and REG/SPENT stages showed higher lhb expression levels than the captive females. The concentrations of 17α-OHP did not change during the reproductive cycle, and the levels were higher in the captive than in the wild females at all reproductive stages. 17α,20β-DHP levels did not change between wild and captive females. However, in captive females, the transition from PV to AM stage was followed by an increase in 17α,20β-DHP levels. These data indicate that dysfunctions in the gonadotropins and steroids synthesis pathways cause the ovulation failure in captive S. hilarii.
Collapse
Affiliation(s)
- Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no 321, São Paulo, SP, 05508-090, Brazil.
| | - Renato Massaaki Honji
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no 321, São Paulo, SP, 05508-090, Brazil
| | - Renato Garcia Melo
- Núcleo de Biotecnologia, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Amanda de Moraes Narcizo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no 321, São Paulo, SP, 05508-090, Brazil
| | - Juliane Suzuki Amaral
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no 321, São Paulo, SP, 05508-090, Brazil
| | | | | |
Collapse
|
20
|
Zhang Z, Lau SW, Zhang L, Ge W. Disruption of Zebrafish Follicle-Stimulating Hormone Receptor (fshr) But Not Luteinizing Hormone Receptor (lhcgr) Gene by TALEN Leads to Failed Follicle Activation in Females Followed by Sexual Reversal to Males. Endocrinology 2015; 156:3747-62. [PMID: 25993524 DOI: 10.1210/en.2015-1039] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadotropins are primary hormones that control vertebrate reproduction. In a recent study, we analyzed the impacts of FSH and LH on zebrafish reproduction by disrupting FSH and LH-β genes (fshb and lhb) using transcription activator-like effector nuclease (TALEN) technology. Using the same approach, we successfully deleted FSH and LH receptor genes (fshr and lhcgr) in the present study. In contrast to the deficiency of its cognate ligand FSH, the fshr-deficient females showed a complete failure of follicle activation with all ovarian follicles arrested at the primary growth-previtellogenic transition, which is the marker for puberty onset in females. Interestingly, after blockade at the primary growth stage for varying times, all females reversed to males, and all these males were fertile. In fshr-deficient males, spermatogenesis was normal in adults, but the initiation of spermatogenesis in juveniles was retarded. In contrast to fshr, the deletion of the lhcgr gene alone caused no obvious phenotypes in both males and females; however, double mutation of fshr and lhcgr resulted in infertile males. In summary, our results in the present study showed that Fshr was indispensable to folliculogenesis and the disruption of the fshr gene resulted in a complete failure of follicle activation followed by masculinization into males. In contrast, lhcgr does not seem to be essential to zebrafish reproduction in both males and females. Neither Fshr nor Lhcgr deficiency could phenocopy the deficiency of their cognate ligands FSH and LH, which is likely due to the fact that Fshr can be activated by both FSH and LH in the zebrafish.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Centre of Reproduction, Development and Aging (Z.Z., W.G.), Faculty of Health Sciences, University of Macau, Taipa, Macau China; and School of Life Sciences (Z.Z., S.-W.L., L.Z., W.G.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuk-Wa Lau
- Centre of Reproduction, Development and Aging (Z.Z., W.G.), Faculty of Health Sciences, University of Macau, Taipa, Macau China; and School of Life Sciences (Z.Z., S.-W.L., L.Z., W.G.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Lingling Zhang
- Centre of Reproduction, Development and Aging (Z.Z., W.G.), Faculty of Health Sciences, University of Macau, Taipa, Macau China; and School of Life Sciences (Z.Z., S.-W.L., L.Z., W.G.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (Z.Z., W.G.), Faculty of Health Sciences, University of Macau, Taipa, Macau China; and School of Life Sciences (Z.Z., S.-W.L., L.Z., W.G.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
21
|
Maugars G, Dufour S. Demonstration of the Coexistence of Duplicated LH Receptors in Teleosts, and Their Origin in Ancestral Actinopterygians. PLoS One 2015; 10:e0135184. [PMID: 26271038 PMCID: PMC4536197 DOI: 10.1371/journal.pone.0135184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/18/2015] [Indexed: 11/18/2022] Open
Abstract
Pituitary gonadotropins, FSH and LH, control gonad activity in vertebrates, via binding to their respective receptors, FSHR and LHR, members of GPCR superfamily. Until recently, it was accepted that gnathostomes possess a single FSHR and a single LHR, encoded by fshr and lhcgr genes. We reinvestigated this question, focusing on vertebrate species of key-phylogenetical positions. Genome analyses supported the presence of a single fshr and a single lhcgr in chondrichthyans, and in sarcopterygians including mammals, birds, amphibians and coelacanth. In contrast, we identified a single fshr but two lhgcr in basal teleosts, the eels. We further showed the coexistence of duplicated lhgcr in other actinopterygians, including a non-teleost, the gar, and other teleosts, e.g. Mexican tetra, platyfish, or tilapia. Phylogeny and synteny analyses supported the existence in actinopterygians of two lhgcr paralogs (lhgcr1/ lhgcr2), which do not result from the teleost-specific whole-genome duplication (3R), but likely from a local gene duplication that occurred early in the actinopterygian lineage. Due to gene losses, there was no impact of 3R on the number of gonadotropin receptors in extant teleosts. Additional gene losses during teleost radiation, led to a single lhgcr (lhgcr1 or lhgcr2) in some species, e.g. medaka and zebrafish. Sequence comparison highlighted divergences in the extracellular and intracellular domains of the duplicated lhgcr, suggesting differential properties such as ligand binding and activation mechanisms. Comparison of tissue distribution in the European eel, revealed that fshr and both lhgcr transcripts are expressed in the ovary and testis, but are differentially expressed in non-gonadal tissues such as brain or eye. Differences in structure-activity relationships and tissue expression may have contributed as selective drives in the conservation of the duplicated lhgcr. This study revises the evolutionary scenario and nomenclature of gonadotropin receptors, and opens new research avenues on the roles of duplicated LHR in actinopterygians.
Collapse
Affiliation(s)
- Gersende Maugars
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
| |
Collapse
|
22
|
Jeng SR, Yueh WS, Pen YT, Lee YH, Chen GR, Dufour S, Chang CF. Neuroendocrine gene expression reveals a decrease in dopamine D2B receptor with no changes in GnRH system during prepubertal metamorphosis of silvering in wild Japanese eel. Gen Comp Endocrinol 2014; 206:8-15. [PMID: 25125083 DOI: 10.1016/j.ygcen.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/20/2014] [Accepted: 08/05/2014] [Indexed: 11/21/2022]
Abstract
Silvering is a prepubertal metamorphosis preparing the eel to the oceanic reproductive migration. A moderate gonad development occurs during this metamorphosis from the sedentary yellow stage to the migratory silver stage. The aim of this study was to elucidate the molecular aspects of various endocrine parameters of BPG axis at different ovarian developmental stages in wild yellow and silver female Japanese eels. The GSI of the sampled female eels ranged between 0.18 and 2.3%, corresponding to yellow, pre-silver and silver stages. Gonad histology showed changes from previtellogenic oocytes in yellow eels to early vitellogenic oocytes in silver eels. Both serum E2 and T concentrations significantly increased with ovarian development indicating a significant activation of steroidogenesis during silvering. In agreement with previous studies, significant increases in pituitary gonadotropin beta subunits FSH-β and LH-β transcripts were also measured by qPCR, supporting that the activation of pituitary gonadotropin expression is likely responsible for the significant ovarian development observed during silvering. We investigated for the first time the possible brain neuroendocrine mechanisms involved in the activation of the pituitary gonadotropic function during silvering. By analyzing the expression of genes representative of the stimulatory GnRH control and the inhibitory dopaminergic control. The transcript levels of mGnRH and the three GnRH receptors did not change in the brain and pituitary between yellow and silver stages, suggesting that gene expression of the GnRH system is not significantly activated during silvering. The brain transcript levels of tyrosine hydroxylase, limiting enzyme of DA synthesis did not change during silvering, indicating that the DA synthesis activity was maintained. In contrast, a significant decrease in DA-D2B receptor expression in the forebrain and pituitary was observed, with no changes in DA-D2A receptor. The decrease in the pituitary expression of DA-D2BR during silvering would allow a reduced inhibitory effect of DA. We may raise the hypothesis that this regulation of D2BR gene expression is one of the neuroendocrine mechanisms involved in the slight activation of the pituitary gonadotropin and gonadal activity that occur at silvering.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan
| | - Yi-Ting Pen
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan
| | - Yan-Horn Lee
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Council of Agriculture, Tungkang 928, Taiwan
| | - Guan-Ru Chen
- Freshwater Aquaculture Research Center, Fisheries Research Institute, Council of Agriculture, Lukang 505, Taiwan
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208 - IRD207 - UPMC - UCBN, 75231 Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
23
|
Qin F, Wang X, Liu S, Zheng Y, Li M, Zhang Y, Wang Z. Gene expression profiling of key genes in hypothalamus-pituitary-gonad axis of rare minnow Gobiocypris rarus in response to EE2. Gene 2014; 552:8-17. [PMID: 25194895 DOI: 10.1016/j.gene.2014.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022]
Abstract
The 17α-ethinylestradiol (EE2), which could induce estrogenic effects, is found in different aquatic systems. The current study aimed to assess in vivo effects of short-term EE2 exposure on the transcriptional activity of genes in the brain and gonad tissues in order to characterize the mode of action of EE2 on the hypothalamus-pituitary-gonad axis in rare minnow (Gobiocypris rarus). The full length cDNAs of fshβ, lhβ, fshr and lhr were first characterized in G. rarus. The homology and phylogenetic analyses of the amino acid sequences revealed that these four genes share high identity in cyprinid fish. The tissue distribution analysis by qRT-PCR showed that fshβ and lhβ were mainly expressed in the brain and fshr and lhr were mainly expressed in gonads. Adult G. rarus was exposed to EE2 at 1, 5, 25 and 125 ng/L for 3 and 6 days and the expression of brain cyp19a1b, fshβ and lhβ, estrogen receptors (esr1, esr2a, and esr2b) and gonadal fshr, lhr and cyp19a1a were assessed. Cyp19a1b was significantly up-regulated in the brains of female exposed to EE2 at 1-125 ng/L for 6 days. The brain lhβ, but not fshβ was strongly suppressed in most EE2 exposure groups of both sexes. The brain esr2b was inhibited in both sexes exposed to EE2 at all of the four concentrations for 6 days. Esr2a was up-regulated in the females by 6-day EE2 treatment at 1 and 25 ng/L. The high responsiveness of brain lhβ and esr2s to EE2 and their significant correlation in both sexes suggested that the transcriptional activity of Esr2s could play key roles in modulation of lhβ expression via direct action on gonadotropic cells in response to EE2. In gonads, fshr was strongly inhibited by EE2 in males, while lhr was significantly stimulated by EE2 in females. Cyp19a1a was inhibited by EE2 in both sexes. The positive correlations of gene expressions of both fshr and lhr with cyp19a1a in testes suggest that the suppression of 17α-estradiol (E2) synthesis in testis by exogenous estrogen could mediate via both Fsh/Fshr and Lh/Lhr signaling in male G. rarus.
Collapse
Affiliation(s)
- Fang Qin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xueqin Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shaozhen Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yao Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Meng Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
Kroupova HK, Trubiroha A, Lorenz C, Contardo-Jara V, Lutz I, Grabic R, Kocour M, Kloas W. The progestin levonorgestrel disrupts gonadotropin expression and sex steroid levels in pubertal roach (Rutilus rutilus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:154-162. [PMID: 24893273 DOI: 10.1016/j.aquatox.2014.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/07/2014] [Accepted: 05/10/2014] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to investigate the effects of the synthetic progestin levonorgestrel (LNG) on the reproductive endocrine system of a teleost fish, the roach (Rutilus rutilus). Pubertal roach were exposed for 28 days in a flow-through system to four concentrations of LNG (3, 31, 312, and 3124 ng/l). Both males and females treated with 3124 ng/l LNG exhibited the upregulated levels of vitellogenin and oestrogen receptor 1 mRNA in the liver. At the same concentration, LNG caused a significant upregulation of the mRNA expression of the gene encoding luteinising hormone β-subunit (lhβ) and the suppression of the mRNA expression of the gene encoding follicle-stimulating hormone β-subunit (fshβ) in the pituitary of both male and female roach. A lower LNG concentration (312 ng/l) suppressed mRNA expression of fshβ in males only. Females treated with 3124 ng/l LNG exhibited significantly lower plasma 11-ketotestosterone (11-KT) and oestradiol (E2) concentrations, whereas their testosterone (T) level was higher compared with the control. Females exposed to 312 ng/l LNG presented significantly lower plasma E2 concentrations. Males exposed to ≥31 ng/l LNG exhibited significantly reduced 11-KT levels. As determined through a histological analysis, the ovaries of females were not affected by LNG exposure, whereas the testes of males exposed to 31 and 312 ng/l LNG exhibited a significantly higher percentage of spermatogonia B compared with the control. The results of the present study demonstrate that LNG disrupts the reproductive system of pubertal roach by affecting the pituitary gonadotropin expression and the sex steroid levels. This disruption was determined to occur in males after exposure to an environmentally relevant concentration (31 ng/l). Moreover, the highest tested concentration of LNG (3124 ng/l) exerted an oestrogenic effect on fish of both sexes.
Collapse
Affiliation(s)
- H K Kroupova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, CZ-38925 Vodnany, Czech Republic.
| | - A Trubiroha
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Mueggelseedamm 310, D-12587 Berlin, Germany
| | - C Lorenz
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Mueggelseedamm 310, D-12587 Berlin, Germany
| | - V Contardo-Jara
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Mueggelseedamm 310, D-12587 Berlin, Germany; Department Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, Ernst Reuter Platz 1, 10587 Berlin, Germany
| | - I Lutz
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Mueggelseedamm 310, D-12587 Berlin, Germany
| | - R Grabic
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, CZ-38925 Vodnany, Czech Republic
| | - M Kocour
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, CZ-38925 Vodnany, Czech Republic
| | - W Kloas
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Mueggelseedamm 310, D-12587 Berlin, Germany; Department of Endocrinology, Humboldt University Berlin, Invalidenstrasse 42, D-10099 Berlin, Germany
| |
Collapse
|
25
|
Elisio M, Chalde T, Miranda LA. Seasonal changes and endocrine regulation of pejerrey (Odontesthes bonariensis) oogenesis in the wild. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:102-9. [DOI: 10.1016/j.cbpa.2014.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023]
|
26
|
Andersson E, Schulz RW, Male R, Bogerd J, Patiña D, Benedet S, Norberg B, Taranger GL. Pituitary gonadotropin and ovarian gonadotropin receptor transcript levels: seasonal and photoperiod-induced changes in the reproductive physiology of female Atlantic salmon (Salmo salar). Gen Comp Endocrinol 2013; 191:247-58. [PMID: 23856539 DOI: 10.1016/j.ygcen.2013.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/27/2022]
Abstract
In female Atlantic salmon kept at normal light conditions, pituitary follicle-stimulating hormone beta (fshb) transcript levels were transiently elevated one year before spawning, re-increased in February, and remained high during spawning in November and in post-ovulatory fish in December. The first increase in plasma 17b-estradiol (E2), testosterone (T) and gonadosomatic index (GSI) was recorded in January; E2 rose up to one month prior to ovulation, while T and GSI kept increasing until ovulation. Pituitary luteinizing hormone beta (lhb) transcript levels peaked at the time of ovulation. Except for transient changes before and after ovulation, ovarian follicle stimulating hormone receptor (fshr) transcript amounts were relatively stable at a high level. By contrast, luteinizing hormone receptor (lhcgr) transcript levels started out low and increased in parallel to GSI and plasma E2 levels. Exposure to continuous light (LL) induced a bimodal response where maturation was accelerated or arrested. The LL-arrested females showed previtellogenic oil droplet stage follicles or primary yolk follicles only, and fshb and E2 plasma levels collapsed while fshr increased. The LL-accelerated females showed elevated lhb transcript levels and slightly elevated E2 levels during early vitellogenesis, and significantly elevated lhcgr E2 and GSI levels in late vitellogenesis. We conclude that Fsh-dependent signaling stimulates recruitment into and the sustained development through vitellogenesis. Up-regulation of lhcgr gene expression during vitellogenesis may reflect an estrogenic effect, while elevated fshr gene expression following ovulation or during LL-induced arrestment may be associated with ovarian tissue remodeling processes.
Collapse
Affiliation(s)
- Eva Andersson
- Institute of Marine Research, Research Group Reproduction and Growth in Fish, PO Box 1870 Nordnes, N-5817 Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
HU X, LIU X, ZHANG Y, LI S, CHEN H, LIN H. Expression profiles of gonadotropin receptors during ovary development in the orange-spotted grouper (Epinephelus coioides). ACTA ACUST UNITED AC 2013. [DOI: 10.3724/sp.j.1118.2012.00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Liu KC, Ge W. Evidence for gating roles of protein kinase A and protein kinase C in estradiol-induced luteinizing hormone receptor (lhcgr) expression in zebrafish ovarian follicle cells. PLoS One 2013; 8:e62524. [PMID: 23658740 PMCID: PMC3643932 DOI: 10.1371/journal.pone.0062524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/22/2013] [Indexed: 11/18/2022] Open
Abstract
Estradiol (E2) stimulates luteinizing hormone receptor (lhcgr) expression in zebrafish follicle cells via nuclear estrogen receptors (nERs) that are likely expressed on the membrane, and lhcgr responds to E2 in a biphasic manner during 24-h treatment. These observations raise an interesting question on the signaling mechanism underlying E2 regulation, in particular the biphasic response of lhcgr expression. In the present study, we demonstrated that E2 regulation of lhcgr was significantly influenced by the activity of cAMP-PKA pathway. Activation of cAMP-PKA pathway by forskolin or db-cAMP suppressed E2-stimulated lhcgr expression in short-term (3 h) but enhanced its effect in long-term (24 h), suggesting differential roles of PKA at these two phases of lhcgr response. PKA inhibitor H89 showed reversed effects. In contrast, PKC pathway had consistent permissive effect on E2-induced lhcgr expression as evidenced by strong inhibition of E2 effect by PKC inhibitors GF109203X and Ro-31-8220 at both 3 and 24 h. One of the mechanisms by which PKA and PKC gated E2 effect might be through regulating nERs, particularly esr2a. Despite the strong influence of PKA and PKC, our data did not suggest direct mediating roles for these two pathways in E2 stimulation of lhcgr expression; yet they likely play critical gating roles in E2 signal transduction. As a follow-up study to our previous report on E2 regulation of gonadotropin receptors in the zebrafish ovary, the present study provides further evidence for the involvement of classical intracellular signal transduction pathways in E2 stimulation of lhcgr expression in the follicle cells.
Collapse
Affiliation(s)
- Ka-Cheuk Liu
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail:
| |
Collapse
|
29
|
Mu WJ, Wen HS, He F, Li JF, Liu M, Zhang YQ, Hu J, Qi BX. Cloning and expression analysis of follicle-stimulating hormone and luteinizing hormone receptor during the reproductive cycle in Korean rockfish (Sebastes schlegeli). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:287-298. [PMID: 22843313 DOI: 10.1007/s10695-012-9699-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 07/18/2012] [Indexed: 06/01/2023]
Abstract
Full-length cDNA sequences encoding the receptors for follicle-stimulating hormone (FSHR) and luteinizing hormone (LHR) were isolated from ovary of Korean rockfish (Sebastes schlegeli) using reverse transcription-polymerase chain reaction (PCR) and rapid amplification of cDNA ends procedures. The cDNA of the KrFSHR encodes a predicted protein of 703 amino acids that showed the greatest homology with European seabass (Dicentrarchus labrax) (78 %) and gilthead seabream (Sparus aurata) (73 %). The cDNA of the KrLHR encodes a predicted protein of 703 amino acids and exhibited the highest homology with European seabass (Dicentrarchus labrax) (79 %) and gilthead seabream (Sparus aurata) (76 %). Besides the gonads, expressions of GTHRs mRNA were also obtained in extra gonadal tissues. Seasonal changes in the gonads expression profiles of KrGTHRs mRNA were examined by quantitative real-time PCR, and the present results suggest that levels for KrFSHR mRNA increase during gonadal growth, whereas KrLHR shows high levels during the late gamete generation period. Our study provides molecular characterization of the GTHRs and expressions profile during reproductive cycles, reinforcing previous knowledge of GTHRs important role in the reproductive endocrine regulation of Korean rockfish.
Collapse
Affiliation(s)
- Wei J Mu
- Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu KC, Ge W. Differential regulation of gonadotropin receptors (fshr and lhcgr) by epidermal growth factor (EGF) in the zebrafish ovary. Gen Comp Endocrinol 2013; 181:288-94. [PMID: 23036736 DOI: 10.1016/j.ygcen.2012.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 11/17/2022]
Abstract
Epidermal growth factor (egf) is expressed in the zebrafish oocyte whereas its receptor EGF receptor (egfr) is expressed in the somatic follicle layer, strongly suggesting a role for Egf in the intrafollicular paracrine communication that mediates an oocyte-to-follicle cell signaling pathway. However, the exact function of Egf in the follicle remains largely unknown. The present study aimed to explore the possible role of Egf in regulating gonadotropin receptors (fshr and lhcgr) in cultured zebrafish follicle cells. EGF down-regulated lhcgr expression dose-dependently in a biphasic manner with significant effect observed at 1.5 and 24 h. The effect was mediated via Egfr on the follicle cells. On the contrary, EGF also tended to decrease fshr expression at 1.5 h but it appeared to up-regulate fshr at 24 h. The EGF suppression of lhcgr expression was functionally relevant as pre-exposure to EGF reduced the follicle cell responsiveness to LH/hCG. We have recently reported that estradiol (E2) strongly stimulated lhcgr expression in the zebrafish ovary. In the current study, we further demonstrated that EGF and other EGF family members, heparin-binding EGF-like growth factor (HBEGF), transforming growth factor α (TGFα) and betacellulin (BTC), all reduced basal and E2-induced lhcgr expression. This study provides evidence for a potential paracrine role of Egf and its related peptides in the zebrafish follicle. The oocyte-derived EGF family ligands may actively control the process of follicle growth and maturation by differentially controlling the expression of fshr and lhcgr in the follicle cells in a paracrine manner.
Collapse
Affiliation(s)
- Ka-Cheuk Liu
- School of Life Sciences and Centre for Cell and Development Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
31
|
Minegishi Y, Henkel CV, Dirks RP, van den Thillart GEEJM. Genomics in eels--towards aquaculture and biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:583-590. [PMID: 22527267 PMCID: PMC3419832 DOI: 10.1007/s10126-012-9444-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
Freshwater eels (genus Anguilla), especially the species inhabiting the temperate areas such as the European, American and Japanese eels, are important aquaculture species. Although artificial reproduction has been attempted since the 1930s and large numbers of studies have been conducted, it has not yet fully succeeded. Problems in eel artificial breeding are highly diverse, for instance, lack of basic information about reproduction in nature, no appropriate food for larvae, high mortality, and high individual variation in adults in response to maturation induction. Over the last decade, genomic data have been obtained for a variety of aquatic organisms. Recent technological advances in sequencing and computation now enable the accumulation of genomic information even for non-model species. The draft genome of the European eel Anguilla anguilla has been recently determined using Illumina technology and transcriptomic data based on next generation sequencing have been emerging. Extensive genomic information will facilitate many aspects of the artificial reproduction of eels. Here, we review the progress in genome-wide studies of eels, including additional analysis of the European eel genome data, and discuss future directions and implications of genomic data for aquaculture.
Collapse
Affiliation(s)
- Yuki Minegishi
- Institute of Biology-Leiden, Leiden University, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Jeng SR, Yueh WS, Pen YT, Gueguen MM, Pasquier J, Dufour S, Chang CF, Kah O. Expression of aromatase in radial glial cells in the brain of the Japanese eel provides insight into the evolution of the cyp191a gene in Actinopterygians. PLoS One 2012; 7:e44750. [PMID: 22957105 PMCID: PMC3434150 DOI: 10.1371/journal.pone.0044750] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/06/2012] [Indexed: 11/23/2022] Open
Abstract
The cyp19a1 gene that encodes aromatase, the only enzyme permitting conversion of C19 aromatizable androgens into estrogens, is present as a single copy in the genome of most vertebrate species, except in teleosts in which it has been duplicated. This study aimed at investigating the brain expression of a cyp19a1 gene expressed in both gonad and brain of Japanese eel, a basal teleost. By means of immunohistochemistry and in situ hybridization, we show that cyp19a1 is expressed only in radial glial cells of the brain and in pituitary cells. Treatments with salmon pituitary homogenates (female) or human chorionic gonadotrophin (male), known to turn on steroid production in immature eels, strongly stimulated cyp19a1 messenger and protein expression in radial glial cells and pituitary cells. Using double staining studies, we also showed that aromatase-expressing radial glial cells exhibit proliferative activity in both the brain and the pituitary. Altogether, these data indicate that brain and pituitary expression of Japanese eel cyp19a1 exhibits characteristics similar to those reported for the brain specific cyp19a1b gene in teleosts having duplicated cyp19a1 genes. This supports the hypothesis that, despite the fact that eels also underwent the teleost specific genome duplication, they have a single cyp19a1 expressed in both brain and gonad. Such data also suggest that the intriguing features of brain aromatase expression in teleost fishes were not gained after the whole genome duplication and may reflect properties of the cyp19a1 gene of ancestral Actinopterygians.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
- Team NEED, Institut de Recherche en Santé, Environnement et Travail, INSERM U1085, IFR140, Université de Rennes 1, Rennes, France
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Yi-Ting Pen
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Marie-Madeleine Gueguen
- Team NEED, Institut de Recherche en Santé, Environnement et Travail, INSERM U1085, IFR140, Université de Rennes 1, Rennes, France
| | - Jérémy Pasquier
- Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208/IRD 207/UPMC, Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Dufour
- Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208/IRD 207/UPMC, Muséum National d'Histoire Naturelle, Paris, France
| | - Ching-Fong Chang
- Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208/IRD 207/UPMC, Muséum National d'Histoire Naturelle, Paris, France
- Department of Aquaculture, Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Olivier Kah
- Team NEED, Institut de Recherche en Santé, Environnement et Travail, INSERM U1085, IFR140, Université de Rennes 1, Rennes, France
| |
Collapse
|
33
|
Minegishi Y, Dirks RP, de Wijze DL, Brittijn SA, Burgerhout E, Spaink HP, van den Thillart GEEJM. Quantitative bioassays for measuring biologically functional gonadotropins based on eel gonadotropic receptors. Gen Comp Endocrinol 2012; 178:145-52. [PMID: 22580328 DOI: 10.1016/j.ygcen.2012.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/12/2012] [Accepted: 04/27/2012] [Indexed: 02/07/2023]
Abstract
Significant declines in eel stocks have been noted in many parts of the world. Because eel aquaculture is dependent on wild-caught juveniles, there is a need to achieve artificial reproduction. Adult eel maturation is currently induced by repeated injections of purified gonadotropin (human chorionic gonadotropin [hCG]) or pituitary extract. Thus the determination of the biological efficacy and quantification of internal levels of gonadotropic hormones is important for optimizing artificial reproduction protocols. To quantify the plasma levels of biologically functional gonadotropic hormones, we developed a bioassay for luteinizing hormone (LH) and follicle-stimulating hormone (FSH) based on the stable expression of receptors in HEK293 cells of the Japanese eel Anguilla japonica LH (ajLHR) and the European eel Anguilla anguilla FSH (aaFSHR), respectively. Such cells also contain a firefly luciferase reporter gene driven by a cAMP-responsive element (CRE-Luc). We found that the obtained stable cells, with ajLHR, responded linearly to a more than 100,000-fold concentration range of hCG diluted in saline. The cells with aaFSHR showed a linear response to a 1000-fold concentration range of salmon pituitary extract mixed with saline. The biological functionality of the LH and FSH bioassays was validated using hCG, human FSH, and pituitary extracts from salmon, carp and eel. Since the toxins in eel plasma damaged the HEK293 cells, the protocol was adapted to selectively inactivate the toxins by heating at 37°C for 24h. This process successfully enabled the monitoring of hormone levels in blood plasma sampled from hCG-injected eels. In this paper, we describe the development of gonadotropin bioassays that will be useful for improving reproduction protocols in eel aquaculture.
Collapse
Affiliation(s)
- Y Minegishi
- Institute of Biology Leiden, Sylvius Laboratory, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
34
|
Huang YS, Chen YM, Liao PC, Lee YH, Gwo JC, Chen MC, Chang CF. Testosterone improves the transition of primary oocytes in artificial maturation eels (Anguilla japonica) by altering ovarian PTEN expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:777-787. [PMID: 21986810 DOI: 10.1007/s10695-011-9560-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 09/21/2011] [Indexed: 05/31/2023]
Abstract
In mammals, androgens appear to enhance the development of primary ovarian follicles, but PI3K (phosphoinositide 3-kinases) pathway is well recognized as one of the critical pathways in early follicular development. Roles of the PI3K were revealed by deletion of PTEN (phosphatase and tensin homolog on chromosome 10). PTEN is demonstrated to play an important role in the early stage of follicle development. In the Japanese eel, two forms of PTEN have been cloned, but what their functions on the development of early ovarian follicles are still not clear. The natural blockage and inducible of ovarian development was a benefit to address this question in the eel. Testosterone (T) shows to ameliorate the early ovarian development in the eel. The aims of this study were to elucidate the two forms of PTEN by cellular and physiological criteria and to study the effects of T on the ovarian PTEN production in the exogenous pituitary extracts-stimulated eel. Our results suggested that two forms of PTEN are existing in the Japanese eel, and eel ovarian development corresponded to the decrease in ovarian PTEN expression, vice versa. In addition, the supplement of T on eel early ovarian development can be attributed to its PTEN inhibitor role.
Collapse
Affiliation(s)
- Yung-Sen Huang
- Department of Life Science, National University of Kaohsiung, No. 700 Kaohsiung University Road, Nan Tzu Dist., Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Li CW, Zhou R, Ge W. Differential regulation of gonadotropin receptors by bone morphogenetic proteins in the zebrafish ovary. Gen Comp Endocrinol 2012; 176:420-5. [PMID: 22240277 DOI: 10.1016/j.ygcen.2011.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/22/2011] [Indexed: 01/05/2023]
Abstract
Follicle-stimulating hormone receptor (fshr) and luteinizing hormone/choriogonadotropin receptor (lhcgr) exhibit differential temporal expression patterns during zebrafish folliculogenesis with fshr being dominant during vitellogenic growth and lhcgr increasing its expression dramatically before maturation. The dynamic and distinct expression patterns of fshr and lhcgr suggest that they are under tight regulatory control. However, the underlying mechanisms for the differential expression of the two receptors remain unknown. We have recently demonstrated that members of bone morphogenetic protein (BMP) family are largely expressed in the oocyte, while their receptors are exclusively localized on the follicle cells, suggesting a potential paracrine signaling from the oocyte to the follicle cells by BMPs. In this study, we investigated the effects of zebrafish BMP2b (zfBmp2b) and BMP4 (zfBmp4) on the expression of fshr and lhcgr using a novel co-culture approach. The recombinant zfBmp2b or zfBmp4-producing CHO cells were co-cultured with the zebrafish follicle cells followed by real-time qPCR analysis of fshr and lhcgr expression. Our results showed that zfBmp2b and zfBmp4 both down-regulated fshr, while up-regulated lhcgr expression at 24 h of co-culturing. This finding, together with the high expression level of BMP receptors in the follicle cells prior to oocyte maturation, strongly suggests a potential role for BMPs in the differential expression of fshr and lhcgr, especially in the full-grown follicles before maturation. As BMPs are largely expressed in the oocyte, this also implies an important role for the oocyte in orchestrating the differentiation and function of the follicle cells.
Collapse
Affiliation(s)
- Cheuk Wun Li
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
36
|
Setiawan AN, Ozaki Y, Shoae A, Kazeto Y, Lokman PM. Androgen-specific regulation of FSH signalling in the previtellogenic ovary and pituitary of the New Zealand shortfinned eel, Anguilla australis. Gen Comp Endocrinol 2012; 176:132-43. [PMID: 22343137 DOI: 10.1016/j.ygcen.2011.12.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 01/28/2023]
Abstract
The evidence for androgens having a pivotal role in the functioning of the female reproductive axis--such as initiating puberty or vitellogenesis--is mounting. However, the use of aromatizable androgens and the tissue-specific focus of most studies often make it unclear if androgenic effects throughout the axis proceed via androgen or estrogen signalling mechanisms. In this study, we assessed the effects of 11-ketotestosterone (11KT, a non-aromatizable androgen) on the pituitary and ovary of previtellogenic (PV) freshwater eels Anguilla australis, comparing them with eels naturally undergoing early vitellogenesis (EV). We found that 11KT treatment produces molecular and morpho-physiological phenotypes that were generally intermediate between PV and EV. Most notably, we demonstrated that 11KT induces effects on follicle-stimulating hormone (FSH) signalling in the pituitary and ovaries that are in opposition to each other. Thus, 11KT significantly reduced fshβ subunit expression in the pituitary. At the same time, 11KT dramatically increased mRNA levels of ovarian FSH receptor and plasma levels of estradiol-17β, very likely sensitizing the previtellogenic follicle to the FSH signal. Androgens therefore may be important in facilitating puberty in the eel.
Collapse
Affiliation(s)
- Alvin N Setiawan
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand.
| | | | | | | | | |
Collapse
|
37
|
Kazeto Y, Kohara M, Tosaka R, Gen K, Yokoyama M, Miura C, Miura T, Adachi S, Yamauchi K. Molecular Characterization and Gene Expression of Japanese Eel (Anguilla japonica) Gonadotropin Receptors. Zoolog Sci 2012; 29:204-11. [DOI: 10.2108/zsj.29.204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Jeng SR, Pasquier J, Yueh WS, Chen GR, Lee YH, Dufour S, Chang CF. Differential regulation of the expression of cytochrome P450 aromatase, estrogen and androgen receptor subtypes in the brain-pituitary-ovarian axis of the Japanese eel (Anguilla japonica) reveals steroid dependent and independent mechanisms. Gen Comp Endocrinol 2012; 175:163-72. [PMID: 22107840 DOI: 10.1016/j.ygcen.2011.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/31/2011] [Accepted: 11/04/2011] [Indexed: 11/15/2022]
Abstract
This study aimed at investigating the role of sexual steroids in the regulation of the expression of the single aromatase gene and steroid receptor subtypes in the brain-pituitary-ovarian axis of the Japanese eel. Unlike other teleosts, which possess duplicated genes for aromatase, cyp19a1a and cyp19a1b, expressed in the gonads and in the brain, respectively, eel species possess a single cyp19a1. Phylogenetic analysis indicated that eel brain/gonadal cyp19a1 branches at the basis of both teleost gonadal cyp19a1a and brain cyp19a1b clades. Female eels treated with catfish pituitary homogenate (CPH) to induce sexual maturation showed an increase in the expression of cyp19a1 and aromatase enzymatic activity in the brain and in the ovaries. Treatments with sex steroids (estradiol-17β, E(2) or testosterone, T) revealed that the increase in cyp19a1 expression in the brain may result from E(2)-specific induction. In contrast, the increase in cyp19a1 expression in the ovaries of CPH-treated eels is a result of steroid-independent control, probably from a direct effect of gonadotropins contained in the pituitary extract. Analysis of the expression of estrogen and androgen receptor subtypes, esr-α, esr-β, ar-α and ar-β, in eels treated with CPH or sex steroids revealed differential regulations. In CPH-treated eels, the expression of esr-α and ar-α was significantly increased in the brain, while the expression of ar-α and ar-β was increased in the ovaries. No change was observed in esr-β in any organ. Steroid treatments induced an upregulation by E(2) of esr-α, but not esr-β expression, in the brain, pituitary and ovaries, while no autoregulation by T of its own receptors could be observed. These results reveal both steroid-dependent and -independent mechanisms in the regulation of cyp19a1 and steroid receptor subtype expression in the eel.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu KC, Lin SW, Ge W. Differential regulation of gonadotropin receptors (fshr and lhcgr) by estradiol in the zebrafish ovary involves nuclear estrogen receptors that are likely located on the plasma membrane. Endocrinology 2011; 152:4418-30. [PMID: 21878512 DOI: 10.1210/en.2011-1065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
FSH and LH are gonadotropins (GTH) that control all major events of gonadal function. FSH and LH signal through their cognate receptors, FSH receptor and LH/choriogonadotropin receptor, respectively, across vertebrates. Compared with the information in mammals, very little is known about these receptors in fish, especially the regulation of their expression. In female zebrafish, fshr and lhcgr exhibit significant temporal difference in expression, with fshr increasing first when the follicles are activated to enter the vitellogenic growth phase and lhcgr lagging behind. This raises an interesting question on the differential regulation of these two GTH receptors (GTHR) during folliculogenesis. Using a primary follicle cell culture, the present study demonstrated that 17β-estradiol (E2), but not testosterone, was a potent endocrine hormone that differentially regulated the expression of fshr and lhcgr. Although E2 stimulated both receptors, its effect on the steady-state level of lhcgr mRNA was much higher (>8-fold up-regulation) than that of fshr (∼0.5-fold increase). E2 likely acted at the transcription level via its nuclear estrogen receptors (ERα and ERβ), because ICI 182,780 could abolish its effects. However, our evidence suggested that these receptors might be localized on the plasma membrane, because β-estradiol 6-(O-carboxy methyl)oxime:BSA could fully mimic the effects of E2. Demonstrating that E2 is likely one of the differentiating factors for the distinct expression of the two GTHR in the zebrafish ovary, this study sheds important light on the functions of the two GTH and their receptors in fish as well as the conservation and diverse aspects of GTHR regulation across vertebrates.
Collapse
MESH Headings
- Animals
- Estradiol/pharmacology
- Female
- Ovary/drug effects
- Ovary/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Testosterone/pharmacology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Ka-Cheuk Liu
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
40
|
Pérez L, Peñaranda DS, Dufour S, Baloche S, Palstra AP, Van Den Thillart GEEJM, Asturiano JF. Influence of temperature regime on endocrine parameters and vitellogenesis during experimental maturation of European eel (Anguilla anguilla) females. Gen Comp Endocrinol 2011; 174:51-9. [PMID: 21871894 DOI: 10.1016/j.ygcen.2011.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 08/06/2011] [Accepted: 08/10/2011] [Indexed: 01/03/2023]
Abstract
We examined the effect of temperature in European silver eels during their maturation induced by injections of carp pituitary extract on endocrine parameters: pituitary fshβ and lhβ expression, plasma 17β-estradiol (E2) and vitellogenin, estrogen receptor 1 (esr1), and vitellogenin 2 (vtg2) expression in liver. A variable thermal regime (T10) that increased from 10° to 14° and 17°C was compared with a constant 20°C regime (T20) during 12 weeks. T10 caused a faster development until week 8, higher fshβ, lhβ, esr1 expression, and higher E2 levels. The results strongly suggest that T10 is inducing a higher endogenous FSH level which increases the E2 circulating level during vitellogenesis. A variable thermal regime induced an fshβ expression and E2 profile in vitellogenic hormonally matured eel females that were more similar to the profile observed in other naturally maturing fish.
Collapse
Affiliation(s)
- L Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hu X, Liu X, Zhang H, Zhang Y, Li S, Sang Q, Wang Q, Luo W, Liu Q, Lu D, Meng Z, Lin H. Expression profiles of gonadotropins and their receptors during 17α-methyltestosterone implantation-induced sex change in the orange-spotted grouper (Epinephelus coioides
). Mol Reprod Dev 2011; 78:376-90. [DOI: 10.1002/mrd.21319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/17/2011] [Indexed: 11/07/2022]
|
42
|
Sudo R, Suetake H, Suzuki Y, Utoh T, Tanaka S, Aoyama J, Tsukamoto K. Dynamics of Reproductive Hormones During Downstream Migration in Females of the Japanese Eel,Anguilla japonica. Zoolog Sci 2011; 28:180-8. [DOI: 10.2108/zsj.28.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Palstra AP, van den Thillart GEEJM. Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:297-322. [PMID: 20390348 PMCID: PMC2923712 DOI: 10.1007/s10695-010-9397-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/28/2010] [Indexed: 05/02/2023]
Abstract
The European eel migrates 5,000-6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10-12 mg fat/km which is 4-6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61-0.67 m s(-1), which is approximately 60% higher than the generally assumed cruise speed of 0.4 m s(-1) and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols.
Collapse
Affiliation(s)
- Arjan P Palstra
- Molecular Cell Biology, Institute of Biology, Leiden University (IBL), Leiden, 2333 CC, The Netherlands.
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.
| | | |
Collapse
|
44
|
Lin CJ, Wu GC, Lee MF, Lau EL, Dufour S, Chang CF. Regulation of two forms of gonadotropin-releasing hormone receptor gene expression in the protandrous black porgy fish, Acanthopagrus schlegeli. Mol Cell Endocrinol 2010; 323:137-46. [PMID: 20398731 DOI: 10.1016/j.mce.2010.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 02/08/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
Two GnRH receptors (GnRH-R I and GnRH-R II) were obtained in protandrous black porgy (Acanthopagrus schlegeli). We investigated their tissue distribution, developmental/seasonal changes and regulation of expression using in vivo and in vitro (primary cultures of dispersed pituitary cells) approaches. The relative expressions of GnRH-Rs in the pituitary and gonad were as follows: pituitary: GnRH-R I > GnRH-R II; testicular tissue: GnRH-R I > GnRH-R II; ovarian tissue: GnRH-R I = GnRH-R II. GnRH-R I but not GnRH-R II expression was higher in the pituitary during the spawning period as compared to the prespawning. The expression profiles of both forms of GnRH-R were variable in the gonads according to the gonadal stage and season. In vivo, hCG stimulated GnRH-R I and GnRH-R II expression in testis and ovary. The LHRH analog also up-regulated both receptors in testis and but increased only GnRH-R II in the ovary. Sex steroids (estradiol, E2 and testosterone, T) increased the expression of both receptors in the testis and ovary. In the pituitary, sex steroids (E2 and T) increased the expression of GnRH-R I, but not GnRH-II, both in vivo and in vitro. The LHRH analog also specifically up-regulated the expression of GnRH-R I, but not GnRH-R II, by pituitary cells in vitro. All these data suggest that GnRH-R I rather than GnRH-R II may play a major physiological role in the pituitary. In contrast, both GnRH-R I and GnRH-R II may participate in the regulation of gonadal functions, including a possible role during sex change.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Shinoda T, Miranda LA, Okuma K, Hattori RS, Fernandino JI, Yoshizaki G, Somoza GM, Strüssmann CA. Molecular cloning and expression analysis ofFshrandLhrin relation toFshbandLhbsubunits during the period of temperature-dependent sex determination in pejerreyOdontesthes bonariensis. Mol Reprod Dev 2010; 77:521-32. [DOI: 10.1002/mrd.21179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Zhou Y, Niu Y, Tao M, Deng X, Liu S, Liu Y, Li J. Molecular cloning, characterization and expression of FSH and LH beta subunits from grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:213-221. [PMID: 18777101 DOI: 10.1007/s10695-008-9223-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/15/2008] [Indexed: 05/26/2023]
Abstract
Follicle-stimulating hormone beta subunit (FSHbeta) and luteinizing hormone beta subunit (LHbeta) have been cloned and characterized from the pituitary of grass carp (Ctenopharyngodon idella). The full length of FSHbeta and LHbeta cDNA was 393 bp and 441 bp, with open reading frame encoding proteins of 130 and 146 amino acids, respectively. Phylogenetic analysis of the proteins of FSHbeta and LHbeta showed a high homology with other fishes. Homology analysis also indicated that LHbeta has higher conservation than FSHbeta. The expression analysis of grass carp FSHbeta and LHbeta by RT-PCR suggested that they were only expressed in the pituitary. Real-time quantitative PCR protocols were developed and validated to measure FSHbeta and LHbeta mRNAs during ovarian development. The FSHbeta and LHbeta mRNA level was very low in the pituitaries of early-pubertal fish and significantly increased during the ovulation period. These results suggested that in grass carp the gonadotropins synthesized synchronously in order for asynchronous oogenesis to take place.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Protein Chemistry and Fish Development Biology of National Education Ministry, College of Life Science, Hunan Normal University, Changsha 410081, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Chauvigné F, Tingaud-Sequeira A, Agulleiro MJ, Calusinska M, Gómez A, Finn RN, Cerdà J. Functional and Evolutionary Analysis of Flatfish Gonadotropin Receptors Reveals Cladal- and Lineage-Level Divergence of the Teleost Glycoprotein Receptor Family1. Biol Reprod 2010; 82:1088-102. [DOI: 10.1095/biolreprod.109.082289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
48
|
Levavi-Sivan B, Bogerd J, Mañanós EL, Gómez A, Lareyre JJ. Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol 2010; 165:412-37. [PMID: 19686749 DOI: 10.1016/j.ygcen.2009.07.019] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/10/2009] [Accepted: 07/16/2009] [Indexed: 12/19/2022]
Abstract
Teleosts lack a hypophyseal portal system and hence neurohormones are carried by nerve fibers from the preoptic region to the pituitary. The various cell types in the teleost pituitary are organized in discrete domains. Fish possess two gonadotropins (GtH) similar to FSH and LH in other vertebrates; they are heterodimeric hormones that consist of a common alpha subunit non-covalently associated with a hormone-specific beta subunit. In recent years the availability of molecular cloning techniques allowed the isolation of the genes coding for the GtH subunits in 56 fish species representing at least 14 teleost orders. Advanced molecular engineering provides the technology to produce recombinant GtHs from isolated cDNAs. Various expression systems have been used for the production of recombinant proteins. Recombinant fish GtHs were produced for carp, seabream, channel and African catfish, goldfish, eel, tilapia, zebrafish, Manchurian trout and Orange-spotted grouper. The hypothalamus in fishes exerts its regulation on the release of the GtHs via several neurohormones such as GnRH, dopamine, GABA, PACAP, IGF-I, norepinephrine, NPY, kisspeptin, leptin and ghrelin. In addition, gonadal steroids and peptides exert their effects on the gonadotropins either directly or via the hypothalamus. All these are discussed in detail in this review. In mammals, the biological activities of FSH and LH are directed to different gonadal target cells through the cell-specific expression of the FSH receptor (FSHR) and LH receptor (LHR), respectively, and the interaction between each gonadotropin-receptor couple is highly selective. In contrast, the bioactivity of fish gonadotropins seems to be less specific as a result of promiscuous hormone-receptor interactions, while FSHR expression in Leydig cells explains the strong steroidogenic activity of FSH in certain fish species.
Collapse
Affiliation(s)
- B Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | | | | | |
Collapse
|
49
|
Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien FA, Dufour S, Karlsen O, Norberg B, Andersson E, Hansen T. Control of puberty in farmed fish. Gen Comp Endocrinol 2010; 165:483-515. [PMID: 19442666 DOI: 10.1016/j.ygcen.2009.05.004] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/17/2009] [Accepted: 05/06/2009] [Indexed: 11/30/2022]
Abstract
Puberty comprises the transition from an immature juvenile to a mature adult state of the reproductive system, i.e. the individual becomes capable of reproducing sexually for the first time, which implies functional competence of the brain-pituitary-gonad (BPG) axis. Early puberty is a major problem in many farmed fish species due to negative effects on growth performance, flesh composition, external appearance, behaviour, health, welfare and survival, as well as possible genetic impact on wild populations. Late puberty can also be a problem for broodstock management in some species, while some species completely fail to enter puberty under farming conditions. Age and size at puberty varies between and within species and strains, and are modulated by genetic and environmental factors. Puberty onset is controlled by activation of the BPG axis, and a range of internal and external factors are hypothesised to stimulate and/or modulate this activation such as growth, adiposity, feed intake, photoperiod, temperature and social factors. For example, there is a positive correlation between rapid growth and early puberty in fish. Age at puberty can be controlled by selective breeding or control of photoperiod, feeding or temperature. Monosex stocks can exploit sex dimorphic growth patterns and sterility can be achieved by triploidisation. However, all these techniques have limitations under commercial farming conditions. Further knowledge is needed on both basic and applied aspects of puberty control to refine existing methods and to develop new methods that are efficient in terms of production and acceptable in terms of fish welfare and sustainability.
Collapse
|
50
|
Andersson E, Nijenhuis W, Male R, Swanson P, Bogerd J, Taranger GL, Schulz RW. Pharmacological characterization, localization and quantification of expression of gonadotropin receptors in Atlantic salmon (Salmo salar L.) ovaries. Gen Comp Endocrinol 2009; 163:329-39. [PMID: 19442667 DOI: 10.1016/j.ygcen.2009.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 04/17/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
Abstract
The gonadotropins Fsh and Lh interact with their receptors (Fshr and Lhr, respectively) in a highly specific manner in mammals with little overlap in biological activities. In fish, the biological activities seem less clearly separated considering, for example, the steroidogenic potency of both Fsh and Lh. Important determinants of the biological activity are the specificity of hormone-receptor interaction and the cellular site of receptor expression. Here, we report the pharmacological characterization of Atlantic salmon Fshr and Lhr, identify receptor-expressing cells in the ovary, and validate receptor mRNA quantification systems. For the pharmacological studies, we used highly purified coho salmon gonadotropins and found that the Fshr preferentially responded to Fsh, but was also activated by approximately 6-fold higher levels of Lh. The Lhr was specific for Lh and did not respond to Fsh. Photoperiod manipulation was used to generate ovarian tissue samples with largely differing stages of maturation. Specific real-time, quantitative (rtq) PCR assays revealed up to 40-fold (fshr) and up to 350-fold (lhr) changes in ovarian expression levels, which correlated well with the differences in ovarian weight, histology, and circulating oestrogen levels recorded in January and June, respectively. Vitellogenic ovaries were used to localise receptor-expressing cells by in situ hybridization. Granulosa cells of small and large vitellogenic follicles were positive for both receptors. Also theca cells of small and large vitellogenic follicles expressed fshr mRNA, while only in large vitellogenic follicles theca cells were (weakly) positive for lhr mRNA. While only ovulatory Lh levels seem high enough to cross-activate the Fshr, expression by both receptors by granulosa and theca cells suggests that homologous ligand receptor interaction will prevail.
Collapse
MESH Headings
- Animals
- Body Weight/drug effects
- Cell Line
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Colforsin/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Estrogens/blood
- Female
- Follicle Stimulating Hormone/pharmacology
- Gene Expression Regulation/drug effects
- Humans
- In Situ Hybridization
- Luteinizing Hormone/pharmacology
- Ovary/drug effects
- Ovary/metabolism
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, FSH/physiology
- Receptors, Gonadotropin/genetics
- Receptors, Gonadotropin/metabolism
- Receptors, Gonadotropin/physiology
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Receptors, LH/physiology
- Salmo salar/genetics
- Salmo salar/metabolism
Collapse
Affiliation(s)
- Eva Andersson
- Institute of Marine Research, Research Group Reproduction and Growth in Fish, P.O. Box 1870, Nordnes, N-5817 Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|