1
|
He L, Zhao C, Xiao Q, Zhao J, Liu H, Jiang J, Cao Q. Profiling the Physiological Roles in Fish Primary Cell Culture. BIOLOGY 2023; 12:1454. [PMID: 38132280 PMCID: PMC10741176 DOI: 10.3390/biology12121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Fish primary cell culture has emerged as a valuable tool for investigating the physiological roles and responses of various cell types found in fish species. This review aims to provide an overview of the advancements and applications of fish primary cell culture techniques, focusing on the profiling of physiological roles exhibited by fish cells in vitro. Fish primary cell culture involves the isolation and cultivation of cells directly derived from fish tissues, maintaining their functional characteristics and enabling researchers to study their behavior and responses under controlled conditions. Over the years, significant progress has been made in optimizing the culture conditions, establishing standardized protocols, and improving the characterization techniques for fish primary cell cultures. The review highlights the diverse cell types that have been successfully cultured from different fish species, including gonad cells, pituitary cells, muscle cells, hepatocytes, kidney and immune cells, adipocyte cells and myeloid cells, brain cells, primary fin cells, gill cells, and other cells. Each cell type exhibits distinct physiological functions, contributing to vital processes such as metabolism, tissue regeneration, immune response, and toxin metabolism. Furthermore, this paper explores the pivotal role of fish primary cell culture in elucidating the mechanisms underlying various physiological processes. Researchers have utilized fish primary cell cultures to study the effects of environmental factors, toxins, pathogens, and pharmaceutical compounds on cellular functions, providing valuable insights into fish health, disease pathogenesis, and drug development. The paper also discusses the application of fish primary cell cultures in aquaculture research, particularly in investigating fish growth, nutrition, reproduction, and stress responses. By mimicking the in vivo conditions in vitro, primary cell culture has proven instrumental in identifying key factors influencing fish health and performance, thereby contributing to the development of sustainable aquaculture practices.
Collapse
Affiliation(s)
- Lingjie He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Cheng Zhao
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China;
| | - Qi Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Ju Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| |
Collapse
|
2
|
Possolli NM, da Silva DF, Vieira J, Maurmann N, Pranke P, Demétrio KB, Angioletto E, Montedo ORK, Arcaro S. Dissolution, bioactivity behavior, and cytotoxicity of 19.58Li 2 O·11.10ZrO 2 ·69.32SiO 2 glass-ceramic. J Biomed Mater Res B Appl Biomater 2021; 110:67-78. [PMID: 34121326 DOI: 10.1002/jbm.b.34889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Glass and bioactive glass-ceramic can be used in several applications. In bone growth where good bone/biomaterial adhesion was required, bioactive coatings for implants can improve bone formation. The glass and glass-ceramics of the LZS (Li2 O-ZrO2 -SiO2 ) system are very interesting because of their mechanical, electrical, and thermal properties. Very recently, their biological response in contact with human osteoblast has been evaluated. However, despite several initiatives, there are still no studies that systematically assess this system's bioactivity, dissolution, and cytotoxicity in vitro. This work aims to investigate the dissolution, bioactivity behavior, and cytotoxicity of LZS glass-ceramic. LZS glass-ceramics were produced from SiO2 , Li2 CO3, and ZrSiO4 by melting followed by quenching. The obtained glass frits were milled and uniaxially pressed and heat-treated at 800 and 900°C and submitted to physical-chemical, structural and mechanical characterization. Their dissolution behavior was studied in Tris-HCl, while bioactivity was performed in simulated solution body fluid (SBF). The cytotoxicity test was performed using glass-ceramic in direct contact with mesenchymal stem/stromal cells (SC) isolated from human exfoliated deciduous teeth. Structural and microstructural analyzes confirmed bioactivity. The results show that it was possible to produce bioactive glass-ceramic from LZS, proven by the formation of new calcium phosphate structures such as hydroxyapatite on the surface of the samples after exposure to SBF. The SC viability test performed indicated that the materials were not cytotoxic at 0.25, 0.5, and 1.0 mg/ml. The glass-ceramic system under study is very promising for a medicinal application that requires bioactivity and/or biocompatibility for bone regeneration.
Collapse
Affiliation(s)
- Natália Morelli Possolli
- Engenharia Química, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Daiara Floriano da Silva
- Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Jaqueline Vieira
- Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, Laboratório de Materiais Cerâmicos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natasha Maurmann
- Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto de Pesquisa com Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ketner Bendo Demétrio
- Engenharia Química, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Elidio Angioletto
- Engenharia Química, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Oscar Rubem Klegues Montedo
- Engenharia Química, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Sabrina Arcaro
- Engenharia Química, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| |
Collapse
|
3
|
Grønlien HK, Fontaine R, Hodne K, Tysseng I, Ager-Wick E, Weltzien FA, Haug TM. Long extensions with varicosity-like structures in gonadotrope Lh cells facilitate clustering in medaka pituitary culture. PLoS One 2021; 16:e0245462. [PMID: 33507913 PMCID: PMC7842944 DOI: 10.1371/journal.pone.0245462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/02/2021] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence indicates that some pituitary cell types are organized in complex networks in both mammals and fish. In this study, we have further investigated the previously described cellular extensions formed by the medaka (Oryzias latipes) luteinizing hormone gonadotropes (Lh cells). Extensions, several cell diameters long, with varicosity-like swellings, were common both in vitro and in vivo. Some extensions approached other Lh cells, while others were in close contact with blood vessels in vivo. Gnrh further stimulated extension development in vitro. Two types of extensions with different characteristics could be distinguished, and were classified as major or minor according to size, origin and cytoskeleton protein dependance. The varicosity-like swellings appeared on the major extensions and were dependent on both microtubules and actin filaments. Immunofluorescence revealed that Lhβ protein was mainly located in these swellings and at the extremity of the extensions. We then investigated whether these extensions contribute to network formation and clustering, by following their development in primary cultures. During the first two days in culture, the Lh cells grew long extensions that with time physically attached to other cells. Successively, tight cell clusters formed as cell somas that were connected via extensions migrated towards each other, while shortening their extensions. Laser photolysis of caged Ca2+ showed that Ca2+ signals originating in the soma propagated from the soma along the major extensions, being particularly visible in each swelling. Moreover, the Ca2+ signal could be transferred between densely clustered cells (sharing soma-soma border), but was not transferred via extensions to the connected cell. In summary, Lh gonadotropes in medaka display a complex cellular structure of hormone-containing extensions that are sensitive to Gnrh, and may be used for clustering and possibly hormone release, but do not seem to contribute to communication between cells themselves.
Collapse
Affiliation(s)
| | - Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kjetil Hodne
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Isabelle Tysseng
- Department of Biosciences, Faculty of Natural Sciences, University of Oslo, Oslo, Norway
| | - Eirill Ager-Wick
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Trude Marie Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
4
|
Fontaine R, Ager-Wick E, Hodne K, Weltzien FA. Plasticity in medaka gonadotropes via cell proliferation and phenotypic conversion. J Endocrinol 2020; 245:21-37. [PMID: 31977313 PMCID: PMC7040568 DOI: 10.1530/joe-19-0405] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 01/30/2023]
Abstract
Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) produced by the gonadotropes play a major role in control of reproduction. Contrary to mammals and birds, Lh and Fsh are mostly produced by two separate cell types in teleost. Here, we investigated gonadotrope plasticity, using transgenic lines of medaka (Oryzias latipes) where DsRed2 and hrGfpII are under the control of the fshb and lhb promotors respectively. We found that Fsh cells appear in the pituitary at 8 dpf, while Lh cells were previously shown to appear at 14 dpf. Similar to Lh cells, Fsh cells show hyperplasia from juvenile to adult stages. Hyperplasia is stimulated by estradiol. Both Fsh and Lh cells show hypertrophy during puberty with similar morphology. They also share similar behavior, using their cellular extensions to make networks. We observed bi-hormonal gonadotropes in juveniles and adults but not in larvae where only mono-hormonal cells are observed, suggesting the existence of phenotypic conversion between Fsh and Lh in later stages. This is demonstrated in cell culture, where some Fsh cells start to produce Lhβ, a phenomenon enhanced by gonadotropin-releasing hormone (Gnrh) stimulation. We have previously shown that medaka Fsh cells lack Gnrh receptors, but here we show that with time in culture, some Fsh cells start responding to Gnrh, while fshb mRNA levels are significantly reduced, both suggestive of phenotypic change. All together, these results reveal high plasticity of gonadotropes due to both estradiol-sensitive proliferation and Gnrh promoted phenotypic conversion, and moreover, show that gonadotropes lose part of their identity when kept in cell culture.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Eirill Ager-Wick
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kjetil Hodne
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Correspondence should be addressed to F-A Weltzien:
| |
Collapse
|
5
|
Burow S, Mizrahi N, Maugars G, von Krogh K, Nourizadeh-Lillabadi R, Hollander-Cohen L, Shpilman M, Atre I, Weltzien FA, Levavi-Sivan B. Characterization of gonadotropin receptors Fshr and Lhr in Japanese medaka, Oryzias latipes. Gen Comp Endocrinol 2020; 285:113276. [PMID: 31536722 DOI: 10.1016/j.ygcen.2019.113276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
Reproduction in vertebrates is controlled by the brain-pituitary-gonad axis, where the two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) play vital parts by activating their cognate receptors in the gonads. The main purpose of this work was to study intra- and interspecies ligand promiscuity of teleost gonadotropin receptors, since teleost receptor specificity is unclear, in contrast to mammalian receptors. Receptor activation was investigated by transfecting COS-7 cells with either Fsh receptor (mdFshr, tiFshr) or Lh receptor (mdLhr, tiLhr), and tested for activation by recombinant homologous and heterologous ligands (mdFshβα, mdLhβα, tiFshβα, tiLhβα) from two representative fish orders, Japanese medaka (Oryzias latipes, Beloniformes) and Nile tilapia (Oreochromis niloticus, Cichliformes). Results showed that each gonadotropin preferentially activates its own cognate receptor. Cross-reactivity was detected to some extent as mdFshβα was able to activate the mdLhr, and mdLhβα the mdFshr. Medaka pituitary extract (MPE) stimulated CRE-LUC activity in COS-7 cells expressing mdlhr, but could not stimulate cells expressing mdfshr. Recombinant tiLhβα, tiFshβα and tilapia pituitary extract (TPE) could activate the mdLhr, suggesting cross-species reactivity for mdLhr. Cross-species reactivity was also detected for mdFshr due to activation by tiFshβα, tiLhβα, and TPE, as well as for tiFshr and tiLhr due to stimulation by mdFshβα, mdLhβα, and MPE. Tissue distribution analysis of gene expression revealed that medaka receptors, fshr and lhr, are highly expressed in both ovary and testis. High expression levels were found for lhr also in brain, while fshr was expressed at low levels. Both fshr and lhr mRNA levels increased significantly during testis development. Amino acid sequence alignment and three-dimensional modelling of ligands and receptors highlighted conserved beta sheet domains of both Fsh and Lh between Japanese medaka and Nile tilapia. It also showed a higher structural homology and similarity of transmembrane regions of Lhr between both species, in contrast to Fshr, possibly related to the substitution of the conserved cysteine residue in the transmembrane domain 6 in medaka Fshr with glycine. Taken together, this is the first characterization of medaka Fshr and Lhr using homologous ligands, enabling to better understand teleost hormone-receptor interactions and specificities. The data suggest partial ligand promiscuity and cross-species reactivity between gonadotropins and their receptors in medaka and tilapia.
Collapse
Affiliation(s)
- Susann Burow
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Naama Mizrahi
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Gersende Maugars
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lian Hollander-Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Ishwar Atre
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
6
|
Hodne K, Fontaine R, Ager-Wick E, Weltzien FA. Gnrh1-Induced Responses Are Indirect in Female Medaka Fsh Cells, Generated Through Cellular Networks. Endocrinology 2019; 160:3018-3032. [PMID: 31621882 DOI: 10.1210/en.2019-00595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022]
Abstract
Reproductive function in vertebrates is stimulated by GnRH that controls the synthesis and release of the two pituitary gonadotropins, FSH and LH. FSH and LH, which regulate different stages of gonadal development, are produced by two different cell types in the fish pituitary. This is in contrast to the situation in mammals and birds, and it enables investigation of their differential regulation. In the present study, we used fluorescence in situ hybridization to show that Lh cells in adult female medaka express Gnrh receptors, whereas Fsh cells do not. This result was confirmed by patch-clamp recordings and by cytosolic Ca2+ measurements on dispersed pituitary cells, where Lh cells, but not Fsh cells, responded to Gnrh1 by biphasic alteration in action-potential frequencies and cytosolic Ca2+ levels. In contrast, both Fsh and Lh cells are able to respond to Gnrh1 in brain-pituitary tissue slices both electrically and by elevating the cytosolic Ca2+ levels. Using Ca2+ uncaging in combination with patch-clamp recordings and cytosolic Ca2+ measurements, we show that Fsh and Lh cells form homotypic and heterotypic networks in the pituitary. Taken together, these results show that the effects of Gnrh1 on Fsh release in adult female medaka are indirect and probably mediated via Lh cells.
Collapse
Affiliation(s)
- Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
7
|
In Vitro Effects of Bisphenol A and Tetrabromobisphenol A on Cell Viability and Reproduction-Related Gene Expression in Pituitaries from Sexually Maturing Atlantic Cod (Gadus morhua L.). FISHES 2019. [DOI: 10.3390/fishes4030048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bisphenol A (BPA) and tetrabromobisphenol A (TBBPA) are widely used industrial chemicals, ubiquitously present in the environment. While BPA is a well-known endocrine disruptor and able to affect all levels of the teleost reproductive axis, information regarding TBBPA on this subject is very limited. Using primary cultures from Atlantic cod (Gadus morhua), the present study was aimed at investigating potential direct effects of acute (72 h) BPA and TBBPA exposure on cell viability and the expression of reproductive-relevant genes in the pituitary. The results revealed that both bisphenols stimulate cell viability in terms of metabolic activity and membrane integrity at environmentally relevant concentrations. BPA had no direct effects on gonadotropin gene expression, but enhanced the expression of gonadotropin-releasing hormone (GnRH) receptor 2a, the main gonadotropin modulator in Atlantic cod. In contrast, TBBPA increased gonadotropin transcript levels but had no effect on GnRH receptor mRNA. In conclusion, both anthropogenic compounds display endocrine disruptive properties and are able to directly interfere with gene expression related to reproductive function in cod pituitary cells at environmentally relevant concentrations in vitro.
Collapse
|
8
|
von Krogh K, Bjørndal GT, Nourizadeh-Lillabadi R, Ropstad E, Haug TM, Weltzien FA. Cortisol differentially affects cell viability and reproduction-related gene expression in Atlantic cod pituitary cultures dependent on stage of sexual maturation. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110517. [PMID: 31254635 DOI: 10.1016/j.cbpa.2019.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/16/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023]
Abstract
Through the action of cortisol, stress can affect reproductive biology with behavioural and physiological alterations. Using mixed sex primary pituitary cultures from Atlantic cod (Gadus morhua), the present study aimed to investigate potential direct effects of basal and stress level cortisol on the pituitary in terms of cell viability and reproduction-related gene expression at different stages of sexual maturity. Stress level of cortisol stimulated cell viability in cells derived from sexually maturing and mature fish. In cells from spent fish, high cortisol levels did not affect cell viability in terms of metabolic activity, but did stimulate viability in terms of membrane integrity. Basal cortisol levels did not affect cell viability. Ethanol, used as solvent for cortisol, decreased cell viability at all maturity stages, but did generally not affect gene expression. Genes investigated were fshb, lhb and two Gnrh receptors expressed in cod gonadotropes (gnrhr1b and gnrhr2a). Cortisol had dual effects on fshb expression; stimulating expression in cells from mature fish at stress dose, while inhibiting expression in cells from spent fish at both doses. In contrast, cortisol had no direct effect on lhb expression. While gnrhr2a transcript levels largely increased following cortisol treatment, gnrhr1b expression decreased in cells from spent fish and was unaffected at other maturity stages. These findings demonstrate that cortisol can act directly and differentially at the pituitary level in Atlantic cod and that factors facilitating these actions are dose-dependently activated and vary with level of sexual maturity.
Collapse
Affiliation(s)
- Kristine von Krogh
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | - Gunnveig Toft Bjørndal
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | - Erik Ropstad
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Oslo, Norway
| | - Trude M Haug
- University of Oslo, Faculty of Dentistry, Department of Oral Biology, Oslo, Norway
| | - Finn-Arne Weltzien
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway.
| |
Collapse
|
9
|
Burow S, Fontaine R, von Krogh K, Mayer I, Nourizadeh-Lillabadi R, Hollander-Cohen L, Cohen Y, Shpilman M, Levavi-Sivan B, Weltzien FA. Medaka follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh): Developmental profiles of pituitary protein and gene expression levels. Gen Comp Endocrinol 2019; 272:93-108. [PMID: 30576646 DOI: 10.1016/j.ygcen.2018.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/30/2018] [Accepted: 12/16/2018] [Indexed: 02/06/2023]
Abstract
The two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are of particular importance within the hypothalamic-pituitary-gonadal (HPG) axis of vertebrates. In the current study, we demonstrate the production and validation of Japanese medaka (Oryzias latipes) recombinant (md) gonadotropins Fshβ (mdFshβ), Lhβ (mdLhβ), Fshβα (mdFshβα), and Lhβα (mdLhβα) by Pichia pastoris, the generation of specific rabbit antibodies against their respective β subunits, and their use within the development and validation of competitive enzyme-linked immunosorbent assays (ELISAs) for quantification of medaka Fsh and Lh. mdFsh and mdLh were produced as single-chain polypeptides by linking the α subunit with mdFshβ or mdLhβ mature protein coding sequences to produce a "tethered" polypeptide with the β-chain at the N-terminal and the α-chain at the C-terminal. The specificity of the antibodies raised against mdFshβ and mdLhβ was determined by immunofluorescence (IF) for Fshβ and Lhβ on medaka pituitary tissue, while comparison with fluorescence in situ hybridization (FISH) for fshb and lhb mRNA was used for validation. Competitive ELISAs were developed using antibodies against mdFshβ or mdLhβ, and the tethered proteins mdFshβα or mdLhβα for standard curves. The standard curve for the Fsh ELISA ranged from 97.6 pg/ml to 50 ng/ml, and for the Lh ELISA from 12.21 pg/ml to 6.25 ng/ml. The sensitivity of the assays for Fsh and Lh was 44.7 and 70.8 pg/ml, respectively. A profile of pituitary protein levels of medaka Fsh and Lh comparing juveniles with adults showed significant increase of protein amount from juvenile group (body length from 12 mm to 16.5 mm) to adult group (body length from 21 mm to 26.5 mm) for both hormones in male medaka. Comparing these data to a developmental profile of pituitary mRNA expression of medaka fshb and lhb, the mRNA expression of lhb also increased during male maturation and a linear regression analysis revealed a significant increase of lhb expression with increased body length that proposes a linear model. However, fshb mRNA expression did not change significantly during male development and therefore was not correlated with body length. In summary, we have developed and validated homologous ELISA assays for medaka Fsh and Lh based on proteins produced in P. pastoris, assays that will be used to study the functions and regulations of Fsh and Lh in more detail.
Collapse
Affiliation(s)
- Susann Burow
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lian Hollander-Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Yaron Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
10
|
MacLeod MJ, Vo NTK, Mikhaeil MS, Monaghan SR, Alexander JAN, Saran MK, Lee LEJ. Development of a continuous cell line from larval Atlantic cod (Gadus morhua) and its use in the study of the microsporidian, Loma morhua. JOURNAL OF FISH DISEASES 2018; 41:1359-1372. [PMID: 29882595 DOI: 10.1111/jfd.12830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
In vitro cell culture methods are crucial for the isolation, purification and mass propagation of intracellular pathogens of aquatic organisms. Cell culture infection models can yield insights into infection mechanisms, aid in developing methods for disease mitigation and prevention, and inform commercial-scale cultivation approaches. This study details the establishment of a larval cell line (GML-5) from the Atlantic cod (Gadus morhua) and its use in the study of microsporidia. GML-5 has survived over 100 passages in 8 years of culture. The line remains active and viable between 8 and 21°C in Leibovitz-15 (L-15) media with 10% foetal bovine serum and exhibits a myofibroblast phenotype as indicated by immuno-positive results for vimentin, α-smooth muscle actin, collagen I and S-100 proteins, while being desmin-negative. GML-5 supports the infection and development of two microsporidian parasites, an opportunistic generalist (Anncaliia algerae) and cod-specific Loma morhua. Using GML-5, spore germination and proliferation of L. morhua was found to require exposure to basic pH and cool incubation temperatures (8°C), in contrast to A. algerae, which required no cultural modifications. Loma morhua-associated xenoma-like structures were observed 2 weeks postexposure. This in vitro infection model may serve as a valuable tool for cod parasitology and aquaculture research.
Collapse
Affiliation(s)
- Michael J MacLeod
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | | | - Mandeep K Saran
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Lucy E J Lee
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, Canada
| |
Collapse
|
11
|
Ager-Wick E, Hodne K, Fontaine R, von Krogh K, Haug TM, Weltzien FA. Preparation of a High-quality Primary Cell Culture from Fish Pituitaries. J Vis Exp 2018. [PMID: 30222142 DOI: 10.3791/58159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Primary cell culture is a powerful tool commonly used by scientists to study cellular properties and mechanisms of isolated cells in a controlled environment. Despite vast differences in the physiology between mammals and fish, primary cell culture protocols from fish are often based on mammalian culture conditions, often with only minor modifications. The environmental differences affect not only body temperature, but also blood serum parameters such as osmolality, pH, and pH buffer capacity. As cell culture media and similar working solutions are meant to mimic characteristics of the extracellular fluid and/or blood serum to which a cell is adapted, it is crucial that these parameters are adjusted specifically to the animal in question. The current protocol describes optimized primary culture conditions for medaka (Oryzias latipes). The protocol provides detailed steps on how to isolate and maintain healthy dissociated pituitary cells for more than one week and includes the following steps: 1. the adjustment of the osmolality to the values found in medaka blood plasma, 2. the adjustment of the incubation temperature to normal medaka temperature (here in the aquarium facility), and 3. the adjustment of the pH and bicarbonate buffer to values comparable to other fish species living at similar temperatures. The results presented using the described protocol promote physiologically meaningful results for medaka and can be used as a reference guide by scientists making primary cell cultures from other non-mammalian species.
Collapse
Affiliation(s)
- Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences
| | - Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences
| | - Trude M Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences;
| |
Collapse
|
12
|
Fontaine R, Hodne K, Weltzien FA. Healthy Brain-pituitary Slices for Electrophysiological Investigations of Pituitary Cells in Teleost Fish. J Vis Exp 2018:57790. [PMID: 30176004 PMCID: PMC6126815 DOI: 10.3791/57790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Electrophysiological investigations of pituitary cells have been conducted in numerous vertebrate species, but very few in teleost fish. Among these, the clear majority have been performed on dissociated primary cells. To improve our understanding of how teleost pituitary cells, behave in a more biologically relevant environment, this protocol shows how to prepare viable brain-pituitary slices using the small freshwater fish medaka (Oryzias latipes). Making the brain-pituitary slices, pH and osmolality of all solutions were adjusted to values found in body fluids of freshwater fish living at 25 to 28 °C. Following slice preparation, the protocol demonstrates how to conduct electrophysiological recordings using the perforated whole-cell patch-clamp technique. The patch-clamp technique is a powerful tool with unprecedented temporal resolution and sensitivity, allowing investigation of electrical properties from intact whole cells down to single ion channels. Perforated patch is unique in that it keeps the intracellular environment intact preventing regulatory elements in the cytosol from being diluted by the patch pipette electrode solution. In contrast, when performing traditional whole-cell recordings, it was observed that medaka pituitary cells quickly lose their ability to fire action potentials. Among the various perforation techniques available, this protocol demonstrates how to achieve perforation of the patched membrane using the fungicide Amphotericin B.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences;
| |
Collapse
|
13
|
Huang D, Cui L, Guo P, Xue X, Wu Q, Hussain HI, Wang X, Yuan Z. Nitric oxide mediates apoptosis and mitochondrial dysfunction and plays a role in growth hormone deficiency by nivalenol in GH3 cells. Sci Rep 2017; 7:17079. [PMID: 29213091 PMCID: PMC5719085 DOI: 10.1038/s41598-017-16908-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Nivalenol (NIV), a type B trichothecenes commonly found in cereal crops, can cause growth impairment in animals. However, limited information about its mechanisms is available. Trichothecenes have been characterized as an inhibitor of protein synthesis and induce apoptosis in cells. Oxidative stress is considered an underlying mechanism. However, whether NIV can induce oxidative stress and apoptosis in rat pituitary cells line GH3 is unclear. The present study showed that NIV significantly reduced the viability of cells and caused oxidative stress in GH3 cells. Further experiments showed that nitric oxide (NO), but not ROS, mediated NIV-induced oxidative stress. Additionally, NIV induced caspase-dependent apoptosis, decrease in mitochondrial membrane potential and mitochondrial ultrastructural changes. However, NIV-induced caspase activation, mitochondrial damage and apoptosis were partially alleviated by Z-VAD-FMK or NO scavenger hemoglobin. Finally, NIV changed the expression of growth-associated genes and pro-inflammatory cytokines. NIV also reduced the GH secretion in GH3 cells, which was reversed by hemoglobin. Taken together, these results suggested that NIV induced apoptosis in caspase-dependent mitochondrial pathway in GH3 cells, which might be an underlying mechanism of NIV-induced GH deficiency. Importantly, NO played a critical role in the induction of oxidative stress, apoptosis and GH deficiency in NIV-treated GH3 cells.
Collapse
Affiliation(s)
- Deyu Huang
- The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, Wuhan, P.R. China
| | - Luqing Cui
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Pu Guo
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Xijuan Xue
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P.R. China
| | - Hafiz Iftikhar Hussain
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Xu Wang
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China.
| | - Zonghui Yuan
- The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, Wuhan, P.R. China. .,Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China.
| |
Collapse
|
14
|
von Krogh K, Bjørndal GT, Nourizadeh-Lillabadi R, Hodne K, Ropstad E, Haug TM, Weltzien FA. Sex steroids differentially regulate fshb, lhb and gnrhr expression in Atlantic cod ( Gadus morhua). Reproduction 2017; 154:581-594. [PMID: 28780570 DOI: 10.1530/rep-17-0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 01/03/2023]
Abstract
Depending on the stage of gonad maturation, as well as other factors, gonadal steroids can exert either a positive or negative feedback at the brain and pituitary level. While this has been demonstrated in many teleost species, little is known about the nature of steroid feedback in Gadiform fish. Using an optimized in vitro model system of the Atlantic cod pituitary, the present study investigated the potential effects of two physiologically relevant doses of estradiol, testosterone (TS) or dihydrotestosterone (DHTS) on cell viability and gene expression of gonadotropin subunits (fshb/lhb) and two suggested reproduction-relevant gonadotropin-releasing hormone receptors (gnrhr1b/gnrhr2a) during three stages of sexual maturity. In general, all steroids stimulated cell viability in terms of metabolic activity and membrane integrity. Furthermore, all steroids affected fshb expression, with the effect depending on both the specific steroid, dose and maturity status. Conversely, only DHTS exposure affected lhb levels, and this occurred only during the spawning season. Using single-cell qPCR, co-transcription of gnrhr1b and gnrhr2a was confirmed to both fshb- and lhb- expressing gonadotropes, with gnrhr2a being the most prominently expressed isoform. While steroid exposure had no effect on gnrhr1b expression, all steroids affected gnrhr2a transcript levels in at least one maturity stage. These and previous results from our group point to Gnrhr2a as the main modulator of gonadotropin regulation in cod and that regulation of its gene expression level might function as a direct mechanism for steroid feedback at the pituitary level.
Collapse
Affiliation(s)
- Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Science, Oslo, Norway
| | - Trude M Haug
- Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
15
|
Zhang S, Zhang Y, Chen W, Wu Y, Ge W, Zhang L, Zhang W. Aromatase (Cyp19a1b) in the pituitary is dynamically involved in the upregulation of lhb but not fshb in the vitellogenic female ricefield eel Monopterus albus. Endocrinology 2014; 155:4531-41. [PMID: 25105781 DOI: 10.1210/en.2014-1069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aromatase, encoded by Cyp19a1, is expressed in the pituitary of vertebrates; however, its physiological relevance remains poorly defined. In teleosts, the duplicated cyp19a1b is preferentially expressed in the pituitary where LH and FSH are synthesized in distinct gonadotropes. Our present study demonstrated that Cyp19a1b is colocalized with Lhb, but not Fshb, during vitellogenesis in female ricefield eels. The immunoreactive levels of Cyp19a1b and Lhb, as well as their colocalization frequency, increased during vitellogenesis toward maturation. The expression of lhb but not fshb in the pituitary fragments of female ricefield eels was induced by both estradiol (E2) and testosterone (T). In agreement, the promoter of lhb but not fshb was activated by both E2 and T. T is more potent than E2 in inducing lhb expression, whereas E2 is much more effective in activating the lhb promoter. T-induced lhb expression in the pituitary fragments was abolished by the estrogen receptor (Esr) antagonist fulvestrant and suppressed by the aromatase inhibitor letrozole, suggesting that the effect of T on lhb expression at the pituitary is largely mediated by E2. Furthermore, Lhb was shown to colocalize with Esr1 but not Esr2a. Taken together, results of the present study suggest that Cyp19a1b in LH cells may greatly upregulate lhb expression during vitellogenesis, possibly via E2 and Esr1 in an intracrine manner. The absence of Cyp19a1b in FSH cells and the insensitivity of fshb to sex steroids may contribute to the differential expression of lhb and fshb in ricefield eels and possibly other vertebrates as well.
Collapse
Affiliation(s)
- Shen Zhang
- School of Life Sciences (S.Z., Y.Z., W.C., Y.W., L.Z., W.Z.), Sun Yat-sen University, Guangzhou 510275, People's Republic of China; and Faculty of Heath Sciences (W.G.), University of Macau, Taipa, Macau Special Administrative Region (SAR), China, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Ager-Wick E, Henkel CV, Haug TM, Weltzien FA. Using normalization to resolve RNA-Seq biases caused by amplification from minimal input. Physiol Genomics 2014; 46:808-20. [PMID: 25228281 DOI: 10.1152/physiolgenomics.00196.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA-Seq has become a widely used method to study transcriptomes, and it is now possible to perform RNA-Seq on almost any sample. Nevertheless, samples obtained from small cell populations are particularly challenging, as biases associated with low amounts of input RNA can have strong and detrimental effects on downstream analyses. Here we compare different methods to normalize RNA-Seq data obtained from minimal input material. Using RNA from isolated medaka pituitary cells, we have amplified material from six samples before sequencing. Both synthetic and real data are used to evaluate different normalization methods to obtain a robust and reliable pipeline for analysis of RNA-Seq data from samples with very limited input material. The analysis outlined here shows that quantile normalization outperforms other more commonly used normalization procedures when using amplified RNA as input and will benefit researchers employing low amounts of RNA in similar experiments.
Collapse
Affiliation(s)
- Eirill Ager-Wick
- Weltzien Laboratory, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Christiaan V Henkel
- Weltzien Laboratory, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway; Institute of Biology, Leiden University, Leiden, The Netherlands; and
| | - Trude M Haug
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Finn-Arne Weltzien
- Weltzien Laboratory, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Hodne K, Strandabø RAU, von Krogh K, Nourizadeh-Lillabadi R, Sand O, Weltzien FA, Haug TM. Electrophysiological differences between fshb- and lhb-expressing gonadotropes in primary culture. Endocrinology 2013; 154:3319-30. [PMID: 23836032 DOI: 10.1210/en.2013-1164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthesis and release of FSH and LH are differentially regulated by GnRH, but the mechanisms by which this regulation is achieved are not well understood. Teleost fish are powerful models for studying this differential regulation because they have distinct pituitary cells producing either FSH or LH. By using pituitary cultures from Atlantic cod (Gadus morhua), we were able to investigate and compare the electrophysiological properties of fshb- and lhb-expressing cells, identified by single-cell quantitative PCR after recording. Both cell types fired action potentials spontaneously. The relative number of excitable cells was dependent on reproductive season but varied in opposing directions according to season in the 2 cell types. Excitable and quiescent gonadotropes displayed different ion channel repertoires. The dynamics of outward currents and GnRH-induced membrane responses differed between fshb- and lhb-expressing cells, whereas GnRH-induced cytosolic Ca²⁺ responses were similar. Expression of Ca²⁺-activated K⁺ channels also differed with cell type and showed seasonal variation when measured in whole pituitary. The differential presence of these channels corresponds to the differences observed in membrane response to GnRH. We speculate that differences in ion channel expression levels may be involved in seasonal regulation of hormone secretion as well as the differential response to GnRH in LH- and FSH-producing gonadotropes, through differences in excitability and Ca²⁺ influx.
Collapse
Affiliation(s)
- Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, N-0033 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
18
|
Strandabø RAU, Hodne K, Ager-Wick E, Sand O, Weltzien FA, Haug TM. Signal transduction involved in GnRH2-stimulation of identified LH-producing gonadotropes from lhb-GFP transgenic medaka (Oryzias latipes). Mol Cell Endocrinol 2013; 372:128-39. [PMID: 23562421 DOI: 10.1016/j.mce.2013.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/21/2013] [Accepted: 03/26/2013] [Indexed: 12/28/2022]
Abstract
We have characterized the response to gonadotropin-releasing hormone 2 (GnRH2) in luteinizing hormone producing cells from gfp-transgenic medaka. Teleosts have separate cells producing the two types of gonadotropins, enabling us for the first time to study the intracellular signaling that controls secretion of each gonadotropin separately. Pituitary cell cultures were prepared, and lhb-producing cells were selected by their GFP expression. Cytosolic Ca(2+) imaging revealed three response patterns to GnRH2, one monophasic and two types of biphasic patterns. The Ca(2+) sources were examined by depleting intracellular Ca(2+) stores and preventing influx of extracellular Ca(2+). Both treatments reduced response amplitude, and affected latency and time to peak. Blocking L-type Ca(2+) channels reduced amplitude and time to peak, but did not remove extracellular Ca(2+) contribution. Patch-clamp recordings showed spontaneous action potentials in several cells, and GnRH2 increased the firing frequency. Presence of Ca(2+)-activated K(+) channels was revealed, BK channels being the most prominent.
Collapse
|