1
|
Xie DF, Zhu L, Wang XM, Li Y, Zhou P. Novel variant in MYH9 in a child with proteinuria and thrombocytopenia: a case report and literature review. Front Pediatr 2025; 13:1502727. [PMID: 40416435 PMCID: PMC12098102 DOI: 10.3389/fped.2025.1502727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/14/2025] [Indexed: 05/27/2025] Open
Abstract
There is a lack of awareness of the diagnosis and treatment of MYH9-related disorder (MYH9-RD), which is an autosomal dominant disease with heterogeneous clinical manifestations. We summarized the clinical phenotype and reported a novel variant in MYH9 in a child with focal segmental glomerulosclerosis (FSGS) and reviewed the relevant literature to better understand MYH9-RD. Unlike previous cases, this patient exhibited IgA deposition in the mesangial region, suggesting need for further investigation into prognostic and therapeutic significance of this finding. To reduce the risk of MYH9-RD misdiagnosis, we recommend assessing mean platelet diameter and granulocyte inclusions in patients with unexplained proteinuria and refractory thrombocytopenia.
Collapse
Affiliation(s)
- Dan-Feng Xie
- Department of Pediatric Nephrology, Allergy, and Rheumatology, Sichuan Provincial Women’s and Children’s Hospital, The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Pediatric Nephrology, Chengdu, Sichuan, China
| | - Lin Zhu
- Department of Pediatric Nephrology, Allergy, and Rheumatology, Sichuan Provincial Women’s and Children’s Hospital, The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Pediatric Nephrology, Chengdu, Sichuan, China
| | - Xiao-Meng Wang
- Department of Pediatric Nephrology, Allergy, and Rheumatology, Sichuan Provincial Women’s and Children’s Hospital, The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Pediatric Nephrology, Chengdu, Sichuan, China
| | - Yun Li
- Department of Pediatric Nephrology, Allergy, and Rheumatology, Sichuan Provincial Women’s and Children’s Hospital, The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Pediatric Nephrology, Chengdu, Sichuan, China
| | - Ping Zhou
- Department of Pediatric Nephrology, Allergy, and Rheumatology, Sichuan Provincial Women’s and Children’s Hospital, The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Pediatric Nephrology, Chengdu, Sichuan, China
| |
Collapse
|
2
|
P S, Pegu B, Subbaiah M, D P, Manivannan P, Dorairajan G. GNE-related severe congenital macro-thrombocytopenia in pregnancy. Obstet Med 2025:1753495X251334520. [PMID: 40255988 PMCID: PMC12003323 DOI: 10.1177/1753495x251334520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/22/2025] Open
Abstract
Congenital thrombocytopenia results from mutations in genes implicated in megakaryocyte differentiation and/or platelet formation and clearance. We report the case of a 25 year old primigravida who presented with severe macro-thrombocytopenia from the age of 12 years. She delivered an alive female baby at 35 weeks of gestation. She was diagnosed to have GNE gene mutation. GNE gene encodes the key enzyme in sialic acid biosynthesis, glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase (GNE/MNK). The mutation is responsible for the reduction in sialic acid biosynthesis and consequently leads to severe congenital thrombocytopenia and/or myopathy. Although no sign of myopathy was observed in this patient; it is possible myopathy can be developed later, thus long-term follow-up with neurology is highly advisable. We recommend the genetic counselling and a segregation analysis of this variant in other affected individuals in the family.
Collapse
Affiliation(s)
- Sivaranjani P
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Bhabani Pegu
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Murali Subbaiah
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Pooja D
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Prabhu Manivannan
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Gowri Dorairajan
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
3
|
Arif AR, Zhou H, Fang Y, Cheng Y, Ye J, Chen W, Ding Y, Cai L, Xue M, Mei H, Wang Y. Clinical and genetic characteristics of 40 patients with nonmuscle myosin heavy chain 9-related disease (MYH9-RD) misdiagnosed as immune thrombocytopenia: a retrospective analysis in China. J Thromb Haemost 2025; 23:1043-1051. [PMID: 39672236 DOI: 10.1016/j.jtha.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Myosin heavy chain 9-related diseases (MYH9-RDs) are rare autosomal dominant platelet disorders characterized by macrothrombocytopenia and leukocyte inclusion bodies. They can manifest with nonhematological complications, including deafness, nephropathy, or cataracts. Due to its rarity and its similar clinical presentation with immune thrombocytopenia (ITP), MYH9-RD is often misdiagnosed as ITP, leading to inappropriate treatment and delayed management of complications. OBJECTIVES This study aimed to evaluate clinical, therapeutic, and genetic aspects of patients with MYH9-RD misdiagnosed with ITP, comparing differences between Chinese pediatric and adult cases of this condition. METHODS This multicenter retrospective study included data obtained from Chinese patients diagnosed with MYH9-RD between January 2014 and December 2023 at 5 centers. RESULTS Adults exhibited significantly longer median misdiagnosis (9 years vs 0.2 years, P < .001) and treatment durations (1.5 years vs 0.1 years, P < .001) than children. Nonhematological manifestations were exclusive to adults (10/21). All patients received inappropriate ITP treatments, with adults receiving more different treatments. Genetic analysis revealed 21 spontaneous mutations (52.5%), 12 familial mutations, and 7 mutations with unknown inheritance patterns. Two novel mutations (p.G1517V and p.K1674Q) were identified. Patients with the p.R702C mutation demonstrated early-stage kidney injury and hearing loss. CONCLUSION Adult patients with MYH9-RD have greater risk of misdiagnosis, prolonged inappropriate treatment, and nonhematological complications than pediatric patients. Enhanced awareness, consideration of mean platelet volume, family history, and genetic screening are crucial for accurate MYH9-RD diagnosis and management. The incidence of spontaneous mutations and identified genotype-phenotype correlations warrant further investigation in the Chinese population.
Collapse
Affiliation(s)
- Abdul Rehman Arif
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hu Zhou
- Department of Haematology, Henan Cancer Hospital/The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongjun Fang
- Department of Haematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfeng Cheng
- Department of Haematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieyu Ye
- Department of Haematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenlan Chen
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Ding
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Cai
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Xue
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Mei
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yadan Wang
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
5
|
Wang X, Wang Z, Liu B, Jin R, Song Y, Fei R, Cong X, Huang R, Li X, Yang J, Wei L, Rao H, Liu F. Characteristic gene expression in the liver monocyte-macrophage-DC system is associated with the progression of fibrosis in NASH. Front Immunol 2023; 14:1098056. [PMID: 36911682 PMCID: PMC9998489 DOI: 10.3389/fimmu.2023.1098056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Background The monocyte-macrophage-dendritic cell (DC) (MMD) system exerts crucial functions that may modulate fibrogenesis in nonalcoholic steatohepatitis (NASH). In this study, we explored the cell characteristics, distribution and developmental trajectory of the liver MMD system in NASH mice with fibrosis and clarified characteristic genes of the MMD system involved in liver fibrosis progression in NASH mice and patients. Methods Single cells in liver tissue samples from NASH and normal mice were quantified using single-cell RNA sequencing (scRNA-seq) analysis. Differentially expressed genes (DEGs) in the MMD system by pseudotime analysis were validated by tyramide signal amplification (TSA)-immunohistochemical staining (IHC) and analyzed by second harmonic generation (SHG)/two-photon excitation fluorescence (TPEF). Results Compared with control mice, there were increased numbers of monocytes, Kupffer cells, and DCs in two NASH mouse models. From the transcriptional profiles of these single cells, we identified 8 monocyte subsets (Mono1-Mono8) with different molecular and functional properties. Furthermore, the pseudotime analysis showed that Mono5 and Mono6 were at the beginning of the trajectory path, whereas Mono2, Mono4, Kupffer cells and DCs were at a terminal state. Genes related to liver collagen production were at the late stage of this trajectory path. DEGs analysis revealed that the genes Fmnl1 and Myh9 in the MMD system were gradually upregulated during the trajectory. By TSA-IHC, the Fmnl1 and Myh9 expression levels were increased and associated with collagen production and fibrosis stage in NASH mice and patients. Conclusions Our transcriptome data provide a novel landscape of the MMD system that is involved in advanced NASH disease status. Fmnl1 and Myh9 expression in the MMD system was associated with the progression of NASH fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Zilong Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Baiyi Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Rui Jin
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Yuyun Song
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Ran Fei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xu Cong
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Rui Huang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xiaohe Li
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Jia Yang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Lai Wei
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Huiying Rao
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Feng Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| |
Collapse
|
6
|
Peng S, Stojkov D, Gao J, Oberson K, Latzin P, Casaulta C, Yousefi S, Simon HU. Nascent RHOH acts as a molecular brake on actomyosin-mediated effector functions of inflammatory neutrophils. PLoS Biol 2022; 20:e3001794. [PMID: 36108062 PMCID: PMC9514642 DOI: 10.1371/journal.pbio.3001794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/27/2022] [Accepted: 08/11/2022] [Indexed: 12/22/2022] Open
Abstract
In contrast to molecular changes associated with increased inflammatory responses, little is known about intracellular counter-regulatory mechanisms that control signaling cascades associated with functional responses of neutrophils. Active RHO GTPases are typically considered as effector proteins that elicit cellular responses. Strikingly, we show here that RHOH, although being constitutively GTP-bound, limits neutrophil degranulation and the formation of neutrophil extracellular traps (NETs). Mechanistically, RHOH is induced under inflammatory conditions and binds to non-muscle myosin heavy chain IIA (NMHC IIA) in activated neutrophils in order to inhibit the transport of mitochondria and granules along actin filaments, which is partially reverted upon disruption of the interaction with NMHC IIA by introducing a mutation in RhoH at lysine 34 (RhoHK34A). In parallel, RHOH inhibits actin polymerization presumably by modulating RAC1 activity. In vivo studies using Rhoh-/- mice, demonstrate an increased antibacterial defense capability against Escherichia coli (E. coli). Collectively, our data reveal a previously undefined role of RHOH as a molecular brake for actomyosin-mediated neutrophil effector functions, which represents an intracellular regulatory axis involved in controlling the strength of an antibacterial inflammatory response.
Collapse
Affiliation(s)
- Shuang Peng
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Kevin Oberson
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, University Children’s Hospital of Bern, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Respiratory Medicine, Department of Pediatrics, University Children’s Hospital of Bern, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
- * E-mail:
| |
Collapse
|
7
|
Trela E, Lan Q, Myllymäki SM, Villeneuve C, Lindström R, Kumar V, Wickström SA, Mikkola ML. Cell influx and contractile actomyosin force drive mammary bud growth and invagination. J Cell Biol 2021; 220:e202008062. [PMID: 34042944 PMCID: PMC8164091 DOI: 10.1083/jcb.202008062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/31/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023] Open
Abstract
The mammary gland develops from the surface ectoderm during embryogenesis and proceeds through morphological phases defined as placode, hillock, bud, and bulb stages followed by branching morphogenesis. During this early morphogenesis, the mammary bud undergoes an invagination process where the thickened bud initially protrudes above the surface epithelium and then transforms to a bulb and sinks into the underlying mesenchyme. The signaling pathways regulating the early morphogenetic steps have been identified to some extent, but the underlying cellular mechanisms remain ill defined. Here, we use 3D and 4D confocal microscopy to show that the early growth of the mammary rudiment is accomplished by migration-driven cell influx, with minor contributions of cell hypertrophy and proliferation. We delineate a hitherto undescribed invagination mechanism driven by thin, elongated keratinocytes-ring cells-that form a contractile rim around the mammary bud and likely exert force via the actomyosin network. Furthermore, we show that conditional deletion of nonmuscle myosin IIA (NMIIA) impairs invagination, resulting in abnormal mammary bud shape.
Collapse
MESH Headings
- Actomyosin/metabolism
- Animals
- Cell Movement
- Cell Proliferation
- Epithelial Cells/metabolism
- Epithelial Cells/ultrastructure
- Female
- Gene Expression Regulation, Developmental
- Gestational Age
- Hypertrophy
- Keratinocytes/metabolism
- Keratinocytes/ultrastructure
- Mammary Glands, Animal/embryology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/ultrastructure
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Morphogenesis
- Mice
Collapse
Affiliation(s)
- Ewelina Trela
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Satu-Marja Myllymäki
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Clémentine Villeneuve
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Lindström
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vinod Kumar
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sara A. Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marja L. Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Rogerson C, Wotherspoon DJ, Tommasi C, Button RW, O'Shaughnessy RFL. Akt1-associated actomyosin remodelling is required for nuclear lamina dispersal and nuclear shrinkage in epidermal terminal differentiation. Cell Death Differ 2021; 28:1849-1864. [PMID: 33462407 PMCID: PMC8184862 DOI: 10.1038/s41418-020-00712-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023] Open
Abstract
Keratinocyte cornification and epidermal barrier formation are tightly controlled processes, which require complete degradation of intracellular organelles, including removal of keratinocyte nuclei. Keratinocyte nuclear destruction requires Akt1-dependent phosphorylation and degradation of the nuclear lamina protein, Lamin A/C, essential for nuclear integrity. However, the molecular mechanisms that result in complete nuclear removal and their regulation are not well defined. Post-confluent cultures of rat epidermal keratinocytes (REKs) undergo spontaneous and complete differentiation, allowing visualisation and perturbation of the differentiation process in vitro. We demonstrate that there is dispersal of phosphorylated Lamin A/C to structures throughout the cytoplasm in differentiating keratinocytes. We show that the dispersal of phosphorylated Lamin A/C is Akt1-dependent and these structures are specific for the removal of Lamin A/C from the nuclear lamina; nuclear contents and Lamin B were not present in these structures. Immunoprecipitation identified a group of functionally related Akt1 target proteins involved in Lamin A/C dispersal, including actin, which forms cytoskeletal microfilaments, Arp3, required for actin filament nucleation, and Myh9, a component of myosin IIa, a molecular motor that can translocate along actin filaments. Disruption of actin filament polymerisation, nucleation or myosin IIa activity prevented formation and dispersal of cytoplasmic Lamin A/C structures. Live imaging of keratinocytes expressing fluorescently tagged nuclear proteins showed a nuclear volume reduction step taking less than 40 min precedes final nuclear destruction. Preventing Akt1-dependent Lamin A/C phosphorylation and disrupting cytoskeletal Akt1-associated proteins prevented nuclear volume reduction. We propose keratinocyte nuclear destruction and differentiation requires myosin II activity and the actin cytoskeleton for two intermediate processes: Lamin A/C dispersal and rapid nuclear volume reduction.
Collapse
Affiliation(s)
- Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Duncan J Wotherspoon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cristina Tommasi
- Immunobiology and Dermatology, UCL Great Ormond Street Institute of Child Health, London, UK
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Robert W Button
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
9
|
Wang Z, Zhu Z, Li C, Zhang Y, Li Z, Sun S. NMIIA promotes tumorigenesis and prevents chemosensitivity in colorectal cancer by activating AMPK/mTOR pathway. Exp Cell Res 2020; 398:112387. [PMID: 33220257 DOI: 10.1016/j.yexcr.2020.112387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023]
Abstract
Non-muscle myosin IIA (NMIIA) has been reported to be involved in the carcinogenesis and malignant progression of various human tumors. However, the role and potential mechanism of NMIIA in the biological functions and apoptosis in colorectal cancer (CRC) remain elusive. In this study, we found that NMIIA was overexpressed in CRC tissues and significantly associated with poor survival in CRC patients. In addition, NMIIA promoted CRC cell proliferation and invasion via activating the AMPK/mTOR pathway in vitro, and NMIIA knockdown inhibited CRC growth in vivo. Meanwhile, NMIIA knockdown downregulated the CSCs markers (CD44 and CD133) expression in CRC cells. Furthermore, AMPK/mTOR pathway activation effectively reversed the NMIIA knockdown-induced inhibition of proliferation, invasion and stemness in CRC cells. Finally, NMIIA protects CRC cells from 5-FU-induced apoptosis and proliferation inhibition through the AMPK/mTOR pathway. Taken together, these results indicate that NMIIA plays a pivotal role in CRC growth and progression by regulating AMPK/mTOR pathway activation, and it may act as a novel therapeutic target prognostic factor in CRC.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Chenyuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yimin Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
10
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
11
|
Wakefield BJ, Diehl R, Neff AT, Bakdash S, Pettersson GB, Mehta AR. Perioperative Management of a Patient With Profound Thrombocytopenia Secondary to MYH9-RD Presenting for Thoracic Aortic Aneurysm Repair and Aortic Valve Replacement. J Cardiothorac Vasc Anesth 2020; 35:1154-1160. [PMID: 32861542 DOI: 10.1053/j.jvca.2020.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Brett J Wakefield
- Department of Cardiothoracic Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH.
| | - Rachel Diehl
- Department of Cardiothoracic Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH
| | - Anne T Neff
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Suzanne Bakdash
- Department of Laboratory Medicine, Section of Transfusion Medicine, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Gosta B Pettersson
- Department of Thoracic and Cardiovascular Surgery, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH
| | - Anand R Mehta
- Department of Cardiothoracic Anesthesiology, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
12
|
Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function. Cells 2020; 9:cells9071590. [PMID: 32630196 PMCID: PMC7408548 DOI: 10.3390/cells9071590] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022] Open
Abstract
Non-muscle myosin 2A (NM2A) is a motor cytoskeletal enzyme with crucial importance from the early stages of development until adulthood. Due to its capacity to convert chemical energy into force, NM2A powers the contraction of the actomyosin cytoskeleton, required for proper cell division, adhesion and migration, among other cellular functions. Although NM2A has been extensively studied, new findings revealed that a lot remains to be discovered concerning its spatiotemporal regulation in the intracellular environment. In recent years, new functions were attributed to NM2A and its activity was associated to a plethora of illnesses, including neurological disorders and infectious diseases. Here, we provide a concise overview on the current knowledge regarding the structure, the function and the regulation of NM2A. In addition, we recapitulate NM2A-associated diseases and discuss its potential as a therapeutic target.
Collapse
|
13
|
Trivedi DV, Nag S, Spudich A, Ruppel KM, Spudich JA. The Myosin Family of Mechanoenzymes: From Mechanisms to Therapeutic Approaches. Annu Rev Biochem 2020; 89:667-693. [PMID: 32169021 DOI: 10.1146/annurev-biochem-011520-105234] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human β-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human β-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Suman Nag
- MyoKardia Inc., Brisbane, California 94005, USA;
| | - Annamma Spudich
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560-097, India;
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
14
|
Almazni I, Stapley R, Morgan NV. Inherited Thrombocytopenia: Update on Genes and Genetic Variants Which may be Associated With Bleeding. Front Cardiovasc Med 2019; 6:80. [PMID: 31275945 PMCID: PMC6593073 DOI: 10.3389/fcvm.2019.00080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Inherited thrombocytopenia (IT) is comprised of a group of hereditary disorders characterized by a reduced platelet count as the main feature, and often with abnormal platelet function, which can subsequently lead to impaired haemostasis. Inherited thrombocytopenia results from genetic mutations in genes implicated in megakaryocyte differentiation and/or platelet formation and clearance. The identification of the underlying causative gene of IT is challenging given the high degree of heterogeneity, but important due to the presence of various clinical presentations and prognosis, where some defects can lead to hematological malignancies. Traditional platelet function tests, clinical manifestations, and hematological parameters allow for an initial diagnosis. However, employing Next-Generation Sequencing (NGS), such as Whole Genome and Whole Exome Sequencing (WES) can be an efficient method for discovering causal genetic variants in both known and novel genes not previously implicated in IT. To date, 40 genes and their mutations have been implicated to cause many different forms of inherited thrombocytopenia. Nevertheless, despite this advancement in the diagnosis of IT, the molecular mechanism underlying IT in some patients remains unexplained. In this review, we will discuss the genetics of thrombocytopenia summarizing the recent advancement in investigation and diagnosis of IT using phenotypic approaches, high-throughput sequencing, targeted gene panels, and bioinformatics tools.
Collapse
Affiliation(s)
- Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Alfano D, Altomonte A, Cortes C, Bilio M, Kelly RG, Baldini A. Tbx1 regulates extracellular matrix-cell interactions in the second heart field. Hum Mol Genet 2019; 28:2295-2308. [DOI: 10.1093/hmg/ddz058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
Tbx1, the major candidate gene for DiGeorge or 22q11.2 deletion syndrome, is required for efficient incorporation of cardiac progenitors of the second heart field (SHF) into the heart. However, the mechanisms by which TBX1 regulates this process are still unclear. Here, we have used two independent models, mouse embryos and cultured cells, to define the role of TBX1 in establishing morphological and dynamic characteristics of SHF in the mouse. We found that loss of TBX1 impairs extracellular matrix (ECM)-integrin-focal adhesion (FA) signaling in both models. Mosaic analysis in embryos suggested that this function is non-cell autonomous, and, in cultured cells, loss of TBX1 impairs cell migration and FAs. Additionally, we found that ECM-mediated integrin signaling is disrupted upon loss of TBX1. Finally, we show that interfering with the ECM-integrin-FA axis between E8.5 and E9.5 in mouse embryos, corresponding to the time window within which TBX1 is required in the SHF, causes outflow tract dysmorphogenesis. Our results demonstrate that TBX1 is required to maintain the integrity of ECM-cell interactions in the SHF and that this interaction is critical for cardiac outflow tract development. More broadly, our data identifies a novel TBX1 downstream pathway as an important player in SHF tissue architecture and cardiac morphogenesis.
Collapse
Affiliation(s)
- Daniela Alfano
- CNR–Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino, Naples, Italy
| | - Alessandra Altomonte
- CNR–Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino, Naples, Italy
| | - Claudio Cortes
- Aix-Marseille Université, CNRS UMR, IBDM, Marseille, France
| | - Marchesa Bilio
- CNR–Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino, Naples, Italy
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR, IBDM, Marseille, France
| | - Antonio Baldini
- CNR–Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Via Pietro Castellino, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Greinacher A, Eekels JJM. Diagnosis of hereditary platelet disorders in the era of next-generation sequencing: "primum non nocere". J Thromb Haemost 2019; 17:551-554. [PMID: 30614196 DOI: 10.1111/jth.14377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 01/10/2023]
Abstract
Inherited platelet disorders can affect "only platelets", occur as a "syndromic phenotype" or be associated with "increased risk of hematological malignancies". Genetic testing is attractive for diagnosis of inherited platelet disorders. However, many physicians who refer patient blood for genetic testing are unaware of the association of certain inherited platelet disorders with other risks. Inherited platelet disorders associated with minor-moderate bleeding rarely cause patient distress. In contrast, identification of a mutation associated with an increased risk of leukemia may cause a major psychological disease burden, without offsetting the beneficial impact on management. Guidelines recommend postponing genetic testing "until the patient reaches adulthood or at least until the child is mature enough to participate in decision making". In our opinion, outside research, (genetic) testing in children with inherited platelet disorders should only be performed if it influences management. In adults, genes causing inherited platelet disorders associated with an increased risk of hematological malignancies should only be tested after obtaining explicit informed consent.
Collapse
Affiliation(s)
- Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Julia J M Eekels
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Lambert MP, Poncz M. Inherited Thrombocytopenias. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Zehrer A, Pick R, Salvermoser M, Boda A, Miller M, Stark K, Weckbach LT, Walzog B, Begandt D. A Fundamental Role of Myh9 for Neutrophil Migration in Innate Immunity. THE JOURNAL OF IMMUNOLOGY 2018; 201:1748-1764. [PMID: 30068598 DOI: 10.4049/jimmunol.1701400] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 07/11/2018] [Indexed: 01/13/2023]
Abstract
Neutrophils are the first leukocytes to arrive at sites of injury during the acute inflammatory response. To maintain the polarized morphology during migration, nonmuscle myosins class II are essential, but studies using genetic models to investigate the role of Myh9 for neutrophil migration were missing. In this study, we analyzed the functional role of Myh9 on neutrophil trafficking using genetic downregulation of Myh9 in Vav-iCre+/Myh9wt/fl mice because the complete knockout of Myh9 in the hematopoietic system was lethal. Migration velocity and Euclidean distance were significantly diminished during mechanotactic migration of Vav-iCre+/Myh9wt/fl neutrophils compared with Vav-iCre-/Myh9wt/fl control neutrophils. Similar results were obtained for transmigration and migration in confined three-dimensional environments. Stimulated emission depletion nanoscopy revealed that a certain threshold of Myh9 was required to maintain proper F-actin dynamics in the front of the migrating cell. In laser-induced skin injury and in acute peritonitis, reduced Myh9 expression in the hematopoietic system resulted in significantly diminished neutrophil extravasation. Investigation of bone marrow chimeric mice in the peritonitis model revealed that the migration defect was cell intrinsic. Expression of Myh9-EGFP rescued the Myh9-related defects in two-dimensional and three-dimensional migration of Hoxb8-SCF cell-derived neutrophils generated from fetal liver cells with a Myh9 knockdown. Live cell imaging provided evidence that Myh9 was localized in branching lamellipodia and in the uropod where it may enable fast neutrophil migration. In summary, the severe migration defects indicate an essential and fundamental role of Myh9 for neutrophil trafficking in innate immunity.
Collapse
Affiliation(s)
- Annette Zehrer
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Robert Pick
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Melanie Salvermoser
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Annegret Boda
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Meike Miller
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ludwig T Weckbach
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and.,Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Barbara Walzog
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Daniela Begandt
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| |
Collapse
|
19
|
Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: Structure, functions and role of non-muscle myosin IIA in human disease. Gene 2018; 664:152-167. [PMID: 29679756 PMCID: PMC5970098 DOI: 10.1016/j.gene.2018.04.048] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
The MYH9 gene encodes the heavy chain of non-muscle myosin IIA, a widely expressed cytoplasmic myosin that participates in a variety of processes requiring the generation of intracellular chemomechanical force and translocation of the actin cytoskeleton. Non-muscle myosin IIA functions are regulated by phosphorylation of its 20 kDa light chain, of the heavy chain, and by interactions with other proteins. Variants of MYH9 cause an autosomal-dominant disorder, termed MYH9-related disease, and may be involved in other conditions, such as chronic kidney disease, non-syndromic deafness, and cancer. This review discusses the structure of the MYH9 gene and its protein, as well as the regulation and physiologic functions of non-muscle myosin IIA with particular reference to embryonic development. Moreover, the review focuses on current knowledge about the role of MYH9 variants in human disease.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 27100 Pavia, Italy.
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10 Room 6C-103B, 10 Center Drive, Bethesda, MD 20892-1583, USA.
| | - Anna Savoia
- Department of Medical Sciences, University of Trieste, via Dell'Istria, 65/1, I-34137 Trieste, Italy; IRCCS Burlo Garofolo, via Dell'Istria, 65/1, I-34137 Trieste, Italy.
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10 Room 6C-103B, 10 Center Drive, Bethesda, MD 20892-1583, USA.
| |
Collapse
|
20
|
Wang Y, Li D, Xu Y, Ma L, Lu Y, Wang Z, Wang L, Zhang W, Pan Y. Functional Effects of SNPs in MYH9 and Risks of Nonsyndromic Orofacial Clefts. J Dent Res 2017; 97:388-394. [PMID: 29207917 DOI: 10.1177/0022034517743930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nonsyndromic orofacial clefts (NSOCs) are congenital newborn malformations. Myosin heavy chain 9 ( MYH9) is a candidate gene of NSOCs. To investigate the associations between single-nucleotide polymorphisms (SNPs) of MYH9 and NSOC susceptibility, a 2-stage case-control study was designed and 4 potentially functional SNPs of MYH9 (rs12107, rs2269529, rs9619601, rs5756130) were selected and genotyped by iPLEX Sequenom MassARRAY and TaqMan assay in the first stage (599 NSOC cases and 590 controls). The significant SNPs in the first stage were replicated in the second stage (676 NSOC cases and 705 controls) by TaqMan assay. Reverse transcription polymerase chain reaction, cell transfection, and luciferase assay were performed accordingly to explore their functionality. In stage I, rs12107 was nominally associated with NSOCs, whereas rs2269529 showed a significant association (rs12107: Phet = 0.028; rs2269529: Phet = 0.001). In stage II, rs12107 was nominally associated with NSOCs, and rs2269529 showed a significant association (rs12107: Phom = 0.014; rs2269529: Phet = 0.006). In combined stages, these 2 SNPs gained significant associations (rs12107: Pdom = 0.004; rs2269529: Pdom = 4.4 × 10-5). In subphenotype analysis, these 2 SNPs were associated with cleft lip only (CLO) and cleft lip with palate (CLP), and rs2269529 was also associated with cleft palate only (CPO). Haplotype analysis revealed associations between rs12107-G/rs2269529-T and NSOC susceptibility ( P = 0.011). Combined analysis of rs12107 and rs2269529 indicated the risk of NSOCs increased with the number of risk alleles (rs12107-G and rs2269529-T, P for trend = 0.008). MYH9 SNP rs12107 AG + GG and rs2269529 CT + TT were associated with higher MYH9 expression in lip tissues compared with their corresponding wild-type homozygote. For rs12107, higher luciferase activities of G allele than A allele were observed in the luciferase assay. MYH9 was downregulated when transfecting its putative binding target miR-196b-3p into human embryo plate mesenchyme (HEPM) and C2C12 cell lines. For rs2269529, C > T contributed to increased MYH9 messenger RNA. In conclusion, rs12107 and rs2269529 were associated with the expression of MYH9 and contributed to the susceptibility of NSOCs.
Collapse
Affiliation(s)
- Y Wang
- 1 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - D Li
- 1 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Y Xu
- 2 Shanghai Stomatological Hospital, Shanghai, China
| | - L Ma
- 1 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Y Lu
- 3 Department of Orthodontics, College of Stomatology, Dalian Medical University, Dalian, China
| | - Z Wang
- 1 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - L Wang
- 1 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,4 State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - W Zhang
- 1 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Y Pan
- 1 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,4 State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Naarmann-de Vries IS, Brendle A, Bähr-Ivacevic T, Benes V, Ostareck DH, Ostareck-Lederer A. Translational control mediated by hnRNP K links NMHC IIA to erythroid enucleation. J Cell Sci 2016; 129:1141-54. [PMID: 26823606 DOI: 10.1242/jcs.174995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional regulation is crucial for structural and functional alterations in erythropoiesis. Enucleation of erythroid progenitors precedes reticulocyte release into circulation. In enucleated cells, reticulocyte 15-lipoxygenase (r15-LOX, also known as ALOX15) initiates mitochondria degradation. Regulation of r15-LOX mRNA translation by hnRNP K determines timely r15-LOX synthesis in terminal maturation. K562 cells induced for erythroid maturation recapitulate enucleation and mitochondria degradation. HnRNP K depletion from maturing K562 cells results in enhanced enucleation, which even occurs independently of maturation. We performed RIP-Chip analysis to identify hnRNP K-interacting RNAs comprehensively. Non-muscle myosin heavy chain (NMHC) IIA (also known as MYH9) mRNA co-purified with hnRNP K from non-induced K562 cells, but not from mature cells. NMHC IIA protein increase in erythroid maturation at constant NMHC IIA mRNA levels indicates post-transcriptional regulation. We demonstrate that binding of hnRNP K KH domain 3 to a specific sequence element in the NMHC IIA mRNA 3'UTR mediates translation regulation in vitro Importantly, elevated NMHC IIA expression results in erythroid-maturation-independent enucleation as shown for hnRNP K depletion. Our data provide evidence that hnRNP-K-mediated regulation of NMHC IIA mRNA translation contributes to the control of enucleation in erythropoiesis.
Collapse
Affiliation(s)
- Isabel S Naarmann-de Vries
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Annika Brendle
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Tomi Bähr-Ivacevic
- Genomics Core Facility, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Dirk H Ostareck
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| |
Collapse
|
22
|
Newell-Litwa KA, Horwitz R, Lamers ML. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech 2015; 8:1495-515. [PMID: 26542704 PMCID: PMC4728321 DOI: 10.1242/dmm.022103] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The actin motor protein non-muscle myosin II (NMII) acts as a master regulator of cell morphology, with a role in several essential cellular processes, including cell migration and post-synaptic dendritic spine plasticity in neurons. NMII also generates forces that alter biochemical signaling, by driving changes in interactions between actin-associated proteins that can ultimately regulate gene transcription. In addition to its roles in normal cellular physiology, NMII has recently emerged as a critical regulator of diverse, genetically complex diseases, including neuronal disorders, cancers and vascular disease. In the context of these disorders, NMII regulatory pathways can be directly mutated or indirectly altered by disease-causing mutations. NMII regulatory pathway genes are also increasingly found in disease-associated copy-number variants, particularly in neuronal disorders such as autism and schizophrenia. Furthermore, manipulation of NMII-mediated contractility regulates stem cell pluripotency and differentiation, thus highlighting the key role of NMII-based pharmaceuticals in the clinical success of stem cell therapies. In this Review, we discuss the emerging role of NMII activity and its regulation by kinases and microRNAs in the pathogenesis and prognosis of a diverse range of diseases, including neuronal disorders, cancer and vascular disease. We also address promising clinical applications and limitations of NMII-based inhibitors in the treatment of these diseases and the development of stem-cell-based therapies.
Collapse
Affiliation(s)
- Karen A Newell-Litwa
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Rick Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Marcelo L Lamers
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-010, Brazil
| |
Collapse
|
23
|
Verver E, Pecci A, De Rocco D, Ryhänen S, Barozzi S, Kunst H, Topsakal V, Savoia A. R705H mutation of MYH9 is associated with MYH9-related disease and not only with non-syndromic deafness DFNA17. Clin Genet 2014; 88:85-9. [PMID: 24890873 DOI: 10.1111/cge.12438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/18/2014] [Accepted: 05/27/2014] [Indexed: 11/28/2022]
Abstract
MYH9-related disease (MYH9-RD) is a rare autosomal dominant disease caused by mutation of MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA (NMMHC-IIA). MYH9-RD patients have macrothrombocytopenia and granulocyte inclusions (pathognomonic sign of the disease) containing wild-type and mutant NMMHC-IIA. During life they might develop sensorineural hearing loss, cataract, glomerulonephritis, and elevation of liver enzymes. One of the MYH9 mutations, p.R705H, was previously reported to be associated with DFNA17, an autosomal dominant non-syndromic sensorineural hearing loss without any other features associated. We identified the same mutation in two unrelated families, whose four affected individuals had not only hearing impairment but also thrombocytopenia, giant platelets, leukocyte inclusions, as well as mild to moderate elevation of some liver enzymes. Our data suggest that DFNA17 should not be a separate genetic entity but part of the wide phenotypic spectrum of MYH9-RD characterized by congenital hematological manifestations and variable penetrance and expressivity of the extra-hematological features.
Collapse
Affiliation(s)
- E Verver
- Department of Otorhinolaryngology and Head & Neck Surgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - D De Rocco
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - S Ryhänen
- Clinic for Hematology, Oncology and Stem Cell Transplantation, Hospital for Children and Adolescent Helsinki University Central Hospital, Helsinki, Finland
| | - S Barozzi
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - H Kunst
- Radboud university medical center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - V Topsakal
- Department of Otorhinolaryngology and Head & Neck Surgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A Savoia
- Department of Medical Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
24
|
Necchi V, Sommi P, Vitali A, Vanoli A, Savoia A, Ricci V, Solcia E. Polyubiquitinated proteins, proteasome, and glycogen characterize the particle-rich cytoplasmic structure (PaCS) of neoplastic and fetal cells. Histochem Cell Biol 2014; 141:483-97. [PMID: 24577783 DOI: 10.1007/s00418-014-1202-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 01/15/2023]
Abstract
A particle-rich cytoplasmic structure (PaCS) concentrating ubiquitin-proteasome system (UPS) components and barrel-like particles in clear, cytoskeleton- and organelle-free areas has recently been described in some neoplasms and in genetic or infectious diseases at risk of neoplasia. Ultrastructurally similar particulate cytoplasmic structures, interpreted as glycogen deposits, have previously been reported in clear-cell neoplasms and some fetal tissues. It remains to be investigated whether the two structures are the same, colocalize UPS components and polysaccharides, and have a role in highly proliferative cells such as fetal and neoplastic cells. We used immunogold electron microscopy and confocal immunofluorescence microscopy to examine human and mouse fetal tissues and human neoplasms. Fetal and neoplastic cells both showed colocalization of polyubiquitinated proteins, 19S and 20S proteasomes, and polysaccharides, both glycogen and chondroitin sulfate, inside cytoplasmic structures showing all distinctive features of PaCSs. Poorly demarcated and/or hybrid (ribosomes admixed) UPS- and glycogen-enriched areas, likely stages in PaCS development, were also seen in some fetal cells, with special reference to those, like primary alveolar pulmonary cells or pancreatic centroacinar cells, having a crucial role in organogenesis. UPS- and glycogen-rich PaCSs developed extensively in clear-cell neoplasms of the kidney, ovary, pancreas, and other organs, as well as, in infantile, development-related tumors replicating fetal patterns, such as choroid plexus papilloma. UPS-mediated, ATP-dependent proteolysis and its potential energy source, glycogen metabolism, may have a crucial, synergic role in embryo-/organogenesis and carcinogenesis.
Collapse
Affiliation(s)
- Vittorio Necchi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Cheng DE, Hung JY, Huang MS, Hsu YL, Lu CY, Tsai EM, Hou MF, Kuo PL. Myosin IIa activation is crucial in breast cancer derived galectin-1 mediated tolerogenic dendritic cell differentiation. Biochim Biophys Acta Gen Subj 2014; 1840:1965-76. [PMID: 24468067 DOI: 10.1016/j.bbagen.2014.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND Tolerogenic dendritic cells (tDCs) play important roles in immune tolerance, autoimmune disease, tissue transplantation, and the tumor micro-environment. Factors that induce tDCs have been reported, however the intracellular mechanisms involved are rarely discussed. METHODS Circulating CD14(+)CD16(+) of breast cancer patients and induced CD14(+)CD16(+) DCs were identified as tDCs by treating CD14(+) monocytes with galectin-1 and cancer cell-derived medium combined with IL-4 and GM-CSF. In addition, the 4T1 breast cancer syngeneic xenograft model was used to investigate the effect of galectin-1 in vivo. RESULTS The CD14(+)CD16(+) tDC population in the breast cancer patients was comparatively higher than that in the healthy donors, and both the MDA-MB-231 conditioned medium and galectin-1 could induce tDC differentiation. In a BALB/c animal model, the 4T1 breast cancer cell line enhanced IL-10 expression in CD11c(+) DCs which was down-regulated after knocking down the galectin-1 expression of 4T1 cells. Analysis of galectin-1 interacting proteins showed that myosin IIa was a major target of galectin-1 after internalization through a caveolin-dependent endocytosis. Myosin IIa specific inhibitor could diminish the effects of galectin-1 on monocyte-derived tDCs and also block the 4T1 cell induced CD11c(+)/Ly6G(+)/IL-10(+) in the BALB/c mice. CONCLUSIONS Galectin-1 can induce tDCs after internalizing into CD14(+) monocytes through the caveolae-dependent pathway and activating myosin IIa. For the breast cancer patients with a high galectin-1 expression, blebbistatin and genistein show potential in immune modulation and cancer immunotherapy. GENERAL SIGNIFICANCE Myosin IIa activation and galectin-1 endocytosis are important in tumor associated tDC development.
Collapse
Affiliation(s)
- Da-En Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yu Hung
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan; Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Po-Lin Kuo
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
26
|
Nishiyama N, Kawano A, Kawaguchi S, Shirai K, Suzuki M. Cochlear implantation in a patient with Epstein syndrome. Auris Nasus Larynx 2013; 40:409-12. [DOI: 10.1016/j.anl.2012.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
|
27
|
Abstract
The diagnosis of inherited thrombocytopenias is difficult, for many reasons. First, as they are all rare diseases, they are little known by clinicians, who therefore tend to suspect the most common forms. Second, making a definite diagnosis often requires complex laboratory techniques that are available in only a few centers. Finally, half of the patients have forms that have not yet been described. As a consequence, many patients with inherited thrombocytopenias are misdiagnosed with immune thrombocytopenia, and are at risk of receiving futile treatments. Misdiagnosis is particularly frequent in patients whose low platelet count is discovered in adult life, because, in these cases, even the inherited origin of thrombocytopenia may be missed. Making the correct diagnosis promptly is important, as we recently learned that some forms of inherited thrombocytopenia predispose to other illnesses, such as leukemia or kidney failure, and affected subjects therefore require close surveillance and, if necessary, prompt treatments. Moreover, medical treatment can increase platelet counts in specific disorders, and affected subjects can therefore receive drugs instead of platelet transfusions when selective surgery is required. In this review, we will discuss how to suspect, diagnose and manage inherited thrombocytopenias, with particular attention to the forms that frequently present in adults. Moreover, we describe four recently identified disorders that belong to this group of disorders that are often diagnosed in adults: MYH9-related disease, monoallelic Bernard-Soulier syndrome, ANKRD26-related thrombocytopenia, and familial platelet disorder with predisposition to acute leukemia.
Collapse
Affiliation(s)
- C L Balduini
- Department of Internal Medicine, University of Pavia-IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | | | | |
Collapse
|
28
|
Paranaíba LMR, de Aquino SN, Bufalino A, Martelli-Júnior H, Graner E, Brito LA, e Passos-Bueno MRDS, Coletta RD, Swerts MSO. Contribution of polymorphisms in genes associated with craniofacial development to the risk of nonsyndromic cleft lip and/or palate in the Brazilian population. Med Oral Patol Oral Cir Bucal 2013; 18:e414-20. [PMID: 23524414 PMCID: PMC3668866 DOI: 10.4317/medoral.18357] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 11/20/2012] [Indexed: 01/10/2023] Open
Abstract
Background and Objective: Nonsyndromic cleft lip and/or palate (NSCL/P) is a complex disease associated with both genetic and environmental factors. One strategy for identifying of possible NSCL/P genetic causes is to evaluate polymorphic variants in genes involved in the craniofacial development.
Design: We carried out a case-control analysis of 13 single nucleotide polymorphisms in 9 genes related to craniofacial development, including TBX1, PVRL1, MID1, RUNX2, TP63, TGF?3, MSX1, MYH9 and JAG2, in 367 patients with NSCL/P and 413 unaffected controls from Brazil to determine their association with NSCL/P.
Results: Four out of 13 polymorphisms (rs28649236 and rs4819522 of TBX1, rs7940667 of PVRL1 and rs1057744 of JAG2) were presented in our population. Comparisons of allele and genotype frequencies revealed that the G variant allele and the AG/GG genotypes of TBX1 rs28649236 occurred in a frequency significantly higher in controls than in the NSCL/P group (OR: 0.41; 95% CI: 0.25-0.67; p=0.0002). The frequencies of rs4819522, rs7940667 and rs1057744 minor alleles and genotypes were similar between control and NSCL/P group, without significant differences. No significant associations among cleft types and polymorphisms were observed.
Conclusion: The study suggests for the first time evidences to an association of the G allele of TBX1 rs28649236 polymorphism and NSCL/P.
Key words:Cleft lip, cleft palate, polymorphism, genetic.
Collapse
|
29
|
Favier R, DiFeo A, Hezard N, Fabre M, Bedossa P, Martignetti JA. A new feature of the MYH9-related syndrome: chronic transaminase elevation. Hepatology 2013; 57:1288-9. [PMID: 22806255 DOI: 10.1002/hep.25913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/03/2012] [Accepted: 06/11/2012] [Indexed: 12/07/2022]
|
30
|
Lin CP, Adrianto I, Lessard CJ, Kelly JA, Kaufman KM, Guthridge JM, Freedman BI, Anaya JM, Alarcón-Riquelme ME, Pons-Estel BA, Martin J, Glenn S, Adler A, Bae SC, Park SY, Bang SY, Song YW, Boackle SA, Brown EE, Edberg JC, Alarcón GS, Petri MA, Criswell LA, Ramsey-Goldman R, Reveille JD, Vila LM, Gilkeson GS, Kamen DL, Ziegler J, Jacob CO, Rasmussen A, James JA, Kimberly RP, Merrill JT, Niewold TB, Scofield RH, Stevens AM, Tsao BP, Vyse TJ, Langefeld CD, Moser KL, Harley JB, Gaffney PM, Montgomery CG. Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes Immun 2012; 13:232-8. [PMID: 22189356 PMCID: PMC3330160 DOI: 10.1038/gene.2011.82] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/04/2011] [Accepted: 11/14/2011] [Indexed: 01/31/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody production and organ damage. Lupus nephritis (LN) is one of the most severe manifestations of SLE. Multiple studies reported associations between renal diseases and variants in the non-muscle myosin heavy chain 9 (MYH9) and the neighboring apolipoprotein L 1 (APOL1) genes. We evaluated 167 variants spanning MYH9 for association with LN in a multiethnic sample. The two previously identified risk variants in APOL1 were also tested for association with LN in European-Americans (EAs) (N = 579) and African-Americans (AAs) (N = 407). Multiple peaks of association exceeding a Bonferroni corrected P-value of P < 2.03 × 10(-3) were observed between LN and MYH9 in EAs (N = 4620), with the most pronounced association at rs2157257 (P = 4.7 × 10(-4), odds ratio (OR) = 1.205). A modest effect with MYH9 was also detected in Gullah (rs8136069, P = 0.0019, OR = 2.304). No association between LN and MYH9 was found in AAs, Asians, Amerindians or Hispanics. This study provides the first investigation of MYH9 in LN in non-Africans and of APOL1 in LN in any population, and presents novel insight into the potential role of MYH9 in LN in EAs.
Collapse
Affiliation(s)
- C P Lin
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Balduini CL, Pecci A, Savoia A. Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. Br J Haematol 2011; 154:161-74. [DOI: 10.1111/j.1365-2141.2011.08716.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Han KH, Lee H, Kang HG, Moon KC, Lee JH, Park YS, Ha IS, Ahn HS, Choi Y, Cheong HI. Renal manifestations of patients with MYH9-related disorders. Pediatr Nephrol 2011; 26:549-55. [PMID: 21210153 DOI: 10.1007/s00467-010-1735-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/03/2010] [Accepted: 12/03/2010] [Indexed: 12/14/2022]
Abstract
MYH9-related disorders are a group of autosomal, dominantly inherited disorders caused by mutations of the MYH9 gene, which encodes the non-muscle myosin heavy chain IIA (NMMHC-IIA). May-Hegglin anomaly and Sebastian, Fechtner, and Epstein syndromes belong to this group. Macrothrombocytopenia is a common characteristic associated with MYH9-related disorders, and basophilic cytoplasmic inclusion bodies in leukocytes (Döhle-like bodies), deafness, cataracts, and glomerulopathy are also found in some patients. In this study, renal manifestations of 7 unrelated Korean patients with MYH9-related disorders were analyzed. Of a total of 7 patients, 4 had disease-related family histories. One familial case had a mutation in the tail domain of NMMHC-IIA and showed milder renal involvement with preserved renal function by his 30s. Among the 3 familial cases without renal involvement, 2 had mutations in the tail domain of NMMHC-IIA and 1 had a mutation in the motor domain. The remaining 3 sporadic cases had severe renal involvement with rapid progression to end-stage renal disease and mutations located in the motor domain. In summary, mutations in the motor domain of NMMHC-IIA and negative family history were associated with severe renal involvement in patients with MYH9-related disorders. These results are in agreement with those of previous reports.
Collapse
Affiliation(s)
- Kyoung Hee Han
- Department of Pediatrics, Seoul National University Children's Hospital, 101 Daehang-no, Jongno-Gu, Seoul, 110-744, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Correlation of dysfunction of nonmuscle myosin IIA with increased induction of Cyp1a1 in Hepa-1 cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:176-83. [PMID: 21216307 DOI: 10.1016/j.bbagrm.2011.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is one of the best known ligand-activated transcription factors and it induces Cyp1a1 transcription by binding with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Recent focus has been on the relationship of AhR with signaling pathways that modulate cell shape and migration. In nonmuscle cells, nonmuscle myosin II is one of the key determinants of cell morphology, but it has not been investigated whether its function is related to Cyp1a1 induction. In this study, we observed that (-)-blebbistatin, which is a specific inhibitor of nonmuscle myosin II, increased the level of CYP1A1-mRNA in Hepa-1 cells. Comparison of (-)-blebbistatin with (+)-blebbistatin, which is an inactive enantiomer, indicated that the increase of CYP1A1-mRNA was due to nonmuscle myosin II inhibition. Subsequent knockdown experiments observed that reduction of nonmuscle myosin IIA, which is only an isoform of nonmuscle myosin II expressed in Hepa-1 cells, was related to the enhancement of TCDD-dependent Cyp1a1 induction. Moreover, chromatin immunoprecipitation assay indicated that the increase of Cyp1a1 induction was the result of transcriptional activation due to increased binding of AhR and RNA polymerase II to the enhancer and proximal promoter regions of Cyp1a1, respectively. These findings provide a new insight into the correlation between the function of nonmuscle myosin II and gene induction.
Collapse
|
34
|
Vaziri Sani F, Kaartinen V, El Shahawy M, Linde A, Gritli-Linde A. Developmental changes in cellular and extracellular structural macromolecules in the secondary palate and in the nasal cavity of the mouse. Eur J Oral Sci 2010; 118:221-36. [PMID: 20572855 DOI: 10.1111/j.1600-0722.2010.00732.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to analyse the hitherto largely unknown expression patterns of some specific cellular and extracellular molecules during palate and nasal cavity development. We showed that epithelia of the developing palate and the vomerine epithelium express similar sets of structural proteins. With the exception of keratin 15, which becomes barely detectable in the elevated palatal shelves, nearly all of these proteins become upregulated at the presumptive areas of fusion and in the adhering epithelia of the palate and nasal septum. In vivo and in vitro analyses indicated that reduction in the amount of keratin 15 protein is independent of Tgfbeta-Alk5 signalling. Foxa1 expression also highlighted the regionalization of the palatal and nasal epithelia. Owing to the lack of reliable markers of the palatal periderm, the fate of peridermal cells has been controversial. We identified LewisX/stage-specific embryonic antigen-1 as a specific peridermal marker, and showed that numerous peridermal cells remain trapped in the medial epithelial seam (MES). The fate of these cells is probably apoptosis together with the rest of the MES cells, as we provided strong evidence for this event. Heparan sulphate, chondroitin-6-sulphate, and versican displayed dynamically changing distribution patterns. The hitherto-unknown innervation pattern of the developing palate was revealed. These findings may be of value for unravelling the pathogenesis of palatal clefting.
Collapse
Affiliation(s)
- Forugh Vaziri Sani
- Department of Oral Biochemistry, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
35
|
Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency. Blood 2010; 116:6037-45. [PMID: 20876458 DOI: 10.1182/blood-2010-06-289850] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in transcription factor RUNX1 are associated with familial platelet disorder, thrombocytopenia, and predisposition to leukemia. We have described a patient with thrombocytopenia and impaired agonist-induced platelet aggregation, secretion, and glycoprotein (GP) IIb-IIIa activation, associated with a RUNX1 mutation. Platelet myosin light chain (MLC) phosphorylation and transcript levels of its gene MYL9 were decreased. Myosin IIA and MLC phosphorylation are important in platelet responses to activation and regulate thrombopoiesis by a negative regulatory effect on premature proplatelet formation. We addressed the hypothesis that MYL9 is a transcriptional target of RUNX1. Chromatin immunoprecipitation (ChIP) using megakaryocytic cells revealed RUNX1 binding to MYL9 promoter region -729/-542 basepairs (bp), which contains 4 RUNX1 sites. Electrophoretic mobility shift assay showed RUNX1 binding to each site. In transient ChIP assay, mutation of these sites abolished binding of RUNX1 to MYL9 promoter construct. In reporter gene assays, deletion of each RUNX1 site reduced activity. MYL9 expression was inhibited by RUNX1 short interfering RNA (siRNA) and enhanced by RUNX1 overexpression. RUNX1 siRNA decreased cell spreading on collagen and fibrinogen. Our results constitute the first evidence that the MYL9 gene is a direct target of RUNX1 and provide a mechanism for decreased platelet MYL9 expression, MLC phosphorylation, thrombocytopenia, and platelet dysfunction associated with RUNX1 mutations.
Collapse
|
36
|
Althaus K, Greinacher A. MYH-9 Related Platelet Disorders: Strategies for Management and Diagnosis. ACTA ACUST UNITED AC 2010; 37:260-267. [PMID: 21113248 DOI: 10.1159/000320335] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/19/2010] [Indexed: 01/05/2023]
Abstract
MYH-9 related platelet disorders belong to the group of inherited giant platelet disorders. The MYH-9 gene encodes the non-muscular myosin heavy chain IIA (NMMHCIIA), a cytoskeletal contractile protein. Several mutations in the MYH-9 gene lead to macrothrombocytopenia, and cytoplasmic inclusion bodies within leukocytes, while the number of megakaryocytes in the bone marrow is normal. Four overlapping syndromes, known as May-Hegglin anomaly, Epstein syndrome, Fechtner syndrome and Sebastian platelet syndrome, describe different clinical manifestations of MYH9 gene mutations. Macrothrombocytopenia is present in all affected individuals, whereas only some develop additional clinical manifestations such as renal failure, hearing loss and presenile cataracts. The bleeding tendency is usually moderate, with menorrhagia and easy bruising being most frequent. The biggest risk for the individual is inappropriate treatment due to misdiagnosis of chronic autoimmune thrombocytopenia. More than 30 mutations within the 40 exons of the MYH-9 gene leading to macrothrombocytopenia have been identified, of which the upstream mutations up to amino acid ~1400 are more likely associated with syndromic manifestations than the downstream mutations. Diagnosis is based on identification of the granulocyte inclusion bodies using blood smears and immunofluorescence and is finally confirmed by identifying the mutation. Treatment is supportive and should be aimed to prevent iron deficiency anemia. Beside renal failure, the biggest risk for patients affected by a MYH-9 disorder are the adverse effects resulting form treatment based on the misdiagnosis of immune thrombocytopenia.
Collapse
Affiliation(s)
- Karina Althaus
- Institut für Immunologie und Transfusionsmedizin, Ernst-Moritz-Arndt Universität Greifswald, Germany
| | | |
Collapse
|
37
|
|
38
|
Scapoli L, Martinelli M, Pezzetti F, Palmieri A, Girardi A, Savoia A, Bianco AM, Carinci F. Expression and association data strongly support JARID2 involvement in nonsyndromic cleft lip with or without cleft palate. Hum Mutat 2010; 31:794-800. [PMID: 20506229 DOI: 10.1002/humu.21266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonsyndromic cleft lip with or without cleft palate (CL/P) affects approximately 1 in 1,000 births. Genetic studies have provided evidence for the role of several genes and candidate loci in clefting; however, conflicting results have frequently been obtained and much have to be done to unravel the complex genetics of CL/P. In the present investigation we have focused on the candidate region in 6p23, a region that have been found linked to CL/P in several investigations, in the attempt to find out the susceptibility gene provisionally named OFC1. Gene expression experiments in mice embryo of positional candidate genes revealed that JARID2 was highly and specifically expressed in epithelial cells in merging palatal shelves. A family-based linkage disequilibrium study confirmed the pivotal role of JARID2 in orofacial development and strongly supports a role for this gene in CL/P etiology (multiallelic haplotype test P=6 x 10(-5)). Understanding the molecular role of JARID2 within facial development may offer additional information to further unravel the complex genetics of CL/P.
Collapse
Affiliation(s)
- Luca Scapoli
- Department of Histology, Embryology and Applied Biology, Centre of Molecular Genetics, University of Bologna, Via Belmeloro, 8, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jia ZL, Li Y, Chen CH, Li S, Wang Y, Zheng Q, Shi B. Association Among Polymorphisms at MYH9, Environmental Factors, and Nonsyndromic Orofacial Clefts in Western China. DNA Cell Biol 2010; 29:25-32. [PMID: 19891592 DOI: 10.1089/dna.2009.0935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zhong-Lin Jia
- State Key Laboratory of Oral Disease and Department of Cleft Lip and Palate Surgery, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yang Li
- State Key Laboratory of Oral Disease and Department of Cleft Lip and Palate Surgery, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Chun-Hui Chen
- State Key Laboratory of Oral Disease and Department of Cleft Lip and Palate Surgery, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Sheng Li
- State Key Laboratory of Oral Disease and Department of Cleft Lip and Palate Surgery, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yan Wang
- State Key Laboratory of Oral Disease and Department of Cleft Lip and Palate Surgery, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Qian Zheng
- State Key Laboratory of Oral Disease and Department of Cleft Lip and Palate Surgery, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Bing Shi
- State Key Laboratory of Oral Disease and Department of Cleft Lip and Palate Surgery, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
40
|
Singh N, Nainani N, Arora P, Venuto RC. CKD in MYH9-related disorders. Am J Kidney Dis 2009; 54:732-40. [PMID: 19726116 DOI: 10.1053/j.ajkd.2009.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 06/05/2009] [Indexed: 11/11/2022]
Abstract
MYH9-related disorders are rare causes of chronic kidney disease (CKD) presenting as chronic glomerulonephritis and derive from mutations of the MYH9 gene, which encodes for the nonmuscle myosin heavy chain IIA. These disorders are autosomal dominant and include May-Hegglin anomaly and Sebastian, Fechtner, and Epstein syndromes. Diagnosis of these disorders is made first in early childhood because of the characteristic peripheral-blood smear findings of thrombocytopenia, giant platelets, and variably detected basophilic cytoplasmic inclusion bodies in leukocytes. CKD typically develops later in adulthood and may progress to end-stage renal disease. MYH9-related disorders may be associated with deafness and cataract; hence, Alport syndrome becomes important in the differential diagnosis. However, the autosomal dominance pattern of inheritance and characteristic peripheral-blood smear findings in the former help differentiate the two conditions. New evidence suggests that MYH9 gene alterations also are associated with a greater risk of focal segmental glomerulosclerosis and hypertensive nephrosclerosis in African Americans. The purpose of this review is to focus on the known, but rarely recognized association of MYH9-related disorders with CKD and highlight the recent discoveries related to the MYH9 gene that may explain the reason for a high CKD burden in African Americans.
Collapse
Affiliation(s)
- Neeraj Singh
- Department of Internal Medicine, Section of Nephrology, The Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|
41
|
Chen Z, Shivdasani RA. Regulation of platelet biogenesis: insights from the May-Hegglin anomaly and other MYH9-related disorders. J Thromb Haemost 2009; 7 Suppl 1:272-6. [PMID: 19630815 DOI: 10.1111/j.1538-7836.2009.03425.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Megakaryocyte (MK) maturation culminates in release of blood platelets through proplatelet extensions. MKs presumably delay elaborating proplatelets until synthesis of platelet constituents is complete. Recent insights from investigation of a classic human congenital macrothrombocytopenia, the May-Hegglin anomaly, and related MYH9-associated disorders shed new light on underlying mechanisms. The findings reviewed in this article implicate myosin IIA, the non-muscle myosin heavy chain product of the MYH9 gene, in restraining proplatelet formation until MKs achieve terminal maturity. Loss of myosin IIA function, through dominant inhibitory mutations in humans, targeted gene disruption in mice, or manipulation of cultured MKs, seems to accelerate proplatelet formation. The resulting process is inefficient and produces platelets that vary widely in size, shape and content. Several lines of evidence suggest that the Rho-ROCK-myosin light chain pathway restrains proplatelet formation through myosin IIA. These findings illustrate that mammalian thrombopoiesis is complex and subject to both positive and negative regulation.
Collapse
Affiliation(s)
- Z Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
42
|
Lu W, Seeholzer SH, Han M, Arnold AS, Serrano M, Garita B, Philp NJ, Farthing C, Steele P, Chen J, Linask KK. Cellular nonmuscle myosins NMHC-IIA and NMHC-IIB and vertebrate heart looping. Dev Dyn 2009; 237:3577-90. [PMID: 18697221 DOI: 10.1002/dvdy.21645] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Flectin, a protein previously described to be expressed in a left-dominant manner in the embryonic chick heart during looping, is a member of the nonmuscle myosin II (NMHC-II) protein class. During looping, both NMHC-IIA and NMHC-IIB are expressed in the mouse heart on embryonic day 9.5. The patterns of localization of NMHC-IIB, rather than NMHC-IIA in the mouse looping heart and in neural crest cells, are equivalent to what we reported previously for flectin. Expression of full-length human NMHC-IIA and -IIB in 10 T1/2 cells demonstrated that flectin antibody recognizes both isoforms. Electron microscopy revealed that flectin antibody localizes in short cardiomyocyte cell processes extending from the basal layer of the cardiomyocytes into the cardiac jelly. Flectin antibody also recognizes stress fibrils in the cardiac jelly in the mouse and chick heart; while NMHC-IIB antibody does not. Abnormally looping hearts of the Nodal(Delta 600) homozygous mouse embryos show decreased NMHC-IIB expression on both the mRNA and protein levels. These results document the characterization of flectin and extend the importance of NMHC-II and the cytoskeletal actomyosin complex to the mammalian heart and cardiac looping.
Collapse
Affiliation(s)
- Wenge Lu
- Department of Pediatrics, USF/ACH-Children's Research Institute, St. Petersburg, Florida 33701, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chiquet BT, Hashmi SS, Henry R, Burt A, Mulliken JB, Stal S, Bray M, Blanton SH, Hecht JT. Genomic screening identifies novel linkages and provides further evidence for a role of MYH9 in nonsyndromic cleft lip and palate. Eur J Hum Genet 2009; 17:195-204. [PMID: 18716610 PMCID: PMC2874967 DOI: 10.1038/ejhg.2008.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 12/29/2022] Open
Abstract
Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth anomaly that requires prolonged multidisciplinary rehabilitation. Although variation in several genes has been identified as contributing to NSCLP, most of the genetic susceptibility loci have yet to be defined. To identify additional contributory genes, a high-throughput genomic scan was performed using the Illumina Linkage IVb Panel platform. We genotyped 6008 SNPs in nine non-Hispanic white NSCLP multiplex families and a single large African-American NSCLP multiplex family. Fourteen chromosomal regions were identified with LOD>1.5, including six regions not previously reported. Analysis of the data from the African-American and non-Hispanic white families revealed two likely chromosomal regions: 8q21.3-24.12 and 22q12.2-12.3 with LOD scores of 2.98 and 2.66, respectively. On the basis of biological function, syndecan 2 (SDC2) and growth differentiation factor 6 (GDF6) in 8q21.3-24.12 and myosin heavy-chain 9, non-muscle (MYH9) in 22q12.2-12.3 were selected as candidate genes. Association analyses from these genes yielded marginally significant P-values for SNPs in SDC2 and GDF6 (0.01
Collapse
Affiliation(s)
- Brett T Chiquet
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA
- University of Texas Dental Branch at Houston, Houston, TX, USA
| | - Syed S Hashmi
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA
- University of Texas School of Public Health, Houston, TX, USA
| | - Robin Henry
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA
| | - Amber Burt
- Miami Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John B Mulliken
- Department of Plastic Surgery, Children's Hospital, Boston, MA, USA
| | - Samuel Stal
- Division of Plastic Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Molly Bray
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Susan H Blanton
- Miami Institute for Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
44
|
Vicente-Manzanares M, Koach MA, Whitmore L, Lamers ML, Horwitz AF. Segregation and activation of myosin IIB creates a rear in migrating cells. ACTA ACUST UNITED AC 2008; 183:543-54. [PMID: 18955554 PMCID: PMC2575793 DOI: 10.1083/jcb.200806030] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have found that MLC-dependent activation of myosin IIB in migrating cells is required to form an extended rear, which coincides with increased directional migration. Activated myosin IIB localizes prominently at the cell rear and produces large, stable actin filament bundles and adhesions, which locally inhibit protrusion and define the morphology of the tail. Myosin IIA forms de novo filaments away from the myosin IIB–enriched center and back to form regions that support protrusion. The positioning and dynamics of myosin IIA and IIB depend on the self-assembly regions in their coiled-coil C terminus. COS7 and B16 melanoma cells lack myosin IIA and IIB, respectively; and show isoform-specific front-back polarity in migrating cells. These studies demonstrate the role of MLC activation and myosin isoforms in creating a cell rear, the segregation of isoforms during filament assembly and their differential effects on adhesion and protrusion, and a key role for the noncontractile region of the isoforms in determining their localization and function.
Collapse
|
45
|
Martinelli M, Arlotti M, Palmieri A, Scapoli L, Savoia A, Di Stazio M, Pezzetti F, Masiero E, Carinci F. Investigation of MYH14 as a candidate gene in cleft lip with or without cleft palate. Eur J Oral Sci 2008; 116:287-90. [DOI: 10.1111/j.1600-0722.2008.00534.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Chen Z, Naveiras O, Balduini A, Mammoto A, Conti MA, Adelstein RS, Ingber D, Daley GQ, Shivdasani RA. The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood 2007; 110:171-9. [PMID: 17392504 PMCID: PMC1896110 DOI: 10.1182/blood-2007-02-071589] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 03/21/2007] [Indexed: 01/09/2023] Open
Abstract
The gene implicated in the May-Hegglin anomaly and related macrothrombocytopenias, MYH9, encodes myosin-IIA, a protein that enables morphogenesis in diverse cell types. Defective myosin-IIA complexes are presumed to perturb megakaryocyte (MK) differentiation or generation of proplatelets. We observed that Myh9(-/-) mouse embryonic stem (ES) cells differentiate into MKs that are fully capable of proplatelet formation (PPF). In contrast, elevation of myosin-IIA activity, by exogenous expression or by mimicking constitutive phosphorylation of its regulatory myosin light chain (MLC), significantly attenuates PPF. This effect occurs only in the presence of myosin-IIA and implies that myosin-IIA influences thrombopoiesis negatively. MLC phosphorylation in MKs is regulated by Rho-associated kinase (ROCK), and consistent with our model, ROCK inhibition enhances PPF. Conversely, expression of AV14, a constitutive form of the ROCK activator Rho, blocks PPF, and this effect is rescued by simultaneous expression of a dominant inhibitory MLC form. Hematopoietic transplantation studies in mice confirm that interference with the putative Rho-ROCK-myosin-IIA pathway selectively decreases the number of circulating platelets. Our studies unveil a key regulatory pathway for platelet biogenesis and hint at Sdf-1/CXCL12 as one possible extracellular mediator. The unexpected mechanism for Myh9-associated thrombocytopenia may lead to new molecular approaches to manipulate thrombopoiesis.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Martinelli M, Di Stazio M, Scapoli L, Marchesini J, Di Bari F, Pezzetti F, Carinci F, Palmieri A, Carinci P, Savoia A. Cleft lip with or without cleft palate: implication of the heavy chain of non-muscle myosin IIA. J Med Genet 2007; 44:387-92. [PMID: 17337617 PMCID: PMC2740885 DOI: 10.1136/jmg.2006.047837] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/17/2007] [Accepted: 02/14/2007] [Indexed: 11/03/2022]
Abstract
Non-syndromic cleft lip with or without palate (CL/P) is one of the most common malformations among live births, but most of the genetic components and environmental factors involved remain to be identified. Among the different causes, MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA, was considered a potential candidate, because it was found to be abundantly and specifically expressed in epithelial cells of palatal shelves before fusion. After fusion, its expression level was shown to decrease and to become limited to epithelial triangles before disappearing, as fusion is completed. To determine whether MYH9 plays a role in CL/P aetiology, a family-based association analysis was performed in 218 case/parent triads using single-nucleotide polymorphism (SNP) markers. Pairwise and multilocus haplotype analyses identified linkage disequilibrium between polymorphism alleles at the MYH9 locus and the disease. The strongest deviation from a null hypothesis of random sharing was obtained with two adjacent SNPs, rs3752462 and rs2009930 (global p value = 0.001), indicating that MYH9 might be a predisposing factor for CL/P, although its pathogenetic role needs to be investigated more accurately.
Collapse
|
48
|
Oldfors A. Hereditary myosin myopathies. Neuromuscul Disord 2007; 17:355-67. [PMID: 17434305 DOI: 10.1016/j.nmd.2007.02.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/03/2007] [Accepted: 02/03/2007] [Indexed: 12/11/2022]
Abstract
Hereditary myosin myopathies have emerged as a new group of muscle diseases with highly variable clinical features and onset during fetal development, childhood or adulthood. They are caused by mutations in skeletal muscle myosin heavy chain (MyHC) genes. Mutations have been reported in two of the three MyHC isoforms expressed in adult limb skeletal muscle: type I (slow/beta-cardiac MyHC; MYH7) and type IIa (MYH2). The majority of more than 200 dominant missense mutations in MYH7 are associated with hypertrophic/dilated cardiomyopathy without signs or symptoms of skeletal myopathy. Several mutations in two different parts of the slow/beta-cardiac MyHC rod region are associated with two distinct skeletal myopathies without cardiomyopathy: Laing early onset distal myopathy and myosin storage myopathy (MSM). However, early onset distal myopathy and MSM caused by MYH7 mutations may also occur together with cardiomyopathy. MSM affects proximal or scapuloperoneal muscles whereas Laing distal myopathy primarily affects the dorsiflexor muscles of the toes and ankles. MSM is morphologically characterized by subsarcolemmal accumulation of myosin in type 1 fibers, whereas Laing distal myopathy is associated with variable and unspecific muscle pathology, frequently with hypotrophic type 1 muscle fibers. A myopathy associated with a specific mutation in MYH2 is associated with congenital joint contractures and external ophthalmoplegia. The disease is mild in childhood but may be progressive in adulthood, with proximal muscle weakness affecting ambulation. Mutations in embryonic MyHC (MYH3) and perinatal MyHC (MYH8), which are myosin isoforms expressed during muscle development, are associated with distal arthrogryposis syndromes with no or minor muscle weakness. Clinical findings, muscle morphology and molecular genetics in hereditary myosin myopathies are summarized in this review.
Collapse
Affiliation(s)
- Anders Oldfors
- Department of Pathology, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden.
| |
Collapse
|
49
|
|
50
|
Heller PG, Pecci A, Glembotsky AC, Savoia A, Negro FD, Balduini CL, Molinas FC. Unexplained recurrent venous thrombosis in a patient with MYH9-related disease. Platelets 2006; 17:274-5. [PMID: 16769605 DOI: 10.1080/17476930500467235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|