1
|
Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Plasmid DNA for Therapeutic Applications in Cancer. Pharmaceutics 2022; 14:pharmaceutics14091861. [PMID: 36145609 PMCID: PMC9503848 DOI: 10.3390/pharmaceutics14091861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the interest in using nucleic acids for therapeutic applications has been increasing. DNA molecules can be manipulated to express a gene of interest for gene therapy applications or vaccine development. Plasmid DNA can be developed to treat different diseases, such as infections and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight against cancer cells. Furthermore, plasmids for cancer gene therapy can direct the expression of proteins with different functions, such as enzymes, toxins, and cytotoxic or proapoptotic proteins, to directly kill cancer cells. The progress and promising results reported in animal models in recent years have led to interesting clinical results. These DNA strategies are expected to be approved for cancer treatment in the near future. This review discusses the main strategies, challenges, and future perspectives of using plasmid DNA for cancer treatment.
Collapse
Affiliation(s)
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey 64720, Mexico
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| | - María de Jesús Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| |
Collapse
|
2
|
Koutsoumpli G, Ip PP, Schepel I, Hoogeboom BN, Boerma A, Daemen T. Alphavirus-based hepatitis C virus therapeutic vaccines: can universal helper epitopes enhance HCV-specific cytotoxic T lymphocyte responses? Ther Adv Vaccines Immunother 2019; 7:2515135519874677. [PMID: 31620673 PMCID: PMC6777054 DOI: 10.1177/2515135519874677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Antigen-specific T cell immune responses play a pivotal role in resolving
acute and chronic hepatitis C virus (HCV) infections. Currently, no
prophylactic or therapeutic vaccines against HCV are available. We
previously demonstrated the preclinical potency of therapeutic HCV vaccines
based on recombinant Semliki Forest virus (SFV) replicon particles. However,
clinical trials do not always meet the high expectations of preclinical
studies, thus, optimization of vaccine strategies is crucial. In efforts to
further increase the frequency of HCV-specific immune responses in the
candidate SFV-based vaccines, the authors assessed whether inclusion of
three strong, so-called universal helper T cell epitopes, and an endoplasmic
reticulum localization, and retention signal (collectively termed
sigHELP-KDEL cassette) could enhance HCV-specific immune responses. Methods: We included the sigHELP-KDEL cassette in two of the candidate SFV-based HCV
vaccines, targeting NS3/4A and NS5A/B proteins. We characterized the new
constructs in vitro for the expression and stability of the
transgene-encoded proteins. Their immune efficacy with respect to
HCV-specific immune responses in vivo was compared with the
parental SFV vaccine expressing the corresponding HCV antigen. Further
characterization of the functionality of the HCV-specific CD8+ T
cells was assessed by surface and intracellular cytokine staining and flow
cytometry analysis. Results: Moderate, but significantly, enhanced frequencies of antigen-specific immune
responses were achieved upon lower/suboptimal dosage immunization. In
optimal dosage immunization, the inclusion of the cassette did not further
increase the frequencies of HCV-specific CD8+ T cells when
compared with the parental vaccines and the frequencies of effector and
memory populations were identical. Conclusion: We hypothesize that the additional effect of the sigHELP-KDEL cassette in
SFV-based vaccines depends on the immunogenicity, nature, and stability of
the target antigen expressed by the vaccine.
Collapse
Affiliation(s)
- Georgia Koutsoumpli
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Peng Ip
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ilona Schepel
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Baukje Nynke Hoogeboom
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annemarie Boerma
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Toos Daemen
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| |
Collapse
|
3
|
Da Silva DM, Skeate JG, Chavez-Juan E, Lühen KP, Wu JM, Wu CM, Kast WM, Hwang K. Therapeutic efficacy of a human papillomavirus type 16 E7 bacterial exotoxin fusion protein adjuvanted with CpG or GPI-0100 in a preclinical mouse model for HPV-associated disease. Vaccine 2019; 37:2915-2924. [PMID: 31010714 DOI: 10.1016/j.vaccine.2019.04.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Persistent human papillomavirus (HPV) infection is causally linked to the development of several human cancers, including cervical, vulvar, vaginal, anal, penile, and oropharyngeal cancers. To address the need for a therapeutic vaccine against HPV-associated diseases, here we test and compare the immunogenicity and therapeutic efficacy of a bacterial exotoxin fusion protein covalently linked to the HPV16 E7 oncoprotein adjuvanted with CpG or GPI-0100 in the C3.43 preclinical HPV16-transformed tumor model. We show that TVGV-1 protein vaccine adjuvanted with either CpG or GPI-0100 adjuvant induces a high frequency of E7-specific CD8+ T cells, and both adjuvants are able to assist the immune response in inducing polyfunctional cytokine-secreting lytic T cells that show therapeutic efficacy against well-established C3.43 tumors. CpG-adjuvanted TVGV-1 resulted in higher frequencies of IFNγ secreting and degranulating E7-specific T cells compared to GPI-0100-adjuvanted TVGV-1, resulting in marginally increased in vivo efficacy. Despite minor differences in immune response outcomes, we consider both CpG ODN and GPI-0100 to be promising vaccine adjuvants to increase the immunogenicity and therapeutic efficacy of the TVGV-1 protein for HPV16-driven cancers.
Collapse
Affiliation(s)
- Diane M Da Silva
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Joseph G Skeate
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Elena Chavez-Juan
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Kim P Lühen
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jiun-Ming Wu
- TheVax Genetics Vaccine Co., Ltd, Zhubei City, Hsinchu County 302, Taiwan, ROC
| | - Chia-Mao Wu
- TheVax Genetics Vaccine Co., Ltd, Zhubei City, Hsinchu County 302, Taiwan, ROC
| | - W Martin Kast
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - KinKai Hwang
- TheVax Genetics Vaccine Co., Ltd, Irvine, CA 92618, USA
| |
Collapse
|
4
|
Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv 2017; 35:375-389. [PMID: 28288861 DOI: 10.1016/j.biotechadv.2017.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023]
Abstract
Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their mechanisms of action, structural or sequence requirements for activity, sequence modifications to enhance their activity or simplify production, adverse effects, and examples of vaccines in preclinical or human clinical trials.
Collapse
|
5
|
Abstract
Heat shock protein 70, (Hsp70) constitutes a powerful system of cytoprotection in all organisms studied to date. Exerting such activity, Hsp70 rescues cancer cells from antitumor therapy, posing a great challenge for oncologists. In contrast to its protective action, Hsp70 was found to be released from cancer cells, prompting cytotoxic lymphocytes to target and kill the tumor. A great number of vaccines have been developed on the basis of the ability of Hsp70 to present tumor antigen or to elevate the sensitivity of cancer cells to cytotoxic lymphocytes. In this commentary, we consider novel data on the employment of pure Hsp70 in the therapy of glioma and melanoma malignancies. We show that intratumorally delivered Hsp70 penetrates cancer cells and pulls its intracellular analog outside of the cell. This displacement may activate cells, constituting both innate and adaptive immunity. In vivo delivery of Hsp70 was found to inhibit tumor growth and to extend survival. The technology of intratumoral injection of pure Hsp70 passed through preclinical trials and was investigated in clinics for children with brain cancer; the results show the safety and feasibility of a new approach.
Collapse
Affiliation(s)
- Irina V Guzhova
- a Institute of Cytology of Russian Academy of Sciences , St. Petersburg , Russia
| | - Boris A Margulis
- a Institute of Cytology of Russian Academy of Sciences , St. Petersburg , Russia
| |
Collapse
|
6
|
|
7
|
Nezafat N, Sadraeian M, Rahbar MR, Khoshnoud MJ, Mohkam M, Gholami A, Banihashemi M, Ghasemi Y. Production of a novel multi-epitope peptide vaccine for cancer immunotherapy in TC-1 tumor-bearing mice. Biologicals 2014; 43:11-7. [PMID: 25467837 DOI: 10.1016/j.biologicals.2014.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/17/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022] Open
Abstract
In our previous research, several bioinformatic strategies were utilized to design an efficient multi-epitope peptide vaccine (MEV) against cancer. The designed vaccine consists of Wilms tumor-1 (WT-1) and human papillomavirus (HPV) E7 cytotoxic T lymphocyte (CTL) epitopes, tetanus toxin fragment C (TTFrC) and HLA-DR epitope (PADRE) helper T lymphocyte (HTL) epitopes and heparin-binding hemagglutinin (HBHA) as an immunostimulatory adjuvant. All segments were fused together by suitable linkers. In the current study, we cloned and expressed the designed MEV in E. coli. We subsequently performed in vivo preventative and therapeutic assays to evaluate antitumor efficacy of the vaccine against the HPV-16 E7-expressing murine tumor cell line TC-1 as a model for cancer immunotherapy. The results showed that in preventive experiments, vaccination with MEV significantly augmented the IgG antibody titer and the percentage of tumor-free mice compared to control groups (PBS and E7). Moreover, in therapeutic experiments, vaccination with MEV led to a reduction in the number of metastatic nodules, lung weights and the ratio of lung weights to body weights compared to other groups. In sum, our epitope vaccine could efficiently induce preventive and therapeutic antitumor immunity in TC-1 tumor bearing mice.
Collapse
Affiliation(s)
- Navid Nezafat
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadraeian
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Department of Molecular Diagnosis, Saadati Pathobiology Laboratory, Shiraz, Iran
| | - Mohammad Javad Khoshnoud
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Mehrzad Banihashemi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
8
|
Ragonnaud E, Holst P. The rationale of vectored gene-fusion vaccines against cancer: evolving strategies and latest evidence. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:33-47. [PMID: 24757514 DOI: 10.1177/2051013613480446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of vaccines that target tumor antigens in cancer has proven difficult. A major reason for this is that T cells specific for tumor self-antigens and neoantigens are eliminated or inactivated through mechanisms of tolerance. Antigen fusion strategies which increase the ability of vaccines to stimulate T cells that have escaped tolerance mechanisms, may have a particular potential as immunotherapies. This review highlights antigen fusion strategies that have been successful in stimulating the induction of T-cell immunity against cancer and counteracting tumor-associated tolerance. In preclinical studies, these strategies have shown to improve the potency of vectored vaccines through fusion of tumor antigen to proteins or protein domains that increase CD4+ T-cell help, CD8+ T-cell responses or both the CD4+ and CD8+ T-cell responses. However, in clinical trials such strategies seem to be less efficient when provided as a DNA vaccine. The first clinical trial using a viral vectored fusion-gene vaccine is expected to be tested as a partner in a heterologous prime-boost regimen directed against cervical cancer.
Collapse
Affiliation(s)
| | - Peter Holst
- ISIM - Center for Medical Parasitology, Copenhagen, Denmark
| |
Collapse
|
9
|
Bodles-Brakhop AM, Draghia-Akli R. DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines 2014; 7:1085-101. [DOI: 10.1586/14760584.7.7.1085] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Chen S, Liao C, Lai Y, Fan Y, Lu G, Wang H, Zhang X, Lin MCM, Leng S, Kung HF. De-oncogenic HPV E6/E7 vaccine gets enhanced antigenicity and promotes tumoricidal synergy with cisplatin. Acta Biochim Biophys Sin (Shanghai) 2014; 46:6-14. [PMID: 24240707 DOI: 10.1093/abbs/gmt121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In order to develop more effective therapeutic vaccines against cancers with high-risk human papillomavirus (HPV) infection, it is crucial to enhance the immunogenicity, eliminate the oncogenicity of oncoproteins, and take a combination of E7- and E6-containing vaccines. It has been shown recently that PE(ΔIII)-E7-KDEL3 (E7), a fusion protein containing the HPV16 oncoprotein E7 and the translocation domain of Pseudomonas aeruginosa exotoxin A, is effective against TC-1 tumor cells inoculated in mice, therefore, we engineered PE(ΔIII)-E6-CRL-KDEL3 (E6), the de-oncogenic versions of the E7 and E6 fusion proteins [i.e. PE(ΔIII)-E7(d)-KDEL3, E7(d), and PE(ΔIII)-E6(d)-CRL-KDEL3, E6(d)] and tested the immunoefficacies of these fusion proteins as mono- and bivalent vaccines. Results indicated that the E7(d) get higher immunogenicity than its wild type and the E6 fusion proteins augmented the immunogenicity and antitumor effects of their E7 counterparts. Furthermore, the bivalent vaccine system E7(d) plus E6(d), in the presence of cisplatin, showed the best tumoristatic and tumoricidal effects against established tumors in vivo. Therefore, it can be concluded that this novel therapeutic vaccine system, upon further optimization, may shed new light on clinical management of HPV-related carcinomas.
Collapse
Affiliation(s)
- Shaochun Chen
- Department of Anatomy and Histoembryology, Kunming Medical University, Kunming 650500, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cheng WF, Chang MC, Sun WZ, Jen YW, Liao CW, Chen YY, Chen CA. Fusion protein vaccines targeting two tumor antigens generate synergistic anti-tumor effects. PLoS One 2013; 8:e71216. [PMID: 24058440 PMCID: PMC3772923 DOI: 10.1371/journal.pone.0071216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022] Open
Abstract
Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods Invivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. Invitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies.
Collapse
Affiliation(s)
- Wen-Fang Cheng
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Cheng Chang
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Zen Sun
- Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wei Jen
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Yun-Yuan Chen
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-An Chen
- Departments of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
12
|
Oosterhuis K, Aleyd E, Vrijland K, Schumacher TN, Haanen JB. Rational design of DNA vaccines for the induction of human papillomavirus type 16 E6- and E7-specific cytotoxic T-cell responses. Hum Gene Ther 2012; 23:1301-12. [PMID: 22971245 DOI: 10.1089/hum.2012.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many DNA vaccine candidates have been developed for the treatment of human papillomavirus type 16 (HPV16)-induced malignancies. Most of these vaccines consist of a fusion of E7 with a "carrier-protein" that functions to increase the potency of the vaccine. The nature of these carrier-proteins varies widely, and the mechanisms proposed to explain the enhanced immunogenicity of such fusions are often linked to the biological function of the carrier-protein. However, the potentiating effect of these carrier-proteins might also be explained by more general mechanisms, such as the provision of CD4+ T-cell help, increased antigen stability, or altered subcellular localization of the antigen. To assess whether these more generic mechanisms could suffice to generate highly immunogenic DNA vaccines, we evaluated a series of modular HPV16 E7 DNA vaccines in which the presence of CD4+ T-cell help, the presence of an endogenous carrier-protein, and the subcellular localization of the antigen could be systematically altered. Using this approach, we demonstrate that the addition of an element that provides CD4+ T-cell help, elements that enforce endoplasmic reticulum (ER) localization/retention are both necessary and sufficient to create markedly effective HPV16 E7-directed DNA vaccines. Importantly, the resulting design rules also apply to an HPV16 E6-directed DNA vaccine. The developed "HELP(ER)" HPV DNA vaccines encode only very limited additional sequences besides the antigen, thereby reducing the risk of antigenic competition and/or autoimmunity.
Collapse
Affiliation(s)
- Koen Oosterhuis
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Wang XM, Lu C, Soetaert K, S'Heeren C, Peirs P, Lanéelle MA, Lefèvre P, Bifani P, Content J, Daffé M, Huygen K, De Bruyn J, Wattiez R. Biochemical and immunological characterization of a cpn60.1 knockout mutant of Mycobacterium bovis BCG. MICROBIOLOGY-SGM 2010; 157:1205-1219. [PMID: 21127129 DOI: 10.1099/mic.0.045120-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenic mycobacteria possess two homologous chaperones encoded by cpn60.1 and cpn60.2. Cpn60.2 is essential for survival, providing the basic chaperone function, while Cpn60.1 is not. In the present study, we show that inactivation of the Mycobacterium bovis BCG cpn60.1 (Mb3451c) gene does not significantly affect bacterial growth in 7H9 broth, but that this knockout mutant (Δcpn60.1) forms smaller colonies on solid 7H11 medium than the parental and complemented strains. When growing on Sauton medium, the Δcpn60.1 mutant exhibits a thinner surface pellicle and is associated with higher culture filtrate protein content and, coincidentally, with less protein in its outermost cell envelope in comparison with the parental and complemented strains. Interestingly, in this culture condition, the Δcpn60.1 mutant is devoid of phthiocerol dimycocerosates, and its mycolates are two carbon atoms longer than those of the wild-type, a phenotype that is fully reversed by complementation. In addition, Δcpn60.1 bacteria are more sensitive to stress induced by H(2)O(2) but not by SDS, high temperature or acidic pH. Taken together, these data indicate that the cell wall of the Δcpn60.1 mutant is impaired. Analysis by 2D gel electrophoresis and MS reveals the upregulation of a few proteins such as FadA2 and isocitrate lyase in the cell extract of the mutant, whereas more profound differences are found in the composition of the mycobacterial culture filtrate, e.g. the well-known Hsp65 chaperonin Cpn60.2 is particularly abundant and increases about 200-fold in the filtrate of the Δcpn60.1 mutant. In mice, the Δcpn60.1 mutant is less persistent in lungs and, to a lesser extent, in spleen, but it induces a comparable mycobacteria-specific gamma interferon production and protection against Mycobacterium tuberculosis H37Rv challenge as do the parental and complemented BCG strains. Thus, by inactivating the cpn60.1 gene in M. bovis BCG we show that Cpn60.1 is necessary for the integrity of the bacterial cell wall, is involved in resistance to H(2)O(2)-induced stress but is not essential for its vaccine potential.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Changlong Lu
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Karine Soetaert
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Catherine S'Heeren
- Department of Proteomics and Microbiology, University of Mons, 20, place du Parc, B-7000 Mons, Belgium
| | - Priska Peirs
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Marie-Antoinette Lanéelle
- Department of Molecular Mechanisms of the Mycobacterial Infections, Institute of Pharmacology and Structural Biology of CNRS and the University Paul Sabatier (UMR 5089), 205 route de Narbonne, Toulouse 31077 cedex 04, France
| | - Philippe Lefèvre
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Pablo Bifani
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Jean Content
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Mamadou Daffé
- Department of Molecular Mechanisms of the Mycobacterial Infections, Institute of Pharmacology and Structural Biology of CNRS and the University Paul Sabatier (UMR 5089), 205 route de Narbonne, Toulouse 31077 cedex 04, France
| | - Kris Huygen
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Jacqueline De Bruyn
- Scientific Institute of Public Health, Operational Direction of Communicable and Infectious Diseases, Rue Engeland 642, B-1180 Brussels, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, 20, place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
14
|
Su JH, Wu A, Scotney E, Ma B, Monie A, Hung CF, Wu TC. Immunotherapy for cervical cancer: Research status and clinical potential. BioDrugs 2010; 24:109-29. [PMID: 20199126 DOI: 10.2165/11532810-000000000-00000] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The high-risk types of human papillomavirus (HPV) have been found to be associated with most cervical cancers and play an essential role in the pathogenesis of the disease. Despite recent advances in preventive HPV vaccine development, such preventive vaccines are unlikely to reduce the prevalence of HPV infections within the next few years, due to their cost and limited availability in developing countries. Furthermore, preventive HPV vaccines may not be capable of treating established HPV infections and HPV-associated lesions, which account for high morbidity and mortality worldwide. Thus, it is important to develop therapeutic HPV vaccines for the control of existing HPV infection and associated malignancies. Therapeutic vaccines are quite different from preventive vaccines in that they require the generation of cell-mediated immunity, particularly T cell-mediated immunity, instead of the generation of neutralizing antibodies. The HPV-encoded early proteins, the E6 and E7 oncoproteins, form ideal targets for therapeutic HPV vaccines, since they are consistently expressed in HPV-associated cervical cancer and its precursor lesions and thus play crucial roles in the generation and maintenance of HPV-associated disease. Our review covers the various therapeutic HPV vaccines for cervical cancer, including live vector-based, peptide or protein-based, nucleic acid-based, and cell-based vaccines targeting the HPV E6 and/or E7 antigens. Furthermore, we review the studies using therapeutic HPV vaccines in combination with other therapeutic modalities and review the latest clinical trials on therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Jun-Han Su
- National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Bolhassani A, Ghasemi N, Servis C, Taghikhani M, Rafati S. The efficiency of a novel delivery system (PEI600-Tat) in development of potent DNA vaccine using HPV16 E7 as a model antigen. Drug Deliv 2009; 16:196-204. [PMID: 19514980 DOI: 10.1080/10717540902757721] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
DNA vaccination is a promising approach for inducing both humoral and cellular immune responses. The mode of plasmid DNA delivery is critical to make progress in DNA vaccination. Using human papillomavirus type 16 E7 as a model antigen, this study evaluated the effect of peptide-polymer hybrid including PEI600-Tat conjugate as a novel gene delivery system on the potency of antigen-specific immunity in mice model. At ratio of 10:50 PEI-Tat/E7DNA (w/w), both humoral and cellular immune responses were significantly enhanced as compared with E7DNA construct and induced Th1 response. Therefore, this new delivery system could have promising applications in gene therapy.
Collapse
|
16
|
Abstract
Human papillomavirus (HPV) has been associated with several human cancers, including cervical cancer, vulvar cancer, vaginal and anal cancer, and a subset of head and neck cancers. The identification of HPV as an etiological factor for HPV-associated malignancies creates the opportunity for the control of these cancers through vaccination. Currently, the preventive HPV vaccine using HPV virus-like particles has been proven to be safe and highly effective. However, this preventive vaccine does not have therapeutic effects, and a significant number of people have established HPV infection and HPV-associated lesions. Therefore, it is necessary to develop therapeutic HPV vaccines to facilitate the control of HPV-associated malignancies and their precursor lesions. Among the various forms of therapeutic HPV vaccines, DNA vaccines have emerged as a potentially promising approach for vaccine development due to their safety profile, ease of preparation and stability. However, since DNA does not have the intrinsic ability to amplify or spread in transfected cells like viral vectors, DNA vaccines can have limited immunogenicity. Therefore, it is important to develop innovative strategies to improve DNA vaccine potency. Since dendritic cells (DCs) are key players in the generation of antigen-specific immune responses, it is important to develop innovative strategies to modify the properties of the DNA-transfected DCs. These strategies include increasing the number of antigen-expressing/antigen-loaded DCs, improving antigen processing and presentation in DCs, and enhancing the interaction between DCs and T cells. Many of the studies on DNA vaccines have been performed on preclinical models. Encouraging results from impressive preclinical studies have led to several clinical trials.
Collapse
Affiliation(s)
- Archana Monie
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Heat-shock proteins (HSPs) have been known as multifunctional proteins. They facilitate the folding and unfolding of proteins, participate in vesicular transport processes, prevent protein aggregation in the densely packed cytosol and are involved in signaling processes. HSPs have been involved in different fields, including autoimmunity, immunity to infections and tumor immunology. Although there are many different kinds of HSPs, only some HSPs, including HSP70 and Gp96, have immunological properties. HSP molecules have been applied into DNA- or protein (peptide)-based vaccines as antigens, chaperones or adjuvants. HSP-based vaccines have been shown to immunize against cancer and infectious diseases in both prophylactic and therapeutic protocols. The immunogenicity of HSPs results from two different properties: a peptide-dependent capacity to chaperone and elicit adaptive cytotoxic T-lymphocyte responses against antigenic peptides and a peptide-independent immunomodulatory capacity. Furthermore, HSPs could be immunoregulatory agents with potent and widely applicable therapeutic uses. Accordingly, certain HSPs, such as HSP70 and Gp96, are highly effective carrier molecules for cross-presentation. Their ability in eliciting immune responses against different pathogens (parasite and virus) and their role in cancer immunity will be discussed in this review.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
18
|
Bolhassani A, Zahedifard F, Taghikhani M, Rafati S. Enhanced immunogenicity of HPV16E7 accompanied by Gp96 as an adjuvant in two vaccination strategies. Vaccine 2008; 26:3362-70. [PMID: 18471945 DOI: 10.1016/j.vaccine.2008.03.082] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 03/16/2008] [Accepted: 03/19/2008] [Indexed: 01/30/2023]
Abstract
Human papillomavirus, particularly type 16 (HPV16) is present in more than 99% of cervical cancers. E7 is the major oncogenic protein produced in cervical cancer-associated HPV16. An efficient vaccine against viral infection requires induction of strong humoral and cellular responses against viral proteins. Heat shock proteins (HSPs) like Gp96 have been described as potent tumor vaccines in animal models and are currently studied in human clinical trials. In this study, we investigated the utility of HPV16 E7 along with Gp96 as an adjuvant in C57BL/6 mice model. We compared the level of humoral and cellular immune responses by E7+Gp96 co-injection as DNA/DNA and prime-boost (DNA/protein) immunization strategies. In prime-boost immunization strategies, we first immunized C57BL/6 mice with the complete open-reading frame of E7 and Gp96 (pcDNA-E7 and pcDNA-Gp96) and then boosted with rE7, rNT-gp96 (N-terminal extension of Gp96) and rCT-gp96 (C-terminal extension of Gp96) mixed with Montanide 720 in different formulations. The humoral immune responses against rE7 and the different truncated forms of rGp96 suggested a mixed Th1/Th2 response with high intensity toward Th2. Assessment of lymphoproliferative and cytokine responses against rE7 and the different fragments of Gp96, showed that DNA vaccination including E7 and Gp96 induced Th1 response. We concluded that co-delivery of naked DNA E7+Gp96 plasmid was immunologically more effective than E7 alone. Our study demonstrated that co-delivery of E7+Gp96 as DNA/DNA and E7+CT-gp96 as DNA/protein could be an effective approach to induce E7-specific immune responses as a potential vaccine candidate for cervical cancer.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | |
Collapse
|