1
|
Yu R, Ji X, Zhang P, Zhang H, Qu H, Dong W. The potential of chimeric antigen receptor -T cell therapy for endocrine cancer. World J Surg Oncol 2025; 23:153. [PMID: 40264184 PMCID: PMC12012980 DOI: 10.1186/s12957-025-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/07/2025] [Indexed: 04/24/2025] Open
Abstract
Endocrine cancer, a relatively rare and heterogeneous tumor with diverse clinical features. The facile synthesis of hormones further complicates endocrine cancer treatment. Thus, the development of safe and effective systemic treatment approaches, such as chimeric antigen receptor (CAR) T cell therapy, is imperative to enhance the prognosis of patients with endocrine cancer. Although this therapy has achieved good results in the treatment of hematological malignancies, it encounters diverse complications and challenges in the context of endocrine cancer. This review delineates the generation of CAR-T cells, examines the potential of CAR-T cell therapy for endocrine cancer, enumerates pivotal antigens linked to endocrine cancer, encapsulates the challenges confronted with CAR-T cell therapy for endocrine cancer, and expounds upon strategies to overcome these limitations. The primary objective is to provide insightful perspectives that can contribute to the advancement of CAR-T cell therapy in the field of endocrine cancer.
Collapse
Affiliation(s)
- Ruonan Yu
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Xiaoyu Ji
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Ping Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Huiling Qu
- Department of Neurology, The General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, Liaoning, 110840, China.
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
2
|
Song YJ, Kim JE, Rajbongshi L, Lim YS, Ok YJ, Hwang SY, Park HY, Lee JE, Oh SO, Kim BS, Lee D, Kim HG, Yoon S. Silencing of Epidermal Growth Factor-like Domain 8 Promotes Proliferation and Cancer Aggressiveness in Human Ovarian Cancer Cells by Activating ERK/MAPK Signaling Cascades. Int J Mol Sci 2024; 26:274. [PMID: 39796130 PMCID: PMC11720593 DOI: 10.3390/ijms26010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge. This study aimed to investigate the role of epidermal growth factor-like domain 8 (EGFL8) in human OC by examining the effects of siRNA-mediated EGFL8 knockdown on cancer progression. EGFL8 knockdown in human OC cells promoted aggressive traits associated with cancer progression, including enhanced proliferation, colony formation, migration, invasion, chemoresistance, and reduced apoptosis. Additionally, knockdown upregulated the expression of epithelial-mesenchymal transition (EMT) markers (Snail, Twist1, Zeb1, Zeb2, and vimentin) and cancer stem cell biomarkers (Oct4, Sox2, Nanog, KLF4, and ALDH1A1), and increased the expression of matrix metallopeptidases (MMP-2 and MMP-9), drug resistance genes (MDR1 and MRP1), and Notch1. Low EGFL8 expression also correlated with poor prognosis in human OC. Overall, this study provides crucial evidence that EGFL8 inhibits the proliferation and cancer aggressiveness of human OC cells by suppressing ERK/MAPK signaling. Therefore, EGFL8 may serve as a valuable prognostic biomarker and a potential target for developing novel human OC therapies.
Collapse
Affiliation(s)
- Yong-Jung Song
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (Y.-J.S.); (H.-G.K.)
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Ji-Eun Kim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (J.-E.K.); (L.R.); (Y.-S.L.); (Y.-J.O.); (S.-Y.H.); (H.-Y.P.); (J.-E.L.)
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (J.-E.K.); (L.R.); (Y.-S.L.); (Y.-J.O.); (S.-Y.H.); (H.-Y.P.); (J.-E.L.)
| | - Ye-Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (J.-E.K.); (L.R.); (Y.-S.L.); (Y.-J.O.); (S.-Y.H.); (H.-Y.P.); (J.-E.L.)
| | - Ye-Jin Ok
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (J.-E.K.); (L.R.); (Y.-S.L.); (Y.-J.O.); (S.-Y.H.); (H.-Y.P.); (J.-E.L.)
| | - Seon-Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (J.-E.K.); (L.R.); (Y.-S.L.); (Y.-J.O.); (S.-Y.H.); (H.-Y.P.); (J.-E.L.)
| | - Hye-Yun Park
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (J.-E.K.); (L.R.); (Y.-S.L.); (Y.-J.O.); (S.-Y.H.); (H.-Y.P.); (J.-E.L.)
| | - Jin-Eui Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (J.-E.K.); (L.R.); (Y.-S.L.); (Y.-J.O.); (S.-Y.H.); (H.-Y.P.); (J.-E.L.)
| | - Sae-Ock Oh
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (J.-E.K.); (L.R.); (Y.-S.L.); (Y.-J.O.); (S.-Y.H.); (H.-Y.P.); (J.-E.L.)
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea;
| | - Hwi-Gon Kim
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (Y.-J.S.); (H.-G.K.)
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea; (J.-E.K.); (L.R.); (Y.-S.L.); (Y.-J.O.); (S.-Y.H.); (H.-Y.P.); (J.-E.L.)
| |
Collapse
|
3
|
Zhao X, Yang P, Liu L, Li Y, Huang Y, Tang H, Zhou Y, Mao Y. Optimal debulking surgery in ovarian cancer patients: MRI may predict the necessity of rectosigmoid resection. Insights Imaging 2024; 15:145. [PMID: 38886313 PMCID: PMC11183003 DOI: 10.1186/s13244-024-01725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES To determine whether MRI can predict the necessity of rectosigmoid resection (RR) for optimal debulking surgery (ODS) in ovarian cancer (OC) patients and to compare the predictive accuracy of pre- and post-neoadjuvant chemotherapy (NACT) MRI. METHODS The MRI of 82 OC were retrospectively analyzed, including six bowel signs (length, transverse axis, thickness, circumference, muscularis involvement, and submucosal edema) and four para-intestinal signs (vaginal, parametrial, ureteral, and sacro-recto-genital septum involvement). The parameters reflecting the degree of muscularis involvement were measured. Patients were divided into non-RR and RR groups based on the operation and postoperative outcomes. The independent predictors of the need for RR were identified by multivariate logistic regression analysis. RESULTS Imaging for 82 patients was evaluated (67 without and 15 with NACT). Submucosal edema and muscularis involvement (OR 13.33 and 8.40, respectively) were independent predictors of the need for RR, with sensitivities of 83.3% and 94.4% and specificities of 93.9% and 81.6%, respectively. Among the parameters reflecting the degree of muscularis involvement, circumference ≥ 3/12 had the highest prediction accuracy, increasing the specificity from 81.6% for muscularis involvement only to 98.0%, with only a slight decrease in sensitivity (from 94.4% to 88.9%). The predictive sensitivities of pre-NACT and post-NACT MRI were 100.0% and 12.5%, respectively, and the specificities were 85.7% and 100.0%, respectively. CONCLUSIONS MRI analysis of rectosigmoid muscularis involvement and its circumference can help predict the necessity of RR in OC patients, and pre-NACT MRI may be more suitable for evaluation. CRITICAL RELEVANCE STATEMENT We analyzed preoperative pelvic MRI in OC patients. Our findings suggest that MRI has predictive potential for identifying patients who require RR to achieve ODS. KEY POINTS The need for RR must be determined to optimize treatment for OC patients. Muscularis involvement circumference ≥ 3/12 could help predict RR. Pre-NACT MRI may be superior to post-NACT MRI in predicting RR.
Collapse
Affiliation(s)
- Xiaofang Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huali Tang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yun Mao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Li Z, Gu H, Xu X, Tian Y, Huang X, Du Y. Unveiling the novel immune and molecular signatures of ovarian cancer: insights and innovations from single-cell sequencing. Front Immunol 2023; 14:1288027. [PMID: 38022625 PMCID: PMC10654630 DOI: 10.3389/fimmu.2023.1288027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Ovarian cancer is a highly heterogeneous and lethal malignancy with limited treatment options. Over the past decade, single-cell sequencing has emerged as an advanced biological technology capable of decoding the landscape of ovarian cancer at the single-cell resolution. It operates at the level of genes, transcriptomes, proteins, epigenomes, and metabolisms, providing detailed information that is distinct from bulk sequencing methods, which only offer average data for specific lesions. Single-cell sequencing technology provides detailed insights into the immune and molecular mechanisms underlying tumor occurrence, development, drug resistance, and immune escape. These insights can guide the development of innovative diagnostic markers, therapeutic strategies, and prognostic indicators. Overall, this review provides a comprehensive summary of the diverse applications of single-cell sequencing in ovarian cancer. It encompasses the identification and characterization of novel cell subpopulations, the elucidation of tumor heterogeneity, the investigation of the tumor microenvironment, the analysis of mechanisms underlying metastasis, and the integration of innovative approaches such as organoid models and multi-omics analysis.
Collapse
Affiliation(s)
- Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haihan Gu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaotong Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanfang Du
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Li G, Nikkhoi SK, Hatefi A. Stem cell-assisted enzyme/prodrug therapy makes drug-resistant ovarian cancer cells vulnerable to natural killer cells through upregulation of NKG2D ligands. Med Oncol 2023; 40:110. [PMID: 36862260 PMCID: PMC10794068 DOI: 10.1007/s12032-023-01975-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
Cancer stem-like cells (CSCs) are believed to be responsible for cancer recurrence and metastasis. Therefore, a therapeutic approach is needed to eliminate both rapidly proliferating differentiated cancer cells and slow-growing drug-resistant CSCs. Using established ovarian cancer cells lines as well as ovarian cancer cells isolated from a patient with high-grade drug-resistant ovarian carcinoma, we demonstrate that ovarian CSCs consistently express lower levels of NKG2D ligands (MICA/B and ULBPs) on their surfaces, a mechanism by which they evade natural killer (NK) cells' surveillance. Here, we discovered that exposure of ovarian cancer (OC) cells to SN-38 followed by 5-FU not only acts synergistically to kill the OC cells, but also makes the CSCs vulnerable to NK92 cells through upregulation of NKG2D ligands. Since systemic administration of these two drugs is marred by intolerance and instability, we engineered and isolated an adipose-derived stem cell (ASC) clone, which stably expresses carboxylesterase-2 and yeast cytosine deaminase enzymes to convert irinotecan and 5-FC prodrugs into SN-38 and 5-FU cytotoxic drugs, respectively. Co-incubation of ASCs and prodrugs with drug-resistant OC cells not only led to the death of the drug-resistant OC cells but also made them significantly vulnerable to NK92 cells. This study provides proof of principle for a combined ASC-directed targeted chemotherapy with NK92-assisted immunotherapy to eradicate drug-resistant OC cells.
Collapse
Affiliation(s)
- Geng Li
- Department of Pharmaceutics, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | | | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
- Cancer Pharmacology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
6
|
Zhang X, Hong S, Yu C, Shen X, Sun F, Yang J. Comparative analysis between high -grade serous ovarian cancer and healthy ovarian tissues using single-cell RNA sequencing. Front Oncol 2023; 13:1148628. [PMID: 37124501 PMCID: PMC10140397 DOI: 10.3389/fonc.2023.1148628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction High-grade serous ovarian cancer (HGSOC) is the most common histological subtype of ovarian cancer, and is associated with high mortality rates. Methods In this study, we analyzed specific cell subpopulations and compared different gene functions between healthy ovarian and ovarian cancer cells using single-cell RNA sequencing (ScRNA-seq). We delved deeper into the differences between healthy ovarian and ovarian cancer cells at different levels, and performed specific analysis on endothelial cells. Results We obtained scRNA-seq data of 6867 and 17056 cells from healthy ovarian samples and ovarian cancer samples, respectively. The transcriptional profiles of the groups differed at various stages of ovarian cell development. A detailed comparison of the cell cycle, and cell communication of different groups, revealed significant differences between healthy ovarian and ovarian cancer cells. We also found that apoptosis-related genes, URI1, PAK2, PARP1, CLU and TIMP3, were highly expressed, while immune-related genes, UBB, RPL11, CAV1, NUPR1 and Hsp90ab1, were lowly expressed in ovarian cancer cells. The results of the ScRNA-seq were verified using qPCR. Discussion Our findings revealed differences in function, gene expression and cell interaction patterns between ovarian cancer and healthy ovarian cell populations. These findings provide key insights on further research into the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Shihao Hong
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chengying Yu
- Department of Obstetrics and Gynecology, Longyou People’s Hospital, Quzhou, China
| | | | - Fangying Sun
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jianhua Yang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Jianhua Yang,
| |
Collapse
|
7
|
Liu J, Shu G, Wu A, Zhang X, Zhou Z, Alvero AB, Mor G, Yin G. TWIST1 induces proteasomal degradation of β-catenin during the differentiation of ovarian cancer stem-like cells. Sci Rep 2022; 12:15650. [PMID: 36123378 PMCID: PMC9485151 DOI: 10.1038/s41598-022-18662-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading gynecologic cancers worldwide. Cancer stem-like cells are correlated with relapse and resistance to chemotherapy. Twist1, which is involved in ovarian cancer stem-like cell differentiation, is positively correlated with CTNNB1 in different differentiation stages of ovarian cancer cells: primary epithelial ovarian cancer cells (primary EOC cells), mesenchymal spheroid-forming cells (MSFCs) and secondary epithelial ovarian cancer cells (sEOC cells). However, the expression of β-catenin is inversed compared to CTNNB1 in these 3 cell states. We further demonstrated that β-catenin is regulated by the protein degradation system in MSFCs and secondary EOC but not in primary EOC cells. The differentiation process from primary EOC cells to MSFCs and sEOC cells might be due to the downregulation of β-catenin protein levels. Finally, we found that TWIST1 can enhance β-catenin degradation by upregulating Axin2.
Collapse
Affiliation(s)
- Jiaqi Liu
- grid.452223.00000 0004 1757 7615Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013 China
| | - Guang Shu
- grid.216417.70000 0001 0379 7164Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013 China ,grid.216417.70000 0001 0379 7164China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013 China
| | - Anqi Wu
- grid.452223.00000 0004 1757 7615Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013 China
| | - Xiaojun Zhang
- grid.452223.00000 0004 1757 7615Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013 China
| | - Zhengwei Zhou
- grid.452223.00000 0004 1757 7615Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013 China
| | - Ayesha B. Alvero
- grid.254444.70000 0001 1456 7807C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI USA
| | - Gil Mor
- grid.254444.70000 0001 1456 7807C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI USA
| | - Gang Yin
- grid.452223.00000 0004 1757 7615Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013 China ,grid.216417.70000 0001 0379 7164China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013 China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
8
|
Cho JG, Kim SW, Lee A, Jeong HN, Yun E, Choi J, Jeong SJ, Chang W, Oh S, Yoo KH, Lee JB, Yoon S, Lee MS, Park JH, Jung MH, Kim SW, Kim KH, Suh DS, Choi KU, Choi J, Kim J, Kwon BS. MicroRNA-dependent inhibition of WEE1 controls cancer stem-like characteristics and malignant behavior in ovarian cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:803-822. [PMID: 36159587 PMCID: PMC9463562 DOI: 10.1016/j.omtn.2022.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/17/2022] [Indexed: 01/22/2023]
|
9
|
Therapeutic strategies to overcome cisplatin resistance in ovarian cancer. Eur J Med Chem 2022; 232:114205. [DOI: 10.1016/j.ejmech.2022.114205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
|
10
|
Talukdar S, Chang Z, Winterhoff B, Starr TK. Single-Cell RNA Sequencing of Ovarian Cancer: Promises and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:113-123. [PMID: 34339033 DOI: 10.1007/978-3-030-73359-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ovarian cancer remains the leading cause of death from gynecologic malignancy in the Western world. Tumors are comprised of heterogeneous populations of various cancer, immune, and stromal cells; it is hypothesized that rare cancer stem cells within these subpopulations lead to disease recurrence and treatment resistance. Technological advances now allow for the analysis of tumor genomes and transcriptomes at the single-cell level, which provides the resolution to potentially identify these rare cancer stem cells within the larger tumor.In this chapter, we review the evolution of next-generation RNA sequencing techniques, the methodology of single-cell isolation and sequencing, sequencing data analysis, and the potential applications in ovarian cancer. We also summarize the current published work using single-cell sequencing in ovarian cancer.By utilizing this novel technique to characterize the gene expression of rare subpopulations, new targets and treatment pathways may be identified in ovarian cancer to change treatment paradigms.
Collapse
Affiliation(s)
- Shobhana Talukdar
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Zenas Chang
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Boris Winterhoff
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Timothy K Starr
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Minnesota School of Medicine, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Institute of Health Informatics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Androgen/Androgen Receptor Signaling in Ovarian Cancer: Molecular Regulation and Therapeutic Potentials. Int J Mol Sci 2021; 22:ijms22147748. [PMID: 34299364 PMCID: PMC8304547 DOI: 10.3390/ijms22147748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OVCA) arises from three cellular origins, namely surface epithelial cells, germ cells, and stromal cells. More than 85% of OVCAs are EOCs (epithelial ovarian carcinomas), which are the most lethal gynecological malignancies. Cancer stem/progenitor cells (CSPCs) are considered to be cancer promoters due to their capacity for unlimited self-renewal and drug resistance. Androgen receptor (AR) belongs to the nuclear receptor superfamily and can be activated through binding to its ligand androgens. Studies have reported an association between AR expression and EOC carcinogenesis, and AR is suggested to be involved in proliferation, migration/invasion, and stemness. In addition, alternative AR activating signals, including both ligand-dependent and ligand-independent, are involved in OVCA progression. Although some clinical trials have previously been conducted to evaluate the effects of anti-androgens in EOC, no significant results have been reported. In contrast, experimental studies evaluating the effects of anti-androgen or anti-AR reagents in AR-expressing EOC models have demonstrated positive results for suppressing disease progression. Since AR is involved in complex signaling pathways and may be expressed at various levels in OVCA, the aim of this article was to provide an overview of current studies and perspectives regarding the relevance of androgen/AR roles in OVCA.
Collapse
|
12
|
Olalekan S, Xie B, Back R, Eckart H, Basu A. Characterizing the tumor microenvironment of metastatic ovarian cancer by single-cell transcriptomics. Cell Rep 2021; 35:109165. [PMID: 34038734 DOI: 10.1016/j.celrep.2021.109165] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/04/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Understanding the cellular composition of the tumor microenvironment and the interactions of the cells is essential to the development of successful immunotherapies in cancer. We perform single-cell RNA sequencing (scRNA-seq) of 9,885 cells isolated from the omentum in 6 patients with ovarian cancer and identify 9 major cell types, including cancer, stromal, and immune cells. Transcriptional analysis of immune cells stratifies our patient samples into 2 groups: (1) high T cell infiltration (high Tinf) and (2) low T cell infiltration (low Tinf). TOX-expressing resident memory CD8+ T (CD8+ Trm) and granulysin-expressing CD4+ T cell clusters are enriched in the high Tinf group. Concurrently, we find unique plasmablast and plasma B cell clusters, and finally, NR1H2+IRF8+ and CD274+ macrophage clusters, suggesting an anti-tumor response in the high Tinf group. Our scRNA-seq study of metastatic tumor samples provides important insights in elucidating the immune response within ovarian tumors.
Collapse
Affiliation(s)
- Susan Olalekan
- Section of Genetic Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Rebecca Back
- Section of Genetic Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Heather Eckart
- Section of Genetic Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Lee H, Kim JW, Lee DS, Min SH. Combined Poziotinib with Manidipine Treatment Suppresses Ovarian Cancer Stem-Cell Proliferation and Stemness. Int J Mol Sci 2020; 21:ijms21197379. [PMID: 33036254 PMCID: PMC7583017 DOI: 10.3390/ijms21197379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy in women worldwide, with an overall 5 year survival rate below 30%. The low survival rate is associated with the persistence of cancer stem cells (CSCs) after chemotherapy. Therefore, CSC-targeting strategies are required for successful EOC treatment. Pan-human epidermal growth factor receptor 4 (HER4) and L-type calcium channels are highly expressed in ovarian CSCs, and treatment with the pan-HER inhibitor poziotinib or calcium channel blockers (CCBs) selectively inhibits the growth of ovarian CSCs via distinct molecular mechanisms. In this study, we tested the hypothesis that combination treatment with poziotinib and CCBs can synergistically inhibit the growth of ovarian CSCs. Combined treatment with poziotinib and manidipine (an L-type CCB) synergistically suppressed ovarian CSC sphere formation and viability compared with either drug alone. Moreover, combination treatment synergistically reduced the expression of stemness markers, including CD133, KLF4, and NANOG, and stemness-related signaling molecules, such as phospho-STAT5, phospho-AKT, phospho-ERK, and Wnt/β-catenin. Moreover, poziotinib with manidipine dramatically induced apoptosis in ovarian CSCs. Our results suggest that the combinatorial use of poziotinib with a CCB can effectively inhibit ovarian CSC survival and function.
Collapse
Affiliation(s)
- Heejin Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (J.W.K.)
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jun Woo Kim
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (J.W.K.)
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Dong-Seok Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Sang-Hyun Min
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (J.W.K.)
- Correspondence: ; Fax: +82-53-790-5799
| |
Collapse
|
14
|
Bukovsky A. Immunology of tissue homeostasis, ovarian cancer growth and regression, and long lasting cancer immune prophylaxis - review of literature. Histol Histopathol 2020; 36:31-46. [PMID: 32896865 DOI: 10.14670/hh-18-261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Data on the substantial physiological role of the immune system in the organism's ability to manage proper differentiation and function of normal tissues (tissue homeostasis), and detailed causes of the immune system's essential role for the in-vivo stimulation of cancer growth, are severely lacking. This results in a lack of effective cancer immunotherapy without adverse events, and in the lack of long-lasting cancer immune prophylaxes, particularly in ovarian cancers. Elimination of blood auto-antibodies blocking anti-cancer T cell effectors by intermittent moderate doses of cyclophosphamide, facilitation of the immune system reactivity against alloantigens of cancer cells by two subsequent blood transfusions, and augmentation of anticancer immunity by weekly intradermal injections of bacterial toxins, caused during the subsequent treatment-free period, lasting for two to four weeks, regression of inoperable epithelial ovarian cancers and regeneration of the tremendously metastatically altered abdominal tissues into normal healthy conditions without multivisceral cytoreductive surgery, which can result in life-threatening consequences. An otherwise untreated rectal cancer, progressing over 3 years, regressed after severe toxic dermatitis lasting over one week. This was caused by an accidental consumption of a large raw shiitake mushroom. Subsequent daily consumptions of 2 g Metformin ER and honeybee propolis ethanol extract, and weekly single larger raw shiitake mushroom, which all stimulate immune system reactivity against cancer stem cells, prevented malignant recurrence over the next 29 years without recurring dermatitis, and maintained healthy organism's conditions. These observations indicate that regression of advanced inoperable cancers and long-lasting cancer immune prophylaxis can be reached by simple approaches.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, Vestec, Czech Republic.
| |
Collapse
|
15
|
Nguyen VHL, Hough R, Bernaudo S, Peng C. Wnt/β-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. J Ovarian Res 2019; 12:122. [PMID: 31829231 PMCID: PMC6905042 DOI: 10.1186/s13048-019-0596-z] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest female malignancy. The Wnt/β-catenin pathway plays critical roles in regulating embryonic development and physiological processes. This pathway is tightly regulated to ensure its proper activity. In the absence of Wnt ligands, β-catenin is degraded by a destruction complex. When the pathway is stimulated by a Wnt ligand, β-catenin dissociates from the destruction complex and translocates into the nucleus where it interacts with TCF/LEF transcription factors to regulate target gene expression. Aberrant activation of this pathway, which leads to the hyperactivity of β-catenin, has been reported in ovarian cancer. Specifically, mutations of CTNNB1, AXIN, or APC, have been observed in the endometrioid and mucinous subtypes of EOC. In addition, upregulation of the ligands, abnormal activation of the receptors or intracellular mediators, disruption of the β-catenin destruction complex, inhibition of the association of β-catenin/E-cadherin on the cell membrane, and aberrant promotion of the β-catenin/TCF transcriptional activity, have all been reported in EOC, especially in the high grade serous subtype. Furthermore, several non-coding RNAs have been shown to regulate EOC development, in part, through the modulation of Wnt/β-catenin signalling. The Wnt/β-catenin pathway has been reported to promote cancer stem cell self-renewal, metastasis, and chemoresistance in all subtypes of EOC. Emerging evidence also suggests that the pathway induces ovarian tumor angiogenesis and immune evasion. Taken together, these studies demonstrate that the Wnt/β-catenin pathway plays critical roles in EOC development and is a strong candidate for the development of targeted therapies.
Collapse
Affiliation(s)
| | - Rebecca Hough
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, Ontario, Canada. .,Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Kashani B, Zandi Z, Bashash D, Zaghal A, Momeny M, Poursani EM, Pourbagheri-Sigaroodi A, Mousavi SA, Ghaffari SH. Small molecule inhibitor of TLR4 inhibits ovarian cancer cell proliferation: new insight into the anticancer effect of TAK-242 (Resatorvid). Cancer Chemother Pharmacol 2019; 85:47-59. [DOI: 10.1007/s00280-019-03988-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
|
17
|
Malekshah OM, Sarkar S, Nomani A, Patel N, Javidian P, Goedken M, Polunas M, Louro P, Hatefi A. Bioengineered adipose-derived stem cells for targeted enzyme-prodrug therapy of ovarian cancer intraperitoneal metastasis. J Control Release 2019; 311-312:273-287. [PMID: 31499084 PMCID: PMC6884134 DOI: 10.1016/j.jconrel.2019.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/05/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
The objective of this study was to develop a stem cell-based system for targeted suicide gene therapy of recurrent, metastatic, and unresectable ovarian cancer. Malignant cells were obtained from the ascites of a patient with advanced recurrent epithelial ovarian cancer (named OVASC-1). Cancer cells were characterized to determine the percentages of drug-resistant ALDH+ cells, MDR-1/ABCG2 overexpressing cells, and cancer stem-like cells. The sensitivity and resistance of the OVASC-1 cells and spheroids to the metabolites of three different enzyme/prodrug systems were assessed, and the most effective one was selected. Adipose-derived stem cells (ASCs) were genetically engineered to express recombinant secretory human carboxylesterase-2 and nanoluciferase genes for simultaneous disease therapy and quantitative imaging. Bioluminescent imaging, magnetic resonance imaging and immuno/histochemistry results show that the engineered ASCs actively targeted and localized at both tumor stroma and necrotic regions. This created the unique opportunity to deliver drugs to not only tumor supporting cells in the stroma, but also to cancer stem-like cells in necrotic/hypoxic regions. The statistical analysis of intraperitoneal OVASC-1 tumor burden and survival rates in mice shows that the administration of the bioengineered ASCs in combination with irinotecan prodrug in the designed sequence and timeline eradicated all intraperitoneal tumors and provided survival benefits. In contrast, treatment of the drug-resistant OVASC-1 tumors with cisplatin/paclitaxel (standard-of-care) did not have any statistically significant benefit. The histopathology and hematology results do not show any toxicity to major peritoneal organs. Our toxicity data in combination with efficacy outcomes delineate a nonsurgical and targeted stem cell-based approach to overcoming drug resistance in recurrent metastatic ovarian cancer.
Collapse
Affiliation(s)
- Obeid M Malekshah
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Siddik Sarkar
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Alireza Nomani
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Niket Patel
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Parisa Javidian
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Michael Goedken
- Rutgers Research Pathology Services, Rutgers University, Piscataway, 08854, NJ, USA
| | - Marianne Polunas
- Rutgers Research Pathology Services, Rutgers University, Piscataway, 08854, NJ, USA
| | - Pedro Louro
- Rutgers Research Pathology Services, Rutgers University, Piscataway, 08854, NJ, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA; Cancer Pharmacology Program, Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
18
|
Diaz Osterman CJ, Ozmadenci D, Kleinschmidt EG, Taylor KN, Barrie AM, Jiang S, Bean LM, Sulzmaier FJ, Jean C, Tancioni I, Anderson K, Uryu S, Cordasco EA, Li J, Chen XL, Fu G, Ojalill M, Rappu P, Heino J, Mark AM, Xu G, Fisch KM, Kolev VN, Weaver DT, Pachter JA, Győrffy B, McHale MT, Connolly DC, Molinolo A, Stupack DG, Schlaepfer DD. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. eLife 2019; 8:e47327. [PMID: 31478830 PMCID: PMC6721800 DOI: 10.7554/elife.47327] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Gene copy number alterations, tumor cell stemness, and the development of platinum chemotherapy resistance contribute to high-grade serous ovarian cancer (HGSOC) recurrence. Stem phenotypes involving Wnt-β-catenin, aldehyde dehydrogenase activities, intrinsic platinum resistance, and tumorsphere formation are here associated with spontaneous gains in Kras, Myc and FAK (KMF) genes in a new aggressive murine model of ovarian cancer. Adhesion-independent FAK signaling sustained KMF and human tumorsphere proliferation as well as resistance to cisplatin cytotoxicity. Platinum-resistant tumorspheres can acquire a dependence on FAK for growth. Accordingly, increased FAK tyrosine phosphorylation was observed within HGSOC patient tumors surviving neo-adjuvant chemotherapy. Combining a FAK inhibitor with platinum overcame chemoresistance and triggered cell apoptosis. FAK transcriptomic analyses across knockout and reconstituted cells identified 135 targets, elevated in HGSOC, that were regulated by FAK activity and β-catenin including Myc, pluripotency and DNA repair genes. These studies reveal an oncogenic FAK signaling role supporting chemoresistance.
Collapse
Affiliation(s)
- Carlos J Diaz Osterman
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Duygu Ozmadenci
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Elizabeth G Kleinschmidt
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Kristin N Taylor
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Allison M Barrie
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Shulin Jiang
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Lisa M Bean
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Florian J Sulzmaier
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Christine Jean
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Isabelle Tancioni
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Kristen Anderson
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Sean Uryu
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Edward A Cordasco
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | | | - Pekka Rappu
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Jyrki Heino
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Adam M Mark
- Department of MedicineUCSD Center for Computational Biology & BioinformaticsLa JollaUnited States
| | - Guorong Xu
- Department of MedicineUCSD Center for Computational Biology & BioinformaticsLa JollaUnited States
| | - Kathleen M Fisch
- Department of MedicineUCSD Center for Computational Biology & BioinformaticsLa JollaUnited States
| | | | | | | | - Balázs Győrffy
- Institute of EnzymologyHungarian Academy of SciencesBudapestHungary
- 2nd Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Michael T McHale
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | | | - Alfredo Molinolo
- Department of PathologyMoores UCSD Cancer CenterLa JollaUnited States
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| | - David D Schlaepfer
- Department of Obstetrics, Gynecology and Reproductive SciencesMoores UCSD Cancer CenterLa JollaUnited States
| |
Collapse
|
19
|
Pujade-Lauraine E, Banerjee S, Pignata S. Management of Platinum-Resistant, Relapsed Epithelial Ovarian Cancer and New Drug Perspectives. J Clin Oncol 2019; 37:2437-2448. [PMID: 31403868 DOI: 10.1200/jco.19.00194] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Eric Pujade-Lauraine
- ARCAGY-GINECO (Association de Recherche contre les Cancers dont Gynécologiques-Groupe des Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, gynécologiques et du sein), Paris, France
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Sandro Pignata
- Istituto Nazionale Tumori Fondazione G Pascale, Istituto di Ricovero e Cura a Carattere Scientifico, Napoli, Italy
| |
Collapse
|
20
|
Liu ZL, Li LF, Xia SS, Tian HP, Yan ZH, Zhang GJ, Zhou T, He Y. Chondroitin sulfate modification enhances the targeting and therapeutic effect of nanomedicine on AOM/DSS-induced mouse colon cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Zamarin D. Novel therapeutics: response and resistance in ovarian cancer. Int J Gynecol Cancer 2019; 29:s16-s21. [PMID: 31462544 PMCID: PMC7368996 DOI: 10.1136/ijgc-2019-000456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/16/2019] [Indexed: 11/04/2022] Open
Abstract
Here we review the latest pre-clinical and clinical developments for treatment of ovarian cancer, presented at the American Association of Cancer Research/Rivkin Center Ovarian Cancer Research Symposium held at the University of Washington in September 2018. Abstracts and presentations pertaining to the 'Novel Therapeutics' session were reviewed and are summarized here. The session featured a keynote presentation from Dr Ursula Matulonis, who summarized the current state of the art of treatment of ovarian cancer, including recent clinical trials incorporating the use of novel agents, including poly-ADP-ribose polymerase (PARP) inhibitors, other DNA-damaging agents, vascular endothelial growth factor receptor inhibitors, mirvetuximab soravtansine, and immune checkpoint blockade. Dr Jung-Min Lee then summarized the rationale and the results of early studies for targeting cell cycle checkpoint kinases for anti-cancer therapy. Eight submissions were selected for oral presentations, and 36 abstracts were presented as posters. The topics covered a range of clinical and pre-clinical strategies and biomarkers, including immunotherapy, mechanisms of chemotherapy, and PARP inhibitor resistance, DNA-damaging agents, and other novel therapeutic strategies. Key studies have highlighted that resistance to chemotherapy and PARP inhibitors remain a major challenge in therapy of ovarian cancer. Cancer stem cells represent an important mechanism of chemoresistance and strategies to target these cells may be a pathway to prevention of ovarian cancer relapse. Advancement of novel therapeutics targeting DNA damage, cell metabolism, and endoplasmic reticulum present some of the novel strategies in the pipeline. Emerging compelling pre-clinical data with novel antibody-drug conjugates targeting various surface receptors in ovarian cancer alone and in combination with immune checkpoint blockade generate a strong enthusiasm for rapid translation of these strategies to clinic.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
22
|
Shang S, Yang J, Jazaeri AA, Duval AJ, Tufan T, Lopes Fischer N, Benamar M, Guessous F, Lee I, Campbell RM, Ebert PJ, Abbas T, Landen CN, Difeo A, Scacheri PC, Adli M. Chemotherapy-Induced Distal Enhancers Drive Transcriptional Programs to Maintain the Chemoresistant State in Ovarian Cancer. Cancer Res 2019; 79:4599-4611. [PMID: 31358529 DOI: 10.1158/0008-5472.can-19-0215] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/05/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Abstract
Chemoresistance is driven by unique regulatory networks in the genome that are distinct from those necessary for cancer development. Here, we investigate the contribution of enhancer elements to cisplatin resistance in ovarian cancers. Epigenome profiling of multiple cellular models of chemoresistance identified unique sets of distal enhancers, super-enhancers (SE), and their gene targets that coordinate and maintain the transcriptional program of the platinum-resistant state in ovarian cancer. Pharmacologic inhibition of distal enhancers through small-molecule epigenetic inhibitors suppressed the expression of their target genes and restored cisplatin sensitivity in vitro and in vivo. In addition to known drivers of chemoresistance, our findings identified SOX9 as a critical SE-regulated transcription factor that plays a critical role in acquiring and maintaining the chemoresistant state in ovarian cancer. The approach and findings presented here suggest that integrative analysis of epigenome and transcriptional programs could identify targetable key drivers of chemoresistance in cancers. SIGNIFICANCE: Integrative genome-wide epigenomic and transcriptomic analyses of platinum-sensitive and -resistant ovarian lines identify key distal regulatory regions and associated master regulator transcription factors that can be targeted by small-molecule epigenetic inhibitors.
Collapse
Affiliation(s)
- Stephen Shang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jiekun Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander James Duval
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Turan Tufan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Natasha Lopes Fischer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Mouadh Benamar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Fadila Guessous
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Inyoung Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert M Campbell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Philip J Ebert
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Charles N Landen
- Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Analisa Difeo
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
23
|
Ovarian Cancer Stem Cells: Role in Metastasis and Opportunity for Therapeutic Targeting. Cancers (Basel) 2019; 11:cancers11070934. [PMID: 31277278 PMCID: PMC6678643 DOI: 10.3390/cancers11070934] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 02/08/2023] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Cancer stem cells (CSCs) that exist within the bulk tumor survive first-line chemotherapy and contribute to resistant disease with metastasis. Understanding the key features of CSC biology provides valuable opportunities to develop OCSC-directed therapeutics, which will eventually improve the clinical outcomes of patients. Although significant developments have occurred since OCSCs were first described, the involvement of CSCs in ovarian tumor metastasis is not fully understood. Here, we discuss putative CSC markers and the fundamental role of CSCs in facilitating tumor dissemination in OC. Additionally, we focus on promising CSC-targeting strategies in preclinical and clinical studies of OC and discuss potential challenges in CSC research.
Collapse
|
24
|
Ovarian Cancer Stemness: Biological and Clinical Implications for Metastasis and Chemotherapy Resistance. Cancers (Basel) 2019; 11:cancers11070907. [PMID: 31261739 PMCID: PMC6678827 DOI: 10.3390/cancers11070907] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/04/2023] Open
Abstract
Epithelial ovarian cancer is a highly lethal gynecological malignancy that is characterized by the early development of disseminated metastasis. Though ovarian cancer has been generally considered to preferentially metastasize via direct transcoelomic dissemination instead of the hematogenous route, emerging evidence has indicated that the hematogenous spread of cancer cells plays a larger role in ovarian cancer metastasis than previously thought. Considering the distinctive biology of ovarian cancer, an in-depth understanding of the biological and molecular mechanisms that drive metastasis is critical for developing effective therapeutic strategies against this fatal disease. The recent “cancer stem cell theory” postulates that cancer stem cells are principally responsible for tumor initiation, metastasis, and chemotherapy resistance. Even though the hallmarks of ovarian cancer stem cells have not yet been completely elucidated, metastasized ovarian cancer cells, which have a high degree of chemoresistance, seem to manifest cancer stem cell properties and play a key role during relapse at metastatic sites. Herein, we review our current understanding of the cell-biological mechanisms that regulate ovarian cancer metastasis and chemotherapy resistance, with a pivotal focus on ovarian cancer stem cells, and discuss the potential clinical implications of evolving cancer stem cell research and resultant novel therapeutic approaches.
Collapse
|
25
|
Klapdor R, Wang S, Morgan M, Dörk T, Hacker U, Hillemanns P, Büning H, Schambach A. Characterization of a Novel Third-Generation Anti-CD24-CAR against Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20030660. [PMID: 30717444 PMCID: PMC6387114 DOI: 10.3390/ijms20030660] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 01/07/2023] Open
Abstract
Novel therapeutic approaches against ovarian cancer (OC) are urgently needed because of its high rate of recurrence even after extensive surgery and multi-agent chemotherapy. We aimed to develop a novel anti-CD24 chimeric antigen receptor (CAR) as an immunotherapeutic approach against OC cells and cancer stem cells (CSC). CSC represents a subpopulation of the tumor characterized by enhanced chemoresistance as well as the increased capability of self-renewal and metastasis. We designed a codon-optimized third-generation CAR containing the highly active single chain variable fragment (scFv) “SWA11” against CD24. We equipped the human NK-cell line NK-92 with the anti-CD24 CAR and an anti-CD19 control CAR using lentiviral transduction. Engineered NK-92 cells showed high cytotoxic activity against CD24-positive OC cell lines (SKOV3, OVCAR3). This effect was restricted to CD24-expressing cells as shown after lentiviral transduction of CD24-negative cell lines (A2780, HEK-293T) with CD24 transmembrane proteins. Additionally, NK-92 cells equipped with our novel anti-CD24 CAR were highly effective against patient-derived primary ovarian cancer cells. The activation of NK cells was shown by specific IFNγ secretion upon antigen stimulation. To further reduce possible off-target effects in vivo, we applied a dual-CAR approach using an anti-CD24-CD28-41BB fusion protein linked via a 2A sequence to an anti-mesothelin-CD3ζ-CAR. The dual-CAR was simultaneously active against CD24 and mesothelin expressing cells. Our novel anti-CD24-CAR showed a highly cytotoxic effect against OC cell lines and primary OC cells and will be evaluated in future in vivo trials as a promising immunotherapeutic approach against OC.
Collapse
Affiliation(s)
- Rüdiger Klapdor
- Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany.
- Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany.
| | - Shuo Wang
- Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany.
- Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| | - Michael Morgan
- Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany.
| | - Thilo Dörk
- Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany.
| | - Ulrich Hacker
- Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, 04103 Leipzig, Germany.
| | - Peter Hillemanns
- Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany.
| | - Hildegard Büning
- Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany.
| | - Axel Schambach
- Institute for Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Winterhoff B, Talukdar S, Chang Z, Wang J, Starr TK. Single-cell sequencing in ovarian cancer: a new frontier in precision medicine. Curr Opin Obstet Gynecol 2019; 31:49-55. [DOI: 10.1097/gco.0000000000000516] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Targeting Mitochondria for Treatment of Chemoresistant Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20010229. [PMID: 30626133 PMCID: PMC6337358 DOI: 10.3390/ijms20010229] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancy in the Western world. This is due, in part, to the fact that despite standard treatment of surgery and platinum/paclitaxel most patients recur with ultimately chemoresistant disease. Ovarian cancer is a unique form of solid tumor that develops, metastasizes and recurs in the same space, the abdominal cavity, which becomes a unique microenvironment characterized by ascites, hypoxia and low glucose levels. It is under these conditions that cancer cells adapt and switch to mitochondrial respiration, which becomes crucial to their survival, and therefore an ideal metabolic target for chemoresistant ovarian cancer. Importantly, independent of microenvironmental factors, mitochondria spatial redistribution has been associated to both tumor metastasis and chemoresistance in ovarian cancer while specific sets of genetic mutations have been shown to cause aberrant dependence on mitochondrial pathways in the most aggressive ovarian cancer subtypes. In this review we summarize on targeting mitochondria for treatment of chemoresistant ovarian cancer and current state of understanding of the role of mitochondria respiration in ovarian cancer. We feel this is an important and timely topic given that ovarian cancer remains the deadliest of the gynecological diseases, and that the mitochondrial pathway has recently emerged as critical in sustaining solid tumor progression.
Collapse
|
28
|
|
29
|
Binju M, Padilla MA, Singomat T, Kaur P, Suryo Rahmanto Y, Cohen PA, Yu Y. Mechanisms underlying acquired platinum resistance in high grade serous ovarian cancer - a mini review. Biochim Biophys Acta Gen Subj 2018; 1863:371-378. [PMID: 30423357 DOI: 10.1016/j.bbagen.2018.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Advanced epithelial ovarian cancer is one of the hardest human malignancies to treat. Standard treatment involves cytoreductive surgery and platinum-based chemotherapy, however, median progression-free survival for patients diagnosed with advanced stage disease (FIGO stages III and IV) is approximately 18 months. There has been little improvement in overall survival over the past decade and less than half of women with advanced stage disease will be living 5 years after diagnosis. A majority of patients initially have a favourable response to platinum-based chemotherapy, but most will eventually relapse and their disease will become platinum resistant. SCOPE OF REVIEW Here, we review our current understanding of mechanisms that promote recurrence and acquired resistance in epithelial ovarian cancer with particular focus on studies that describe differences observed between untreated primary tumors and recurrent tumors, post-first-line chemotherapy. Multiple molecular mechanisms contribute to recurrence in patients following initial treatment for advanced epithelial ovarian cancer including those involving the tumor microenvironment, tumor immune status, cancer stem cells, DNA repair/cell survival pathways and extracellular matrix. MAJOR CONCLUSIONS Due to the adaptive nature of recurrent tumors, the major contributing and specific resistance pattern may largely depend on the nature of the primary tumor itself. GENERAL SIGNIFICANCE Future work that aims to elucidate the complex pattern of acquired resistance will be useful for predicting chemotherapy response/recurrence following primary diagnosis and to develop novel treatment strategies to improve the survival of patients with advanced epithelial ovarian cancer, especially in tumors not harbouring homologous DNA recombination repair deficiencies.
Collapse
Affiliation(s)
- Mudra Binju
- School of Pharmacy and Biomedical Sciences, Curtin University, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Monica Amaya Padilla
- School of Pharmacy and Biomedical Sciences, Curtin University, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Terence Singomat
- School of Pharmacy and Biomedical Sciences, Curtin University, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Pritinder Kaur
- School of Pharmacy and Biomedical Sciences, Curtin University, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States
| | - Paul A Cohen
- Division of Obstetrics and Gynaecology, Faculty of Health and Medicine, University of Western Australia, Crawley, Western Australia, Australia; Department of Gynaecologic Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Curtin University, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia.
| |
Collapse
|
30
|
Simpkins F, Jang K, Yoon H, Hew KE, Kim M, Azzam DJ, Sun J, Zhao D, Ince TA, Liu W, Guo W, Wei Z, Zhang G, Mills GB, Slingerland JM. Dual Src and MEK Inhibition Decreases Ovarian Cancer Growth and Targets Tumor Initiating Stem-Like Cells. Clin Cancer Res 2018; 24:4874-4886. [PMID: 29959144 PMCID: PMC6557165 DOI: 10.1158/1078-0432.ccr-17-3697] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/06/2018] [Accepted: 06/28/2018] [Indexed: 01/06/2023]
Abstract
Purpose: Rational targeted therapies are needed for treatment of ovarian cancers. Signaling kinases Src and MAPK are activated in high-grade serous ovarian cancer (HGSOC). Here, we tested the frequency of activation of both kinases in HGSOC and the therapeutic potential of dual kinase inhibition.Experimental Design: MEK and Src activation was assayed in primary HGSOC from The Cancer Genome Atlas (TGGA). Effects of dual kinase inhibition were assayed on cell-cycle, apoptosis, gene, and proteomic analysis; cancer stem cells; and xenografts.Results: Both Src and MAPK are coactivated in 31% of HGSOC, and this associates with worse overall survival on multivariate analysis. Frequent dual kinase activation in HGSOC led us to assay the efficacy of combined Src and MEK inhibition. Treatment of established lines and primary ovarian cancer cultures with Src and MEK inhibitors saracatinib and selumetinib, respectively, showed target kinase inhibition and synergistic induction of apoptosis and cell-cycle arrest in vitro, and tumor inhibition in xenografts. Gene expression and proteomic analysis confirmed cell-cycle inhibition and autophagy. Dual therapy also potently inhibited tumor-initiating cells. Src and MAPK were both activated in tumor-initiating populations. Combination treatment followed by drug washout decreased sphere formation and ALDH1+ cells. In vivo, tumors dissociated after dual therapy showed a marked decrease in ALDH1 staining, sphere formation, and loss of tumor-initiating cells upon serial xenografting.Conclusions: Selumetinib added to saracatinib overcomes EGFR/HER2/ERBB2-mediated bypass activation of MEK/MAPK observed with saracatinib alone and targets tumor-initiating ovarian cancer populations, supporting further evaluation of combined Src-MEK inhibition in clinical trials. Clin Cancer Res; 24(19); 4874-86. ©2018 AACR.
Collapse
Affiliation(s)
- Fiona Simpkins
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.
- Department of Obstetrics & Gynecology, University of Miami, Miami, Florida
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics & Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kibeom Jang
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida
| | - Hyunho Yoon
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Karina E Hew
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Department of Obstetrics & Gynecology, University of Miami, Miami, Florida
| | - Minsoon Kim
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida
| | - Diana J Azzam
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida
| | - Jun Sun
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Dekuang Zhao
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Tan A Ince
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida
| | - Wenbin Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Gao Zhang
- Wistar Institute, Philadelphia, Pennsylvania
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joyce M Slingerland
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida
- Department of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
31
|
Ding Q, Wang Q, Ren Y, Zhu H, Huang Z. miR-126 promotes the growth and proliferation of leukemia stem cells by targeting DNA methyltransferase 1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3454-3462. [PMID: 31949723 PMCID: PMC6962833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 06/10/2023]
Abstract
Previous studies have showed that the interaction between microRNAs (miRNAs) and leukemia stem cells (LSCs) may be a cause of drug resistance of acute myeloid leukemia (AML). However, whether miR-126 participates in the pathogenesis of AML remains unclear. In our study, we first examined the expression of miR-126 in CD34+ or CD34- cells isolated from blood samples and LSC cell line: KG-1a-LSCs and MOLM13-LSCs by qRT-PCR analysis. Then miR-126 inhibitor and mimics were applied to evaluate the roles of miR-126 in cell proliferation of LSC cell lines using CCK-8 assay and Ki-67 staining. Moreover, flow cytometry analysis was used to assess the apoptosis of LSC cell lines treated with miR-126 inhibitor of mimics. In addition, we analyzed the relationship between miR-126 and DNA methyltransferase 1 (DNMT1) by bioinformatics analysis and dual-luciferase reporter assay. Western blot analysis was applied to examine the protein expression level of DNMT1 in miR-126 mimics treated LSC cells. Results showed that miR-126 expression was significantly higher in CD34+ cells and KG-1a-LSCs and MOLM13-LSCs. Knockdown of miR-126 in KG-1a-LSCs and MOLM13-LSCs inhibited cell proliferation, and promoted apoptosis. miR-126 could regulate DNA methyltransferase 1 (DNMT1) expression by directly binding to it. In conclusion, these findings suggested that miR-126 may promote cell proliferation of LSCs by targeting DNMT1.
Collapse
Affiliation(s)
- Qian Ding
- Department of Hematopathology, Guizhou Provincial People's Hospital Guiyang, Guizhou Province, China
| | - Qing Wang
- Department of Hematopathology, Guizhou Provincial People's Hospital Guiyang, Guizhou Province, China
| | - Yi Ren
- Department of Hematopathology, Guizhou Provincial People's Hospital Guiyang, Guizhou Province, China
| | - Hongqian Zhu
- Department of Hematopathology, Guizhou Provincial People's Hospital Guiyang, Guizhou Province, China
| | - Zhujun Huang
- Department of Hematopathology, Guizhou Provincial People's Hospital Guiyang, Guizhou Province, China
| |
Collapse
|
32
|
Ruscito I, Darb-Esfahani S, Kulbe H, Bellati F, Zizzari IG, Rahimi Koshkaki H, Napoletano C, Caserta D, Rughetti A, Kessler M, Sehouli J, Nuti M, Braicu EI. The prognostic impact of cancer stem-like cell biomarker aldehyde dehydrogenase-1 (ALDH1) in ovarian cancer: A meta-analysis. Gynecol Oncol 2018; 150:151-157. [DOI: 10.1016/j.ygyno.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
|
33
|
Hoare J, Campbell N, Carapuça E. Oncolytic virus immunotherapies in ovarian cancer: moving beyond adenoviruses. Porto Biomed J 2018; 3:e7. [PMID: 31595233 PMCID: PMC6726300 DOI: 10.1016/j.pbj.0000000000000007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the 5th most common cancer in UK women with a high relapse rate. The overall survival for ovarian cancer has remained low for decades prompting a real need for new therapies. Recurrent ovarian cancer remains confined in the peritoneal cavity in >80% of the patients, providing an opportunity for locoregional administration of novel therapeutics, including gene and viral therapy approaches. Immunotherapy is an expanding field, and includes oncolytic viruses as well as monoclonal antibodies, immune checkpoint inhibitors, and therapeutic vaccines. Oncolytic viruses cause direct cancer cell cytolysis and immunogenic cell death and subsequent release of tumor antigens that will prime for a potent tumor-specific immunity. This effect may be further enhanced when the viruses are engineered to express, or coadministered with, immunostimulatory molecules. Currently, the most commonly used and well-characterized vectors utilized for virotherapy purposes are adenoviruses. They have been shown to work synergistically with traditional chemotherapy and radiotherapy and have met with success in clinical trials. However, pre-existing immunity and poor in vivo models limit our ability to fully investigate the potential of oncolytic adenovirus as effective immunotherapies which in turn fosters the need to develop alternative viral vectors. In this review we cover recent advances in adenovirus-based oncolytic therapies targeting ovarian cancer and recent advances in mapping immune responses to oncolytic virus therapies in ovarian cancer.
Collapse
Affiliation(s)
- Joseph Hoare
- Centre for Molecular Oncology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Nicola Campbell
- Centre for Molecular Oncology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Elisabete Carapuça
- Centre for Molecular Oncology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
34
|
Sarkar S, Malekshah OM, Nomani A, Patel N, Hatefi A. A novel chemotherapeutic protocol for peritoneal metastasis and inhibition of relapse in drug resistant ovarian cancer. Cancer Med 2018; 7:3630-3641. [PMID: 29926538 PMCID: PMC6089146 DOI: 10.1002/cam4.1631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022] Open
Abstract
The majority of ovarian cancer patients are diagnosed in late stages of the disease, in which the tumor cells have leaked into the peritoneum and are present as tumorspheres. These tumorspheres are rich in cancer stem‐like cells (CSCs), which are resistant to therapy and are a major source of relapse. The purpose of this research was to identify a safe therapeutic approach that could eradicate the peritoneal CSC‐rich tumorspheres and inhibit relapse. Highly metastatic ascitic cells (OVASC‐1) that are resistant to standard‐of‐care chemotherapy due to upregulation of MDR1 gene were obtained from a patient with ovarian carcinoma and recurrent disease. CSC‐rich tumorspheres were generated, characterized, and treated with different chemotherapeutics. The most effective drug combination that could eradicate tumorspheres at nanomolar levels despite upregulation of MDR1 gene was identified. Luciferase‐expressing OVASC‐1 cells were implanted in the peritoneum of nude mice and treated with the identified drug combination. The progression of disease, response to therapy and recurrence were studied by quantitative imaging. Toxicity to abdominal tissues was studied by histopathology. Mice implanted with intraperitoneal (IP) OVASC‐1 xenografts showed limited response to combination therapy with cisplatin/paclitaxel at the maximum tolerated dose. Despite overexpression of MDR1 on OVASC‐1 cells, mice treated with our combination IP low‐dose MMAE and SN‐38 chemotherapy showed complete response without relapse. No signs of toxicity to abdominal tissues were observed. While MMAE and SN‐38 are not administered as free drugs due to their high potency and potential for systemic toxicity, our low‐dose localized therapy approach effectively restricted the cytotoxic effects to the tumor cells in the peritoneum. Consequently, maximum efficacy with minimal adverse effects was achieved. These remarkable results with IP low‐dose combination chemotherapy encourage investigation into its potential clinical application as either first‐line therapy or in cases of acquired resistance to cisplatin and paclitaxel.
Collapse
Affiliation(s)
- Siddik Sarkar
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Obeid M Malekshah
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Alireza Nomani
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Niket Patel
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
35
|
Zhang T, Xu J, Deng S, Zhou F, Li J, Zhang L, Li L, Wang QE, Li F. Core signaling pathways in ovarian cancer stem cell revealed by integrative analysis of multi-marker genomics data. PLoS One 2018; 13:e0196351. [PMID: 29723215 PMCID: PMC5933740 DOI: 10.1371/journal.pone.0196351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor recurrence occurs in more than 70% of ovarian cancer patients, and the majority eventually becomes refractory to treatments. Ovarian Cancer Stem Cells (OCSCs) are believed to be responsible for the tumor relapse and drug resistance. Therefore, eliminating ovarian CSCs is important to improve the prognosis of ovarian cancer patients. However, there is a lack of effective drugs to eliminate OCSCs because the core signaling pathways regulating OCSCs remain unclear. Also it is often hard for biologists to identify a few testable targets and infer driver signaling pathways regulating CSCs from a large number of differentially expression genes in an unbiased manner. In this study, we propose a straightforward and integrative analysis to identify potential core signaling pathways of OCSCs by integrating transcriptome data of OCSCs isolated based on two distinctive markers, ALDH and side population, with regulatory network (Transcription Factor (TF) and Target Interactome) and signaling pathways. We first identify the common activated TFs in two OCSC populations integrating the gene expression and TF-target Interactome; and then uncover up-stream signaling cascades regulating the activated TFs. In specific, 22 activated TFs are identified. Through literature search validation, 15 of them have been reported in association with cancer stem cells. Additionally, 10 TFs are found in the KEGG signaling pathways, and their up-stream signaling cascades are extracted, which also provide potential treatment targets. Moreover, 40 FDA approved drugs are identified to target on the up-stream signaling cascades, and 15 of them have been reported in literatures in cancer stem cell treatment. In conclusion, the proposed approach can uncover the activated up-stream signaling, activated TFs and up-regulated target genes that constitute the potential core signaling pathways of ovarian CSC. Also drugs and drug combinations targeting on the core signaling pathways might be able to eliminate OCSCs. The proposed approach can also be applied for identifying potential activated signaling pathways of other types of cancers.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of BioMedical Informatics (BMI), The Ohio State University, Columbus, Ohio, United States of America
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| | - Jielin Xu
- Department of BioMedical Informatics (BMI), The Ohio State University, Columbus, Ohio, United States of America
| | - Siyuan Deng
- Department of BioMedical Informatics (BMI), The Ohio State University, Columbus, Ohio, United States of America
| | - Fengqi Zhou
- Department of BioMedical Informatics (BMI), The Ohio State University, Columbus, Ohio, United States of America
| | - Jin Li
- Department of BioMedical Informatics (BMI), The Ohio State University, Columbus, Ohio, United States of America
| | - Liwei Zhang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| | - Lang Li
- Department of BioMedical Informatics (BMI), The Ohio State University, Columbus, Ohio, United States of America
| | - Qi-En Wang
- Department of Radiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Fuhai Li
- Department of BioMedical Informatics (BMI), The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Mi Y, Huang Y, Deng J. The enhanced delivery of salinomycin to CD133 + ovarian cancer stem cells through CD133 antibody conjugation with poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles. Oncol Lett 2018; 15:6611-6621. [PMID: 29725407 DOI: 10.3892/ol.2018.8140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and ovarian cancer stem cells (CSCs) serve a pivotal function in the metastasis and recurrence of ovarian cancer. Multiple previous studies have validated CD133 as a marker of ovarian CSCs. Although salinomycin is a promising therapeutic agent that has been demonstrated to kill CSCs in various types of cancer, poor aqueous solubility hampers its clinical application. The present study used salinomycin-loaded poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles conjugated with CD133 antibodies (CD133-SAL-NP) to eliminate CD133+ ovarian CSCs. The results revealed that CD133-SAL-NPs were of an appropriate size (149.2 nm) and exhibited sustained drug release. CD133-SAL-NPs efficiently bound to CD133+ ovarian cancer cells, resulting in an increased cytotoxic effect in CD133+ ovarian cancer cells, compared with the untargeted SAL-NPs and salinomycin. CD133-SAL-NPs reduced the percentage of CD133+ ovarian CSCs in ovarian cells more effectively than treatment with salinomycin or SAL-NPs, suggesting that CD133-SAL-NP targeted CD133+ ovarian CSCs. In nude mice bearing ovarian cancer xenografts, CD133-SAL-NPs exerted improved therapeutic effects compared with SAL-NPs and salinomycin. Thus, CD133 was demonstrated to be a promising target for drug delivery to ovarian CSCs, and may be useful as an agent to inhibit the growth of ovarian cancer by targeting CD133+ ovarian CSCs. CD133-SAL-NPs may therefore represent a promising approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yi Mi
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Yuqin Huang
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China.,Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Deng
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
37
|
Choi YJ, Gurunathan S, Kim JH. Graphene Oxide-Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs): A Novel Approach for Cancer Therapy. Int J Mol Sci 2018; 19:E710. [PMID: 29494563 PMCID: PMC5877571 DOI: 10.3390/ijms19030710] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 01/06/2023] Open
Abstract
The use of graphene to target and eliminate cancer stem cells (CSCs) is an alternative approach to conventional chemotherapy. We show the biomolecule-mediated synthesis of reduced graphene oxide-silver nanoparticle nanocomposites (rGO-Ag) using R-phycoerythrin (RPE); the resulting RPE-rGO-Ag was evaluated in human ovarian cancer cells and ovarian cancer stem cells (OvCSCs). The synthesized RPE-rGO-Ag nanocomposite (referred to as rGO-Ag) was characterized using various analytical techniques. rGO-Ag showed significant toxicity towards both ovarian cancer cells and OvCSCs. After 3 weeks of incubating OvCSCs with rGO-Ag, the number of A2780 and ALDH⁺CD133⁺ colonies was significantly reduced. rGO-Ag was toxic to OvCSCs and reduced cell viability by mediating the generation of reactive oxygen species, leakage of lactate dehydrogenase, reduced mitochondrial membrane potential, and enhanced expression of apoptotic genes, leading to mitochondrial dysfunction and possibly triggering apoptosis. rGO-Ag showed significant cytotoxic potential towards highly tumorigenic ALDH⁺CD133⁺ cells. The combination of rGO-Ag and salinomycin induced 5-fold higher levels of apoptosis than each treatment alone. A combination of rGO-Ag and salinomycin at very low concentrations may be suitable for selectively killing OvCSCs and sensitizing tumor cells. rGO-Ag may be a novel nano-therapeutic molecule for specific targeting of highly tumorigenic ALDH⁺CD133⁺ cells and eliminating CSCs. This study highlights the potential for targeted therapy of tumor-initiating cells.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
38
|
Zhao X, Liu X, Wang G, Wen X, Zhang X, Hoffman AR, Li W, Hu JF, Cui J. Loss of insulin-like growth factor II imprinting is a hallmark associated with enhanced chemo/radiotherapy resistance in cancer stem cells. Oncotarget 2018; 7:51349-51364. [PMID: 27275535 PMCID: PMC5239480 DOI: 10.18632/oncotarget.9784] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/13/2016] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor II (IGF2) is maternally imprinted in most tissues, but the epigenetic regulation of the gene in cancer stem cells (CSCs) has not been defined. To study the epigenetic mechanisms underlying self-renewal, we isolated CSCs and non-CSCs from colon cancer (HT29, HRT18, HCT116), hepatoma (Hep3B), breast cancer (MCF7) and prostate cancer (ASPC) cell lines. In HT29 and HRT18 cells that show loss of IGF2 imprinting (LOI), IGF2 was biallelically expressed in the isolated CSCs. Surprisingly, we also found loss of IGF2 imprinting in CSCs derived from cell lines HCT116 and ASPC that overall demonstrate maintenance of IGF2 imprinting. Using chromatin conformation capture (3C), we found that intrachromosomal looping between the IGF2 promoters and the imprinting control region (ICR) was abrogated in CSCs, in parallel with loss of IGF2 imprinting in these CSCs. Loss of imprinting led to increased IGF2 expression in CSCs, which have a higher rate of colony formation and greater resistance to chemotherapy and radiotherapy in vitro. These studies demonstrate that IGF2 LOI is a common feature in CSCs, even when the stem cells are derived from a cell line in which the general population of cells maintain IGF2 imprinting. This finding suggests that aberrant IGF2 imprinting may be an intrinsic epigenetic control mechanism that enhances stemness, self-renewal and chemo/radiotherapy resistance in cancer stem cells.
Collapse
Affiliation(s)
- Xin Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiaoliang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guanjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xue Wen
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiaoying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Andrew R Hoffman
- Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ji-Fan Hu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
39
|
You Y, Li Y, Li M, Lei M, Wu M, Qu Y, Yuan Y, Chen T, Jiang H. Ovarian cancer stem cells promote tumour immune privilege and invasion via CCL5 and regulatory T cells. Clin Exp Immunol 2018; 191:60-73. [PMID: 28868628 PMCID: PMC5721255 DOI: 10.1111/cei.13044] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence indicates a link between the increased proportion of regulatory T cells (Tregs ) and reduced survival in patients who have been diagnosed with cancer. Cancer stem cells (CSCs) have been indicated to play a vital role in tumour initiation, drug resistance and recurrence. However, the relationship between Tregs and CSCs remains largely unknown. Here, we sorted out ovarian cancer stem-like side population (SP) cells and CD133+ cells to investigate the influence of ovarian CSCs on Tregs . Among the various immune-related molecules that we assessed, C-C motif chemokine ligand 5 (CCL5) was the most elevated in ovarian CSCs relative to that in the non-CSCs. The expression of its receptor, C-C motif chemokine receptor 5 (CCR5), was also increased on the surface of Tregs in ovarian cancer patients. This receptor-ligand expression profile indicated that ovarian CSCs recruit Tregs via CCL5-CCR5 interactions. We further assessed the expression of interleukin (IL)-10 in Tregs cultured with different cancer cells. Tregs cultured in conditioned medium (CM) from ovarian CD133+ cells expressed a higher level of IL-10 than Tregs cultured in CM from CD133- cells, indicating that Tregs exert pronounced immune-inhibitory functions in CSC-rich environments. Furthermore, co-culture with ovarian cancer cell lines induced the expression of matrix metalloproteinase-9 (MMP9) in Tregs which, in turn, enhanced the degradation of the extracellular matrix and enabled the invasion of tumour cells, thereby facilitating tumour metastasis. For the first time, to our knowledge, our findings describe the relationship between ovarian CSCs and Tregs , and demonstrated that these two cell populations co-operate to promote tumour immune tolerance and enhance tumour progression.
Collapse
Affiliation(s)
- Y. You
- Department of GynecologyObstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
| | - Y. Li
- Department of GynecologyObstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
| | - M. Li
- Department of GynecologyObstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
| | - M. Lei
- Department of GynecologyObstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
| | - M. Wu
- Department of HematologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Y. Qu
- Department of HematologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Y. Yuan
- Department of HematologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - T. Chen
- Department of HematologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - H. Jiang
- Department of GynecologyObstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
40
|
Pistollato F, Calderón Iglesias R, Ruiz R, Aparicio S, Crespo J, Dzul Lopez L, Giampieri F, Battino M. The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett 2017; 411:191-200. [PMID: 29017913 DOI: 10.1016/j.canlet.2017.09.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Among gynaecological cancers, ovarian cancer represents the leading cause of death in women. Current treatment for ovarian cancer entails surgery followed by combined chemotherapy with platinum and taxane, which are associated, particularly cisplatin, with severe side effects. While this treatment approach appears to be initially effective in a high number of patients, nearly 70% of them suffer a relapse within a few months after initial treatment. Therefore, more effective and better-tolerated treatment options are clearly needed. In recent years, several natural compounds (such as curcumin, epigallocatechin 3-gallate (EGCG), resveratrol, sulforaphane and Withaferin-A), characterized by long-term safety and negligible and/or inexistent side effects, have been proposed as possible adjuvants of traditional chemotherapy. Indeed, several in vitro and in vivo studies have shown that phytocompounds can effectively inhibit tumor cell proliferation, stimulate autophagy, induce apoptosis, and specifically target ovarian cancer stem cells (CSCs), which are generally considered to be responsible for tumor recurrence in several types of cancer. Here we review current literature on the role of natural products in ovarian cancer chemoprevention, highlighting their effects particularly on the regulation of inflammation, autophagy, proliferation and apoptosis, chemotherapy resistance, and ovarian CSC growth.
Collapse
Affiliation(s)
- Francesca Pistollato
- Centre for Nutrition and Health, Universidad Europea Del Atlántico (UEA), Santander, Spain
| | | | - Roberto Ruiz
- Centre for Nutrition and Health, Universidad Europea Del Atlántico (UEA), Santander, Spain
| | - Silvia Aparicio
- Centre for Nutrition and Health, Universidad Europea Del Atlántico (UEA), Santander, Spain
| | - Jorge Crespo
- Centre for Nutrition and Health, Universidad Europea Del Atlántico (UEA), Santander, Spain
| | - Luis Dzul Lopez
- Universidad Internacional Iberoamericana (UNINI), Campeche, Mexico
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche, Sez. Biochimica, Università Politecnica Delle Marche, Ancona, Italy.
| | - Maurizio Battino
- Centre for Nutrition and Health, Universidad Europea Del Atlántico (UEA), Santander, Spain; Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche, Sez. Biochimica, Università Politecnica Delle Marche, Ancona, Italy.
| |
Collapse
|
41
|
Jang K, Kim M, Gilbert CA, Simpkins F, Ince TA, Slingerland JM. VEGFA activates an epigenetic pathway upregulating ovarian cancer-initiating cells. EMBO Mol Med 2017; 9:304-318. [PMID: 28179359 PMCID: PMC5331266 DOI: 10.15252/emmm.201606840] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The angiogenic factor, VEGFA, is a therapeutic target in ovarian cancer (OVCA). VEGFA can also stimulate stem‐like cells in certain cancers, but mechanisms thereof are poorly understood. Here, we show that VEGFA mediates stem cell actions in primary human OVCA culture and OVCA lines via VEGFR2‐dependent Src activation to upregulate Bmi1, tumor spheres, and ALDH1 activity. The VEGFA‐mediated increase in spheres was abrogated by Src inhibition or SRC knockdown. VEGFA stimulated sphere formation only in the ALDH1+ subpopulation and increased OVCA‐initiating cells and tumor formation in vivo through Bmi1. In contrast to its action in hemopoietic malignancies, DNA methyl transferase 3A (DNMT3A) appears to play a pro‐oncogenic role in ovarian cancer. VEGFA‐driven Src increased DNMT3A leading to miR‐128‐2 methylation and upregulation of Bmi1 to increase stem‐like cells. SRC knockdown was rescued by antagomir to miR‐128. DNMT3A knockdown prevented VEGFA‐driven miR‐128‐2 loss, and the increase in Bmi1 and tumor spheres. Analysis of over 1,300 primary human OVCAs revealed an aggressive subset in which high VEGFA is associated with miR‐128‐2 loss. Thus, VEGFA stimulates OVCA stem‐like cells through Src‐DNMT3A‐driven miR‐128‐2 methylation and Bmi1 upregulation.
Collapse
Affiliation(s)
- Kibeom Jang
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Minsoon Kim
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Candace A Gilbert
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fiona Simpkins
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Obstetrics & Gynecology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tan A Ince
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joyce M Slingerland
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA .,Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
42
|
Koutsaki M, Libra M, Spandidos DA, Zaravinos A. The miR-200 family in ovarian cancer. Oncotarget 2017; 8:66629-66640. [PMID: 29029543 PMCID: PMC5630443 DOI: 10.18632/oncotarget.18343] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy. Its insidious nature, manifesting with little to no symptoms until the disease progresses to metastasis, along with a wide diversity of histological subtypes and corresponding clinical behavior, poses significant therapeutic challenges. The genetic profiling of this aggressive tumor and its subtypes has led to the identification of various molecular markers of prognosis. Among these, the miR-200 family of miRNAs appears to play an important role. The deregulated expression of the miR-200 family members has been detected in a variety of OC studies. The present review examines the potential usefulness of the miR-200 family members as prognostic indicators in ovarian cancer and their impact across different OC publications, with a particular focus on prognostic features, such as disease stage, tumor histology, survival and response to chemotherapy. We present the potential usefulness of the miR-200 family genes as prognostic indicators in OC and highlight the tendency that miR-200 overexpression corresponds with an advanced cancer stage.
Collapse
Affiliation(s)
- Maria Koutsaki
- 3rd Department of Pediatrics of the National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124 Catania, Italy
| | - Demetrios A. Spandidos
- Laboratory of Virology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| |
Collapse
|
43
|
Klapdor R, Wang S, Hacker U, Büning H, Morgan M, Dörk T, Hillemanns P, Schambach A. Improved Killing of Ovarian Cancer Stem Cells by Combining a Novel Chimeric Antigen Receptor-Based Immunotherapy and Chemotherapy. Hum Gene Ther 2017; 28:886-896. [PMID: 28836469 DOI: 10.1089/hum.2017.168] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer represents the most lethal gynecological cancer. Although cytoreductive chemotherapy and surgery lead to complete macroscopic tumor removal, most of the patients in advanced stages suffer from recurrent disease and subsequently die. This may be explained by the activity of cancer stem cells (CSC), which are a subpopulation of cells with an elevated chemoresistance and an increased capacity for self-renewal and metastatic spread. Specifically targeting these cells by adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. This study selected the widely accepted CSC marker CD133 as a target for a chimeric antigen receptor (CAR)-based immunotherapeutic approach to treat ovarian cancer. A lentiviral vector was generated encoding a third-generation anti-CD133-CAR, and clinically used NK92 cells were transduced. These engineered natural killer (NK) cells showed specific killing against CD133-positive ovarian cancer cell lines and primary ovarian cancer cells cultured from sequential ascites harvests. Additionally, specific activation of these engineered NK cells was demonstrated via interferon-gamma secretion assays. To improve clinical efficacy of ovarian cancer treatment, the effect of the chemotherapeutic agent cisplatin was evaluated together with CAR-transduced NK cell treatment. It was demonstrated that NK cells remain cytotoxic and active under cisplatin treatment and, importantly, that sequential treatment with cisplatin followed by CAR-NK cells led to the strongest killing effect. The specific eradication of ovarian CSCs by anti-CD133-CAR expressing NK92 cells represents a promising strategy and, when confirmed in vivo, shall be the basis of future clinical studies with the aim to prevent recurrent disease.
Collapse
Affiliation(s)
- Rüdiger Klapdor
- 1 Department of Gynecology and Obstetrics, Hannover Medical School , Hannover, Germany .,2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany .,3 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany
| | - Shuo Wang
- 1 Department of Gynecology and Obstetrics, Hannover Medical School , Hannover, Germany .,2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany
| | - Ulrich Hacker
- 2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany .,4 University Cancer Center Leipzig (UCCL), University Hospital Leipzig , Leipzig, Germany
| | - Hildegard Büning
- 2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany .,3 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany
| | - Michael Morgan
- 2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany .,3 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany
| | - Thilo Dörk
- 1 Department of Gynecology and Obstetrics, Hannover Medical School , Hannover, Germany
| | - Peter Hillemanns
- 1 Department of Gynecology and Obstetrics, Hannover Medical School , Hannover, Germany
| | - Axel Schambach
- 2 Institute for Experimental Hematology, Hannover Medical School , Hannover, Germany .,3 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany .,5 Division of Hematology/Oncology, Boston Children's Hospital , Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Angiogenesis and cancer stem cells: New perspectives on therapy of ovarian cancer. Eur J Med Chem 2017; 142:87-94. [PMID: 28651817 DOI: 10.1016/j.ejmech.2017.06.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022]
Abstract
Failure in ovarian cancer therapy, following cytoreduction and chemotherapy, is related to the presence of cancer stem cells - a small subpopulation of cells resistant to chemotherapy and irradiation - in the tumour which may cause cancer relapse and manifestation of metastases. Therapies targeted at Cancer Stem Cells (CSCs), such as those employing metformin (a drug used in the treatment of diabetes type II) and salinomycin, an antibiotic isolated from Streptococcus albus bacteria, seem promising. Anti-angiogenic therapy with bevacizumab was found to be effective in all phases of ovarian cancer treatment. The presence of CSCs has been associated with angiogenesis. Several CSC biomarkers correlate with the markers of angiogenesis and some signalling pathways, e.g. Notch, and are used by both CSCs and by pro-angiogenic factors.
Collapse
|
45
|
Chou CH, Huang MJ, Liao YY, Chen CH, Huang MC. C1GALT1 Seems to Promote In Vitro Disease Progression in Ovarian Cancer. Int J Gynecol Cancer 2017; 27:863-871. [PMID: 28498248 DOI: 10.1097/igc.0000000000000965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Aberrant glycosylation affects many cellular properties in cancers. The core 1 β1,3-galactosyltransferase (C1GALT1), an enzyme that controls the formation of mucin-type O-glycans, has been reported to regulate hepatocellular and mammary carcinogenesis. This study aimed to explore the role of C1GALT1 in ovarian cancer. METHODS C1GALT1 expression was assessed in a public database based on microarray data from 1287 ovarian cancer patients and ovarian cancerous tissues. Lectin blotting and flow cytometry analysis were conducted to detect changes in O-glycans on ovarian cancer cells. Effects of C1GALT1 on cell growth, migration, and sphere formation were analyzed in C1GALT1 knockdown or overexpressing ovarian cancer cells in vitro. Expression of cancer stemness-related genes was analyzed by quantitative reverse transcription polymerase chain reaction. RESULTS High C1GALT1 expression shows a trend toward association with poor survival in ovarian cancer patients. C1GALT1 modifies O-glycan expression on surfaces and glycoproteins of ovarian cancer cells. Knockdown of C1GALT1 decreased cell growth, migration, and sphere formation of ES-2 and OVTW59-p4 cells. Conversely, overexpression of C1GALT1 promoted such malignant properties of SKOV3 cells. Furthermore, C1GALT1 regulated the expression of several cancer stemness-related genes, including CD133, CD24, Oct4, Nanog, and SNAI2, in ovarian cancer cells. CONCLUSIONS C1GALT1 modifies O-glycan expression and enhances malignant behaviors in ovarian cancer cells, suggesting that C1GALT1 plays a role in the pathogenesis of ovarian cancer and targeting C1GALT1 could be a promising approach for ovarian cancer therapy.
Collapse
Affiliation(s)
- Chih-Hsing Chou
- *Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine; and †Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
46
|
Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 2017; 36:4089-4099. [PMID: 28319068 PMCID: PMC5540148 DOI: 10.1038/onc.2017.11] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is a lethal malignancy that has not seen a major therapeutic advance in over 30 years. We demonstrate that ovarian cancer exhibits a targetable alteration in iron metabolism. Ferroportin (FPN), the iron efflux pump, is decreased, and transferrin receptor (TFR1), the iron importer, is increased in tumor tissue from patients with high grade but not low grade serous ovarian cancer. A similar profile of decreased FPN and increased TFR1 is observed in a genetic model of ovarian cancer tumor initiating cells (TICs). The net result of these changes is an accumulation of excess intracellular iron and an augmented dependence on iron for proliferation. A forced reduction in intracellular iron reduces the proliferation of ovarian cancer TICs in vitro, and inhibits both tumor growth and intraperitoneal dissemination of tumor cells in vivo. Mechanistic studies demonstrate that iron increases metastatic spread by facilitating invasion through expression of matrix metalloproteases and synthesis of IL6. We show that the iron dependence of ovarian cancer tumor initiating cells renders them exquisitely sensitive in vivo to agents that induce iron-dependent cell death (ferroptosis) as well as iron chelators, and thus creates a metabolic vulnerability that can be exploited therapeutically.
Collapse
|
47
|
Zou J, Liu L, Wang Q, Yin F, Yang Z, Zhang W, Li L. Downregulation of miR-429 contributes to the development of drug resistance in epithelial ovarian cancer by targeting ZEB1. Am J Transl Res 2017; 9:1357-1368. [PMID: 28386361 PMCID: PMC5376026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
Drug resistance is an obstacle to the treatment of epithelial ovarian cancer. Recently, research has suggested that miRNAs (microRNAs) are involved in cancer development, and speculation has been made about their possible involvement in drug resistance. Thus, we attempted to identify selected miRNAs involved in the development of chemo-resistance in epithelial ovarian cancer. Using miRNA profiles of a panel of cisplatin-resistant (SKOV3/DDP) cells, we validated data using quantitative real time-PCR (QRT-PCR), and studied the effects of miR-429 on cancer cell chemo-sensitivity, using gain- and loss-of-function studies. Data show that SKOV3/DDP expressed less miR-429 compared with parental SKOV3 cells and lower miR-429 expression conferred shorter overall survival (OS) and less progression-free survival (PFS) than the patients with more miR-429 expression (P < 0.01). Upregulation of miR-429 increases cisplatin sensitivity in epithelial ovarian cancer cells. Studies have confirmed that the zinc finger E-box binding homeobox1 (ZEB1) is a direct and functional target of miR-429 and that over-expression of miR-429 reduces autophagy-related protein anti-ATG7, anti-LC3A/B (P < 0.05). Thus, overexpression of miR-429 may suppress ZEB1, and may be a potential sensitizer to cisplatin treatment that may have therapeutic implications.
Collapse
Affiliation(s)
- Jing Zou
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University; Laboratory of Early Prevention and Treatment for Regional High Frequence Tumor Ministry of Education Key LaboratoryNanning 530021, Guangxi, P. R. China
| | - Ling Liu
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University; Laboratory of Early Prevention and Treatment for Regional High Frequence Tumor Ministry of Education Key LaboratoryNanning 530021, Guangxi, P. R. China
| | - Qi Wang
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University; Laboratory of Early Prevention and Treatment for Regional High Frequence Tumor Ministry of Education Key LaboratoryNanning 530021, Guangxi, P. R. China
| | - Fuqiang Yin
- Medical Scientific Research Centre, Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| | - Zhijun Yang
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University; Laboratory of Early Prevention and Treatment for Regional High Frequence Tumor Ministry of Education Key LaboratoryNanning 530021, Guangxi, P. R. China
| | - Wei Zhang
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University; Laboratory of Early Prevention and Treatment for Regional High Frequence Tumor Ministry of Education Key LaboratoryNanning 530021, Guangxi, P. R. China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University; Laboratory of Early Prevention and Treatment for Regional High Frequence Tumor Ministry of Education Key LaboratoryNanning 530021, Guangxi, P. R. China
| |
Collapse
|
48
|
Winterhoff BJ, Maile M, Mitra AK, Sebe A, Bazzaro M, Geller MA, Abrahante JE, Klein M, Hellweg R, Mullany SA, Beckman K, Daniel J, Starr TK. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells. Gynecol Oncol 2017; 144:598-606. [PMID: 28111004 DOI: 10.1016/j.ygyno.2017.01.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. METHODS A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. RESULTS Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. CONCLUSIONS Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Boris J Winterhoff
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Makayla Maile
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Amit Kumar Mitra
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| | - Attila Sebe
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Martina Bazzaro
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Molly Klein
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Raffaele Hellweg
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Sally A Mullany
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth Beckman
- Genomics Center, University of Minnesota, Minneapolis, MN, USA
| | - Jerry Daniel
- Genomics Center, University of Minnesota, Minneapolis, MN, USA
| | - Timothy K Starr
- Department of Obstetrics, Gynecology & Women's Health, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
49
|
Choi YJ, Park JH, Han JW, Kim E, Jae-Wook O, Lee SY, Kim JH, Gurunathan S. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells. Int J Mol Sci 2016; 17:E2077. [PMID: 27973444 PMCID: PMC5187877 DOI: 10.3390/ijms17122077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 01/13/2023] Open
Abstract
The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1-2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH⁺/CD133⁺ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH⁺/CD133⁺ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH⁺/CD133⁺ subpopulation of cells.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Jung-Hyun Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Jae Woong Han
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Eunsu Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Oh Jae-Wook
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Seung Yoon Lee
- Swine Consulting Group, HanByol Farm Tech, Gyeonggi 463-785, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
50
|
Wei Z, Liu Y, Wang Y, Zhang Y, Luo Q, Man X, Wei F, Yu X. Downregulation of Foxo3 and TRIM31 by miR-551b in side population promotes cell proliferation, invasion, and drug resistance of ovarian cancer. Med Oncol 2016; 33:126. [PMID: 27743201 PMCID: PMC5065596 DOI: 10.1007/s12032-016-0842-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022]
Abstract
Ovarian cancer (OVCa) stem cells are associated with tumor growth, metastasis, and recurrence, which are driving forces behind a majority of the OVCa-related mortality. This subpopulation of cancer cells are characterized by uncontrolled proliferation, high invasiveness, and resistance against the current platinum-based therapy. Thus, targeting OVCa cancer stem cells has been focused in recent therapeutic development. Isolation and purification of cancer stem cells are, however, challenging for the lack of sensitive and specific markers. In this study, we demonstrated that miR-551b was upregulated in OVCa stem cells, by using a quantitative PCR array, correlating with the pathological grades of this malignancy. In vitro experiments indicated that miR-551b promoted the proliferation, invasion, and chemoresistance of OVCa cells and cancer stem cells. Further analysis suggested that miR-551b functioned through the suppression of Foxo3 and TRIM31, two important tumor suppressors. In support of this, our in vivo experiments using mouse xenograft models showed that inhibiting miR-551b significantly increased the susceptibility of OVCa cells to cisplatin and prolonged the survival of the host mice. In conclusion, our study suggested miR-551b as a potential biomarker for OVCa stem cells and explored its functional mechanism, providing a potential therapeutic target for future drug development.
Collapse
Affiliation(s)
- Zhentong Wei
- Department of Oncologic Gynecology, Prenatal Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yan Liu
- Department of Hepatobiliary and Pancreas Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yishu Wang
- The Key Laboratory of Pathobiology, The Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yandong Zhang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Qinghua Luo
- Department of Hepatobiliary and Pancreas Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xiaxia Man
- Department of Oncologic Gynecology, Prenatal Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Feng Wei
- Genetic Engineering Laboratory of People's Liberation Army, The Eleventh Institute of Academy of Military Medical Sciences of People's Liberation Army, Changchun, 130021, Jilin, People's Republic of China.
| | - Xiaowei Yu
- Department of Oncologic Gynecology, Prenatal Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China. .,Institute of Zoonotic Disease, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|