1
|
Chattopadhyay A, Wu YT, Chan HC, Kang YT, Chiang YC, Chiang CJ, Lee WC, Lu TP. Predicting Survival Outcomes for Patients with Ovarian Cancer Using National Cancer Registry Data from Taiwan: A Retrospective Cohort Study. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2025; 6:90-101. [PMID: 39882147 PMCID: PMC11773178 DOI: 10.1089/whr.2024.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Background Ovarian cancer is one of the top seven causes of cancer deaths. Incidence of ovarian cancer varies by ethnicity, where Asian women demonstrate lower incidence rates than non-Hispanic Blacks and Whites. Survival prediction models for ovarian cancer have been developed for Caucasians and Black populations using national databases; however, whether these models work for Asians is unclear. Therefore, a retrospective cohort study was conducted to develop survival prediction models for patients with epithelial ovarian cancer from a Taiwan Cancer Registry (TCR) who underwent de-bulking and chemotherapy, with the aim to identify variables that can predict prognosis accurately. Patients diagnosed with OC from TCR were included. Method Two prognostic models (M1 and M2) were developed: M1 utilized clinical variables only, M2 additionally included cancer-specific variables with the aim to improve the accuracy. All methods were repeated independently for patients with only serous ovarian cancer. All findings for model M1 were validated among Black, White, and Asian populations from Surveillance, Epidemiology, and End Results (SEER) database and 10-fold internal cross-validations. Due to absence of cancer-specific site variables in SEER, model M2 was only internally validated. Cox-proportional hazards regression analysis was performed and a stepwise strategy with Akaike-information criterion was used to select appropriate variables as predictors to develop both M1 and M2. Results The c-index values of both models were >0.7 in both TCR and SEER populations for epithelial ovarian cancer. Calibration analysis demonstrated good prediction performance with the proportional difference between predicted and observed survival to be <5%. The performance was similar for the subset of patients with serous epithelial ovarian cancer. Notably, no significant racial differences were observed. Conclusion The prognostic models proposed in this study can potentially be used for identifying patients, especially from Taiwan, at higher risk of ovarian cancer mortality early on, leading to improved prognosis, through shared decision-making between physicians and patients.
Collapse
Affiliation(s)
- Amrita Chattopadhyay
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ya-Ting Wu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Chan
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Kang
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chun-Ju Chiang
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Taiwan Cancer Registry, Taipei, Taiwan
| | - Wen-Chung Lee
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Taiwan Cancer Registry, Taipei, Taiwan
- Department of Public Health, Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
- Population Health Research Center, National Taiwan University
| |
Collapse
|
2
|
Schuster-Little N, Sokolovsky AD, Gentry A, Saraf A, Etzel MR, Patankar MS, Whelan RJ. Immunoaffinity-free chromatographic purification of ovarian cancer biomarker CA125 (MUC16) from blood serum enables mass spectrometry characterization. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6337-6348. [PMID: 39177265 PMCID: PMC11342825 DOI: 10.1039/d4ay01172d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The enrichment of trace proteins from human fluid samples is of great importance in diverse clinical and industrial applications. In clinical diagnostics, such enrichment may enable detection of trace proteins that serve as biomarkers of disease. Affinity-based approaches, such as immunoaffinity pulldown, are widely used to enrich trace proteins, but this strategy relies on the availability and performance of antibodies that act on all proteoforms in an unbiased manner. Our prior work to characterize MUC16 (the mucin protein that carries the ovarian cancer biomarker CA125) by mass spectrometry successfully overcame the reliance on affinity-based enrichment and was used to enrich this biomarker from ascites of individual ovarian cancer patients, however, this strategy was not demonstrated on clinically relevant volumes of serum, a biofluid that is more accessible than ascites. The present work developed a non-affinity-based chromatographic method to enrich MUC16 from serum. The enriched MUC16 sample was further processed using a Midi Top 14 abundant protein depletion column. Peptides identified using bottom-up proteomics yielded 1-8% coverage of MUC16. Additionally, MUC16 was detected in samples containing less than the clinical cut-off level of CA125 (35 U mL-1), suggesting that this strategy of enrichment and bottom-up proteomics can enable analysis of CA125 from the serum of individuals with early-stage ovarian cancer and those whose tumors express CA125 (MUC16) at low levels.
Collapse
Affiliation(s)
- Naviya Schuster-Little
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Andrew D Sokolovsky
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ashten Gentry
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Anita Saraf
- Mass Spectrometry and Analytical Proteomics Laboratory, University of Kansas, Lawrence, KS, USA
| | - Mark R Etzel
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Rebecca J Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
3
|
Wen Y, Jiang N, Wang Z, Xiao Y. Versatile whey acidic protein four-disulfide core domain proteins: biology and role in diseases. Front Cell Dev Biol 2024; 12:1459129. [PMID: 39296934 PMCID: PMC11408880 DOI: 10.3389/fcell.2024.1459129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
The Whey acidic protein four-disulfide core (WFDC) protein family consists of proteins with one or more WFDC domains which are ubiquitously expressed throughout the body of human and perform a wide range of functions, including antiprotease, antibacterial, and immunomodulatory functions. Aberrant expression of WFDC proteins is associated with human diseases. However, review on the WFDC protein family is limited and insufficient. Furthermore, a systematic summary of the underlying mechanisms of WFDC protein activity is lacking. In this review, we give a summary of the structural basis and molecular function of these proteins and review the immune regulatory mechanisms and signaling pathways of WFDC proteins in the development of certain diseases. Furthermore, we discuss the diagnostic and prognostic potential of multiple WFDC proteins in the aforementioned conditions, as well as their prospective use. At last, we also discuss the progress of WFDC protein in clinical trials and put forward some research difficulties and the directions of follow-up research. Our review highlights the functional diversity and clinical significance of WFDC proteins family, while providing potential targets for drug development and innovative therapeutic strategies, this review lays the foundation and direction for future research on WFDC proteins.
Collapse
Affiliation(s)
- Yifan Wen
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Nan Jiang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Xiao
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
5
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Pro-inflammatory cytokines and CXC chemokines as game-changer in age-associated prostate cancer and ovarian cancer: Insights from preclinical and clinical studies' outcomes. Pharmacol Res 2024; 204:107213. [PMID: 38750677 DOI: 10.1016/j.phrs.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Prostate cancer (PC) and Ovarian cancer (OC) are two of the most common types of cancer that affect the reproductive systems of older men and women. These cancers are associated with a poor quality of life among the aged population. Therefore, finding new and innovative ways to detect, treat, and prevent these cancers in older patients is essential. Finding biomarkers for these malignancies will increase the chance of early detection and effective treatment, subsequently improving the survival rate. Studies have shown that the prevalence and health of some illnesses are linked to an impaired immune system. However, the age-associated changes in the immune system during malignancies such as PC and OC are poorly understood. Recent research has suggested that the excessive production of inflammatory immune mediators, such as interleukin-6 (IL-6), interleukin-8 (IL-8), transforming growth factor (TGF), tumor necrosis factor (TNF), CXC motif chemokine ligand 1 (CXCL1), CXC motif chemokine ligand 12 (CXCL12), and CXC motif chemokine ligand 13 (CXCL13), etc., significantly impact the development of PC and OC in elderly patients. Our review focuses on the latest functional studies of pro-inflammatory cytokines (interleukins) and CXC chemokines, which serve as biomarkers in elderly patients with PC and OC. Thus, we aim to shed light on how these biomarkers affect the development of PC and OC in elderly patients. We also examine the current status and future perspective of cytokines (interleukins) and CXC chemokines-based therapeutic targets in OC and PC treatment for elderly patients.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Ekman M, Salminen T, Raiko K, Soukka T, Gidwani K, Martiskainen I. Spectrally separated dual-label upconversion luminescence lateral flow assay for cancer-specific STn-glycosylation in CA125 and CA15-3. Anal Bioanal Chem 2024; 416:3251-3260. [PMID: 38584178 PMCID: PMC11068694 DOI: 10.1007/s00216-024-05275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Multiplexed lateral flow assays (LFAs) offer efficient on-site testing by simultaneously detecting multiple biomarkers from a single sample, reducing costs. In cancer diagnostics, where biomarkers can lack specificity, multiparameter detection provides more information at the point-of-care. Our research focuses on epithelial ovarian cancer (EOC), where STn-glycosylated forms of CA125 and CA15-3 antigens can better discriminate cancer from benign conditions. We have developed a dual-label LFA that detects both CA125-STn and CA15-3-STn within a single anti-STn antibody test line. This utilizes spectral separation of green (540 nm) and blue (450 nm) emitting erbium (NaYF4:Yb3+, Er3+)- and thulium (NaYF4: Yb3+, Tm3+)-doped upconverting nanoparticle (UCNP) reporters conjugated with antibodies against the protein epitopes in CA125 or CA15-3. This technology allows the simultaneous detection of different antigen variants from a single test line. The developed proof-of-concept dual-label LFA was able to distinguish between the ascites fluid samples from diagnosed ovarian cancer patients (n = 10) and liver cirrhosis ascites fluid samples (n = 3) used as a negative control. The analytical sensitivity of CA125-STn for the dual-label LFA was 1.8 U/ml in buffer and 3.6 U/ml in ascites fluid matrix. Here we demonstrate a novel approach of spectrally separated measurement of STn-glycosylated forms of two different cancer-associated protein biomarkers by using UCNP reporter technology.
Collapse
Affiliation(s)
- Miikka Ekman
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Teppo Salminen
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Kirsti Raiko
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Tero Soukka
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Kamlesh Gidwani
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Iida Martiskainen
- Biotechnology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Englisz A, Smycz-Kubańska M, Mielczarek-Palacz A. Sensitivity and Specificity of Selected Biomarkers and Their Combinations in the Diagnosis of Ovarian Cancer. Diagnostics (Basel) 2024; 14:949. [PMID: 38732363 PMCID: PMC11083226 DOI: 10.3390/diagnostics14090949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
One of the greatest challenges in modern gynecological oncology is ovarian cancer. Despite the numerous studies currently being conducted, it is still sometimes detected at late clinical stages, where the prognosis is unfavorable. One significant contributing factor is the absence of sensitive and specific parameters that could aid in early diagnosis. An ideal screening test, in view of the low incidence of ovarian cancer, should have a sensitivity of greater than 75% and a specificity of at least 99.6%. To enhance sensitivity and specificity, diagnostic panels are being created by combining individual markers. The drive to develop better screening tests for ovarian cancer focuses on modern diagnostic methods based on molecular testing, which in turn aims to find increasingly effective biomarkers. Currently, researchers' efforts are focused on the search for a complementary parameter to those most commonly used that would satisfactorily enhance the sensitivity and specificity of assays. Several biomarkers, including microRNA molecules, autoantibodies, cDNA, adipocytokines, and galectins, are currently being investigated by researchers. This article reviews recent studies comparing the sensitivity and specificity of selected parameters used alone and in combination to increase detection of ovarian cancer at an early stage.
Collapse
Affiliation(s)
- Aleksandra Englisz
- The Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
8
|
Vallée A, Saridogan E, Petraglia F, Keckstein J, Polyzos N, Wyns C, Gianaroli L, Tarlatzis B, Ayoubi JM, Feki A. Horizons in Endometriosis: Proceedings of the Montreux Reproductive Summit, 14-15 July 2023. Facts Views Vis Obgyn 2024; 16:1-32. [PMID: 38603778 PMCID: PMC11317919 DOI: 10.52054/fvvo.16.s1.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Endometriosis is a complex and chronic gynaecological disorder that affects millions of women worldwide, leading to significant morbidity and impacting reproductive health. This condition affects up to 10% of women of reproductive age and is characterised by the presence of endometrial-like tissue outside the uterus, potentially leading to symptoms such as chronic pelvic pain, dysmenorrhoea, dyspareunia, and infertility. The Montreux summit brought a number of experts in this field together to provide a platform for discussion and exchange of ideas. These proceedings summarise the six main topics that were discussed at this summit to shed light on future directions of endometriosis classification, diagnosis, and therapeutical management. The first question addressed the possibility of preventing endometriosis in the future by identifying risk factors, genetic predispositions, and further understanding of the pathophysiology of the condition to develop targeted interventions. The clinical presentation of endometriosis is varied, and the correlation between symptoms severity and disease extent is unclear. While there is currently no universally accepted optimal classification system for endometriosis, several attempts striving towards its optimisation - each with its own advantages and limitations - were discussed. The ideal classification should be able to reconcile disease status based on the various diagnostic tools, and prognosis to guide proper patient tailored management. Regarding diagnosis, we focused on future tools and critically discussed emerging approaches aimed at reducing diagnostic delay. Preserving fertility in endometriosis patients was another debatable aspect of management that was reviewed. Moreover, besides current treatment modalities, potential novel medical therapies that can target underlying mechanisms, provide effective symptom relief, and minimise side effects in endometriotic patients were considered, including hormonal therapies, immunomodulation, and regenerative medicine. Finally, the question of hormonal substitution therapy after radical treatment for endometriosis was debated, weighing the benefits of hormone replacement.
Collapse
|
9
|
Kwak SY, Park JH, Won HY, Jang H, Lee SB, Jang WI, Park S, Kim MJ, Shim S. CXCL10 upregulation in radiation-exposed human peripheral blood mononuclear cells as a candidate biomarker for rapid triage after radiation exposure. Int J Radiat Biol 2024; 100:541-549. [PMID: 38227479 DOI: 10.1080/09553002.2023.2295300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE In case of a nuclear accident, individuals with high-dose radiation exposure (>1-2 Gy) should be rapidly identified. While ferredoxin reductase (FDXR) was recently suggested as a radiation-responsive gene, the use of a single gene biomarker limits radiation dose assessment. To overcome this limitation, we sought to identify reliable radiation-responsive gene biomarkers. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from mice after total body irradiation, and gene expression was analyzed using a microarray approach to identify radiation-responsive genes. RESULTS In light of the essential role of the immune response following radiation exposure, we selected several immune-related candidate genes upregulated by radiation exposure in both mouse and human PBMCs. In particular, the expression of ACOD1 and CXCL10 increased in a radiation dose-dependent manner, while remaining unchanged following lipopolysaccharide (LPS) stimulation in human PBMCs. The expression of both genes was further evaluated in the blood of cancer patients before and after radiotherapy. CXCL10 expression exhibited a distinct increase after radiotherapy and was positively correlated with FDXR expression. CONCLUSIONS CXCL10 expression in irradiated PBMCs represents a potential biomarker for radiation exposure.
Collapse
Affiliation(s)
- Seo Young Kwak
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| | - Ji-Hye Park
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
- OPTOLANE Technologies Inc., Seongnam, South Korea
| | | | - Hyosun Jang
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| | - Seung Bum Lee
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| | - Won Il Jang
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
- Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sunhoo Park
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Science, Seoul, South Korea
| | - Min-Jung Kim
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| | - Sehwan Shim
- Korea Institute of Radiological & Medical Science, Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| |
Collapse
|
10
|
Hu L, Brito LF, Luo H, Chen S, Johnson JS, Sammad A, Guo G, Xu Q, Wang Y. Differential Responses of Physiological Parameters, Production Traits, and Blood Metabolic Profiling between First- and Second-Parity Holstein Cows in the Comparison of Spring versus Summer Seasons. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11902-11920. [PMID: 37490609 DOI: 10.1021/acs.jafc.3c00043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Heat stress (HS) negatively influences cows' welfare and productivity. Therefore, a better understanding of the physiological and molecular mechanisms of HS responses from multiple parities is paramount for the development of effective management and breeding strategies. In comparison with first-parity cows in the spring (Spring-1), first-parity cows in the summer (Summer-1) had a significantly higher rectal temperature (RT), respiration rate (RR), drooling score (DS), and daily activity (DA), while lower (P < 0.05) daily rumination (DR), seven-day average milk yield (7AMY), milk yield on sampling day (MY_S), milk yield on test day (MY_T), and lactose percentage (LP) were observed. When comparing the spring (Spring-2) and summer (Summer-2) of the second-parity cows, significant differences were also found in RT, RR, DS, DA, and DR (P < 0.05), corresponding to similar trends with the first parity while having smaller changes. Moreover, significantly negative impacts on performance traits were only observed on fat percentage (FP) and LP. These results showed that there were different biological responses between first- and second-parity Holstein cows. Further, 18 and 17 metabolites were involved in the seasonal response of first- and second-parity cows, respectively. Nine differential metabolites were shared between the two parities, and pathway analyses suggested that cows had an inhibited tricarboxylic acid cycle, increased utilization of lipolysis, and a dysregulated gut microbiome during the summer. The metabolites identified exclusively for each parity highlighted the differences in microbial response and host amino acid metabolism between two parities in response to HS. Moreover, glucose, ethanol, and citrate were identified as potential biomarkers for distinguishing individuals between Spring-1 and Summer-1. Ethanol and acetone were better predictors for distinguishing individuals between Spring-2 and Summer-2. Taken together, the present study demonstrated the impact of naturally induced HS on physiological parameters, production traits, and the blood metabolome of Holstein cows. There are different biological responses and regulation mechanisms between first- and second-parity Holstein cows.
Collapse
Affiliation(s)
- Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaokan Chen
- Beijing Sunlon Livestock Development Co. Ltd, Beijing 100176, China
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, Indiana 47907, United States
| | - Abdul Sammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Guo
- Beijing Sunlon Livestock Development Co. Ltd, Beijing 100176, China
| | - Qing Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Bizoń M, Awiżeń-Panufnik Z, Sawicki W. Comparison of Interleukin-6 with Other Markers in Diagnosis of Ovarian Cancer. J Pers Med 2023; 13:980. [PMID: 37373969 DOI: 10.3390/jpm13060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The lack of specific symptoms in ovarian cancer delays onset of the diagnostic process. Hence, most cases are recognized in late stages of the disease. The aim of this study was to confirm the role of Il-6 compared to other markers in diagnosis and survival in ovarian cancer. The database was collected from 13 January 2021 to 15 February 2023. In total, 101 patients with pelvic tumors with a mean age of 57.86 ± 16.39 participated in the study. In every case, CA125, HE4, CEA, CA19-9, Il-6, C-reactive protein and procalcitonin measurements were taken. Patients with ovarian borderline tumor and metastatic ovarian tumors were excluded from further analysis. Statistically significant correlations were found between diagnosis of ovarian cancer and levels of CA125, HE4, CRP, PCT and Il-6. Comparison of Il-6 with other markers revealed that longer overall survival correlated with lower values of Il-6. In the case of a higher concentration of Il-6, OS and PFS were shorter. Sensitivity and specificity of Il-6 in diagnosis of ovarian cancer were 46.8% and 77.8%, respectively, while for CA125, CRP and PCT were 76.6% and 63%; 68% and 57.5%; 36% and 77%, respectively. More investigations are needed to identify the most specific and sensitive marker for ovarian cancer.
Collapse
Affiliation(s)
- Magdalena Bizoń
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warszawa, Poland
- LUX MED Oncology Hospital, sw. Wincentego 103, 03-291 Warszawa, Poland
| | - Zofia Awiżeń-Panufnik
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warszawa, Poland
| | - Włodzimierz Sawicki
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 03-242 Warszawa, Poland
| |
Collapse
|
12
|
Bangarh R, Khatana C, Kaur S, Sharma A, Kaushal A, Siwal SS, Tuli HS, Dhama K, Thakur VK, Saini RV, Saini AK. Aberrant protein glycosylation: Implications on diagnosis and Immunotherapy. Biotechnol Adv 2023; 66:108149. [PMID: 37030554 DOI: 10.1016/j.biotechadv.2023.108149] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Glycosylation-mediated post-translational modification is critical for regulating many fundamental processes like cell division, differentiation, immune response, and cell-to-cell interaction. Alterations in the N-linked or O-linked glycosylation pattern of regulatory proteins like transcription factors or cellular receptors lead to many diseases, including cancer. These alterations give rise to micro- and macro-heterogeneity in tumor cells. Here, we review the role of O- and N-linked glycosylation and its regulatory function in autoimmunity and aberrant glycosylation in cancer. The change in cellular glycome could result from a change in the expression of glycosidases or glycosyltransferases like N-acetyl-glucosaminyl transferase V, FUT8, ST6Gal-I, DPAGT1, etc., impact the glycosylation of target proteins leading to transformation. Moreover, the mutations in glycogenes affect glycosylation patterns on immune cells leading to other related manifestations like pro- or anti-inflammatory effects. In recent years, understanding the glycome to cancer indicates that it can be utilized for both diagnosis/prognosis as well as immunotherapy. Studies involving mass spectrometry of proteome, site- and structure-specific glycoproteomics, or transcriptomics/genomics of patient samples and cancer models revealed the importance of glycosylation homeostasis in cancer biology. The development of emerging technologies, such as the lectin microarray, has facilitated research on the structure and function of glycans and glycosylation. Newly developed devices allow for high-throughput, high-speed, and precise research on aberrant glycosylation. This paper also discusses emerging technologies and clinical applications of glycosylation.
Collapse
Affiliation(s)
- Rashmi Bangarh
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Chainika Khatana
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Simranjeet Kaur
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Anchita Sharma
- Division of Biology, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517641, India
| | - Ankur Kaushal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| |
Collapse
|
13
|
A Dual Biomarker TK1 Protein and CA125 or HE4-Based Algorithm as a Better Diagnostic Tool than ROMA Index in Early Detection of Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15051593. [PMID: 36900385 PMCID: PMC10000714 DOI: 10.3390/cancers15051593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND The early detection of ovarian cancer is presently not effective, and it is crucial to establish biomarkers for the early diagnosis of ovarian cancer to improve the survival of patients. MATERIALS AND METHODS The aim of this study was to investigate the role of thymidine kinase 1 (TK1) in combination with CA 125 or HE4 to serve as a potential diagnostic biomarkers for ovarian cancer. In this study, a set of 198 serum samples consisting of 134 ovarian tumor patients and 64 healthy age-matched controls were analyzed. The TK1 protein levels in serum samples were determined using the AroCell TK 210 ELISA. RESULTS A combination of TK1 protein with CA 125 or HE4 showed better performance than either of them alone in the differentiation of early stage ovarian cancer from the healthy control group, but also a significantly better performance than the ROMA index. However, this was not observed using a TK1 activity test in combination with the other markers. Furthermore, the combination of TK1 protein and CA 125 or HE4 could differentiate early stage disease (stage I, II) more efficiently from advanced-stage (stage III, IV) disease (p < 0.0001). CONCLUSIONS The combination of TK1 protein with CA 125 or HE4 increased the potential of detecting ovarian cancer at early stages.
Collapse
|
14
|
Ain QU, Muhammad S, Hai Y, Peiling L. The role of urine and serum biomarkers in the early detection of ovarian epithelial tumours. J OBSTET GYNAECOL 2023; 42:3441-3449. [PMID: 36757337 DOI: 10.1080/01443615.2022.2151352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Ovarian cancer (OC) is one of the leading causes of gynaecological cancer mortality in women worldwide. If detected at an early stage (I, II), OC has a 90% 5-year survival rate; nevertheless, symptoms are often hidden, leading to late-stage (III, IV) diagnosis and a poor prognosis. The current diagnostic procedures, such as a pelvic exam, transvaginal ultrasound, CA-125 blood tests, serum HE4 tests and multivariate index assays (MIA), are insufficient. Sadly, surgery is frequently required to confirm a positive diagnosis. Therefore, there has been an increased interest in different biomarkers using a non-invasive test as a tool for the earlier diagnosis of OC to resolve the need for precise and non-invasive diagnostic methods. This review article aims to investigate how biomarkers influence early OC detection and to emphasise the role of using a combination of serum biomarkers panel rather than a single biomarker. In addition, this review provides insights into the current serum biomarkers, urine biomarkers and other emerging biomarkers in the early detection of OC for better specificity and sensitivity and to improve the overall survival (OS) rate.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin medical university, Harbin, PR China
| | - Shan Muhammad
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yang Hai
- Department of International Education, Harbin Medical University, Harbin, PR China
| | - Li Peiling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin medical university, Harbin, PR China
| |
Collapse
|
15
|
Miyazaki Y, Goto T, Li X, Nakayama K, Okasho K, Takeda M, Mizuno K, Kimura H, Uegaki M, Sumiyoshi T, Teramoto Y, Akamatsu S, Kobayashi T, Ogawa O, Inoue T. Up-regulation of secretory leukocyte protease inhibitor in human samples might have a potential role of predicting prostate cancer recurrence and progression after surgery and hormonal therapy. Cancer Med 2023; 12:3328-3342. [PMID: 36812122 PMCID: PMC9939162 DOI: 10.1002/cam4.5134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
Using new castration-resistant prostate cancer (CRPC) cell lines developed from LNCaP cells as a model for CRPC, we searched for novel biomarkers by analyzing the proteins secreted in culture supernatants. The results showed that the levels of secretory leukocyte protease inhibitor (SLPI) in these cell lines were 4.7-6.7 times higher than those secreted in parental LNCaP. Patients with localized prostate cancer (PC) and who expressed SLPI had a significantly lower prostate-specific antigen (PSA) progression-free survival rate than those who did not. Multivariate analysis revealed that SLPI expression was an independent risk factor for PSA recurrence. By contrast, when immunostaining of SLPI was performed on consecutive prostate tissue samples obtained from 11 patients, both in hormone naive (HN) and castration resistant (CR) conditions, only one patient expressed SLPI in the HNPC state; however, four of the 11 patients expressed SLPI in the CRPC state. In addition, two of these four patients were resistant to enzalutamide, and there was a discrepancy between their serum PSA levels and radiographic progression of the disease. These results suggest that SLPI can be a predictor of prognosis in patients with localized PC and disease progression in CRPC patients.
Collapse
Affiliation(s)
- Yu Miyazaki
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takayuki Goto
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Xin Li
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kenji Nakayama
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kosuke Okasho
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masashi Takeda
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kei Mizuno
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroko Kimura
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masayuki Uegaki
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takayuki Sumiyoshi
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yuki Teramoto
- Department of Diagnostic PathologyKyoto University HospitalKyotoJapan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Osamu Ogawa
- Department of Urology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takahiro Inoue
- Department of Nephro‐Urologic Surgery and AndrologyMie University Graduate School of MedicineTsuJapan
| |
Collapse
|
16
|
Sato S, Gillette M, de Santiago PR, Kuhn E, Burgess M, Doucette K, Feng Y, Mendez-Dorantes C, Ippoliti PJ, Hobday S, Mitchell MA, Doberstein K, Gysler SM, Hirsch MS, Schwartz L, Birrer MJ, Skates SJ, Burns KH, Carr SA, Drapkin R. LINE-1 ORF1p as a candidate biomarker in high grade serous ovarian carcinoma. Sci Rep 2023; 13:1537. [PMID: 36707610 PMCID: PMC9883229 DOI: 10.1038/s41598-023-28840-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Long interspersed element 1 (LINE-1) open reading frame 1 protein (ORF1p) expression is a common feature of many cancer types, including high-grade serous ovarian carcinoma (HGSOC). Here, we report that ORF1p is not only expressed but also released by ovarian cancer and primary tumor cells. Immuno-multiple reaction monitoring-mass spectrometry assays showed that released ORF1p is confidently detectable in conditioned media, ascites, and patients' plasma, implicating ORF1p as a potential biomarker. Interestingly, ORF1p expression is detectable in fallopian tube (FT) epithelial precursors of HGSOC but not in benign FT, suggesting that ORF1p expression in an early event in HGSOC development. Finally, treatment of FT cells with DNA methyltransferase inhibitors led to robust expression and release of ORF1p, validating the regulatory role of DNA methylation in LINE-1 repression in non-tumorigenic tissue.
Collapse
Affiliation(s)
- Sho Sato
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michael Gillette
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela R de Santiago
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Eric Kuhn
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael Burgess
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kristen Doucette
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yi Feng
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | | | - Paul J Ippoliti
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sara Hobday
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Marilyn A Mitchell
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kai Doberstein
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren Schwartz
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Birrer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Steven J Skates
- Harvard Medical School, Boston, MA, 02115, USA.,Biostatistics and Computational Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen H Burns
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA. .,Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
18
|
Jain S, Nadeem N, Ulfenborg B, Mäkelä M, Ruma SA, Terävä J, Huhtinen K, Leivo J, Kristjansdottir B, Pettersson K, Sundfeldt K, Gidwani K. Diagnostic potential of nanoparticle aided assays for
MUC16
and
MUC1
glycovariants in ovarian cancer. Int J Cancer 2022; 151:1175-1184. [PMID: 35531590 PMCID: PMC9546485 DOI: 10.1002/ijc.34111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Our study reports the discovery and evaluation of nanoparticle aided sensitive assays for glycovariants of MUC16 and MUC1 in a unique collection of paired ovarian cyst fluids and serum samples obtained at or prior to surgery for ovarian carcinoma suspicion. Selected glycovariants and the immunoassays for CA125, CA15‐3 and HE4 were compared and validated in 347 cyst fluid and serum samples. Whereas CA125 and CA15‐3 performed poorly in cyst fluid to separate carcinoma and controls, four glycovariants including MUC16MGL, MUC16STn, MUC1STn and MUC1Tn provided highly improved separations. In serum, the two STn glycovariants outperformed conventional CA125, CA15‐3 and HE4 assays in all subcategories analyzed with main benefits obtained at high specificities and at postmenopausal and early‐stage disease. Serum MUC16STn performed best at high specificity (90%‐99%), but sensitivity was also improved by the other glycovariants and CA15‐3. The highly improved specificity, excellent analytical sensitivity and robustness of the nanoparticle assisted glycovariant assays carry great promise for improved identification and early detection of ovarian carcinoma in routine differential diagnostics.
Collapse
Affiliation(s)
- Shruti Jain
- Department of Life Technologies and FICAN West Cancer Centre University of Turku Turku Finland
| | - Nimrah Nadeem
- Department of Life Technologies and FICAN West Cancer Centre University of Turku Turku Finland
| | - Benjamin Ulfenborg
- Systems Biology Research Centre, School of Bioscience University of Skövde Skövde Sweden
| | - Maria Mäkelä
- Department of Life Technologies and FICAN West Cancer Centre University of Turku Turku Finland
| | - Shamima Afrin Ruma
- Department of Life Technologies and FICAN West Cancer Centre University of Turku Turku Finland
| | - Joonas Terävä
- Department of Life Technologies and FICAN West Cancer Centre University of Turku Turku Finland
| | - Kaisa Huhtinen
- Institute of Biomedicine and FICAN West Cancer Centre University of Turku and Turku University Hospital Turku Finland
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Janne Leivo
- Department of Life Technologies and FICAN West Cancer Centre University of Turku Turku Finland
| | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research University of Gothenburg Gothenburg Sweden
| | - Kim Pettersson
- Department of Life Technologies and FICAN West Cancer Centre University of Turku Turku Finland
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research University of Gothenburg Gothenburg Sweden
| | - Kamlesh Gidwani
- Department of Life Technologies and FICAN West Cancer Centre University of Turku Turku Finland
| |
Collapse
|
19
|
Kumarasamy G, Kaur G. Protein biomarkers in gynecological cancers: The need for translational research towards clinical applications. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2022. [DOI: 10.1016/j.gine.2021.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Kim M, Chen C, Wang P, Mulvey JJ, Yang Y, Wun C, Antman-Passig M, Luo HB, Cho S, Long-Roche K, Ramanathan LV, Jagota A, Zheng M, Wang Y, Heller DA. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nat Biomed Eng 2022; 6:267-275. [PMID: 35301449 PMCID: PMC9108893 DOI: 10.1038/s41551-022-00860-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Serum biomarkers are often insufficiently sensitive or specific to facilitate cancer screening or diagnostic testing. In ovarian cancer, the few established serum biomarkers are highly specific, yet insufficiently sensitive to detect early-stage disease and to impact the mortality rates of patients with this cancer. Here we show that a 'disease fingerprint' acquired via machine learning from the spectra of near-infrared fluorescence emissions of an array of carbon nanotubes functionalized with quantum defects detects high-grade serous ovarian carcinoma in serum samples from symptomatic individuals with 87% sensitivity at 98% specificity (compared with 84% sensitivity at 98% specificity for the current best clinical screening test, which uses measurements of cancer antigen 125 and transvaginal ultrasonography). We used 269 serum samples to train and validate several machine-learning classifiers for the discrimination of patients with ovarian cancer from those with other diseases and from healthy individuals. The predictive values of the best classifier could not be attained via known protein biomarkers, suggesting that the array of nanotube sensors responds to unidentified serum biomarkers.
Collapse
Affiliation(s)
- Mijin Kim
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chen Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Joseph J Mulvey
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yoona Yang
- Departments of Bioengineering, and Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | | | | | - Hong-Bin Luo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Sun Cho
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Anand Jagota
- Departments of Bioengineering, and Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Daniel A Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
21
|
Comparison of HE4, CA125, ROMA and CPH-I for Preoperative Assessment of Adnexal Tumors. Diagnostics (Basel) 2022; 12:diagnostics12010226. [PMID: 35054393 PMCID: PMC8774736 DOI: 10.3390/diagnostics12010226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
(1) OBJECTIVE: To assess the performance of CA125, HE4, ROMA index and CPH-I index to preoperatively identify epithelial ovarian cancer (EOC) or metastatic cancer in the ovary (MCO). (2) METHODS: single center retrospective study, including women with a diagnosis of adnexal mass. We obtained the AUC, sensitivity, specificity and predictive values were of HE4, CA125, ROMA and CPH-I for the diagnosis of EOC and MCO. Subgroup analysis for women harboring adnexal masses with inconclusive diagnosis of malignancy by ultrasound features and Stage I EOC was performed. (3) RESULTS: 1071 patients were included, 852 (79.6%) presented benign/borderline tumors and 219 (20.4%) presented EOC/MCO. AUC for HE4 was higher than for CA125 (0.91 vs. 0.87). No differences were seen between AUC of ROMA and CPH-I, but they were both higher than HE4 AUC. None of the tumor markers alone achieved a sensitivity of 90%; HE4 was highly specific (93.5%). ROMA showed a sensitivity and specificity of 91.1% and 84.6% respectively, while CPH-I showed a sensitivity of 91.1% with 79.2% specificity. For patients with inconclusive diagnosis of malignancy by ultrasound features and with Stage I EOC, ROMA showed the best diagnostic performance (4) CONCLUSIONS: ROMA and CPH-I perform better than tumor markers alone to identify patients harboring EOC or MCO. They can be helpful to assess the risk of malignancy of adnexal masses, especially in cases where ultrasonographic diagnosis is challenging (stage I EOC, inconclusive diagnosis of malignancy by ultrasound features).
Collapse
|
22
|
Amer H, Kartikasari AER, Plebanski M. Elevated Interleukin-6 Levels in the Circulation and Peritoneal Fluid of Patients with Ovarian Cancer as a Potential Diagnostic Biomarker: A Systematic Review and Meta-Analysis. J Pers Med 2021; 11:1335. [PMID: 34945807 PMCID: PMC8704427 DOI: 10.3390/jpm11121335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 01/21/2023] Open
Abstract
Ovarian cancer (OC) is one of the most lethal cancers, largely due to a late diagnosis. This study aimed to provide a comprehensive meta-analysis on the diagnostic performance of IL6 in the blood and ascites separately for advanced and early-stage OC. We included 37 studies with 6948 participants detecting serum or plasma IL6. The plasma/serum IL6 mean level in the late-stage OC was 23.88 pg/mL (95% CI: 13.84-41.23), and the early-stage OC was 16.67 pg/mL (95% CI: 510.06-27.61), significantly higher than the healthy controls at 3.96 pg/mL (95% CI: 2.02-7.73), but not significantly higher than those found in the controls with benign growths in the ovary, which was 9.63 pg/mL (95% CI: 4.16-22.26). To evaluate IL6 in ascites as a diagnostic marker, we included 26 studies with 1590 participants. The mean level of ascitic IL6 in the late-stage OC was 3676.93 pg/mL (95% CI: 1891.7-7146.7), and the early-stage OC was 1519.21 pg/mL (95% CI: 604.6-3817.7), significantly higher than the benign controls at 247.33 pg/mL (95% CI: 96.2-636.0). There was no significant correlation between the levels of circulating and ascitic IL6. When pooling all OC stages for analysis, we found that serum/plasma IL6 provided 76.7% sensitivity (95% CI: 0.71-0.92) and 72% specificity (95% CI: 0.64-0.79). Ascitic IL6 provided higher sensitivity at 84% (95% CI: 0.710-0.919) and specificity at 74% (95% CI: 0.646-0.826). This study highlights the utility of ascitic IL6 for early detection of OC.
Collapse
|
23
|
Yaari Z, Yang Y, Apfelbaum E, Cupo C, Settle AH, Cullen Q, Cai W, Roche KL, Levine DA, Fleisher M, Ramanathan L, Zheng M, Jagota A, Heller DA. A perception-based nanosensor platform to detect cancer biomarkers. SCIENCE ADVANCES 2021; 7:eabj0852. [PMID: 34797711 PMCID: PMC8604403 DOI: 10.1126/sciadv.abj0852] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/14/2021] [Indexed: 05/15/2023]
Abstract
Conventional molecular recognition elements, such as antibodies, present issues for developing biomolecular assays for use in certain technologies, such as implantable devices. Additionally, antibody development and use, especially for highly multiplexed applications, can be slow and costly. We developed a perception-based platform based on an optical nanosensor array that leverages machine learning algorithms to detect multiple protein biomarkers in biofluids. We demonstrated this platform in gynecologic cancers, often diagnosed at advanced stages, leading to low survival rates. We investigated the detection of protein biomarkers in uterine lavage samples, which are enriched with certain cancer markers compared to blood. We found that the method enables the simultaneous detection of multiple biomarkers in patient samples, with F1-scores of ~0.95 in uterine lavage samples from patients with cancer. This work demonstrates the potential of perception-based systems for the development of multiplexed sensors of disease biomarkers without the need for specific molecular recognition elements.
Collapse
Affiliation(s)
- Zvi Yaari
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Yoona Yang
- Lehigh University, Bethlehem, PA 18015, USA
| | - Elana Apfelbaum
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Christian Cupo
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Alex H. Settle
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | - Quinlan Cullen
- Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Winson Cai
- Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kara Long Roche
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | | | - Martin Fleisher
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
| | | | - Ming Zheng
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, NY, New York 10065, USA
- Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
24
|
Vashisht A, Ahluwalia PK, Gahlay GK. A Comparative Analysis of the Altered Levels of Human Seminal Plasma Constituents as Contributing Factors in Different Types of Male Infertility. Curr Issues Mol Biol 2021; 43:1307-1324. [PMID: 34698062 PMCID: PMC8929149 DOI: 10.3390/cimb43030093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
(1) Background: The relationships between the biochemical and immunological components in seminal plasma and their physiological effects on male reproductive system have been underreported. In this study, we evaluated the potential of several seminal plasma biochemical and immunological markers in the pathophysiological developments of the infertile male patients. The study was designed to identify and assess different markers that may be associated with semen functions in different types of male infertility. (2) Methods: A total of 50 infertile male patients who underwent checkup for fertility assessment and 50 fertile controls were included in this study. The complete medical history of each recruited participant was reviewed. The infertile sub-groups (non-obstructive azoospermia (NOA), asthenozoospermia (AS), normozoospermic infertile (NI), and oligozoospermia (OZ)) were characterized based on sperm motility and concentration, while NI patients were included after a thorough check up of their female partners as well. We investigated each sample for 21 different analytes, enzymes, trace elements, and immunological markers to find crucial markers posing as contributing factors to a specific type of male infertility. (3) Results: The levels of 15 out of 21 markers, assayed from the seminal plasma of infertile males, were significantly altered in comparison to fertile controls (p < 0.05). For the first time, microprotein levels were also analyzed. The presence of monocytes, lymphocytes, and granulocytes was limited to semen from NOA patients, while a significant increase in the level of platelets was observed in AS. Hierarchical clustering and ROC-AUC analysis identified the three most significant markers (zinc, LDH, and TG) for the healthy control group and asthenozoospermic group (AUC, of 0.92 and 0.81, respectively). (4) Conclusions: The altered levels of biochemical and immunological markers in seminal plasma might be associated with the different male infertility profiles and could be required for the sperm metabolism and maintenance. However, a larger sample size and follow up analysis is required for establishing the hypothesized panel of markers as biomarkers at clinical stage.
Collapse
Affiliation(s)
- Ashutosh Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Pankaj Kumar Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
- Correspondence: ; Tel.: +91-9878755211
| |
Collapse
|
25
|
Pawlik W, Pawlik J, Kozłowski M, Łuczkowska K, Kwiatkowski S, Kwiatkowska E, Machaliński B, Cymbaluk-Płoska A. The Clinical Importance of IL-6, IL-8, and TNF-α in Patients with Ovarian Carcinoma and Benign Cystic Lesions. Diagnostics (Basel) 2021; 11:diagnostics11091625. [PMID: 34573967 PMCID: PMC8469088 DOI: 10.3390/diagnostics11091625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022] Open
Abstract
The exact pathogenesis and influence of various cytokines in patients with ovarian lesions remains unclear. Hence, this study aimed to investigate whether IL-6, IL-8, and TNF-α could be considered as new useful markers for diagnosis of ovarian cancer. 63 women diagnosed with ovarian cancer (OC) and 53 patients with benign ovarian cystic (BOC) lesions were included in this study. Serum levels of IL-6, IL-8, and TNF-α were measured using ELISA. Statistical comparisons were made using the Mann–Whitney U test and all correlations were evaluated by Spearman’s ranks. The serum IL-8 and TNF-α concentration measured in the OC Group was significantly higher than in the BOC Group (p < 0.05). The cutoff level of IL-8 and TNF-α in the serum was set at 4.09 ng/mL and 2.63 ng/mL, respectively, with the sensitivity and specificity of 70% and 96% for IL-8 and 85.7% and 79.3% for TNF-α (p < 0.0001). These results suggest that IL-8 and TNF-α are useful biomarkers for predicting the malignant character of lesions of the ovary. The present study highlighted the importance of measuring the cytokines such as IL-8 and TNF-α in patients with ovarian lesions in predicting the clinical outcome.
Collapse
Affiliation(s)
- Weronika Pawlik
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (M.K.); (A.C.-P.)
- Correspondence:
| | - Jakub Pawlik
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (M.K.); (A.C.-P.)
| | - Mateusz Kozłowski
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (M.K.); (A.C.-P.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.Ł.); (B.M.)
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Ewa Kwiatkowska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.Ł.); (B.M.)
| | - Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.P.); (M.K.); (A.C.-P.)
| |
Collapse
|
26
|
Yonet-Tanyeri N, Ahlmark BZ, Little SR. Advances in Multiplexed Paper-Based Analytical Devices for Cancer Diagnosis: A Review of Technological Developments. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001138. [PMID: 34447879 PMCID: PMC8384263 DOI: 10.1002/admt.202001138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 05/14/2023]
Abstract
Cancer is one of the leading causes of death worldwide producing estimated cost of $161.2 billion in the US in 2017 only. Early detection of cancer would not only reduce cancer mortality rates but also dramatically reduce healthcare costs given that the 17 million new cancer cases in 2018 are estimated to grow 27.5 million new cases by 2040. Analytical devices based upon paper substrates could provide effective, rapid, and extremely low cost alternatives for early cancer detection compared to existing testing methods. However, low concentrations of biomarkers in body fluids as well as the possible association of any given biomarker with multiple diseases remain as one of the greatest challenges to widespread adoption of these paper-based devices. However, recent advances have opened the possibility of detecting multiple biomarkers within the same device, which could be predictive of a patient's condition with unprecedented cost-effectiveness. Accordingly, this review highlights the recent advancements in paper-based analytical devices with a multiplexing focus. The primary areas of interest include lateral flow assay and microfluidic paper-based assay formats, signal amplification approaches to enhance the sensitivity for a specific cancer type, along with current challenges and future outlook for the detection of multiple cancer biomarkers.
Collapse
Affiliation(s)
- Nihan Yonet-Tanyeri
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Benjamin Z Ahlmark
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
27
|
Zhang C, Hu H, Wang X, Zhu Y, Jiang M. WFDC Protein: A Promising Diagnosis Biomarker of Ovarian Cancer. J Cancer 2021; 12:5404-5412. [PMID: 34405003 PMCID: PMC8364637 DOI: 10.7150/jca.57880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
An initial diagnosis of cancer is usually based on symptoms, abnormal physical examination and imaging tests. Ovarian cancer is difficult to be diagnosed timely due to the nonspecific symptoms, thus resulting in the high-risk mortality. Despite of the various diagnostic methods, there is still no reliable diagnostic test. Clinically, carbohydrate antigen 125(CA125) is widely recognized as a diagnosis biomarker of ovary cancer. However, CA125 is not sensitive to detect the ovary cancer at the early stage. It is essential to explore other potential biomarkers. Human epididymis protein 4 (HE4) in the whey/four-disulfide core (WFDC) proteins family shows satisfactory sensitivity in the early diagnosis of ovary cancer. In this present review, we summarized the important effects of WFDC family proteins on the proliferation, apoptosis and migration of ovary cancer and intended to provide more evidence to explore the possibility of WFDC protein as a diagnosis biomarker.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haoyue Hu
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yajuan Zhu
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Jiang
- West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
28
|
Kang SW, Rainczuk A, Oehler MK, Jobling TW, Plebanski M, Stephens AN. Active Ratio Test (ART) as a Novel Diagnostic for Ovarian Cancer. Diagnostics (Basel) 2021; 11:diagnostics11061048. [PMID: 34200333 PMCID: PMC8230042 DOI: 10.3390/diagnostics11061048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Despite substantial effort, there remains a lack of biomarker-based, clinically relevant testing for the accurate, non-invasive diagnostic or prognostic profiling of epithelial ovarian cancers (EOC). Our previous work demonstrated that whilst the inflammatory marker C-X-C motif chemokine ligand 10 (CXCL10) has prognostic relevance in ovarian cancer, its use is complicated by the presence of multiple, N-terminally modified variants, mediated by several enzymes including Dipeptidyl Peptidase 4 (DPP4). Methods: In this study, we provide the first evidence for the “Active Ratio Test” (ART) as a novel method to measure biologically relevant CXCL10 proteoforms in clinical samples. Results: In a cohort of 275 patients, ART accurately differentiated patients with malignant EOCs from those with benign gynaecological conditions (AUC 0.8617) and significantly out-performed CA125 alone. Moreover, ART combined with the measurement of CA125 and DPP4 significantly increased prognostic performance (AUC 0.9511; sensitivity 90.0%; specificity 91.7%; Cohen’s d > 1) for EOC detection. Conclusion: Our data demonstrate that ART provides a useful method to accurately discriminate between patients with benign versus malignant EOC, and highlights their relevance to ovarian cancer diagnosis. This marker combination may also be applicable in broader screening applications, to identify or discriminate benign from malignant disease in asymptomatic women.
Collapse
Affiliation(s)
- Sung-Woog Kang
- Hudson Institute of Medical Research, Clayton 3168, Australia; (S.-W.K.); (A.R.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Adam Rainczuk
- Hudson Institute of Medical Research, Clayton 3168, Australia; (S.-W.K.); (A.R.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
- Bruker Pty Ltd., Preston 3072, Australia
| | - Martin K. Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia;
- Robinson Institute, University of Adelaide, Adelaide 5000, Australia
| | - Thomas W. Jobling
- Department of Gynaecology Oncology, Monash Medical Centre, Bentleigh East 3165, Australia;
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia;
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (S.-W.K.); (A.R.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
- Correspondence:
| |
Collapse
|
29
|
Epigenetic Silencing of DAPK1and p16 INK4a Genes by CpG Island Hypermethylation in Epithelial Ovarian Cancer Patients. Indian J Clin Biochem 2021; 36:200-207. [PMID: 33867711 DOI: 10.1007/s12291-020-00888-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Transcriptional silencing induced by hypermethylation of CpG islands in the promoter regions of genes is believed to be an important mechanism of carcinogenesis in human cancers including epithelial ovarian cancer (EOC). Previously published data on gene methylation of EOC focused mainly on single gene or on cancer tissues. Objectives of the study were to estimate the promoter hypermethylation status of DAPK1 and p16 INK4a genes in circulating blood of EOC patients and to determine their association with clinicopathological features of EOC. This case-control study included 50 EOC patients and 20 apparently healthy and age matched female controls. Isolation of genomic DNA was carried out from peripheral venous blood. Methylation in promoter region of DAPK1 and p16 INK4a genes was determined by methylation-specific PCR. Methylation of DAPK1 was occurred in 42 out of 50 cases (84.0%) and methylation of p16 INK4a gene was occurred in 34 out of 50 cases (68.0%). Methylation of both genes was occurred in 25 cases (50.0%). Occurrence of methylation in DAPK1 and p16 INK4a genes was statistically significant (p < 0.0001) in cases compared to controls. Methylation of both genes was not statistically associated with age at diagnosis, menopausal status, histopathological types and FIGO staging of EOC. Identification of the peculiar promoter hypermethylation of DAPK1 and p16 INK4a genes might be a successful approach for ancillary diagnosis of EOC at early stage in blood sample.
Collapse
|
30
|
Review of biomarker systems as an alternative for early diagnosis of ovarian carcinoma. Clin Transl Oncol 2021; 23:1967-1978. [PMID: 33840014 DOI: 10.1007/s12094-021-02604-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Early diagnosis of ovarian carcinoma is bound to boost the long-term endurance rate of the patients. Most ovarian tumors happen post menopause when the ovaries have no vital operation and therefore irregular ovarian role causes no signs. According to Muinao T. et al. (Heliyon. 5(12):e02826, 2019), if we consider the frequency of ovarian carcinoma to be moderate, a screening technique must accomplish a base specificity of 99.6% and sensitivity of over 75%. The classification and approval of early diagnostic biomarkers explicit to ovarian carcinoma are essentially required. Prevailing methods for early diagnosis of ovarian carcinoma incorporate TVS, biological marker examination, or a blend of the two or other. In recent years, it has been revealed that a combination of at least two biomarkers has beaten single biomarkers in measures for early diagnosis of the illness. In the present document, we survey the ongoing exploration of innovative characteristic methodologies and possible panels of carcinoma biological markers for the early diagnosis of ovarian carcinoma and discuss biomarkers as the plausible apparatus for model improvement and other progressed approaches as an effective alternative to the prevailing methods for early diagnosis of this dreadful disease to evade bogus analysis and inordinate expense.
Collapse
|
31
|
Demyanova EV, Shcherbakova ES, Sall TS, Bakulin IG, Vakhitov TY, Sitkin SI. Non-targeted Serum Metabolomics Identifies Candidate Biomarkers Panels Associated with Nonalcoholic Fatty Liver Disease: A Pilot Study in Russian Male Patients. THE OPEN BIOMARKERS JOURNAL 2021; 11:17-27. [DOI: 10.2174/1875318302111010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 09/26/2023]
Abstract
Aims:
The aim of the present study was to explore changes in the serum metabolome of patients with NAFLD relative to healthy controls to identify biomarkers associated with steatosis or Non-Alcoholic Steatohepatitis (NASH).
Background:
The serum metabolome reflects changes at the organismal level. This is especially important in Non-Alcoholic Liver Disease (NAFLD), where changes in hormones, cytokines, enzymes and other metabolic alterations can affect the liver, as well as adipose tissue, skeletal muscle and other systems.
Objective:
The objectives were to conduct non-targeted serum metabolomics, data processing, and identification of candidate biomarkers, as well as panels and assessment of their prognostic value.
Materials and Methods:
Non-targeted metabolomic analysis of blood serum samples from 21 male patients with NAFLD (simple steatosis or NASH) and seven male Control group was performed using gas chromatography-mass spectrometry.
Results:
A total of 319 serum metabolites were detected in NAFLD and Control groups, several of which differed significantly between groups. The most discriminating biomarkers were 3-hydroxybutyric acid, 2-hydroxybutyric acid, 2,3-dihydroxybutyric acid, arabitol and 3-methyl-2-oxovaleric acid. Using a panel of three, four or more markers could distinguish patients with NAFLD from controls, and patients with NASH from those with simple steatosis.
Conclusion:
We identified candidate biomarkers for simple steatosis and NASH. Since NAFLD is a multifactorial disease, it is preferable to use a marker panel rather than individual metabolites. Markers may not only result from dysregulation of metabolic pathways in patients with NAFLD, they may also reflect adaptive responses to disease, including functional changes in the intestinal microbiota.
Collapse
|
32
|
An all-graphene quantum dot Förster resonance energy transfer (FRET) probe for ratiometric detection of HE4 ovarian cancer biomarker. Colloids Surf B Biointerfaces 2021; 198:111458. [DOI: 10.1016/j.colsurfb.2020.111458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
|
33
|
Bast RC, Lu Z, Han CY, Lu KH, Anderson KS, Drescher CW, Skates SJ. Biomarkers and Strategies for Early Detection of Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:2504-2512. [PMID: 33051337 PMCID: PMC7710577 DOI: 10.1158/1055-9965.epi-20-1057] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/29/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Early detection of ovarian cancer remains an important unmet medical need. Effective screening could reduce mortality by 10%-30%. Used individually, neither serum CA125 nor transvaginal sonography (TVS) is sufficiently sensitive or specific. Two-stage strategies have proven more effective, where a significant rise above a woman's baseline CA125 prompts TVS and an abnormal sonogram prompts surgery. Two major screening trials have documented that this strategy has adequate specificity, but sensitivity for early-stage (I-II) disease must improve to have a greater impact on mortality. To improve the first stage, different panels of protein biomarkers have detected cases missed by CA125. Autoantibodies against TP53 have detected 20% of early-stage ovarian cancers 8 months before elevation of CA125 and 22 months before clinical diagnosis. Panels of autoantibodies and antigen-autoantibody complexes are being evaluated with the goal of detecting >90% of early-stage ovarian cancers, alone or in combination with CA125, while maintaining 98% specificity in control subjects. Other biomarkers, including micro-RNAs, ctDNA, methylated DNA, and combinations of ctDNA alterations, are being tested to provide an optimal first-stage test. New technologies are also being developed with greater sensitivity than TVS to image small volumes of tumor.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chae Young Han
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Charles W Drescher
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Steven J Skates
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
34
|
Kumar V, Gupta S, Varma K, Sachan M. MicroRNA as Biomarker in Ovarian Cancer Management: Advantages and Challenges. DNA Cell Biol 2020; 39:2103-2124. [PMID: 33156705 DOI: 10.1089/dna.2020.6024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most prevalent gynecological malignancy affecting women throughout the globe. Ovarian cancer has several subtypes, including epithelial ovarian cancer (EOC) with a whopping incidence rate of 239,000 per year, making it the sixth most common gynecological malignancy worldwide. Despite advancement of detection and therapeutics, death rate accounts for 152,000 per annum. Several protein-based biomarkers such as CA125 and HE4 are currently being used for diagnosis, but their sensitivity and specificity for early detection of ovarian cancer are under question. MicroRNA (a small noncoding RNA molecule that participates in post-transcription regulation of gene expression) and its functional deregulation in most cancers have been discovered in the previous two decades. Studies support that miRNA deregulation has an epigenetic component as well. Aberrant miRNA expression is often correlated with the form of EOC tumor, histological grade, prognosis, and FIGO stage. In this review, we addressed epigenetic regulation of miRNAs, the latest research on miRs as a biomarker in the detection of EOC, and tailored assays to use miRNAs as a biomarker in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Kachnar Varma
- Department of Pathology, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
35
|
Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1875:188464. [PMID: 33157161 DOI: 10.1016/j.bbcan.2020.188464] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Glycosylation is a well-regulated cell and microenvironment specific post-translational modification. Several glycosyltransferases and glycosidases orchestrate the addition of defined glycan structures on the proteins and lipids. Recent advances and systemic approaches in glycomics have significantly contributed to a better understanding of instrumental roles of glycans in health and diseases. Emerging research evidence recognized aberrantly glycosylated proteins as the modulators of the malignant phenotype of cancer cells. The Cancer Genome Atlas has identified alterations in the expressions of glycosylation-specific genes that are correlated with cancer progression. However, the mechanistic basis remains poorly explored. Recent researches have shown that specific changes in the glycan structures are associated with 'stemness' and epithelial-to-mesenchymal transition of cancer cells. Moreover, epigenetic changes in the glycosylation pattern make the tumor cells capable of escaping immunosurveillance mechanisms. The deciphering roles of glycans in cancer emphasize that glycans can serve as a source for the development of novel clinical biomarkers. The ability of glycans in intervening various stages of tumor progression and the biosynthetic pathways involved in glycan structures constitute a promising target for cancer therapy. Advances in the knowledge of innovative strategies for identifying the mechanisms of glycan-binding proteins are hoped to hold great potential in cancer therapy. This review discusses the fundamental role of glycans in regulating tumorigenesis and tumor progression and provides insights into the influence of glycans in the current tactics of targeted therapies in the clinical setting.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashok Kumar Rathinavel
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
36
|
Landolfo C, Achten ETL, Ceusters J, Baert T, Froyman W, Heremans R, Vanderstichele A, Thirion G, Van Hoylandt A, Claes S, Oosterlynck J, Van Rompuy AS, Schols D, Billen J, Van Calster B, Bourne T, Van Gorp T, Vergote I, Timmerman D, Coosemans A. Assessment of protein biomarkers for preoperative differential diagnosis between benign and malignant ovarian tumors. Gynecol Oncol 2020; 159:811-819. [PMID: 32994054 DOI: 10.1016/j.ygyno.2020.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To estimate the diagnostic value of tumor and immune related proteins in the discrimination between benign and malignant adnexal masses, and between different subgroups of tumors. METHODS In this exploratory diagnostic study, 254 patients with an adnexal mass scheduled for surgery were consecutively enrolled at the University Hospitals Leuven (128 benign, 42 borderline, 22 stage I, 55 stage II-IV, and 7 secondary metastatic tumors). The quantification of 33 serum proteins was done preoperatively, using multiplex high throughput immunoassays (Luminex) and electrochemiluminescence immuno-assay (ECLIA). We calculated univariable areas under the Receiver Operating Characteristic Curves (AUCs). To discriminate malignant from benign tumors, multivariable ridge logistic regression with backward elimination was performed, using bootstrapping to validate the resulting AUCs. RESULTS CA125 had the highest univariable AUC to discriminate malignant from benign tumors (0.85, 95% confidence interval 0.79-0.89). Combining CA125 with CA72.4 and HE4 increased the AUC to 0.87. For benign vs borderline tumors, CA125 had the highest univariable AUC (0.74). For borderline vs stage I malignancy, no proteins were promising. For stage I vs II-IV malignancy, CA125, HE4, CA72.4, CA15.3 and LAP had univariable AUCs ≥0.80. CONCLUSIONS The results confirm the dominant role of CA125 for identifying malignancy, and suggest that other markers (HE4, CA72.4, CA15.3 and LAP) may help to distinguish between stage I and stage II-IV malignancies. However, further research is needed, also to investigate the added value over clinical and ultrasound predictors of malignancy, focusing on the differentiation between subtypes of malignancy.
Collapse
Affiliation(s)
- C Landolfo
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Queen Charlotte's and Chelsea Hospital, Imperial College, London, UK
| | - E T L Achten
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium
| | - J Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium
| | - T Baert
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium; Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen Mitte (KEM), Essen, Germany
| | - W Froyman
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - R Heremans
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - A Vanderstichele
- Department of Gynecology and Obstetrics, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, Laboratory of Gynecologic Oncology, KU Leuven, Leuven, Belgium
| | - G Thirion
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium
| | - A Van Hoylandt
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium
| | - S Claes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Belgium
| | - J Oosterlynck
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - A S Van Rompuy
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - D Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Belgium
| | - J Billen
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - B Van Calster
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, the Netherlands
| | - T Bourne
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Queen Charlotte's and Chelsea Hospital, Imperial College, London, UK; Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - T Van Gorp
- Department of Gynecology and Obstetrics, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, Laboratory of Gynecologic Oncology, KU Leuven, Leuven, Belgium
| | - I Vergote
- Department of Gynecology and Obstetrics, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, Laboratory of Gynecologic Oncology, KU Leuven, Leuven, Belgium
| | - D Timmerman
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - A Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
37
|
Ren AH, Prassas I, Soosaipillai A, Jarvi S, Gallinger S, Kulasingam V, Diamandis EP. Investigating a novel multiplex proteomics technology for detection of changes in serum protein concentrations that may correlate to tumor burden. F1000Res 2020; 9:732. [PMID: 33274048 PMCID: PMC7682495 DOI: 10.12688/f1000research.24654.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Background: To account for cancer heterogeneity, we previously introduced the concept of "personalized" tumor markers, which are biomarkers that are informative in subsets of patients or even a single patient. Recent developments in various multiplex protein technologies create excitement for the discovery of markers of tumor burden in individual patients, but the reliability of the technologies remains to be tested for this purpose. Here, we sought to explore the potential of a novel proteomics platform, which utilizes a multiplexed antibody microarray, to detect changes in serum protein concentration that may correlate to tumor burden in pancreatic cancer. Methods: We applied the Quantibody® Human Kiloplex Array to simultaneously measure 1,000 proteins in sera obtained pre- and post-surgically from five pancreatic cancer patients. We expected that proteins which decreased post-surgery may correlate to tumor burden. Sera from two healthy individuals, split into two aliquots each, were used as controls. To validate the multiplexed results, we used single-target ELISA assays to measure the proteins with the largest serum concentration changes after surgery in sera collected pre- and post-surgically from the previous five patients and 10 additional patients. Results: The multiplexed array revealed nine proteins with more than two-fold post-surgical decrease in at least two of five patients. However, validation using single ELISAs showed that only two proteins tested displayed more than two-fold post-surgical decrease in one of the five original patients. In the independent cohort, six of the proteins tested showed at least a two-fold decrease post-surgery in at least one patient. Conclusions: Our study found that the Quantibody® Human Kiloplex Array results could not be reliably replicated with individual ELISA assays and most hits would likely represent false positives if applied to biomarker discovery. These findings suggest that data from novel, high-throughput proteomic platforms need stringent validation to avoid false discoveries.
Collapse
Affiliation(s)
- Annie He Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stephanie Jarvi
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Steven Gallinger
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Pancreatic Surgical Oncology Program, University Health Network, Canada, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Ren AH, Prassas I, Soosaipillai A, Jarvi S, Gallinger S, Kulasingam V, Diamandis EP. Investigating a novel multiplex proteomics technology for detection of changes in serum protein concentrations that may correlate to tumor burden. F1000Res 2020; 9:732. [PMID: 33274048 PMCID: PMC7682495 DOI: 10.12688/f1000research.24654.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 03/31/2024] Open
Abstract
Background: To account for cancer heterogeneity, we previously introduced the concept of "personalized" tumor markers, which are biomarkers that are informative in subsets of patients or even a single patient. Recent developments in various multiplex protein technologies create excitement for the discovery of markers of tumor burden in individual patients, but the reliability of the technologies remains to be tested for this purpose. Here, we sought to explore the potential of a novel proteomics platform, which utilizes a multiplexed antibody microarray, to detect changes in serum protein concentration that may correlate to tumor burden in pancreatic cancer. Methods: We applied the Quantibody® Human Kiloplex Array to simultaneously measure 1,000 proteins in sera obtained pre- and post-surgically from five pancreatic cancer patients. We expected that proteins which decreased post-surgery may correlate to tumor burden. Sera from two healthy individuals, split into two aliquots each, were used as controls. To validate the multiplexed results, we used single-target ELISA assays to measure the proteins with the largest serum concentration changes after surgery in sera collected pre- and post-surgically from the previous five patients and 10 additional patients. Results: The multiplexed array revealed nine proteins with more than two-fold post-surgical decrease in at least two of five patients. However, validation using single ELISAs showed that only two proteins tested displayed more than two-fold post-surgical decrease in one of the five original patients. In the independent cohort, six of the proteins tested showed at least a two-fold decrease post-surgery in at least one patient. Conclusions: Our study found that the Quantibody® Human Kiloplex Array results could not be reliably replicated with individual ELISA assays and most hits would likely represent false positives if applied to biomarker discovery. These findings suggest that data from novel, high-throughput proteomic platforms need stringent validation to avoid false discoveries.
Collapse
Affiliation(s)
- Annie He Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stephanie Jarvi
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Steven Gallinger
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Pancreatic Surgical Oncology Program, University Health Network, Canada, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Developing a mass spectrometry–based assay for the ovarian cancer biomarker CA125 (MUC16) using suspension trapping (STrap). Anal Bioanal Chem 2020; 412:6361-6370. [DOI: 10.1007/s00216-020-02586-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
|
40
|
Secosan C, Balulescu L, Brasoveanu S, Balint O, Pirtea P, Dorin G, Pirtea L. Endometriosis in Menopause-Renewed Attention on a Controversial Disease. Diagnostics (Basel) 2020; 10:E134. [PMID: 32121424 PMCID: PMC7151055 DOI: 10.3390/diagnostics10030134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Endometriosis, an estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial tissue, has been the topic of renewed research and debate in recent years. The paradigm shift from the belief that endometriosis only affects women of reproductive age has drawn attention to endometriosis in both premenarchal and postmenopausal patients. There is still scarce information in literature regarding postmenopausal endometriosis, the mostly studied and reported being the prevalence in postmenopausal women. Yet, other important issues also need to be addressed concerning diagnosis, pathophysiology, and management. We aimed at summarizing the currently available data in literature in order to provide a concise and precise update regarding information available on postmenopausal endometriosis.
Collapse
Affiliation(s)
- Cristina Secosan
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Victor Babeş”, 300041 Timişoara, Romania; (C.S.); (S.B.); (O.B.); (G.D.); (L.P.)
| | - Ligia Balulescu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Victor Babeş”, 300041 Timişoara, Romania; (C.S.); (S.B.); (O.B.); (G.D.); (L.P.)
| | - Simona Brasoveanu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Victor Babeş”, 300041 Timişoara, Romania; (C.S.); (S.B.); (O.B.); (G.D.); (L.P.)
| | - Oana Balint
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Victor Babeş”, 300041 Timişoara, Romania; (C.S.); (S.B.); (O.B.); (G.D.); (L.P.)
| | - Paul Pirtea
- Department of Ob Gyn and Reproductive Medicine, Hopital Foch—Faculté de Medicine Paris Ouest (UVSQ), 92151 Suresnes, France;
| | - Grigoraș Dorin
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Victor Babeş”, 300041 Timişoara, Romania; (C.S.); (S.B.); (O.B.); (G.D.); (L.P.)
| | - Laurentiu Pirtea
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy “Victor Babeş”, 300041 Timişoara, Romania; (C.S.); (S.B.); (O.B.); (G.D.); (L.P.)
| |
Collapse
|
41
|
Luo P, Zhou JG, Jin SH, Qing MS, Ma H. Influence of marital status on overall survival in patients with ovarian serous carcinoma: finding from the surveillance epidemiology and end results (SEER) database. J Ovarian Res 2019; 12:126. [PMID: 31888704 PMCID: PMC6937688 DOI: 10.1186/s13048-019-0600-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Objective This study is to investigate the relationship between marital status and prognosis of patients with ovarian serous carcinoma. Results We performed data analysis from 19,276 patients identified from the SEER database of the National Cancer Center of the United States. 57.8% of the patients were married, 13.0% unmarried, and 29.2% separated/ divorced/widowed (SDW). The median overall survival time ofthe unmarried group and the married group are 48 months and 52 months respectively. Univariate Cox regression analysis showed that the patients with serous ovarian cancer in the unmarried group resulted in a hazard ratio (HR) of 1.14 (95% CI: 1.08–1.19%; P < 0.001), comparing to SDW group with a HR of 1.02 (95% CI: 0.98–1.19%; P = 0.26). However, the SDW group was not statistically significantly different from the married group. (median 32 vs 52 months). Multivariate Cox regression analysis presented the unmarried group leading to a HR of 1.05 (95% CI: 1.00–1.11%; P = 0.05), and the SDW group was not significant with a HR of 0.99 (95% CI: 0.95–1.03%; P = 0.57). Conclusion Unmarried patients with ovarian serous carcinoma have higherHRof overall survival. After controlling age, race, grade, radiation and year of diagnosis, unmarried patients were found to have a significantly higher risk of OS. Consequently, these patients are suggested to obtain more focused healthcare for the management of ovarian serous carcinoma.
Collapse
Affiliation(s)
- Pei Luo
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jian-Guo Zhou
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China. .,Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, 91054, Germany.
| | - Su-Han Jin
- Department of Orthodontics, Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ming-Song Qing
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
42
|
Muinao T, Deka Boruah HP, Pal M. Multi-biomarker panel signature as the key to diagnosis of ovarian cancer. Heliyon 2019; 5:e02826. [PMID: 31867451 PMCID: PMC6906658 DOI: 10.1016/j.heliyon.2019.e02826] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 09/03/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
Early detection of ovarian cancer has been a challenge to manage the high mortality rate caused by this deadly disease. The trends in mortality have been reduced by the scientific contributions from the corners across the globe, however accounting for the fifth leading cause of gynecological mortality. The complexities in the clinical presentation, origin of tumor, and gene expression profiles had added to much difficulty in understanding and diagnosis of the disease. Stage 1 diagnosis of ovarian cancer improves the 5-year survival rate to around 92%. Cancer antigen-125 (CA-125) is the gold standard tumor marker found at abnormally high levels in the blood of many women in ovarian cancer. However, many non-cancerous conditions exhibit high levels of CA-125 and several women have normal CA-125 level in the early stage of ovarian cancer, suggesting CA-125 biomarker is not specific enough for the screening of early stage ovarian cancer. In addition, several other biomarkers, including HE4 have been added in the diagnostic field for higher sensitivity and specificity in the diagnosis and progression of ovarian cancer. HE4 is a prospective single serum biomarker which has been approved by the FDA to monitor the disease progression in epithelial ovarian cancer. However, owing to low sensitivity and specificity, combination of a panel of biomarkers has been proposed in the diagnosis of the disease. Based on extensive biomarkers research findings, here we discuss current trends in diagnostic approaches and updated potential several panels of cancer biomarkers for early detection of ovarian cancer. It has been recently reported that CA125 in combinations with two or more biomarkers have outperformed single biomarker assays for early detection of the disease. Moreover, CA-125 with CA 19–9, EGFR, G-CSF, Eotaxin, IL-2R, cVCAM, MIF improved the sensitivity with 98.2 % and specificity of 98.7% in early stage detection of ovarian cancer. Overall, this review demonstrates a panel of biomarkers signature as the potential tool for prototype development in future and other advanced approaches for early diagnosis of ovarian cancer to avoid false-diagnosis and excessive cost.
Collapse
Affiliation(s)
- Thingreila Muinao
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Mintu Pal
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| |
Collapse
|
43
|
Graumann J, Finkernagel F, Reinartz S, Stief T, Brödje D, Renz H, Jansen JM, Wagner U, Worzfeld T, Pogge von Strandmann E, Müller R. Multi-platform Affinity Proteomics Identify Proteins Linked to Metastasis and Immune Suppression in Ovarian Cancer Plasma. Front Oncol 2019; 9:1150. [PMID: 31737572 PMCID: PMC6839336 DOI: 10.3389/fonc.2019.01150] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
A central reason behind the poor clinical outcome of patients with high-grade serous carcinoma (HGSC) of the ovary is the difficulty in reliably detecting early occurrence or recurrence of this malignancy. Biomarkers that provide reliable diagnosis of this disease are therefore urgently needed. Systematic proteomic methods that identify HGSC-associated molecules may provide such biomarkers. We applied the antibody-based proximity extension assay (PEA) platform (Olink) for the identification of proteins that are upregulated in the plasma of OC patients. Using binders targeting 368 different plasma proteins, we compared 20 plasma samples from HGSC patients (OC-plasma) with 20 plasma samples from individuals with non-malignant gynecologic disorders (N-plasma). We identified 176 proteins with significantly higher levels in OC-plasma compared to N-plasma by PEA (p < 0.05 by U-test; Benjamini-Hochberg corrected), which are mainly implicated in immune regulation and metastasis-associated processes, such as matrix remodeling, adhesion, migration and proliferation. A number of these proteins have not been reported in previous studies, such as BCAM, CDH6, DDR1, N2DL-2 (ULBP2), SPINT2, and WISP-1 (CCN4). Of these SPINT2, a protease inhibitor mainly derived from tumor cells within the HGSC microenvironment, showed the highest significance (p < 2 × 10−7) similar to the previously described IL-6 and PVRL4 (NECTIN4) proteins. Results were validated by means of the aptamer-based 1.3 k SOMAscan proteomic platform, which revealed a high inter-platform correlation with a median Spearman ρ of 0.62. Likewise, ELISA confirmed the PEA data for 10 out of 12 proteins analyzed, including SPINT2. These findings suggest that in contrast to other entities SPINT2 does not act as a tumor suppressor in HGSC. This is supported by data from the PRECOG and KM-Plotter meta-analysis databases, which point to a tumor-type-specific inverse association of SPINT2 gene expression with survival. Our data also demonstrate that both the PEA and SOMAscan affinity proteomics platforms bear considerable potential for the unbiased discovery of novel disease-associated biomarkers.
Collapse
Affiliation(s)
- Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Thomas Stief
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University, Marburg, Germany
| | - Dörte Brödje
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM), Marburg, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany.,Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Biology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| | - Rolf Müller
- Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany
| |
Collapse
|
44
|
De Clercq K, Xie F, De Wever O, Descamps B, Hoorens A, Vermeulen A, Ceelen W, Vervaet C. Preclinical evaluation of local prolonged release of paclitaxel from gelatin microspheres for the prevention of recurrence of peritoneal carcinomatosis in advanced ovarian cancer. Sci Rep 2019; 9:14881. [PMID: 31619730 PMCID: PMC6795903 DOI: 10.1038/s41598-019-51419-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/25/2019] [Indexed: 01/12/2023] Open
Abstract
Patients with advanced ovarian cancer develop recurrence despite initial treatment response to standard treatment of surgery and intravenous/intraperitoneal (IP) chemotherapy, partly due to a limited peritoneal exposure time of chemotherapeutics. Paclitaxel-loaded genipin-crosslinked gelatin microspheres (PTX-GP-MS) are evaluated for the treatment of microscopic peritoneal carcinomatosis and prevention of recurrent disease. The highest drug load (39.2 µg PTX/mg MS) was obtained by immersion of GP-MS in aqueous PTX nanosuspension (PTXnano-GP-MS) instead of ethanolic PTX solution (PTXEtOH-GP-MS). PTX release from PTX-GP-MS was prolonged. PTXnano-GP-MS displayed a more controlled release compared to a biphasic release from PTXEtOH-GP-MS. Anticancer efficacy of IP PTX-GP-MS (PTXEtOH-GP-MS, D = 7.5 mg PTX/kg; PTXnano-GP-MS D = 7.5 and 35 mg PTX/kg), IP nanoparticular albumin-bound PTX (D = 35 mg PTX/kg) and controls (0.9% NaCl, blank GP-MS) was evaluated in a microscopic peritoneal carcinomatosis xenograft mouse model. PTXnano-GP-MS showed superior anticancer efficacy with significant increased survival time, decreased peritoneal carcinomatosis index score and ascites incidence. However, prolonged PTX release over 14 days from PTXnano-GP-MS caused drug-related toxicity in 27% of high-dosed PTXnano-GP-MS-treated mice. Dose simulations for PTXnano-GP-MS demonstrated an optimal survival without drug-induced toxicity in a range of 7.5-15 mg PTX/kg. Low-dosed PTXnano-GP-MS can be a promising IP drug delivery system to prevent recurrent ovarian cancer.
Collapse
Affiliation(s)
- Kaat De Clercq
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Feifan Xie
- Laboratory for Medical Biochemistry and Clinical Analysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Benedicte Descamps
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - An Vermeulen
- Department of Gastro-intestinal Surgery, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Wim Ceelen
- Department of Gastro-intestinal Surgery, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
45
|
Zhang X, Yang X, Chen M, Zheng S, Li J, Lin S, Wang X. ST3Gal3 confers paclitaxel‑mediated chemoresistance in ovarian cancer cells by attenuating caspase‑8/3 signaling. Mol Med Rep 2019; 20:4499-4506. [PMID: 31702036 PMCID: PMC6797938 DOI: 10.3892/mmr.2019.10712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
The aberrant expression of sialyltransferase has a role in cell differentiation, neoplastic transformation and the progression of various types of cancer. Our previous studies have shown that high expression of β-galactoside-α2,3-sialyltransferase III (ST3Gal3) in the metastatic ovarian cancer cell line HO8910PM attenuated cisplatin-induced apoptosis. The present study demonstrated that paclitaxel-induced chemoresistance in ovarian cancer cells upregulated the expression of ST3Gal3 and reduced the activity of caspase-8/3. The results of the present study revealed that the endogenous levels of ST3Gal3 mRNA and protein were significantly higher in HO8910PM cells compared with SKOV3 cells. A higher expression of ST3Gal3 was correlated with an increased resistance to paclitaxel, while the downregulation of ST3Gal3 resulted in paclitaxel-induced apoptosis. Paclitaxel upregulated ST3Gal3 expression at the mRNA and protein levels in HO8910PM cells, but not in SKOV3 cells. Silencing of ST3Gal3 by small interfering RNA reversed these effects and increased the protein levels of caspase-8/3, which may contribute to paclitaxel-induced apoptosis. The results of the present study suggested that ST3Gal3 was a target for paclitaxel-related resistance during ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xinying Yang
- Guangdong Second People's Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Ming Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Shaolie Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jinyuan Li
- Institute of Clinical Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Shaoqiang Lin
- Institute of Clinical Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
46
|
Dvorská D, Braný D, Nagy B, Grendár M, Poka R, Soltész B, Jagelková M, Zelinová K, Lasabová Z, Zubor P, Danková Z. Aberrant Methylation Status of Tumour Suppressor Genes in Ovarian Cancer Tissue and Paired Plasma Samples. Int J Mol Sci 2019; 20:ijms20174119. [PMID: 31450846 PMCID: PMC6747242 DOI: 10.3390/ijms20174119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is a highly heterogeneous disease and its formation is affected by many epidemiological factors. It has typical lack of early signs and symptoms, and almost 70% of ovarian cancers are diagnosed in advanced stages. Robust, early and non-invasive ovarian cancer diagnosis will certainly be beneficial. Herein we analysed the regulatory sequence methylation profiles of the RASSF1, PTEN, CDH1 and PAX1 tumour suppressor genes by pyrosequencing in healthy, benign and malignant ovarian tissues, and corresponding plasma samples. We recorded statistically significant higher methylation levels (p < 0.05) in the CDH1 and PAX1 genes in malignant tissues than in controls (39.06 ± 18.78 versus 24.22 ± 6.93; 13.55 ± 10.65 versus 5.73 ± 2.19). Higher values in the CDH1 gene were also found in plasma samples (22.25 ± 14.13 versus 46.42 ± 20.91). A similar methylation pattern with positive correlation between plasma and benign lesions was noted in the CDH1 gene (r = 0.886, p = 0.019) and malignant lesions in the PAX1 gene (r = 0.771, p < 0.001). The random forest algorithm combining methylation indices of all four genes and age determined 0.932 AUC (area under the receiver operating characteristic (ROC) curve) prediction power in the model classifying malignant lesions and controls. Our study results indicate the effects of methylation changes in ovarian cancer development and suggest that the CDH1 gene is a potential candidate for non-invasive diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marián Grendár
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Robert Poka
- Institute of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marianna Jagelková
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Katarína Zelinová
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zora Lasabová
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Pavol Zubor
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Danková
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
47
|
Discovery and Validation of Novel Biomarkers for Detection of Epithelial Ovarian Cancer. Cells 2019; 8:cells8070713. [PMID: 31336942 PMCID: PMC6678810 DOI: 10.3390/cells8070713] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Detection of epithelial ovarian cancer (EOC) poses a critical medical challenge. However, novel biomarkers for diagnosis remain to be discovered. Therefore, innovative approaches are of the utmost importance for patient outcome. Here, we present a concept for blood-based biomarker discovery, investigating both epithelial and specifically stromal compartments, which have been neglected in search for novel candidates. We queried gene expression profiles of EOC including microdissected epithelium and adjacent stroma from benign and malignant tumours. Genes significantly differentially expressed within either the epithelial or the stromal compartments were retrieved. The expression of genes whose products are secreted yet absent in the blood of healthy donors were validated in tissue and blood from patients with pelvic mass by NanoString analysis. Results were confirmed by the comprehensive gene expression database, CSIOVDB (Ovarian cancer database of Cancer Science Institute Singapore). The top 25% of candidate genes were explored for their biomarker potential, and twelve were able to discriminate between benign and malignant tumours on transcript levels (p < 0.05). Among them T-cell differentiation protein myelin and lymphocyte (MAL), aurora kinase A (AURKA), stroma-derived candidates versican (VCAN), and syndecan-3 (SDC), which performed significantly better than the recently reported biomarker fibroblast growth factor 18 (FGF18) to discern malignant from benign conditions. Furthermore, elevated MAL and AURKA expression levels correlated significantly with a poor prognosis. We identified promising novel candidates and found the stroma of EOC to be a suitable compartment for biomarker discovery.
Collapse
|
48
|
Enroth S, Berggrund M, Lycke M, Broberg J, Lundberg M, Assarsson E, Olovsson M, Stålberg K, Sundfeldt K, Gyllensten U. High throughput proteomics identifies a high-accuracy 11 plasma protein biomarker signature for ovarian cancer. Commun Biol 2019; 2:221. [PMID: 31240259 PMCID: PMC6586828 DOI: 10.1038/s42003-019-0464-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is usually detected at a late stage and the overall 5-year survival is only 30-40%. Additional means for early detection and improved diagnosis are acutely needed. To search for novel biomarkers, we compared circulating plasma levels of 593 proteins in three cohorts of patients with ovarian cancer and benign tumors, using the proximity extension assay (PEA). A combinatorial strategy was developed for identification of different multivariate biomarker signatures. A final model consisting of 11 biomarkers plus age was developed into a multiplex PEA test reporting in absolute concentrations. The final model was evaluated in a fourth independent cohort and has an AUC = 0.94, PPV = 0.92, sensitivity = 0.85 and specificity = 0.93 for detection of ovarian cancer stages I-IV. The novel plasma protein signature could be used to improve the diagnosis of women with adnexal ovarian mass or in screening to identify women that should be referred to specialized examination.
Collapse
Affiliation(s)
- Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Box 815, Uppsala University, SE-75108 Uppsala, Sweden
| | - Malin Berggrund
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Box 815, Uppsala University, SE-75108 Uppsala, Sweden
| | - Maria Lycke
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - John Broberg
- OLINK Proteomics, Uppsala Science Park, SE-751 83 Uppsala, Sweden
| | - Martin Lundberg
- OLINK Proteomics, Uppsala Science Park, SE-751 83 Uppsala, Sweden
| | - Erika Assarsson
- OLINK Proteomics, Uppsala Science Park, SE-751 83 Uppsala, Sweden
| | - Matts Olovsson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Karin Stålberg
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Box 815, Uppsala University, SE-75108 Uppsala, Sweden
| |
Collapse
|
49
|
Dorayappan KDP, Gardner ML, Hisey CL, Zingarelli RA, Smith BQ, Lightfoot MDS, Gogna R, Flannery MM, Hays J, Hansford DJ, Freitas MA, Yu L, Cohn DE, Selvendiran K. A Microfluidic Chip Enables Isolation of Exosomes and Establishment of Their Protein Profiles and Associated Signaling Pathways in Ovarian Cancer. Cancer Res 2019; 79:3503-3513. [PMID: 31097475 DOI: 10.1158/0008-5472.can-18-3538] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/15/2019] [Accepted: 05/09/2019] [Indexed: 01/15/2023]
Abstract
Because of limits on specificity and purity to allow for in-depth protein profiling, a standardized method for exosome isolation has yet to be established. In this study, we describe a novel, in-house microfluidic-based device to isolate exosomes from culture media and patient samples. This technology overcomes contamination issues because sample separation is based on the expression of highly specific surface markers CD63 and EpCAM. Mass spectrometry revealed over 25 exosome proteins that are differentially expressed in high-grade serous ovarian cancer (HGSOC) cell lines compared with normal cells-ovarian surface epithelia cells and fallopian tube secretory epithelial cells (FTSEC). Top exosome proteins were identified on the basis of their fold change and statistical significance between groups. Ingenuity pathway analysis identified STAT3 and HGF as top regulator proteins. We further validated exosome proteins of interest (pSTAT3, HGF, and IL6) in HGSOC samples of origin-based cell lines (OVCAR-8, FTSEC) and in early-stage HGSOC patient serum exosome samples using LC/MS-MS and proximity extension assay. Our microfluidic device will allow us to make new discoveries for exosome-based biomarkers for the early detection of HGSOC and will contribute to the development of new targeted therapies based on signaling pathways that are unique to HGSOC, both of which could improve the outcome for women with HGSOC. SIGNIFICANCE: A unique platform utilizing a microfluidic device enables the discovery of new exosome-based biomarkers in ovarian cancer.
Collapse
Affiliation(s)
- Kalpana Deepa Priya Dorayappan
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Miranda L Gardner
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Colin L Hisey
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Roman A Zingarelli
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Brentley Q Smith
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Michelle D S Lightfoot
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Rajan Gogna
- Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Meghan M Flannery
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - John Hays
- Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Derek J Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Lianbo Yu
- Department of Biostatistics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - David E Cohn
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
50
|
Shi C, Wang M. LINC01118 Modulates Paclitaxel Resistance of Epithelial Ovarian Cancer by Regulating miR-134/ABCC1. Med Sci Monit 2018; 24:8831-8839. [PMID: 30521500 PMCID: PMC6292151 DOI: 10.12659/msm.910932] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) has a high mortality rate and is a common malignant tumor of women, seriously impairing health. Chemoresistance is one of the major causes of poor prognosis. Therefore, analyzing the molecular mechanism of paclitaxel resistance has great significance. MATERIAL AND METHODS We analyzed aberrantly expressed lncRNAs in chemoresistant EOC cells by microarray and confirmed LINC01118 expression by real-time PCR. The paclitaxel sensitivity alternation was analyzed by MTS, flow cytometry, and Transwell assay, while wound healing assays were performed to assess apoptosis, migration, and invasion in vitro. The interaction between LINC01118 and miR-134 was confirmed by luciferase assay. RESULTS LINC01118 was highly expressed in EOC tissues and chemoresistant cells. Biological function experiments showed LINC01118 could facilitate paclitaxel resistance and promote migration and invasion while inhibiting apoptosis of EOC cells. Moreover, LINC01118 targets miR-134 and then affects ABCC1 expression. CONCLUSIONS LINC01118 acted as an oncogene and modulated EOC paclitaxel sensitivity by regulating miR-134/ABCC1.
Collapse
|