1
|
Donaldson NM, Prescott M, Ruddenklau A, Campbell RE, Desroziers E. Maternal androgen excess significantly impairs sexual behavior in male and female mouse offspring: Perspective for a biological origin of sexual dysfunction in PCOS. Front Endocrinol (Lausanne) 2023; 14:1116482. [PMID: 36875467 PMCID: PMC9975579 DOI: 10.3389/fendo.2023.1116482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is the most common infertility disorder worldwide, typically characterised by high circulating androgen levels, oligo- or anovulation, and polycystic ovarian morphology. Sexual dysfunction, including decreased sexual desire and increased sexual dissatisfaction, is also reported by women with PCOS. The origins of these sexual difficulties remain largely unidentified. To investigate potential biological origins of sexual dysfunction in PCOS patients, we asked whether the well-characterized, prenatally androgenized (PNA) mouse model of PCOS exhibits modified sex behaviours and whether central brain circuits associated with female sex behaviour are differentially regulated. As a male equivalent of PCOS is reported in the brothers of women with PCOS, we also investigated the impact of maternal androgen excess on the sex behaviour of male siblings. METHODS Adult male and female offspring of dams exposed to dihydrotestosterone (PNAM/PNAF) or an oil vehicle (VEH) from gestational days 16 to 18 were tested for a suite of sex-specific behaviours. RESULTS PNAM showed a reduction in their mounting capabilities, however, most of PNAM where able to reach ejaculation by the end of the test similar to the VEH control males. In contrast, PNAF exhibited a significant impairment in the female-typical sexual behaviour, lordosis. Interestingly, while neuronal activation was largely similar between PNAF and VEH females, impaired lordosis behaviour in PNAF was unexpectedly associated with decreased neuronal activation in the dorsomedial hypothalamic nucleus (DMH). CONCLUSION Taken together, these data link prenatal androgen exposure that drives a PCOS-like phenotype with altered sexual behaviours in both sexes.
Collapse
|
2
|
Martini M, Froment P, Franceschini I, Pillon D, Guibert E, Cahier C, Mhaouty-Kodja S, Keller M. Perinatal Exposure to Methoxychlor Affects Reproductive Function and Sexual Behavior in Mice. Front Endocrinol (Lausanne) 2020; 11:639. [PMID: 33013709 PMCID: PMC7509471 DOI: 10.3389/fendo.2020.00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/06/2020] [Indexed: 01/07/2023] Open
Abstract
Numerous chemicals derived from human activity are now disseminated in the environment where their exert estrogenic endocrine disrupting effects, and therefore represent major health concerns. The present study explored whether Methoxychlor (MXC), an insecticide with xenoestrogens activities, given during the perinatal period (from gestational day 11 to postnatal day 8) and at an environmentally dose [20 μg/kg (body weight)/day], would affect reproductive physiology and sexual behavior of the offspring in mice. While MXC exposure did not induce any differences in the weight gain of animals from birth to 4 months of age, a clear difference (although in opposite direction according to the sexes) was observed on the anogenital distance between intact and exposed animals. A similar effect was also observed on preputial separation and vaginal opening, which reflects, respectively, in males and females, puberty occurrence. The advanced puberty observed in females was associated with an enhanced expression of kisspeptin cells in the anteroventral periventricular region of the medial preoptic area. Exposure to MXC did not induce in adult females changes in the estrous cycle or in the weight of the female reproductive tract. By contrast, males showed reduced weight of the epididymis and seminiferous vesicles associated with reduced testosterone levels and seminiferous tubule diameter. We also showed that both males and females showed deficits in mate preference tests. As a whole, our results show that MXC impacts reproductive outcomes.
Collapse
Affiliation(s)
- Mariangela Martini
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
- Department of Biological Sciences & Toxicology Program, North Carolina State University, Raleigh, NC, United States
| | - Pascal Froment
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
| | - Isabelle Franceschini
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
| | - Delphine Pillon
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
| | - Edith Guibert
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
| | - Claude Cahier
- Unité Expérimentale de Physiologie Animale de l'Orfrasière, UE 1297, INRA, Nouzilly, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Paris, France
| | - Matthieu Keller
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université François Rabelais, Nouzilly, France
- *Correspondence: Matthieu Keller
| |
Collapse
|
3
|
Khbouz B, de Bournonville C, Court L, Taziaux M, Corona R, Arnal JF, Lenfant F, Cornil CA. Role for the membrane estrogen receptor alpha in the sexual differentiation of the brain. Eur J Neurosci 2019; 52:2627-2645. [PMID: 31833601 DOI: 10.1111/ejn.14646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/30/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022]
Abstract
Estrogens exert pleiotropic effects on multiple physiological and behavioral responses. Male and female sexual behavior in rodents constitutes some of the best-characterized responses activated by estrogens in adulthood and largely depend on ERα. Evidence exists that nucleus- and membrane-initiated estrogen signaling cooperate to orchestrate the activation of these behaviors both in short- and long-term. However, questions remain regarding the mechanism(s) and receptor(s) involved in the early brain programming during development to organize the circuits underlying sexually differentiated responses. Taking advantage of a mouse model harboring a mutation of the ERα palmitoylation site, which prevents membrane ERα signaling (mERα; ERα-C451A), this study investigated the role of mERα on the expression of male and female sexual behavior and neuronal populations that differ between sexes. The results revealed no genotype effect on the expression of female sexual behavior, while male sexual behavior was significantly reduced, but not abolished, in males homozygous for the mutation. Similarly, the number of kisspeptin- (Kp-ir) and calbindin-immunoreactive (Cb-ir) neurons in the anteroventral periventricular nucleus (AVPv) and the sexually dimorphic nucleus of the preoptic area (SDN-POA), respectively, were not different between genotypes in females. In contrast, homozygous males showed increased numbers of Kp-ir and decreased numbers of Cb-ir neurons compared to wild-types, thus leading to an intermediate phenotype between females and wild-type males. Importantly, females neonatally treated with estrogens exhibited the same neurochemical phenotype as their corresponding genotype among males. Together, these data provide evidence that mERα is involved in the perinatal programming of the male brain.
Collapse
Affiliation(s)
- Badr Khbouz
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Lucas Court
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Rebeca Corona
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Jean-François Arnal
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Françoise Lenfant
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | | |
Collapse
|
4
|
Estradiol Treatment during Perinatal Development Alters Adult Partner Preference, Mating Behavior and Estrogen Receptors α and β in the Female Mandarin Vole ( Microtus mandarinus). Zool Stud 2019. [PMID: 31966342 PMCID: PMC6971534 DOI: 10.6620/zs.2019.58-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
During development, many aspects of behavior, including partner preferences and sexual conduct, are "organized" by estradiol. This study aimed at analyze these processes in the mandarin vole (Microtus mandarinus), a novel experimental mammal with strong monogamous pair bonds. Female pups were treated daily with an oil vehicle (FC) or β-Estradiol (E2, FT) from prenatal day 14 to postnatal day 10. Male pups were treated daily with the oil vehicle only (MC). Partner preferences, sexual conduct and the expression of estrogen receptors α (ERα) and β (ERβ) were examined when animals were 3 months old. FT and MC groups showed female-directed partner preferences and masculinized behavior. ERα- immunoreactive neurons (ERα-IRs) in the bed nucleus of stria terminalis (BNST) and medial amygdaloid nucleus (MeA) was greater in FT females than MC males, and there was no significant difference in the number of ERα-IRs between FT and FC females. No difference was found for ERα-IRs in the preoptic area (mPOA) or ventromedial nucleus of the hypothalamus (VMH) of FT females or MC males, and they were significantly fewer than in FC females. ERβ-immunoreactive neurons (ERβ-IRs) in these four brain regions did not alter the ERβ/ERα ratio in different brain regions during perintal developments. However, the number of ERβ-IRs in FT females and MC males were greater than in FC females. We propose that estradiol treatment during perinatal development is responsible for adult partner preferences and mating behavior.
Collapse
|
5
|
Swift-Gallant A. Individual differences in the biological basis of androphilia in mice and men. Horm Behav 2019; 111:23-30. [PMID: 30579744 DOI: 10.1016/j.yhbeh.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
Abstract
For nearly 60 years since the seminal paper from W.C Young and colleagues (Phoenix et al., 1959), the principles of sexual differentiation of the brain and behavior have maintained that female-typical sexual behaviors (e.g., lordosis) and sexual preferences (e.g., attraction to males) are the result of low androgen levels during development, whereas higher androgen levels promote male-typical sexual behaviors (e.g., mounting and thrusting) and preferences (e.g., attraction to females). However, recent reports suggest that the relationship between androgens and male-typical behaviors is not always linear - when androgen signaling is increased in male rodents, via exogenous androgen exposure or androgen receptor overexpression, males continue to exhibit male-typical sexual behaviors, but their sexual preferences are altered such that their interest in same-sex partners is increased. Analogous to this rodent literature, recent findings indicate that high level androgen exposure may contribute to the sexual orientation of a subset of gay men who prefer insertive anal sex and report more male-typical gender traits, whereas gay men who prefer receptive anal sex, and who on average report more gender nonconformity, present with biomarkers suggestive of low androgen exposure. Together, the evidence indicates that for both mice and men there is an inverted-U curvilinear relationship between androgens and sexual preferences, such that low and high androgen exposure increases androphilic sexual attraction, whereas relative mid-range androgen exposure leads to gynephilic attraction. Future directions for studying how individual differences in biological development mediate sexual behavior and sexual preferences in both mice and humans are discussed.
Collapse
Affiliation(s)
- Ashlyn Swift-Gallant
- Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, USA; Department of Psychology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
6
|
Monks DA, Swift-Gallant A. Non-neural androgen receptors affect sexual differentiation of brain and behaviour. J Neuroendocrinol 2018; 30. [PMID: 28590577 DOI: 10.1111/jne.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 01/08/2023]
Abstract
Although gonadal testosterone is the principal endocrine factor that promotes masculine traits in mammals, the development of a male phenotype requires local production of both androgenic and oestrogenic signals within target tissues. Much of our knowledge concerning androgenic components of testosterone signalling in sexual differentiation comes from studies of androgen receptor (Ar) loss of function mutants. Here, we review these studies of loss of Ar function and of AR overexpression either globally or selectively in the nervous system of mice. Global and neural mutations affect socio-sexual behaviour and the neuroanatomy of these mice in a sexually differentiated manner. Some masculine traits are affected by both global and neural mutation, indicative of neural mediation, whereas other masculine traits are affected only by global mutation, indicative of an obligatory non-neural androgen target. These results support a model in which multiple sites of androgen action coordinate to produce masculine phenotypes. Furthermore, AR overexpression does not always have a phenotype opposite to that of loss of Ar function mutants, indicative of a nonlinear relationship between androgen dose and masculine phenotype in some cases. Potential mechanisms of Ar gene function in non-neural targets in producing masculine phenotypes are discussed.
Collapse
Affiliation(s)
- D A Monks
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - A Swift-Gallant
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
7
|
Yao S, Bergan J, Lanjuin A, Dulac C. Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues. eLife 2017; 6:31373. [PMID: 29231812 PMCID: PMC5768418 DOI: 10.7554/elife.31373] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/11/2017] [Indexed: 01/30/2023] Open
Abstract
The neural control of social behaviors in rodents requires the encoding of pheromonal cues by the vomeronasal system. Here we show that the typical preference of male mice for females is eliminated in mutants lacking oxytocin, a neuropeptide modulating social behaviors in many species. Ablation of the oxytocin receptor in aromatase-expressing neurons of the medial amygdala (MeA) fully recapitulates the elimination of female preference in males. Further, single-unit recording in the MeA uncovered significant changes in the sensory representation of conspecific cues in the absence of oxytocin signaling. Finally, acute manipulation of oxytocin signaling in adults is sufficient to alter social interaction preferences in males as well as responses of MeA neurons to chemosensory cues. These results uncover the critical role of oxytocin signaling in a molecularly defined neuronal population in order to modulate the behavioral and physiological responses of male mice to females on a moment-to-moment basis.
Collapse
Affiliation(s)
- Shenqin Yao
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Joseph Bergan
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Anne Lanjuin
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
8
|
|
9
|
Balthazart J. Sex differences in partner preferences in humans and animals. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150118. [PMID: 26833838 PMCID: PMC4785903 DOI: 10.1098/rstb.2015.0118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 11/12/2022] Open
Abstract
A large number of morphological, physiological and behavioural traits are differentially expressed by males and females in all vertebrates including humans. These sex differences, sometimes, reflect the different hormonal environment of the adults, but they often remain present after subjects of both sexes are placed in the same endocrine conditions following gonadectomy associated or not with hormonal replacement therapy. They are then the result of combined influences of organizational actions of sex steroids acting early during development, or genetic differences between the sexes, or epigenetic mechanisms differentially affecting males and females. Sexual partner preference is a sexually differentiated behavioural trait that is clearly controlled in animals by the same type of mechanisms. This is also probably true in humans, even if critical experiments that would be needed to obtain scientific proof of this assertion are often impossible for pragmatic or ethical reasons. Clinical, epidemiological and correlative studies provide, however, converging evidence strongly suggesting, if not demonstrating, that endocrine, genetic and epigenetic mechanisms acting during the pre- or perinatal life control human sexual orientation, i.e. homosexuality versus heterosexuality. Whether they interact with postnatal psychosexual influences remains, however, unclear at present.
Collapse
Affiliation(s)
- Jacques Balthazart
- GIGA Neurosciences, University of Liège, 15 avenue Hippocrate, 4000 Liège, Belgium
| |
Collapse
|
10
|
Derouiche L, Keller M, Martini M, Duittoz AH, Pillon D. Developmental Exposure to Ethinylestradiol Affects Reproductive Physiology, the GnRH Neuroendocrine Network and Behaviors in Female Mouse. Front Neurosci 2015; 9:463. [PMID: 26696819 PMCID: PMC4673314 DOI: 10.3389/fnins.2015.00463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
During development, environmental estrogens are able to induce an estrogen mimetic action that may interfere with endocrine and neuroendocrine systems. The present study investigated the effects on the reproductive function in female mice following developmental exposure to pharmaceutical ethinylestradiol (EE2), the most widespread and potent synthetic steroid present in aquatic environments. EE2 was administrated in drinking water at environmentally relevant (ENVIR) or pharmacological (PHARMACO) doses [0.1 and 1 μg/kg (body weight)/day respectively], from embryonic day 10 until postnatal day 40. Our results show that both groups of EE2-exposed females had advanced vaginal opening and shorter estrus cycles, but a normal fertility rate compared to CONTROL females. The hypothalamic population of GnRH neurons was affected by EE2 exposure with a significant increase in the number of perikarya in the preoptic area of the PHARMACO group and a modification in their distribution in the ENVIR group, both associated with a marked decrease in GnRH fibers immunoreactivity in the median eminence. In EE2-exposed females, behavioral tests highlighted a disturbed maternal behavior, a higher lordosis response, a lack of discrimination between gonad-intact and castrated males in sexually experienced females, and an increased anxiety-related behavior. Altogether, these results put emphasis on the high sensitivity of sexually dimorphic behaviors and neuroendocrine circuits to disruptive effects of EDCs.
Collapse
Affiliation(s)
- Lyes Derouiche
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Matthieu Keller
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Mariangela Martini
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Anne H Duittoz
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| | - Delphine Pillon
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE Nouzilly, France
| |
Collapse
|
11
|
Taziaux M, Bakker J. Absence of Female-Typical Pheromone-Induced Hypothalamic Neural Responses and Kisspeptin Neuronal Activity in α-Fetoprotein Knockout Female Mice. Endocrinology 2015; 156:2595-607. [PMID: 25860032 DOI: 10.1210/en.2015-1062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pheromones induce sexually dimorphic neuroendocrine responses, such as LH secretion. However, the neuronal network by which pheromones are converted into signals that will initiate and modulate endocrine changes remains unclear. We asked whether 2 sexually dimorphic populations in the anteroventral periventricular and periventricular nuclei that express kisspeptin and tyrosine hydroxylase (TH) are potential candidates that will transduce the olfactory signal to the neuroendocrine system. Furthermore, we assessed whether this transduction is sensitive to perinatal actions of estradiol by using female mice deficient in α-fetoprotein (AfpKO), which lack the protective actions of Afp against maternal estradiol. Wild-type (WT) and AfpKO male and female mice were exposed to same- versus opposite-sex odors and the expression of Fos (the protein product of the immediate early gene c-Fos) was analyzed along the olfactory projection pathways as well as whether kisspeptin, TH, and GnRH neurons are responsive to opposite-sex odors. Male odors induced a female-typical Fos expression in target forebrain sites of olfactory inputs involved in reproduction in WT, but not in AfpKO females, whereas female odors induced a male-typical Fos expression in males of both genotypes. In WT females, opposite-sex odors induced Fos in kisspeptin and TH neurons, whereas in AfpKO females and WT males, only a lower, but still significant, Fos expression was observed in TH but not in kisspeptin neurons. Finally, opposite-sex odors did not induce any significant Fos expression in GnRH neurons of both sexes or genotypes. Our results strongly suggest a role for fetal estrogen in the sexual differentiation of neural responses to sex-related olfactory cues.
Collapse
Affiliation(s)
- Melanie Taziaux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences (M.T., J.B.), University of Liège, 4000 Liège, Belgium; and Netherlands Institute for Neuroscience (J.B.), Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Julie Bakker
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences (M.T., J.B.), University of Liège, 4000 Liège, Belgium; and Netherlands Institute for Neuroscience (J.B.), Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
12
|
Coronas-Sámano G, Portillo W, Beltrán Campos V, Medina-Aguirre GI, Paredes RG, Diaz-Cintra S. Deficits in odor-guided behaviors in the transgenic 3xTg-AD female mouse model of Alzheimer׳s disease. Brain Res 2014; 1572:18-25. [PMID: 24842003 DOI: 10.1016/j.brainres.2014.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/15/2022]
Abstract
Alzheimer׳s disease (AD) is characterized by a number of alterations including those in cognition and olfaction. An early symptom of AD is decreased olfactory ability, which may affect odor-guided behaviors. To test this possibility we evaluated alterations in sexual incentive motivation, sexual olfactory preference, sexual olfactory discrimination, nursing-relevant olfactory preference and olfactory discrimination in female mice. We tested 3xTg-AD (a triple transgenic model, which is a "knock in" of PS1M146V, APPSwe, and tauP300L) and wild type (WT) female mice when receptive (estrous) and non-receptive (anestrous). Subjects were divided into three groups of different ages: (1) 4-5 months, (2) 10-11 months, and (3) 16-18 months. In the sexual incentive motivation task, the receptive 3xTg-AD females showed no preference for a sexually active male at any age studied, in contrast to the WT females. In the sexual olfactory preference test, the receptive WT females were able to identify sexually active male secretions at all ages, but the oldest (16-18 months old) 3xTg-AD females could not. In addition, the oldest 3xTg-AD females showed no preference for nursing-relevant odors in dam secretions and were unable to discriminate between cinnamon and strawberry odors, indicating olfactory alterations. Thus, the present study suggests that the olfactory deficits in this mouse model are associated with changes in sexual incentive motivation and discrimination of food-related odors.
Collapse
Affiliation(s)
- G Coronas-Sámano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - W Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - V Beltrán Campos
- División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Campus Celaya Salvatierra, Mexico
| | - G I Medina-Aguirre
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - R G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - S Diaz-Cintra
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico.
| |
Collapse
|
13
|
Brock O, Bakker J. The two kisspeptin neuronal populations are differentially organized and activated by estradiol in mice. Endocrinology 2013; 154:2739-49. [PMID: 23744640 DOI: 10.1210/en.2013-1120] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rodents, kisspeptin-expressing neurons are localized in 2 hypothalamic brain nuclei (anteroventral periventricular nucleus/periventricular nucleus continuum [AVPv/PeN] and arcuate nucleus [ARC]) and modulated by sex steroids. By using wild-type (WT) and aromatase knockout (ArKO) mice (which cannot convert testosterone into estradiol) and immunohistochemistry, we observed that WT females showed a continuous increase in kisspeptin peptide expression in the ARC across postnatal ages (postnatal day 5 [P5] to P25), whereas WT males did not show any expression before P25. Kisspeptin peptide expression was also present in ArKO females but did not increase over this early postnatal period, suggesting that kisspeptin peptide expression in the ARC is organized by estradiol-dependent and -independent mechanisms. We also compared kisspeptin peptide expression between groups of adult male and female mice that were left gonadally intact or gonadectomized and treated or not with estradiol (E(2)) or DHT. In the ARC, kisspeptin peptide expression decreased after gonadectomy but was completely rescued by either E(2) or DHT treatment in each sex/genotype. However, kisspeptin peptide expression was lower in ArKO compared with WT subjects. In the AVPv/PeN, ArKO females showed a male-typical kisspeptin peptide expression, and adult E(2) treatment partially restored kisspeptin peptide expression. Finally, we showed that, after E2 treatment of WT and ArKO mice between either P5 and P15 or P15 and P25, AVPv/PeN kisspeptin peptide expression could be still masculinized at P5, but was feminized from P15 onward. In conclusion, the 2 kisspeptin neuronal populations (AVPv/PeN vs ARC) seem to be differentially organized and activated by E(2).
Collapse
Affiliation(s)
- Olivier Brock
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands.
| | | |
Collapse
|
14
|
Serotonin signaling in the brain of adult female mice is required for sexual preference. Proc Natl Acad Sci U S A 2013; 110:9968-73. [PMID: 23716677 DOI: 10.1073/pnas.1220712110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A role for serotonin in male sexual preference was recently uncovered by our finding that male mutant mice lacking serotonin have lost sexual preference. Here we show that female mouse mutants lacking either central serotonergic neurons or serotonin prefer female over male genital odors when given a choice, and displayed increased female-female mounting when presented either with a choice of a male and a female target or only with a female target. Pharmacological manipulations and genetic rescue experiments showed that serotonin is required in adults. Behavioral changes caused by deficient serotonergic signaling were not due to changes in plasma concentrations of sex hormones. We demonstrate that a genetic manipulation reverses sexual preference without involving sex hormones. Our results indicate that serotonin controls sexual preference.
Collapse
|
15
|
Brock O, Bakker J, Baum MJ. Assessment of urinary pheromone discrimination, partner preference, and mating behaviors in female mice. Methods Mol Biol 2013; 1068:319-329. [PMID: 24014373 DOI: 10.1007/978-1-62703-619-1_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Behavioral testing methods are described for determining whether female mice can discriminate between volatile urinary pheromones of conspecifics of the same vs. opposite sex and/or in different endocrine conditions, for determining sexual partner preference, for quantifying receptive (lordosis) behavior, and for monitoring the expression of male-typical mounting behavior in female mice.
Collapse
Affiliation(s)
- Olivier Brock
- Netherlands Institute of Neuroscience, Amsterdam, The Netherlands
| | | | | |
Collapse
|
16
|
Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones. PLoS One 2012; 7:e39204. [PMID: 22720075 PMCID: PMC3376129 DOI: 10.1371/journal.pone.0039204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/21/2012] [Indexed: 02/03/2023] Open
Abstract
The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT) and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus) as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus), as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.
Collapse
|
17
|
Henley CL, Nunez AA, Clemens LG. Hormones of choice: the neuroendocrinology of partner preference in animals. Front Neuroendocrinol 2011; 32:146-54. [PMID: 21377487 DOI: 10.1016/j.yfrne.2011.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 11/29/2022]
Abstract
Partner preference behavior can be viewed as the outcome of a set of hierarchical choices made by an individual in anticipation of mating. The first choice involves approaching a conspecific verses an individual of another species. As a rule, a conspecific is picked as a mating partner, but early life experiences can alter that outcome. Within a species, an animal then has the choice between a member of the same sex or the opposite sex. The final choice is for a specific individual. This review will focus on the middle choice, the decision to mate with either a male or a female. Available data from rats, mice, and ferrets point to the importance of perinatal exposure to steroid hormones in the development of partner preferences, as well as the importance of activational effects in adulthood. However, the particular effects of this hormone exposure show species differences in both the specific steroid hormone responsible for the organization of behavior and the developmental period when it has its effect. Where these hormones have an effect in the brain is mostly unknown, but regions involved in olfaction and sexual behavior, as well as sexually dimorphic regions, seem to play a role. One limitation of the literature base is that many mate or 'partner preference studies' rely on preference for a specific stimulus (usually olfaction) but do not include an analysis of the relation, if any, that stimulus has to the choice of a particular sexual partner. A second limitation has been the almost total lack of attention to the type of behavior that is shown by the choosing animal once a 'partner' has been chosen, specifically, if the individual plays a mating role typical of its own sex or the opposite sex. Additional paradigms that address these questions are needed for better understanding of partner preferences in rodents.
Collapse
Affiliation(s)
- C L Henley
- Departments of Zoology and Psychology, and the Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|