1
|
Pietsch C, Pawlak P, Konrad J. Acute Stress Effects over Time on the Gene Expression and Neurotransmitter Patterns in the Carp ( Cyprinus carpio) Brain. Animals (Basel) 2024; 14:3413. [PMID: 39682377 DOI: 10.3390/ani14233413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Changes in gene expression in carps' brains over time following acute stressors has not been studied in detail so far. Consequently, a stress trial with juvenile common carp was conducted to investigate transcriptomic differences in four brain parts in response to acute negative stressors and feed reward, focusing on appetite-related genes, serotonergic and dopaminergic pathways, and other involved systems, at 30, 60, and 90 min after treatments. The treatments showed pronounced effects on the gene expression patterns across brain parts compared to control fish. Notably, npy expression increased in the telencephalon following negative stressors and feed reward, suggesting a stress-coping mechanism by promoting food intake. Unlike zebrafish, cart expression in carp showed varying responses, indicating species-specific regulation of appetite and stress. Serotonergic and dopaminergic pathways were also affected, with alterations in the respective receptors' expression, confirming their roles in stress and reward processing. Additionally, this study highlights the involvement of the opioid- and gamma-aminobutyric acid systems in stress and feeding regulation across brain parts. Furthermore, principal component analyses revealed that neurotransmitter levels in the different brain parts contribute to the explained variance. These findings deepen our understanding of how different fish species react to acute stress and rewards.
Collapse
Affiliation(s)
- Constanze Pietsch
- School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences (BFH), 3052 Zollikofen, Switzerland
| | - Paulina Pawlak
- School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences (BFH), 3052 Zollikofen, Switzerland
| | - Jonathan Konrad
- School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences (BFH), 3052 Zollikofen, Switzerland
| |
Collapse
|
2
|
Rocha A, Godino-Gimeno A, Rotllant J, Cerdá-Reverter JM. Agouti-Signalling Protein Overexpression Reduces Aggressiveness in Zebrafish. BIOLOGY 2023; 12:biology12050712. [PMID: 37237525 DOI: 10.3390/biology12050712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Feeding motivation plays a crucial role in food intake and growth. It closely depends on hunger and satiation, which are controlled by the melanocortin system. Overexpression of the inverse agonist agouti-signalling protein (ASIP) and agouti-related protein (AGRP) leads to enhanced food intake, linear growth, and weight. In zebrafish, overexpression of Agrp leads to the development of obesity, in contrast to the phenotype observed in transgenic zebrafish that overexpress asip1 under the control of a constitutive promoter (asip1-Tg). Previous studies have demonstrated that asip1-Tg zebrafish exhibit larger sizes but do not become obese. These fish display increased feeding motivation, resulting in a higher feeding rate, yet a higher food ration is not essential in order to grow larger than wild-type (WT) fish. This is most likely attributed to their improved intestinal permeability to amino acids and enhanced locomotor activity. A relationship between high feeding motivation and aggression has been previously reported in some other transgenic species showing enhanced growth. This study aims to elucidate whether the hunger observed in asip1-Tg is linked to aggressive behaviour. Dominance and aggressiveness were quantified using dyadic fights and mirror-stimulus tests, in addition to the analysis of basal cortisol levels. The results indicate that asip1-Tg are less aggressive than WT zebrafish in both dyadic fights and mirror-stimulus tests.
Collapse
Affiliation(s)
- Ana Rocha
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Alejandra Godino-Gimeno
- Control of Food Intake Group, Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, IATS-CSIC, 12595 Castellon, Spain
| | - Josep Rotllant
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Control of Food Intake Group, Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, IATS-CSIC, 12595 Castellon, Spain
| |
Collapse
|
3
|
Carpenter RE, Sabirzhanov B, Summers TR, Clark TG, Keifer J, Summers CH. Anxiolytic reversal of classically conditioned / chronic stress-induced gene expression and learning in the Stress Alternatives Model. Behav Brain Res 2023; 440:114258. [PMID: 36521572 PMCID: PMC9872777 DOI: 10.1016/j.bbr.2022.114258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Social decision-making is critically influenced by neurocircuitries that regulate stress responsiveness. Adaptive choices, therefore, are altered by stress-related neuromodulatory peptide systems, such as corticotropin releasing factor (CRF). Experimental designs that take advantage of ecologically salient fear-inducing stimuli allow for revelation of neural mechanisms that regulate the balance between pro- and anti-stress responsiveness. To accomplish this, we developed a social stress and conditioning protocol, the Stress Alternatives Model (SAM), that utilizes a simple dichotomous choice, and produces distinctive behavioral phenotypes (Escape or Stay). The experiments involve repeated social aggression, a potent unconditioned stimulus (US), from a novel larger conspecific (a 3X larger Rainbow trout). Prior to the social interaction, the smaller test fish is presented with an auditory conditioning stimulus (water off = CS). During the social aggression, an escape route is available, but is only large enough for the smaller test animal. Surprisingly, although the new aggressor provides vigorous attacks each day, only 50% of the test fish choose Escape. Stay fish, treated with the CRF1 antagonist antalarmin, a potent anxiolytic drug, on day 4, promotes Escape behavior for the last 4 days of the SAM protocol. The results suggest that the decision to Escape, required a reduction in stress reactivity. The Stay fish that chose Escape following anxiolytic treatment, learned how to use the escape route prior to stress reduction, as the Escape latency in these fish was significantly faster than first time escapers. In Escape fish, the use of the escape route is learned over several days, reducing the Escape latency over time in the SAM. Fear conditioning (water off + aggression) resulted in elevated hippocampal (DL) Bdnf mRNA levels, with coincident reduction in the AMPA receptor subunit Glua1 expression, a result that is reversed following a one-time treatment (during SAM aggression on day 4) with the anxiolytic CRF1 receptor antagonist antalarmin.
Collapse
Affiliation(s)
- Russ E Carpenter
- University Writing Program, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Boris Sabirzhanov
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Timothy G Clark
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA.
| |
Collapse
|
4
|
Best C, Jennings K, Culbert BM, Flear K, Volkoff H, Gilmour KM. Too stressed to eat: Investigating factors associated with appetite loss in subordinate rainbow trout. Mol Cell Endocrinol 2023; 559:111798. [PMID: 36243201 DOI: 10.1016/j.mce.2022.111798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/18/2022]
Abstract
Juvenile rainbow trout (Oncorhynchus mykiss) form dominance hierarchies in which subordinates experience chronic social stress and suppression of food intake. Here we tested the hypothesis that inhibition of food intake reflects increased expression of anorexigenic (appetite inhibiting) signals and decreased expression of orexigenic (appetite stimulating) signals. Trout were confined in pairs for 1 or 4 days, or were confined in pairs for 4 days and then allowed to recover from social interactions for 2 or 4 days; sham fish were handled identically but held alone. Subordinates did not feed during social interaction and had lower food intake than dominants or shams during recovery. In parallel, plasma cortisol (∼18-26x) and liver leptin (lep-a1) transcript abundance (∼10-14x) were elevated in subordinates during social interaction but not recovery, suggesting that these factors contributed to the suppression of food intake. Fish deemed likely to become subordinate based on inhibition of food intake in response to a mild stressor also showed elevated liver lep-a1 transcript abundance (∼5x). The moderate response in these fish coupled with a correlation between liver lep-a1 and cortisol suggest that stress-induced elevation of cortisol increased liver lep-a1 transcript abundance in subordinate trout, contributing to stress-induced suppression of food intake.
Collapse
Affiliation(s)
- C Best
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K Jennings
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - B M Culbert
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K Flear
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - H Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Backström T, Thörnqvist PO, Winberg S. Social effects on AVT and CRF systems. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1699-1709. [PMID: 34476683 PMCID: PMC8636423 DOI: 10.1007/s10695-021-00995-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Stress and aggression have negative effects on fish welfare and productivity in aquaculture. Thus, research to understand aggression and stress in farmed fish is required. The neuropeptides arginine-vasotocin (AVT) and corticotropin-releasing factor (CRF) are involved in the control of stress and aggression. Therefore, we investigated the effect of agonistic interactions on the gene expression of AVT, CRF and their receptors in juvenile rainbow trout (Oncorhynchus mykiss). The social interactions lead to a clear dominant-subordinate relationship with dominant fish feeding more and being more aggressive. Subordinate fish had an upregulation of the AVT receptor (AVT-R), an upregulation of CRF mRNA levels, and higher plasma cortisol levels. The attenuating effect of AVT on aggression in rainbow trout is proposed to be mediated by AVT-R, and the attenuating effect of the CRF system is proposed to be mediated by CRF.
Collapse
Affiliation(s)
- Tobias Backström
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany.
| | - Per-Ove Thörnqvist
- Behavioural Neuroendocrinology Lab, Department of Neuroscience, Biomedical Centre (BMC), Uppsala University, Box 572, SE-751 23, Uppsala, Sweden
| | - Svante Winberg
- Behavioural Neuroendocrinology Lab, Department of Neuroscience, Biomedical Centre (BMC), Uppsala University, Box 572, SE-751 23, Uppsala, Sweden
| |
Collapse
|
6
|
McCallum ES, Dey CJ, Cerveny D, Bose APH, Brodin T. Social status modulates the behavioral and physiological consequences of a chemical pollutant in animal groups. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02454. [PMID: 34549857 DOI: 10.1002/eap.2454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The social environment (i.e., the suite of social interactions that occur among individuals that can result in variation in social ranks) is a commonly overlooked aspect of biology when scientists evaluate the effects of chemical contaminants. The social environment, however, represents the arena in which individual-level performance shapes group- or population-level outcomes and may therefore mediate many of the ultimate consequences of chemicals for wildlife. Here, we evaluated the role that the social environment plays in determining the consequences of pollutant exposure. We exposed groups of juvenile brown trout (Salmo trutta) to an emerging pharmaceutical pollutant that is commonly detected in freshwaters (the benzodiazepine, oxazepam) and allowed them to form dominance hierarchies. Exposure affected dominant and subordinate fish differently, causing fish to become less aggressive at high doses and subordinate fish to become more competitively successful at low doses. These perturbations had further consequences for growth, fin damage, and survival. Exposure also modulated physiological stress in the hierarchy, and social status itself affected how much oxazepam was absorbed in tissues, potentially creating a dynamic feedback loop that further influences the asymmetric effects of exposure on differing social statuses. Many effects followed a "U-shaped" dose-response curve, highlighting the importance of nonlinear, low-dose effects. Altogether, we show that social structure in animal groups can interact with and modulate the effects of an environmental contaminant. We underscore the need to account for an organism's natural ecological context, including their social environment, in future experiments and environmental risk assessments to predict the effects of chemical contaminants on wildlife.
Collapse
Affiliation(s)
- Erin S McCallum
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Cody J Dey
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada
| | - Daniel Cerveny
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, Vodnany, Czech Republic
| | - Aneesh P H Bose
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Tomas Brodin
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| |
Collapse
|
7
|
Korzan WJ, Summers CH. Evolution of stress responses refine mechanisms of social rank. Neurobiol Stress 2021; 14:100328. [PMID: 33997153 PMCID: PMC8105687 DOI: 10.1016/j.ynstr.2021.100328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.
Collapse
Affiliation(s)
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
8
|
Pierre C, Pradère N, Froc C, Ornelas-García P, Callebert J, Rétaux S. A mutation in monoamine oxidase (MAO) affects the evolution of stress behavior in the blind cavefish Astyanax mexicanus. J Exp Biol 2020; 223:jeb226092. [PMID: 32737213 DOI: 10.1242/jeb.226092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 08/26/2023]
Abstract
The neurotransmitter serotonin controls a variety of physiological and behavioral processes. In humans, mutations affecting monoamine oxidase (MAO), the serotonin-degrading enzyme, are highly deleterious. Yet, blind cavefish of the species Astyanax mexicanus carry a partial loss-of-function mutation in MAO (P106L) and thrive in their subterranean environment. Here, we established four fish lines, corresponding to the blind cave-dwelling and the sighted river-dwelling morphs of this species, with or without the mutation, in order to decipher the exact contribution of mao P106L in the evolution of cavefish neurobehavioral traits. Unexpectedly, although mao P106L appeared to be an excellent candidate for the genetic determinism of the loss of aggressive and schooling behaviors in cavefish, we demonstrated that it was not the case. Similarly, the anatomical variations in monoaminergic systems observed between cavefish and surface fish brains were independent from mao P106L, and rather due to other, morph-dependent developmental processes. However, we found that mao P106L strongly affected anxiety-like behaviors. Cortisol measurements showed lower basal levels and an increased amplitude of stress response after a change of environment in fish carrying the mutation. Finally, we studied the distribution of the P106L mao allele in wild populations of cave and river A. mexicanus, and discovered that the mutant allele was present - and sometimes fixed - in all populations inhabiting caves of the Sierra de El Abra. The possibility that this partial loss-of-function mao allele evolves under a selective or a neutral regime in the particular cave environment is discussed.
Collapse
Affiliation(s)
- Constance Pierre
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Naomie Pradère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Cynthia Froc
- Amatrace platform, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Patricia Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Autónoma de México, CP 04510, Mexico City, Mexico
| | - Jacques Callebert
- Service Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75475 Paris, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Gołyszny M, Obuchowicz E. Are neuropeptides relevant for the mechanism of action of SSRIs? Neuropeptides 2019; 75:1-17. [PMID: 30824124 DOI: 10.1016/j.npep.2019.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/08/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are drugs of first choice in the therapy of moderate to severe depression and anxiety disorders. Their primary mechanism of action is via influence of the serotonergic (5-HT) system, but a growing amount of data provides evidence for other non-monoaminergic players in SSRI effects. It is assumed that neuropeptides, which play a role as neuromodulators in the CNS, are involved in their mechanism of action. In this review we focus on six neuropeptides: corticotropin-releasing factor - CRF, galanin - GAL, oxytocin - OT, vasopressin - AVP, neuropeptide Y - NPY, and orexins - OXs. First, information about their roles in depression and anxiety disorders are presented. Then, findings describing their interactions with the 5-HT system are summarized. These data provide background for analysis of the results of published preclinical and clinical studies related to SSRI effects on the neuropeptide systems. We also report findings showing how modulation of neuropeptide transmission influences behavioral and neurochemical effects of SSRIs. Finally, future research necessary for enriching our knowledge of SSRI mechanisms of action is proposed. Recognition of new molecular targets for antidepressants will have a significant effect on the development of novel therapeutic strategies for mood-related disorders.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland.
| |
Collapse
|
10
|
Alfonso S, Sadoul B, Gesto M, Joassard L, Chatain B, Geffroy B, Bégout ML. Coping styles in European sea bass: The link between boldness, stress response and neurogenesis. Physiol Behav 2019; 207:76-85. [PMID: 31047951 DOI: 10.1016/j.physbeh.2019.04.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
Abstract
Coping styles consist of a coherent set of individual physiological and behavioral differences in stress responses that are consistent across time and context. Such consistent inter-individual differences in behavior have already been shown in European sea bass (Dicentrarchus labrax), but the associated mechanisms are still poorly understood. Here, we combine physiological measurements with individual behavioral responses in order to characterize coping styles in fish. Fish were tagged and placed in a tank for group risk-taking tests (GRT) at 8 months of age to evaluate boldness using the proxy latency of leaving a sheltered area towards an open area. A subsample of these fish were individually challenged 16 months later using an open field test (OFT), in which the boldness was assessed after being placed in a shelter within an open arena. Latency to exit the shelter, time spent in the shelter, and distance travelled were recorded for this purpose. The blood and brain were then collected to evaluate plasma cortisol concentration and neurotransmitter levels (dopamine, norepinephrine, serotonin, and related metabolites), as well as brain transcription of key genes involved in stress axis regulation (gr1, gr2, mr, crf), neurogenesis (neurod1, neurod2, pcna), and neuronal development (egr1). Fish acting bolder in the GRT were not necessarily those acting bolder in the OFT, highlighting the relatively low consistency across different types of tests performed with a 16-months interval. There was, however, a significant correlation between stress markers and boldness. Indeed, mRNA levels of mr, crf, gr2, egr1, and neurod2, as well as norepinephrine levels were higher in shy than bold fish, whereas brain serotonergic activity was lower in shy fish. Overall, our study highlights the fact that boldness was not consistent over time when testing context differed (group vs. alone). This is in agreement with previous literature suggesting that social context play a key role in boldness measurement and that the particular life history of each individual may account in shaping the personality fate of a fish.
Collapse
Affiliation(s)
- Sébastien Alfonso
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots, France; Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, F-17137 L'Houmeau, France.
| | - Bastien Sadoul
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots, France
| | - Manuel Gesto
- Technical University of Denmark, Willemoesvej 2 Building Hovedbygning, D-9850 Hirtshals, Denmark
| | - Lucette Joassard
- Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, F-17137 L'Houmeau, France
| | - Béatrice Chatain
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots, France
| | - Benjamin Geffroy
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots, France
| | - Marie-Laure Bégout
- Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, F-17137 L'Houmeau, France
| |
Collapse
|
11
|
Sadoul B, Alfonso S, Bessa E, Bouchareb A, Blondeau-Bidet E, Clair P, Chatain B, Bégout ML, Geffroy B. Enhanced brain expression of genes related to cell proliferation and neural differentiation is associated with cortisol receptor expression in fishes. Gen Comp Endocrinol 2018; 267:76-81. [PMID: 29902473 DOI: 10.1016/j.ygcen.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 02/03/2023]
Abstract
Stress enhances or inhibits neurogenesis in mammals and some fish species. The link between the two processes is still unclear. Most studies have been performed in very specific stressful or altered environments. Despite the known inter-individual divergence in coping abilities within populations, the relationship between the stress axis and neurogenesis has never been addressed in unstressed individuals. Here we correlate brain expression of the pcna (proliferating cell nuclear antigen) and neurod1 (neurogenic differentiation factor 1) genes, two markers of neurogenesis, with transcripts of cortisol receptors in three fish species living in very distinct environments. Within the three species, individuals with the highest expression of neurogenesis genes were also those that expressed the high levels of cortisol receptors. Based on these correlations and the hypothesis that mRNA levels are proxies of protein levels, we hypothesize that within unstressed animals, individuals sensitive to cortisol perceive a similar environment to be more stimulating, leading to increased neurogenesis. Although it is difficult to determine whether it is sensitivity to cortisol that affects neurogenesis capacities or the opposite, the proposed pathway is a potentially fruitful avenue that warrants further mechanistic experiments.
Collapse
Affiliation(s)
- B Sadoul
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| | - S Alfonso
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France; Ifremer, Laboratoire Ressources Halieutiques de La Rochelle, Place Gaby Coll, L'Houmeau, France
| | - E Bessa
- Graduate Program in Ecology, University of Brasília, Distrito Federal, Brazil
| | - A Bouchareb
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - E Blondeau-Bidet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - P Clair
- University of Montpellier, Montpellier GenomiX, Montpellier, France
| | - B Chatain
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - M L Bégout
- Ifremer, Laboratoire Ressources Halieutiques de La Rochelle, Place Gaby Coll, L'Houmeau, France
| | - B Geffroy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| |
Collapse
|
12
|
Samaras A, Pavlidis M. Regulation of divergent cortisol responsiveness in European sea bass, Dicentrarchus labrax L. PLoS One 2018; 13:e0202195. [PMID: 30096195 PMCID: PMC6086447 DOI: 10.1371/journal.pone.0202195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022] Open
Abstract
Mechanisms regulating differences in cortisol responsiveness between low (LR) and high response (HR) individuals have been poorly studied. In this context, we aimed to study key regulatory processes in cortisol dynamics at the head kidneys of LR and HR European sea bass. To do so, resting plasma cortisol and ACTH concentrations were quantified in these fish. Additionally, the head kidneys of these individuals were superfused through an in vitro superfusion system and stimulated with the same amount of ACTH to assess their cortisol biosynthetic capacity. Moreover, the expression of important genes in cortisol regulation was assessed. Results showed that LR fish had lower resting cortisol concentrations than HR, although no differences existed in the circulating levels of ACTH. Additionally, the biosynthetic capacity of HR was higher than that of LR fish when in vitro stimulated with ACTH. At the molecular level, a statistically significant 3.4-fold higher expression of the ACTH receptor, mc2r, and a 2.3-fold, though not significant, higher expression of 11β-hydroxylase (cyp11b1), an enzyme involved in cortisol biosynthesis, was observed in the HR fish. Finally, a statistically significant 1.3-fold lower expression of 11β-hydroxysteroid dehydrogenase 2 (hsd11b2), an enzyme involved in cortisol inactivation, was observed in HR when compared to LR fish. Therefore, it was for the first time indicated that cortisol dynamics can also be regulated at the post-production level in the head kidney. Collectively, our results highlight the crucial role of the interrenal tissue in the regulation of differences in cortisol response between LR and HR sea bass individuals.
Collapse
Affiliation(s)
| | - Michail Pavlidis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
13
|
Soares MC, Gerlai R, Maximino C. The integration of sociality, monoamines and stress neuroendocrinology in fish models: applications in the neurosciences. JOURNAL OF FISH BIOLOGY 2018; 93:170-191. [PMID: 30043474 DOI: 10.1111/jfb.13757] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Animal-focused research has been crucial for scientific advancement, but rodents are still taking a starring role. Starting as merely supporting evidence found in rodents, the use of fish models has slowly taken a more central role and expanded its overall contributions in areas such as social sciences, evolution, physiology and recently in translational medical research. In the neurosciences, zebrafish Danio rerio have been widely adopted, contributing to our understanding of the genetic control of brain processes and the effects of pharmacological manipulations. However, discussion continues regarding the paradox of function versus structure, when fishes and mammals are compared and on the potentially evolutionarily conserved nature of behaviour across fish species. From a behavioural standpoint, we explore aversive-stress and social behaviour in selected fish models and refer to the extensive contributions of stress and monoaminergic systems. We suggest that, in spite of marked neuroanatomical differences between fishes and mammals, stress and sociality are conserved at the behavioural and molecular levels. We also suggest that stress and sociality are mediated by monoamines in predictable and non-trivial ways and that monoamines could bridge the relationship between stress and social behaviour. To reconcile the level of divergence with the level of similarity, we need neuroanatomical, pharmacological, behavioural and ecological studies conducted in the laboratory and in nature. These areas need to add to each other to enhance our understanding of fish behaviour and ultimately how this all may lead to better model systems for translational studies.
Collapse
Affiliation(s)
- Marta C Soares
- Centro de Investigação em Biodiversidade e Recursos Genéticos - CIBIO, Universidade do Porto, Vairão, Portugal
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento 'Frederico Guilherme Graeff', Instituto de Estudos em Saúde e Biológicas - IESB, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
14
|
Backström T, Winberg S. Serotonin Coordinates Responses to Social Stress-What We Can Learn from Fish. Front Neurosci 2017; 11:595. [PMID: 29163002 PMCID: PMC5669303 DOI: 10.3389/fnins.2017.00595] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Social interaction is stressful and subordinate individuals are often subjected to chronic stress, which greatly affects both their behavior and physiology. In teleost fish the social position of an individual may have long-term effects, such as effects on migration, age of sexual maturation or even sex. The brain serotonergic system plays a key role in coordinating autonomic, behavioral and neuroendocrine stress responses. Social subordination results in a chronic activation of the brain serotonergic system an effect, which seems to be central in the subordinate phenotype. However, behavioral effects of short-term acute activation of the serotonergic system are less obvious. As in other vertebrates, divergent stress coping styles, often referred to as proactive and reactive, has been described in teleosts. As demonstrated by selective breeding, stress coping styles appear to be partly heritable. However, teleost fish are characterized by plasticity, stress coping style being affected by social experience. Again, the brain serotonergic system appears to play an important role. Studies comparing brain gene expression of fish of different social rank and/or displaying divergent stress coping styles have identified several novel factors that seem important for controlling aggressive behavior and stress coping, e.g., histamine and hypocretin/orexin. These may also interact with brain monoaminergic systems, including serotonin.
Collapse
Affiliation(s)
- Tobias Backström
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Germany
| | - Svante Winberg
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Summers TR, Summers TL, Carpenter RE, Smith JP, Young SL, Meyerink B, Orr TZ, Arendt DH, Summers CH. Learning and CRF-Induced Indecision during Escape and Submission in Rainbow Trout during Socially Aggressive Interactions in the Stress-Alternatives Model. Front Neurosci 2017; 11:515. [PMID: 28966574 PMCID: PMC5605647 DOI: 10.3389/fnins.2017.00515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/31/2017] [Indexed: 01/18/2023] Open
Abstract
Socially stressful environments induce a phenotypic dichotomy of coping measures for populations in response to a dominant aggressor and given a route of egress. This submission- (Stay) or escape-oriented (Escape) dichotomy represents individual decision-making under the stressful influence of hostile social environments. We utilized the Stress-Alternatives Model (SAM) to explore behavioral factors which might predict behavioral phenotype in rainbow trout. The SAM is a compartmentalized tank, with smaller and larger trout separated by an opaque divider until social interaction, and another divider occluding a safety zone, accessible by way of an escape route only large enough for the smaller fish. We hypothesized that distinctive behavioral responses during the first social interaction would indicate a predisposition for one of the behavioral phenotypes in the subsequent interactions. Surprisingly, increased amount or intensity of aggression received had no significant effect on promoting escape in test fish. In fact, during the first day of interaction, fish that turned toward their larger opponent during attack eventually learned to escape. Escaping fish also learn to monitor the patrolling behavior of aggressors, and eventually escape primarily when they are not being observed. Escape per se, was also predicted in trout exhibiting increased movements directed toward the escape route. By contrast, fish that consistently remained in the tank with the aggressor (Stay) showed significantly higher frequency of swimming in subordinate positions, at the top or the bottom of the water column, as well as sitting at the bottom. In addition, a corticotropin-releasing factor (CRF)-induced behavior, snap-shake, was also displayed in untreated fish during aggressive social interaction, and blocked by a CRF1 receptor antagonist. Especially prevalent among the Stay phenotype, snap-shake indicates indecision regarding escape-related behaviors. Snap-shake was also exhibited by fish of the Escape phenotype, showing a positive correlation with latency to escape. These results demonstrate adaptive responses to stress that reflect evolutionarily conserved stress neurocircuitry which may translate to psychological disorders and decision-making across vertebrate taxa.
Collapse
Affiliation(s)
- Tangi R Summers
- Department of Biology, University of South DakotaVermillion, SD, United States.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South DakotaVermillion, SD, United States.,Veterans Affairs Research Service, Sioux Falls VA Health Care SystemSioux Falls, SD, United States
| | - Torrie L Summers
- Department of Biology, University of South DakotaVermillion, SD, United States.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South DakotaVermillion, SD, United States
| | - Russ E Carpenter
- Program in Writing and Rhetoric, Stanford UniversityStanford, CA, United States
| | - Justin P Smith
- Veterans Affairs Research Service, Sioux Falls VA Health Care SystemSioux Falls, SD, United States.,Institute of PossibilitySioux Falls, SD, United States.,Data Analytics, Sanford HealthSioux Falls, SD, United States
| | | | - Brandon Meyerink
- Department of Biology, University of South DakotaVermillion, SD, United States
| | - T Zachary Orr
- Department of Biology, University of South DakotaVermillion, SD, United States.,Veterans Affairs Research Service, Sioux Falls VA Health Care SystemSioux Falls, SD, United States
| | - David H Arendt
- Children's Hospital Colorado-Research InstituteAurora, CO, United States
| | - Cliff H Summers
- Department of Biology, University of South DakotaVermillion, SD, United States.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South DakotaVermillion, SD, United States.,Veterans Affairs Research Service, Sioux Falls VA Health Care SystemSioux Falls, SD, United States
| |
Collapse
|
16
|
Gesto M, Skov PV, Jokumsen A. Emergence Time and Skin Melanin Spot Patterns Do Not Correlate with Growth Performance, Social Competitive Ability or Stress Response in Farmed Rainbow Trout. Front Neurosci 2017. [PMID: 28638317 PMCID: PMC5461272 DOI: 10.3389/fnins.2017.00319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In wild salmonid fish, specific individual behavioral traits have been correlated with the timing of fry emergence from their gravel spawning nests; Early emerging fish display more aggressive behavior and have a higher probability of becoming socially dominant, compared to fish that emerge at a later stage. Apart from aggression and dominance, other behavioral and metabolic traits, such as boldness, metabolic rate, or growth, have also been linked to emergence time. Altogether, the traits of early- and late-emerging fish resemble those of the proactive and reactive stress-coping style, respectively. As proactive fish are considered more resilient to stress, it may be desirable to select these for aquaculture production. However, it is currently unclear to what extent the link between emergence time and stress-coping styles is maintained in the selective breeding of farmed fish. In the present study, eyed eggs from a commercial supplier were hatched, and larvae fractionated according to their emergence time. Later on, juvenile fish from different emergence fractions were subjected to a stress challenge and also tested to evaluate their competitive ability for food. Beyond some slight dissimilarities in the acute stress responses, emergence fraction displayed no correlation with growth rates, or the ability to compete for feed. Within the whole group of fish utilized in the experiments, no relationship between skin melanin spot pattern and growth performance, stress response intensity, or competitive ability was found. Altogether, the differences in physiological traits related to emergence time were not as strong as those found in earlier studies. It is hypothesized, that the origin and degree of domestication of the fish might be partly responsible for this. The predictive value of skin spots or emergence time to infer the fish stress coping style in farmed fish is also discussed.
Collapse
Affiliation(s)
- Manuel Gesto
- Section for Aquaculture, North Sea Research Centre, DTU Aqua, Technical University of DenmarkHirtshals, Denmark
| | - Peter V Skov
- Section for Aquaculture, North Sea Research Centre, DTU Aqua, Technical University of DenmarkHirtshals, Denmark
| | - Alfred Jokumsen
- Section for Aquaculture, North Sea Research Centre, DTU Aqua, Technical University of DenmarkHirtshals, Denmark
| |
Collapse
|
17
|
Sopinka NM, Jeffrey JD, Burnett NJ, Patterson DA, Gilmour KM, Hinch SG. Maternal programming of offspring hypothalamic-pituitary-interrenal axis in wild sockeye salmon (Oncorhynchus nerka). Gen Comp Endocrinol 2017; 242:30-37. [PMID: 26718080 DOI: 10.1016/j.ygcen.2015.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/30/2015] [Accepted: 12/19/2015] [Indexed: 02/07/2023]
Abstract
In fishes, maternal exposure to a stressor can influence offspring size and behavior. However, less is known about how maternal stress influences physiological processes in offspring, such as function of the hypothalamic-pituitary-interrenal (HPI) axis. We examined the impact of chronic maternal exposure to an acute chase stressor on the stress response/HPI activity of progeny in wild sockeye salmon (Oncorhynchus nerka). Resting plasma cortisol and brain preoptic area (POA) corticotropin-releasing factor (CRF) mRNA levels did not vary between offspring reared from undisturbed, control females and offspring reared from females exposed to the stressor. However, resting levels of POA glucocorticoid receptors (GR1 and GR2), and head kidney melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR), and cytochrome P450 side chain cleavage enzyme (P450scc) were elevated in offspring reared from stressor-exposed females. Offspring reared from stressor-exposed females had lower plasma cortisol levels 1-h after an acute chase stressor compared to cortisol levels in offspring reared from control females. In offspring reared from chased females, mRNA levels of genes associated with cortisol biosynthesis were reduced in the head kidney post-chase. In offspring reared from control females, mRNA levels in the head kidney did not vary pre- to post-chase. Together, the results of the present study suggest maternal programming of progeny with respect to baseline and stressor-induced mediators of HPI axis activity.
Collapse
Affiliation(s)
- N M Sopinka
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - J D Jeffrey
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - N J Burnett
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada; Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada
| | - D A Patterson
- Fisheries and Oceans Canada, Science Branch, Pacific Region, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - S G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Di Poi C, Bélanger D, Amyot M, Rogers S, Aubin-Horth N. Receptors rather than signals change in expression in four physiological regulatory networks during evolutionary divergence in threespine stickleback. Mol Ecol 2016; 25:3416-27. [DOI: 10.1111/mec.13690] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/13/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Carole Di Poi
- Département de Biologie & Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Quebec Canada, G1V 0A6
| | - Dominic Bélanger
- Département de Sciences Biologiques; Université de Montréal; Montréal Quebec Canada H3C 3J7
| | - Marc Amyot
- Département de Sciences Biologiques; Université de Montréal; Montréal Quebec Canada H3C 3J7
| | - Sean Rogers
- Department of Biological Sciences; University of Calgary; Calgary Alberta Canada T2N 1N4
| | - Nadia Aubin-Horth
- Département de Biologie & Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Quebec Canada, G1V 0A6
| |
Collapse
|
19
|
|
20
|
Thomson J, Watts P, Pottinger T, Sneddon L. HPI reactivity does not reflect changes in personality among trout introduced to bold or shy social groups. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Physiological stress responses often correlate with personalities (e.g., boldness). However, this relationship can become decoupled, although the mechanisms underlying changes in this relationship are poorly understood. Here we quantify (1) how an individual’s boldness (response to novel objects) in rainbow trout,Oncorhynchus mykiss, changes in response to interactions with a population of either bold or shy conspecifics and we (2) measured associated post-stress cortisol levels. Initially-bold trout became shyer regardless of group composition, whereas shy trout remained shy demonstrating that bold individuals are more plastic. Stress-induced plasma cortisol reflected the original personality of fish but not the personality induced by the treatment, irrespective of population personality. Change in boldness of bold trout may indicate preference towards initially subordinate behaviour when joining a new population. However, here we provide further evidence that behavioural and physiological parameters of coping styles may become uncoupled whereby behavioural changes are not correlated with stress responsiveness.
Collapse
Affiliation(s)
- Jack S. Thomson
- School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK
| | - Phillip C. Watts
- Department of Ecology, University of Oulu, FI-90014 Oulu, Finland
| | - Tom G. Pottinger
- Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, UK
| | - Lynne U. Sneddon
- School of Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
21
|
Forebrain neuropeptide regulation of pair association and behavior in cooperating cleaner fish. Physiol Behav 2015; 145:1-7. [DOI: 10.1016/j.physbeh.2015.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/19/2022]
|
22
|
Thörnqvist PO, Höglund E, Winberg S. Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar). J Exp Biol 2015; 218:1077-83. [DOI: 10.1242/jeb.114314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/05/2015] [Indexed: 01/10/2023]
Abstract
ABSTRACT
In stream-spawning salmonid fishes there is a considerable variation in the timing of when fry leave the spawning nests and establish a feeding territory. The timing of emergence from spawning nests appears to be related to behavioural and physiological traits, e.g. early emerging fish are bolder and more aggressive. In the present study, emerging Atlantic salmon (Salmo salar L.) alevins were sorted into three fractions: early, intermediate and late emerging. At the parr stage, behaviour, stress responses, hindbrain monoaminergic activity and forebrain gene expression were explored in fish from the early and late emerging fractions (first and last 25%). The results show that when subjected to confinement stress, fish from the late emerging fraction respond with a larger activation of the brain serotonergic system than fish from the early fraction. Similarly, in late emerging fish, stress resulted in elevated expression of mRNA coding for serotonin 1A receptors (5-HT1A), GABA-A receptor-associated protein and ependymin, effects not observed in fish from the early emerging fraction. Moreover, fish from the early emerging fraction displayed bolder behaviour than their late emerging littermates. Taken together, these results suggest that time of emergence, boldness and aggression are linked to each other, forming a behavioural syndrome in juvenile salmon. Differences in brain gene expression between early and late emerging salmon add further support to a relationship between stress coping style and timing of emergence. However, early and late emerging salmon do not appear to differ in hypothalamus–pituitary–interrenal (HPI) axis reactivity, another characteristic of divergent stress coping styles.
Collapse
Affiliation(s)
- Per-Ove Thörnqvist
- Department of Neuroscience, Physiology Unit, Biomedical Centre (BMC), Uppsala University, Box 593, Uppsala SE-75124, Sweden
| | - Erik Höglund
- National Institute of Aquatic Resources, Section for Aquaculture, Technical University of Denmark, PO Box 101, Hirtshals DK-9850, Denmark
- Research secretariat, University of Agder, 4630 Kristiansand, Norway
| | - Svante Winberg
- Department of Neuroscience, Physiology Unit, Biomedical Centre (BMC), Uppsala University, Box 593, Uppsala SE-75124, Sweden
| |
Collapse
|
23
|
Maruska KP. Social regulation of reproduction in male cichlid fishes. Gen Comp Endocrinol 2014; 207:2-12. [PMID: 24859257 DOI: 10.1016/j.ygcen.2014.04.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 11/19/2022]
Abstract
Social interactions and relative positions within a dominance hierarchy have helped shape the evolution of reproduction in many animals. Since reproduction is crucial in all animals, and rank typically regulates access to reproductive opportunities, understanding the mechanisms that regulate socially-induced reproductive processes is extremely important. How does position in a dominance hierarchy impact an individual's reproductive behavior, morphology, and physiology? Teleost fishes, and cichlids in particular, are ideally-suited models for studying how social status influences reproduction on multiple levels of biological organization. Here I review the current knowledge on the reproductive behavioral and physiological consequences of relative position in a dominance hierarchy, with a particular focus on male cichlids. Dominant and subordinate social status is typically associated with distinct differences in activity along the entire hypothalamic-pituitary-gonadal axis. Further, when transitions in social status occur between subordinate and dominant individuals, there are plastic changes from whole-organism behavior to molecular-level gene expression modifications that occur quickly. These rapid changes in behavior and physiology have allowed cichlids the flexibility to adapt to and thrive in their often dynamic physical and social environments. Studies in cichlid fishes have, and will continue, to advance our understanding of how the social environment can modulate molecular, cellular, and behavioral outcomes relevant to reproductive success. Future studies that take advantage of the extreme diversity in mating systems, reproductive tactics, and parental care strategies within the cichlid group will help generate hypotheses and careful experimental tests on the mechanisms governing the social control of reproduction in many vertebrates.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
24
|
Abstract
Corticotrophin-releasing hormone (CRH) is the pivotal neuroendocrine peptide hormone associated with the regulation of the stress response in vertebrates. However, CRH-like peptides are also found in a number of invertebrate species. The origin of this peptide can be traced to a common ancestor of lineages leading to chordates and to arthropods, postulated to occur some 500 million years ago. Evidence indicates the presence of a single CRH-like receptor and a soluble binding protein system that acted to transduce and regulate the actions of the early CRH peptide. In vertebrates, genome duplications led to the divergence of CRH receptors into CRH1 and CRH2 forms in tandem with the development of four paralogous ligand lineages that included CRH; urotensin I/urocortin (Ucn), Ucn2 and Ucn3. In addition, taxon-specific genome duplications led to further local divergences in CRH ligands and receptors. Functionally, the CRH ligand-receptor system evolved initially as a molecular system to integrate early diuresis and nutrient acquisition. As multicellular organisms evolved into more complex forms, this ligand-receptor system became integrated with the organismal stress response to coordinate homoeostatic challenges with internal energy usage. In vertebrates, CRH and the CRH1 receptor became associated with the hypothalamo-pituitary-adrenal/interrenal axis and the initial stress response, whereas the CRH2 receptor was selected to play a greater role in diuresis, nutrient acquisition and the latter aspects of the stress response.
Collapse
Affiliation(s)
- David A Lovejoy
- Department of Cell and Systems BiologyUniversity of Toronto, 25 Harbord Street, Toronto, Ontario, Canada L4A IK6Department of Ecology and EvolutionUniversity of Toronto, Toronto, Ontario, CanadaDepartment of Life SciencesUniversity of Toronto Scarborough, Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Cell and Systems BiologyUniversity of Toronto, 25 Harbord Street, Toronto, Ontario, Canada L4A IK6Department of Ecology and EvolutionUniversity of Toronto, Toronto, Ontario, CanadaDepartment of Life SciencesUniversity of Toronto Scarborough, Toronto, Ontario, CanadaDepartment of Cell and Systems BiologyUniversity of Toronto, 25 Harbord Street, Toronto, Ontario, Canada L4A IK6Department of Ecology and EvolutionUniversity of Toronto, Toronto, Ontario, CanadaDepartment of Life SciencesUniversity of Toronto Scarborough, Toronto, Ontario, Canada
| | - Nathan R Lovejoy
- Department of Cell and Systems BiologyUniversity of Toronto, 25 Harbord Street, Toronto, Ontario, Canada L4A IK6Department of Ecology and EvolutionUniversity of Toronto, Toronto, Ontario, CanadaDepartment of Life SciencesUniversity of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jon del Castillo
- Department of Cell and Systems BiologyUniversity of Toronto, 25 Harbord Street, Toronto, Ontario, Canada L4A IK6Department of Ecology and EvolutionUniversity of Toronto, Toronto, Ontario, CanadaDepartment of Life SciencesUniversity of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Herrera M, Castanheira MF, Conceição LE, Martins CI. Linking risk taking and the behavioral and metabolic responses to confinement stress in gilthead seabream Sparus aurata. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Gesto M, Soengas JL, Rodríguez-Illamola A, Míguez JM. Arginine vasotocin treatment induces a stress response and exerts a potent anorexigenic effect in rainbow trout, Oncorhynchus mykiss. J Neuroendocrinol 2014; 26:89-99. [PMID: 24341528 DOI: 10.1111/jne.12126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/28/2013] [Accepted: 12/12/2013] [Indexed: 12/16/2022]
Abstract
The peptide arginine vasotocin (AVT), homologous to mammalian arginine vasopressin, is involved in many aspects of fish physiology, such as osmoregulation, regulation of biological rhythms, reproduction, metabolism or responses to stress, and the modulation of social behaviours. Because a decrease in appetite is a general response to stress in fish and other vertebrates, we investigated the role of AVT as a possible food intake regulator in fish. We used i.c.v. injections for central administration of AVT to rainbow trout (Oncorhynchus mykiss). In a first experiment, we evaluated the temporal response of food intake after AVT treatment. In a second experiment, we investigated the effects of central AVT administration on the response of typical stress markers (plasma cortisol, glucose and lactate), as well as brain serotonergic, noradrenergic and dopaminergic activity. In addition, the mRNA levels of genes involved in food intake regulation [neuropetide Y, pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART) and corticotrophin-releasing factor (CRF)] and in CRF- (CRF-binding protein) and AVT-signalling (pro-VT and AVT receptor), were also assessed after AVT treatment. Our results showed that AVT is a potent anorexigenic factor in fish. Increases of plasma cortisol and glucose after AVT treatment strongly suggest that AVT administration induced a stress response and that AVT action was mediated by hypothalamic-pituitary-interrenal axis activation, which was also supported by the increase of the serotonergic activity in trout telencephalon and hypothalamus. The increased hypothalamic levels of POMC and CART suggest that these peptides might have a role in the anorexigenic action of AVT, whereas the involvement of CRF signalling is unclear.
Collapse
Affiliation(s)
- M Gesto
- Laboratorio de Fisiología animal, Departamento de Biología Funcional y CC. de la Salud, Facultad de Biología, Universidade de Vigo, Vigo, Spain
| | | | | | | |
Collapse
|
27
|
Jeffrey JD, Gollock MJ, Gilmour KM. Social stress modulates the cortisol response to an acute stressor in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2014; 196:8-16. [PMID: 24269985 DOI: 10.1016/j.ygcen.2013.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/30/2013] [Accepted: 11/14/2013] [Indexed: 11/26/2022]
Abstract
In rainbow trout (Oncorhynchus mykiss) of subordinate social status, circulating cortisol concentrations were elevated under resting conditions but the plasma cortisol and glucose responses to an acute stressor (confinement in a net) were attenuated relative to those of dominant trout. An in vitro head kidney preparation, and analysis of the expression of key genes in the stress axis prior to and following confinement in a net were then used to examine the mechanisms underlying suppression of the acute cortisol stress response in trout experiencing chronic social stress. With porcine adrenocorticotropic hormone (ACTH) as the secretagogue, ACTH-stimulated cortisol production was significantly lower for head kidney preparations from subordinate trout than for those from dominant trout. Dominant and subordinate fish did not, however, differ in the relative mRNA abundance of melanocortin-2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) or cytochrome P450 side chain cleavage enzyme (P450scc) within the head kidney, although the relative mRNA abundance of these genes was significantly higher in both dominant and subordinate fish than in sham trout (trout that did not experience social interactions but were otherwise treated identically to the dominant and subordinate fish). The relative mRNA abundance of all three genes was significantly higher in trout exposed to an acute net stressor than under control conditions. Upstream of cortisol production in the stress axis, plasma ACTH concentrations were not affected by social stress, nor was the relative mRNA abundance of the binding protein for corticotropin releasing factor (CRF-BP). The relative mRNA abundance of CRF in the pre-optic area of subordinate fish was significantly higher than that of dominant or sham fish 1h after exposure to the stressor. Collectively, the results indicate that chronic social stress modulates cortisol production at the level of the interrenal cells, resulting in an attenuated cortisol response to an acute stressor.
Collapse
Affiliation(s)
- J D Jeffrey
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - M J Gollock
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
28
|
Backström T, Brännäs E, Nilsson J, Magnhagen C. Behaviour, physiology and carotenoid pigmentation in Arctic charr Salvelinus alpinus. JOURNAL OF FISH BIOLOGY 2014; 84:1-9. [PMID: 24383798 DOI: 10.1111/jfb.12240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/19/2013] [Indexed: 06/03/2023]
Abstract
The behaviour during an exploration task and the response to a confinement stress of Arctic charr Salvelinus alpinus were evaluated. Behaviour of individuals during 90 min of exploration was classified into high and low activity. High-activity individuals had higher plasma cortisol levels following stress compared to low-activity individuals. This indicates that high- and low-activity individuals correspond to reactive and proactive stress-coping styles. Further, a pigmentation analysis showed that high-activity individuals had a higher number of carotenoid spots cm⁻² than low-activity individuals. Thus, carotenoid pigmentation, as melanin pigmentation in other salmonids, could be linked to stress-coping style in S. alpinus.
Collapse
Affiliation(s)
- T Backström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | | | | |
Collapse
|
29
|
Medeiros LR, Cartolano MC, McDonald MD. Crowding stress inhibits serotonin 1A receptor-mediated increases in corticotropin-releasing factor mRNA expression and adrenocorticotropin hormone secretion in the Gulf toadfish. J Comp Physiol B 2013; 184:259-71. [PMID: 24362954 DOI: 10.1007/s00360-013-0793-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 01/20/2023]
Abstract
Stimulation of the serotonin 1A (5-HT1A) receptor subtype by 5-HT has been shown to result in an elevation in plasma corticosteroid levels in both mammals and several species of teleost fish, including the Gulf toadfish (Opsanus beta); however, in the case of teleost fish, it is not clearly known at which level of the hypothalamic-pituitary-interrenal axis the 5-HT1A receptor is stimulated. Additionally, previous investigations have revealed that chronic elevations of plasma cortisol mediate changes in brain 5-HT1A receptor mRNA and protein levels via the glucocorticoid receptor (GR); thus, we hypothesized that the function of centrally activated 5-HT1A receptors is reduced or abolished as a result of chronically elevated plasma cortisol levels and that this response is GR mediated. Our results are the first to demonstrate that intravenous injection of the 5-HT1A receptor agonist, 8-OH-DPAT, stimulates a significant increase in corticotropin-releasing factor (CRF) precursor mRNA expression in the hypothalamic region and the release of adrenocorticotropic hormone (ACTH) from the pituitary of teleost fish compared to saline-injected controls. We also provide evidence that cortisol, acting via GRs, attenuates the 5-HT1A receptor-mediated secretion of both CRF and ACTH.
Collapse
Affiliation(s)
- Lea R Medeiros
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149-1098, USA,
| | | | | |
Collapse
|
30
|
Rexroad CE, Vallejo RL, Liu S, Palti Y, Weber GM. Quantitative trait loci affecting response to crowding stress in an F(2) generation of rainbow trout produced through phenotypic selection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:613-627. [PMID: 23709047 DOI: 10.1007/s10126-013-9512-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
Selective breeding programs for salmonids typically aim to improve traits associated with growth and disease resistance. It has been established that stressors common to production environments can adversely affect these and other traits which are important to producers and consumers. Previously, we employed phenotypic selection to create families that exhibit high or low plasma cortisol concentrations in response to crowding stress. Subsequent crosses of high × low phenotypes founded a multigenerational breeding scheme with the aim of dissecting the genetic basis for variation underlying stress response through the identification of quantitative trait loci (QTL). Multiple methods of QTL analyses differing in their assumptions of homozygosity of the causal alleles in the grandparental generation yielded similar results in the F1 generation, and the analysis of two stress response phenotype measurement indexes were highly correlated. In the current study, we conducted a genome scan with microsatellites to detect QTL in the F2 generation of two families created through phenotypic selection and having larger numbers of offspring than families screened in the previous generation. Seven suggestive and three significant QTL were detected, seven of which were not previously detected in the National Center for Cool and Cold Water Aquaculture germplasm, bringing the total number of chromosomes containing significant and suggestive stress response QTL to 4 and 15, respectively. One significant QTL which peaks at 7 cM on chromosome Omy12 spans 12 cM and explains 25 % of the phenotypic variance in family 2008052 particularly warrants further investigation. Five QTL with significant parent-of-origin effects were detected in family 2008052, including two QTL on Omy12. The 95 % confidence intervals for the remaining QTL we detected were broad, requiring validation and fine mapping with other genotyping approaches and mapping strategies. These results will facilitate identification of potential casual alleles that can be employed in strategies aimed at better understanding the genetic and physiological basis of stress responses to crowding in rainbow trout aquaculture production.
Collapse
Affiliation(s)
- Caird E Rexroad
- USDA/ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA.
| | | | | | | | | |
Collapse
|
31
|
Backström T, Winberg S. Central corticotropin releasing factor and social stress. Front Neurosci 2013; 7:117. [PMID: 23847465 PMCID: PMC3705187 DOI: 10.3389/fnins.2013.00117] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/19/2013] [Indexed: 12/23/2022] Open
Abstract
Social interactions are a main source of stress in vertebrates. Social stressors, as well as other stressors, activate the hypothalamic–pituitary–adrenal (HPA) axis resulting in glucocorticoid release. One of the main components of the HPA axis is corticotropin releasing factor (CRF). The neuropeptide CRF is part of a peptide family including CRF, urocortin 1–3, urotensin 1–3, and sauvagine. The actions of the CRF family are mediated by at least two different receptors with different anatomical distribution and affinities for the peptides. The CRF peptides affect several behavioral and physiological responses to stress including aggression, feeding, and locomotor activity. This review will summarize recent research in vertebrates concerning how social stress interacts with components of the CRF system. Consideration will be taken to the different models used for social stress ranging from social isolation, dyadic interactions, to group dominance hierarchies. Further, the temporal effect of social stressor from acute, intermittent, to chronic will be considered. Finally, strains selected for specific behavior or physiology linked to social stress will also be discussed.
Collapse
Affiliation(s)
- Tobias Backström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences Umeå, Sweden
| | | |
Collapse
|
32
|
Sokołowska E, Kleszczyńska A, Kalamarz-Kubiak H, Arciszewski B, Kulczykowska E. Changes in brain arginine vasotocin, isotocin, plasma 11-ketotestosterone and cortisol in round goby, Neogobius melanostomus, males subjected to overcrowding stress during the breeding season. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:237-42. [DOI: 10.1016/j.cbpa.2013.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
33
|
Matsuda K. Regulation of feeding behavior and psychomotor activity by corticotropin-releasing hormone (CRH) in fish. Front Neurosci 2013; 7:91. [PMID: 23754974 PMCID: PMC3667241 DOI: 10.3389/fnins.2013.00091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/14/2013] [Indexed: 11/21/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) is a hypothalamic neuropeptide belonging to a family of neuropeptides that includes urocortins, urotensin I, and sauvagine in vertebrates. CRH and urocortin act as anorexigenic factors for satiety regulation in fish. In a goldfish model, intracerebroventricular (ICV) administration of CRH has been shown to affect not only food intake, but also locomotor and psychomotor activities. In particular, CRH elicits anxiety-like behavior as an anxiogenic neuropeptide in goldfish, as is the case in rodents. This paper reviews current knowledge of CRH and its related peptides derived from studies of teleost fish, as representative non-mammals, focusing particularly on the role of the CRH system, and examines its significance from a comparative viewpoint.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, Graduate School of Innovative Life Science, University of Toyama Toyama, Japan
| |
Collapse
|
34
|
Kleszczyńska A, Kulczykowska E. Stocking density influences brain arginine vasotocin (AVT) and isotocin (IT) levels in males and females of three-spined stickleback (Gasterosteus aculeatus). Gen Comp Endocrinol 2013; 183:14-6. [PMID: 23262273 DOI: 10.1016/j.ygcen.2012.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/12/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
Arginine vasotocin (AVT) and isotocin (IT) are fish neurohormones produced in separate parvocellular and magnocellular preoptic neurons of Teleostei. Apart from well-established peripheral action as hormones they are important neurotransmitters in central nervous system in fish. In the present study, we examined an influence of stocking density on whole brain AVT and IT concentrations in males and females of three-spined stickleback (Gasterosteus aculeatus). In males, the highest AVT levels have been found at stocking densities of 10 and 30 individuals per 30-l tank. On the other hand, in females, AVT concentration was significantly higher in those kept alone. Brain IT concentrations significantly increased along with stocking density only in females and did not change in males. The sex-dependent responses indicate a different stimulation of AVT and IT neurons in males and females. Consequently, roles of the neurohormones in males and females exposed to stress of overcrowding must be different.
Collapse
Affiliation(s)
- Agnieszka Kleszczyńska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., Sopot, Poland.
| | | |
Collapse
|
35
|
Gesto M, López-Patiño MA, Hernández J, Soengas JL, Míguez JM. The response of brain serotonergic and dopaminergic systems to an acute stressor in rainbow trout: a time-course study. J Exp Biol 2013; 216:4435-42. [DOI: 10.1242/jeb.091751] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The brain monoaminergic neurotransmitter systems are known to be involved in the integrated response to stress in vertebrates. However, the present knowledge about the timing of their actions as well as their specific roles in the regulation of the endocrine axes that drive the stress response is incomplete. This is partially because of the complexity of the reciprocal interactions among the monoaminergic systems and other biochemical actors of the stress response such as CRF, AVT, ACTH or corticosteroids. In this study, we show for the first time in teleost fish, the short- and mid-term time-course of the response of the forebrain serotonergic and dopaminergic activities after the exposure to an acute stressor in rainbow trout. Other stress markers like the plasma levels of cortisol, glucose and lactate were also monitored, providing a context to precisely locate the monoaminergic activation within the fish acute stress response. Our results show that the acute stress induced a rapid increase in the forebrain serotonergic activity, which became elevated after only 15 seconds of chasing. Several hours after stress, the serotonergic activity recovered its basal levels, in parallel to the recovery of other stress markers such as plasma catecholamines and cortisol. The dopaminergic activity was also increased after stress, but only in the telencephalon and only after 20 minutes post-stress. The increase in serotonergic activity happened before the elevation of plasma catecholamines, suggesting that this monoamine system could have a key role in triggering the initial steps of the activation of not only the hypothalamus-pituitary-interrenal axis, but also the brain-sympathetic-chromaffin axis in fish.
Collapse
|
36
|
Thomson JS, Watts PC, Pottinger TG, Sneddon LU. Plasticity of boldness in rainbow trout, Oncorhynchus mykiss: do hunger and predation influence risk-taking behaviour? Horm Behav 2012; 61:750-7. [PMID: 22498695 DOI: 10.1016/j.yhbeh.2012.03.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 02/02/2023]
Abstract
Boldness, a measure of an individual's propensity for taking risks, is an important determinant of fitness but is not necessarily a fixed trait. Dependent upon an individual's state, and given certain contexts or challenges, individuals may be able to alter their inclination to be bold or shy in response. Furthermore, the degree to which individuals can modulate their behaviour has been linked with physiological responses to stress. Here we attempted to determine whether bold and shy rainbow trout, Oncorhynchus mykiss, can exhibit behavioural plasticity in response to changes in state (nutritional availability) and context (predation threat). Individual trout were initially assessed for boldness using a standard novel object paradigm; subsequently, each day for one week fish experienced either predictable, unpredictable, or no simulated predator threat in combination with a high (2% body weight) or low (0.15%) food ration, before being reassessed for boldness. Bold trout were generally more plastic, altering levels of neophobia and activity relevant to the challenge, whereas shy trout were more fixed and remained shy. Increased predation risk generally resulted in an increase in the expression of three candidate genes linked to boldness, appetite regulation and physiological stress responses - ependymin, corticotrophin releasing factor and GABA(A) - but did not produce a significant increase in plasma cortisol. The results suggest a divergence in the ability of bold and shy trout to alter their behavioural profiles in response to internal and exogenous factors, and have important implications for our understanding of the maintenance of different behavioural phenotypes in natural populations.
Collapse
Affiliation(s)
- Jack S Thomson
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | | | | | | |
Collapse
|
37
|
Basic D, Winberg S, Schjolden J, Krogdahl Å, Höglund E. Context-dependent responses to novelty in Rainbow trout (Oncorhynchus mykiss), selected for high and low post-stress cortisol responsiveness. Physiol Behav 2012; 105:1175-81. [DOI: 10.1016/j.physbeh.2011.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/04/2011] [Accepted: 12/19/2011] [Indexed: 11/24/2022]
|
38
|
Almeida O, Gozdowska M, Kulczykowska E, Oliveira RF. Brain levels of arginine-vasotocin and isotocin in dominant and subordinate males of a cichlid fish. Horm Behav 2012; 61:212-7. [PMID: 22206822 DOI: 10.1016/j.yhbeh.2011.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
The nonapeptides arginine-vasotocin (AVT) and isotocin (IT), which are the teleost homologues of arginine-vasopressin and oxytocin in mammals, have well established peripheral effects on osmoregulation and stress response, and central effects on social behavior. However, all studies that have looked so far into the relationship between these nonapeptides and social behavior have used indirect measures of AVT/IT activity (i.e. immunohistochemistry of AVT/IT immunoreactive neurons, or AVT/IT or their receptors mRNA expression with in situ hybridization or qPCR) and therefore direct measures of peptide levels in relation to social behavior are still lacking. Here we use a recently developed high-performance liquid chromatography analysis with fluorescence detection (HPLC-FL) method to quantify the levels of both AVT and IT in macro-dissected brain areas [i.e. olfactory bulbs, telencephalon, diencephalon, optic tectum, cerebellum, and hindbrain (= rhombencephalon minus cerebellum)] and pituitary of dominant and subordinate male cichlid fish (Oreochromis mossambicus). The pituitary shows higher levels of both peptides than any of the brain macroareas, and the olfactory bulbs have the highest AVT among all brain areas. Except for IT in the telencephalon there is a lack of correlations between central levels and pituitary peptide levels, suggesting an independent control of hypophysial and CNS nonapeptide secretion. There were also no correlations between AVT and IT levels either for each brain region or for the pituitary gland, suggesting a decoupled activity of the AVT and IT systems at the CNS level. Subordinate AVT pituitary levels are significantly higher than those of dominants, and dominant hindbrain IT levels are significantly higher than those of subordinates, suggesting a potential involvement of AVT in social stress in subordinate fish and of IT in the regulation of dominant behavior at the level of the hindbrain. Since in this species dominant males use urine to communicate social status and since AVT is known to have an antidiuretic effect, we have also investigated the effect of social status on urine storage. As predicted, dominant males stored significantly more urine than subordinates. Given these results we suggest that AVT/IT play a key role in orchestrating social phenotypes, acting both as central neuromodulators that promote behavioral plasticity and as peripheral hormones that promote integrated physiological changes.
Collapse
Affiliation(s)
- Olinda Almeida
- Unidade de Investigação em Eco-Etologia, ISPA-Instituto Universitário, Rua Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal
| | | | | | | |
Collapse
|