1
|
Sukhchuluun G, Wang Z, Wang DH, Zhang XY. Huddling promotes adult neurogenesis in the brain regions related to social behavior in cold-exposed Brandt's voles. Neuroscience 2025; 575:73-84. [PMID: 40228654 DOI: 10.1016/j.neuroscience.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Social thermoregulation behaviors such as huddling among individuals can be important for energy conservation and thermoregulatory processes. Beyond that, whether huddling behavior regulates neural plasticity in the brain remains unknown. We hypothesized that huddling regulates adult neurogenesis in brain regions related to social behavior and thermoregulation. We found that cold-exposed voles had decreased aggression and increased social interaction in association with higher oxytocin but lower vasopressin hormones compared to warm-exposed voles. Cold decreased the level of cell proliferation labeling indicated by BrdU (a marker for cell proliferation) in the anterior part of the subventricular zone (SVZ) in the brain, and notably, cold-huddling (CH) voles had a higher number of proliferating cells in the hypothalamus than cold-separated (CS) voles. Moreover, CH voles displayed higher cell survival in the central amygdala and paraventricular nuclei (PVN) of the hypothalamus (both regions were related to social behavior) in comparison to CS or warm-huddling (WH) voles, respectively. Furthermore, the CH voles had more BrdU/NeuN (markers for new neurons) double-labeled cells in the SVZ than WH voles, and also more BrdU/GFAP (markers for new glial cells) double-labeled cells in SVZ and dentate gyrus compared to WH and CS voles. In addition, the newly-generated neurons differentiated into more oxytocinergic neurons in the PVN of the CH voles. Together, these data support the notion that huddling behavior is beneficial for brain plasticity by protecting cell proliferation, survival, and differentiation, and may be involved in regulating social behavior in small mammals in cold environments.
Collapse
Affiliation(s)
- Gansukh Sukhchuluun
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Laboratory of Mammalian Ecology, Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA
| | - De-Hua Wang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Yasuo S. Seasonal Adaptation of Mammalian Development: Effect of Early-Life Photoperiod on Reproduction, Somatic Growth, and Neurobehavioral Systems. Zoolog Sci 2025; 42. [PMID: 39932753 DOI: 10.2108/zs240059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/15/2024] [Indexed: 05/08/2025]
Abstract
For the survival and efficient breeding of wild-living animals, it is crucial to predict seasonal changes and prepare appropriate physiological functions and neurobehavioral mechanisms. In mammals, photoperiod serves as a reliable cue for seasonal changes in the environment, primarily transmitted by melatonin. This review focuses on the seasonal adaptation of mammalian development, specifically the effect of early-life photoperiod on reproductive, somatic, and neurobehavioral development in small- and large-sized mammals. Prediction of seasons through early-life photoperiod is particularly important for small mammals, which have relatively short longevity, to adjust their maximum growth and breeding ability in appropriate seasons during the birth year or the following round. Brain plasticity, as well as cognitive and emotional behaviors, are also highly modulated by early-life photoperiods for successful mating and spatial memory for foraging. This review first summarizes the basic knowledge and recent progress in the programming and epigenetic regulatory mechanisms of reproductive and neurobehavioral development in small mammals, including C57BL/6J mice, which cannot produce detectable amounts of melatonin. The review then focuses on the influence of perinatal environmental conditions or birth season on adult phenotypes in large livestock and humans. Studies have advanced on the concept of the developmental origins of health and disease (DOHaD). Evidence from large mammals suggests that the prediction of seasons is crucial for high-fitness functions over several years. Finally, this review discusses the association of the season of birth with life course physiology and diseases in humans, and the possible mechanisms.
Collapse
Affiliation(s)
- Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan,
| |
Collapse
|
3
|
Halabian A, Radahmadi M. The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review. Rev Neurosci 2024; 35:933-958. [PMID: 39520288 DOI: 10.1515/revneuro-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024]
Abstract
Variations in day length, or photoperiodism, whether natural or artificial light, significantly impact biological, physiological, and behavioral processes within the brain. Both natural and artificial light sources are environmental factors that significantly influence brain functions and mental well-being. Photoperiodism is a phenomenon, occurring either over a 24 h cycle or seasonally and denotes all biological responses of humans and animals to these fluctuations in day and night length. Conversely, artificial light occurrence refers to the presence of light during nighttime hours and/or its absence during the daytime (unnaturally long and short days, respectively). Light at night, which is a form of light pollution, is prevalent in many societies, especially common in certain emergency occupations. Moreover, individuals with certain mental disorders, such as depression, often exhibit a preference for darkness over daytime light. Nevertheless, disturbances in light patterns can have negative consequences, impacting brain performance through similar mechanisms albeit with varying degrees of severity. Furthermore, changes in day length lead to alterations in the activity of receptors, proteins, ion channels, and molecular signaling pathways, all of which can impact brain health. This review aims to summarize the mechanisms by which day length influences brain functions through neural circuits, hormonal systems, neurochemical processes, cellular activity, and even molecular signaling pathways.
Collapse
Affiliation(s)
- Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western, Ontario, N6A 3K7 London, ON, Canada
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, 48455 Isfahan University of Medical Sciences , 81746-73461 Isfahan, Iran
| |
Collapse
|
4
|
Tonon AC, Nexha A, Mendonça da Silva M, Gomes FA, Hidalgo MP, Frey BN. Sleep and circadian disruption in bipolar disorders: From psychopathology to digital phenotyping in clinical practice. Psychiatry Clin Neurosci 2024; 78:654-666. [PMID: 39210713 PMCID: PMC11804932 DOI: 10.1111/pcn.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Sleep and biological rhythms are integral to mood regulation across the lifespan, particularly in bipolar disorder (BD), where alterations in sleep phase, structure, and duration occur in all mood states. These disruptions are linked to poorer quality of life, heightened suicide risk, impaired cognitive function, and increased relapse rates. This review highlights the pathophysiology of sleep disturbances in BD and aims to consolidate understanding and clinical applications of these phenomena. It also summarizes the evolution of sleep and biological rhythms assessment methods, including ecological momentary assessment (EMA) and digital phenotyping. It underscores the importance of recognizing circadian rhythm involvement in mood regulation, suggesting potential therapeutic targets. Future research directions include elucidating circadian clock gene mechanisms, understanding environmental impacts on circadian rhythms, and investigating the bidirectional relationship between sleep disturbances and mood regulation in BD. Standardizing assessment methods and addressing privacy concerns related to EMA technology and digital phenotyping are essential for advancing research. Collaborative efforts are crucial for enhancing clinical applicability and understanding the broader implications of biological rhythms in BD diagnosis and treatment. Overall, recognizing the significance of sleep and biological rhythms in BD offers promise for improved outcomes through targeted interventions and a deeper understanding of the disorder's underlying mechanisms.
Collapse
Affiliation(s)
- André C. Tonon
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Adile Nexha
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Mariana Mendonça da Silva
- Laboratório de Cronobiologia e SonoPorto Alegre Clinicas Hospital, Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Fabiano A. Gomes
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e SonoPorto Alegre Clinicas Hospital, Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Graduate Program in Psychiatry and Behavioral SciencesFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Benicio N. Frey
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare HamiltonHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
5
|
Murata EM, Pritschet L, Grotzinger H, Taylor CM, Jacobs EG. Circadian rhythms tied to changes in brain morphology in a densely-sampled male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588906. [PMID: 38645226 PMCID: PMC11030376 DOI: 10.1101/2024.04.10.588906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Circadian, infradian, and seasonal changes in steroid hormone secretion have been tied to changes in brain volume in several mammalian species. However, the relationship between circadian changes in steroid hormone production and rhythmic changes in brain morphology in humans is largely unknown. Here, we examined the relationship between diurnal fluctuations in steroid hormones and multiscale brain morphology in a precision imaging study of a male who completed forty MRI and serological assessments at 7 A.M. and 8 P.M. over the course of a month, targeting hormone concentrations at their peak and nadir. Diurnal fluctuations in steroid hormones were tied to pronounced changes in global and regional brain morphology. From morning to evening, total brain volume, gray matter volume, and cortical thickness decreased, coincident with decreases in steroid hormone concentrations (testosterone, estradiol, and cortisol). In parallel, cerebrospinal fluid and ventricle size increased from A.M. to P.M. Global changes were driven by decreases within the occipital and parietal cortices. These findings highlight natural rhythms in brain morphology that keep time with the diurnal ebb and flow of steroid hormones.
Collapse
Affiliation(s)
- Elle M. Murata
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Caitlin M. Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
| | - Emily G. Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| |
Collapse
|
6
|
Georgelin M, Ferreira VHB, Cornilleau F, Meurisse M, Poissenot K, Beltramo M, Keller M, Lansade L, Dardente H, Calandreau L. Short photoperiod modulates behavior, cognition and hippocampal neurogenesis in male Japanese quail. Sci Rep 2023; 13:951. [PMID: 36653419 PMCID: PMC9849226 DOI: 10.1038/s41598-023-28248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The mechanisms underlying the photoperiodic control of reproduction in mammals and birds have been recently clarified. In contrast, the potential impact of photoperiod on more complex, integrative processes, such as cognitive behaviors, remains poorly characterized. Here, we investigated the impact of contrasted long and short photoperiods (LP, 16 h light/day and SP, 8 h light/day, respectively) on learning, spatial orientation abilities, and emotional reactivity in male Japanese quail. In addition, we quantified cell proliferation and young cell maturation/migration within the hippocampus, a brain region involved in spatial orientation. Our study reveals that, in male quail, SP increases emotional responses and spatial orientation abilities, compared to LP. Behaviorally, SP birds were found to be more fearful than LP birds, exhibiting more freezing in the open field and taking longer to exit the dark compartment in the emergence test. Furthermore, SP birds were significantly less aggressive than LP birds in a mirror test. Cognitively, SP birds were slower to habituate and learn a spatial orientation task compared to LP birds. However, during a recall test, SP birds performed better than LP birds. From a neuroanatomical standpoint, SP birds had a significantly lower density of young neurons, and also tended to have a lower density of mature neurons within the hippocampus, compared to LP birds. In conclusion, our data reveal that, beyond breeding control, photoperiod also exerts a profound influence on behavior, cognition, and brain plasticity, which comprise the seasonal program of this species.
Collapse
Affiliation(s)
- Marion Georgelin
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Vitor Hugo Bessa Ferreira
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Fabien Cornilleau
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Maryse Meurisse
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Kévin Poissenot
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Massimiliano Beltramo
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Matthieu Keller
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Léa Lansade
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Hugues Dardente
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ludovic Calandreau
- CNRS, IFCE, INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
7
|
Seasonal differences in the morphology and spine density of hippocampal neurons in wild ground squirrels. Brain Struct Funct 2022; 227:2349-2365. [DOI: 10.1007/s00429-022-02528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
|
8
|
Miller L, Bodemeier Loayza Careaga M, Handa RJ, Wu TJ. The Effects of Chronic Variable Stress and Photoperiod Alteration on the Hypothalamic-Pituitary-Adrenal Axis Response and Behavior of Mice. Neuroscience 2022; 496:105-118. [PMID: 35700818 DOI: 10.1016/j.neuroscience.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological response to stressors and also synchronizes different physiological systems to environmental cues. Changes in day length (i.e., photoperiod) as well as chronic exposure to stressors are known to impact the HPA axis activity regulating the levels of glucocorticoid hormones. Over-exposure to inappropriate levels of glucocorticoids has been implicated in increased disease risk. In the present study, we examined the impact of chronic stress, using a chronic variable stress (CVS) paradigm, in combination with changes in photoperiod on physiological and behavioral measures, as well as on the reactivity and regulation of the HPA axis, in male and female mice. Six weeks of CVS, regardless of the photoperiod condition, decreased the body weight and attenuated the HPA axis reactivity to an acute stressor in both sexes. The attenuated HPA axis reactivity observed in stressed animals was related to reduced Pro-opiomelanocortin (POMC) mRNA levels in the pituitary of females. The gene expression analyses of key regulators of the HPA axis also indicated a sex-dependent effect with opposite patterns in the pituitary and adrenal glands. CVS effects on behavior were limited and related to an anxiety-like phenotype in both sexes, regardless of photoperiod condition. Our findings highlight sex-specific differences in the HPA axis and also sex-dependent effects of CVS on physiological parameters.
Collapse
Affiliation(s)
- Lauren Miller
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mariella Bodemeier Loayza Careaga
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - T John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
9
|
Yaskin VA. Changes in the Hippocampus of the Bank Vole Due to Population Density Dynamics. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Majrashi NA, Alyami AS, Shubayr NA, Alenezi MM, Waiter GD. Amygdala and subregion volumes are associated with photoperiod and seasonal depressive symptoms: A cross-sectional study in the UK Biobank cohort. Eur J Neurosci 2022; 55:1388-1404. [PMID: 35165958 PMCID: PMC9304295 DOI: 10.1111/ejn.15624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022]
Abstract
Although seasonal changes in amygdala volume have been demonstrated in animals, seasonal differences in human amygdala subregion volumes have yet to be investigated. Amygdala volume has also been linked to depressed mood. Therefore, we hypothesised that differences in photoperiod would predict differences in amygdala or subregion volumes and that this association would be linked to depressed mood. 10,033 participants ranging in age from 45 to 79 years were scanned by MRI in a single location. Amygdala subregion volumes were obtained using automated processing and segmentation algorithms. A mediation analysis tested whether amygdala volume mediated the relationship between photoperiod and mood. Photoperiod was positively associated with total amygdala volume (p < .001). Multivariate (GLM) analyses revealed significant effects of photoperiod across all amygdala subregion volumes for both hemispheres (p < .001). Post hoc univariate regression analyses revealed significant associations of photoperiod with each amygdala subregion volume (p < .001). PLS showed the highest loadings of amygdala subregions in lateral nucleus, ABN, basal nucleus, CAT, PLN, AAA, central nucleus, cortical nucleus and medial nucleus for left hemisphere and ABN, lateral nucleus, CAT, PLN, cortical nucleus, AAA, central nucleus and medial nucleus for right hemisphere. There were no significant associations between photoperiod and mood nor between mood scores and amygdala volumes, and due to the lack of these associations, the mediation hypothesis was not supported. This study is the first to demonstrate an association between photoperiod and amygdala volume. These findings add to the evidence supporting the role of photoperiod on brain structural plasticity.
Collapse
Affiliation(s)
- Naif A Majrashi
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Ali S Alyami
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nasser A Shubayr
- Diagnostic Radiography Technology (DRT) Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Meshaal M Alenezi
- Radiology Department, King Khalid Hospital in Hail, Ministry of Health, Hail, Saudi Arabia
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
11
|
Verma V, Kumari R, Singaravel M. Chronic altered light-dark cycle differentially affects hippocampal CA1 and DG neuronal arborization in diurnal and nocturnal rodents. Chronobiol Int 2022; 39:665-677. [PMID: 34983277 DOI: 10.1080/07420528.2021.2023561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The hippocampus, an extension of the temporal part of the cerebral cortex, plays a crucial role in learning and memory. Structural and functional complexity within the hippocampus is greatly affected by a variety of external environmental stimuli including alteration in the light-dark (LD) cycle. The effect of altered LD cycle in learning and memory associated cognitive impairment has been reported in rodents. However, a comparative study of underlying neuronal changes between nocturnal and diurnal species is not well explored. The objective of the present study was to explore the morphological changes in hippocampal CA1 and DG neurons in response to prolonged constant condition viz. constant light (LL) and constant darkness (DD) in diurnal squirrels and nocturnal mice. Animals (n = 5/group) were placed in chronocubicle under 12:12 h LD, LL and DD. After four weeks, brain tissues were collected and processed for Golgi-Cox staining to analyze morphological changes in CA1 and DG neurons. The total and basal dendritic length, basal dendrite number, branch end, the diameter of apical dendrite and spine density were analyzed. The results showed a significant reduction in structural complexity of CA1 and DG neurons of squirrels exposed to prolonged constant darkness, whereas mice showed a significant increase as compared to LD. However, a significantly reduced neuronal complexity was observed in both squirrels and mice exposed to prolonged constant light. The results obtained were further confirmed by Sholl analysis of CA1 and DG neurons. The present study suggests that prolonged constant light may cause adverse effects on the neuronal complexity of both diurnal and nocturnal animals, but constant darkness may cause adverse effects mainly to the diurnal animals.
Collapse
Affiliation(s)
- Vivek Verma
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ruchika Kumari
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Light-dependent effects on mood: Mechanistic insights from animal models. PROGRESS IN BRAIN RESEARCH 2022; 273:71-95. [DOI: 10.1016/bs.pbr.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Kumari R, Verma V, Kronfeld-Schor N, Singaravel M. Differential response of diurnal and nocturnal mammals to prolonged altered light-dark cycle: a possible role of mood associated endocrine, inflammatory and antioxidant system. Chronobiol Int 2021; 38:1618-1630. [PMID: 34128442 DOI: 10.1080/07420528.2021.1937200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The circadian system maintains internal 24 h oscillation of behavior and physiology, and its misalignment with external light-dark (LD) cycle results in negative health outcomes. In order to elucidate the effect of prolonged constant condition and the differences in the response between nocturnal and diurnal species, we studied the effects of constant light (LL) and constant darkness (DD) on a diurnal (squirrel) and a nocturnal (mouse) rodent species, focusing on the endocrine, inflammatory and antioxidant systems associated with depression-like behavior. Squirrels and mice (n = 10/group) were placed in chronocubicle under 12:12 h LD cycle, LL and DD. After 4 weeks, animals were subjected to sucrose preference test and blood and brain tissues were collected for measuring melatonin, corticosterone, proinflammatory cytokine, tumor necrosis factor-α (TNF-α) and the activity of primary antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD). The results show that in diurnal squirrels, prolonged constant darkness reduced sucrose preference, CAT, and SOD, increased corticosterone and TNF-α levels, but caused no significant change in the melatonin compared to LD condition. In contrast, in nocturnal mice constant darkness caused no significant changes in sucrose preference and corticosterone levels, increased melatonin, CAT and SOD levels but decreased TNF-α levels. Chronic LL caused a similar response in both squirrels and mice: it decreased sucrose preference, melatonin, CAT and SOD levels but increased corticosterone and TNF-α levels. Together, the study demonstrates differential effects of altered light-dark cycle in a diurnal and a nocturnal rodent on interrelated endocrine, inflammatory and antioxidant systems associated with depression-like behavior, with constant light having adverse effects on both species but constant darkness having a negative effect mainly in the diurnal squirrels.
Collapse
Affiliation(s)
- Ruchika Kumari
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vivek Verma
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Noga Kronfeld-Schor
- Ecological and Evolutionary Physiology Laboratory, School of Zoology and Sagol School of Neuroscience, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
14
|
Yaskin VA. Growth of the Hippocampus in Bank Voles (Clethrionomys glareolus, Rodentia) from Different Seasonal Generations. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020080154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Liu CY, Lai WS. Functional neuroanatomy and neural oscillations during social eavesdropping in male golden hamsters. Horm Behav 2021; 127:104881. [PMID: 33127368 DOI: 10.1016/j.yhbeh.2020.104881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Social eavesdropping is a low-cost learning mechanism by which individuals extract relevant social information from social interactions between conspecifics, thereby gaining subsequent advantages in information gathering and usage. The aim of this study was to take advantage of a new hamster model of social eavesdropping to investigate behavioral consequences and neural activity in male hamsters during social eavesdropping. Bystander hamsters with a defeat experience were exposed to either a fighting interaction, a neutral encounter, or control conditions for 3 days of social eavesdropping. In Experiment 1, bystanders in the fight and neutral groups displayed more information gathering behaviors and less nonsocial behavior than control hamsters. The fight group displayed significant increases in c-Fos-positive neurons in the anterior mid-cingulate cortex (aMCC) and the piriform cortex. A slight but not significant group difference was found in their serum cortisol levels. In vivo local field potential oscillation recordings in Experiment 2 revealed that bystanders in the fight group had more delta oscillations in the aMCC during information gathering across 3-day social eavesdropping than those in the other 2 groups. Experiment 3 confirmed that 20 min of social eavesdropping on Day 1 was sufficient to evoke differential behavioral outcomes, and the behavioral responses became more prominent after 3 days of social eavesdropping. Collectively, our study confirmed that male golden hamsters are capable of social eavesdropping and indicated the involvement of aMCC delta oscillations in social eavesdropping.
Collapse
Affiliation(s)
- Ching-Yi Liu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Majrashi NA, Ahearn TS, Williams JHG, Waiter GD. Sex differences in the association of photoperiod with hippocampal subfield volumes in older adults: A cross-sectional study in the UK Biobank cohort. Brain Behav 2020; 10:e01593. [PMID: 32343485 PMCID: PMC7303396 DOI: 10.1002/brb3.1593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Even though seasonal and sex-dependent changes in hippocampal and subfield volumes are well known in animals, little is known about changes in humans. We hypothesized that changes in photoperiod would predict changes in hippocampal subfield volumes and that this association would be different between females and males. METHODS A total of 10,033 participants ranging in age from 45 to 79 years were scanned by MRI in a single location as part of the UK Biobank project. Hippocampal subfield volumes were obtained using automated processing and segmentation algorithms using the developmental version of the FreeSurfer v 6.0. Photoperiod was defined as the number of hours between sunrise and sunset on the day of scan. RESULTS Photoperiod correlated positively with total hippocampal volume and all subfield volumes across participants as well as in each sex individually, with females showing greater seasonal variation in a majority of left subfield volumes compared with males. ANCOVAs revealed significant differences in rate of change in only left subiculum, CA-4, and GC-ML-DG between females and males. PLS showed highest loadings of hippocampal subfields in both females and males in GC-ML-DG, CA1, CA4, subiculum, and CA3 for left hemisphere and CA1, GC-ML-DG, CA4; subiculum and CA3 for right hemisphere in females; GC-ML-DG, CA1, subiculum, CA4 and CA3 for left hemisphere; CA1, GC-ML-DG, subiculum, CA4 and CA3 for right hemisphere in males. CONCLUSION The influence of day length on hippocampal volume has implications for modeling age-related decline in memory in older adults, and sex differences suggest an important role for hormones in these effects.
Collapse
Affiliation(s)
- Naif A. Majrashi
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenUK
- Diagnostic Radiology DepartmentCollege of Applied Medical SciencesJazan UniversityJazanSaudi Arabia
| | - Trevor S. Ahearn
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenUK
| | - Justin H. G. Williams
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenUK
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gordon D. Waiter
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenUK
| |
Collapse
|
17
|
Majrashi NA, Ahearn TS, Waiter GD. Brainstem volume mediates seasonal variation in depressive symptoms: A cross sectional study in the UK Biobank cohort. Sci Rep 2020; 10:3592. [PMID: 32108162 PMCID: PMC7046735 DOI: 10.1038/s41598-020-60620-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/10/2020] [Indexed: 11/18/2022] Open
Abstract
Seasonal differences in mood and depressive symptoms affect a large percentage of the general population, with seasonal affective disorder (SAD) representing the most common presentation. SAD affects up to 3% of the world’s population, and it tends to be more predominant in females than males. The brainstem has been shown to be affected by photoperiodic changes, and that longer photoperiods are associated with higher neuronal density and decreased depressive-like behaviours. We predict that longer photoperiod days are associated with larger brainstem volumes and lower depressive scores, and that brainstem volume mediates the seasonality of depressive symptoms. Participants (N = 9289, 51.8% females and 48.1% males) ranging in age from 44 to 79 years were scanned by MRI at a single location. Photoperiod was found to be negatively correlated with low mood and anhedonia in females while photoperiod was found to be positively correlated with brainstem volumes. In females, whole brainstem, pons and medulla volumes individually mediated the relationship between photoperiod and both anhedonia and low mood, while midbrain volume mediated the relationship between photoperiod and anhedonia. No mediation effects were seen in males. Our study extends the understanding of the neurobiological factors that contribute to the pathophysiology of seasonal mood variations.
Collapse
Affiliation(s)
- Naif A Majrashi
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK.,Diagnostic Radiology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Trevor S Ahearn
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK.,Medical Physics, NHS Grampian, Aberdeen, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
18
|
Photoperiod-Induced Neuroplasticity in the Circadian System. Neural Plast 2018; 2018:5147585. [PMID: 29681926 PMCID: PMC5851158 DOI: 10.1155/2018/5147585] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023] Open
Abstract
Seasonal changes in light exposure have profound effects on behavioral and physiological functions in many species, including effects on mood and cognitive function in humans. The mammalian brain's master circadian clock, the suprachiasmatic nucleus (SCN), transmits information about external light conditions to other brain regions, including some implicated in mood and cognition. Although the detailed mechanisms are not yet known, the SCN undergoes highly plastic changes at the cellular and network levels under different light conditions. We therefore propose that the SCN may be an essential mediator of the effects of seasonal changes of day length on mental health. In this review, we explore various forms of neuroplasticity that occur in the SCN and other brain regions to facilitate seasonal adaptation, particularly altered phase distribution of cellular circadian oscillators in the SCN and changes in hypothalamic neurotransmitter expression.
Collapse
|
19
|
Zhang F, Wang Y, Han W, Wang J, Zhang H, Sheng X, Yuan Z, Weng Q, Han Y. Seasonal changes of androgen receptor, estrogen receptors and aromatase expression in the hippocampus of the wild male ground squirrels (Citellus dauricus Brandt). Gen Comp Endocrinol 2017; 249:93-100. [PMID: 28502742 DOI: 10.1016/j.ygcen.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/22/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022]
Abstract
The wild ground squirrel is a typical seasonal breeder whose annual life cycle can be roughly divided into the breeding season, the post-breeding season and hibernation. Our previous study has reported the seasonal changes in the expressions of androgen receptor (AR), estrogen receptors α and β (ERα and ERβ), and aromatase cytochrome P450 (P450arom) in the hypothalamus of male wild ground squirrels. To further seek evidence of seasonal expression of steroid hormone receptors and steroid hormone synthases in other brain regions, we investigated the protein and mRNA expressions of AR, ERα, ERβ and P450arom in the hippocampus of the male wild ground squirrels during these different reproductive periods. Histological observation showed that the number of pyramidal cells in Cornu Ammonis 1 (CA1) increased in the breeding season. Both protein and mRNA of AR, ERα, ERβ and P450arom were present in CA1 and CA3 of all seasons. There was significant increment in the immune-signal intensity and mRNA level of AR and ERα during the pre-hibernation, whereas those of ERβ and P450arom were higher during the post-breeding season. In addition, the profile of plasma testosterone concentration showed the nadir in the post-breeding season, a marked elevation in the pre-hibernation, and the summit in the breeding season. These findings suggested that the hippocampus may be a direct target of androgen and estrogen; androgen may play important regulatory roles through its receptor and/or the aromatized estrogen in the hippocampus of the wild male ground squirrels.
Collapse
Affiliation(s)
- Fengwei Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wentao Han
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junjie Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xia Sheng
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Yu WC, Liu CY, Lai WS. Repeated, Intermittent Social Defeat across the Entire Juvenile Period Resulted in Behavioral, Physiological, Hormonal, Immunological, and Neurochemical Alterations in Young Adult Male Golden Hamsters. Front Behav Neurosci 2016; 10:110. [PMID: 27375450 PMCID: PMC4901039 DOI: 10.3389/fnbeh.2016.00110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
The developing brain is vulnerable to social defeat during the juvenile period. As complements of human studies, animal models of social defeat provide a straightforward approach to investigating the functional and neurobiological consequences of social defeats. Taking advantage of agonist behavior and social defeat in male golden hamster, a set of 6 experiments was conducted to investigate the consequences at multiple levels in young adulthood resulting from repeated, intermittent social defeats or “social threats” across the entire juvenile period. Male hamsters at postnatal day 28 (P28) were randomly assigned to either the social defeat, “social threat”, or arena control group, and they correspondingly received a series of nine social interaction trials (i.e., either social defeat, “social threat”, or arena control conditions) from P33 to P66. At the behavioral level (Experiment 1), we found that repeated social defeats (but not “social threats”) significantly impacted locomotor activity in the familiar context and social interaction in the familiar/unfamiliar social contexts. At the physiological and hormonal levels (Experiments 2 and 3), repeated social defeat significantly enhanced the cortisol and norepinephrine concentrations in blood. Enlargement of the spleen was also found in the social defeat and “social threat” groups. At the immunological level (Experiment 4), the social defeat group showed lower levels of pro-inflammatory cytokines in the hypothalamus and hippocampus but higher concentration of IL-6 in the striatum compared to the other two groups. At the neurochemical level (Experiment 5), the socially defeated hamsters mainly displayed reductions of dopamine, dopamine metabolites, and 5-HT levels in the striatum and decreased level of 5-HT in the hippocampus. In Experiment 6, an increase in the spine density of hippocampal CA1 pyramidal neurons was specifically observed in the “social threat” group. Collectively, our findings indicate that repeated, intermittent social defeats throughout entire adolescence in hamsters impact their adult responses at multiple levels. Our results also suggest that the “social threat” group may serve as an appropriate control. This study further suggest that the alterations of behavioral responses and neurobiological functions in the body and brain might provide potential markers to measure the negative consequences of chronic social defeats.
Collapse
Affiliation(s)
- Wei-Chun Yu
- Department of Psychology, National Taiwan University Taipei, Taiwan
| | - Ching-Yi Liu
- Department of Psychology, National Taiwan University Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan UniversityTaipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan UniversityTaipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
21
|
Quiles CL, de Oliveira MAB, Tonon AC, Hidalgo MPL. Biological adaptability under seasonal variation of light/dark cycles. Chronobiol Int 2016; 33:964-71. [PMID: 27222076 DOI: 10.1080/07420528.2016.1182175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
3A substantial amount of experimental models designed to understand rhythms entrainment and the effects of different regimens of light exposure on health have been proposed. However, many of them do not relate to what occurs in real life. Our objective was to evaluate the influence of "seasonal-like" variation in light/dark cycles on biological rhythms. Twenty adult male Wistar rats were assigned to three groups: control (CT), kept in 12:12 light/dark (LD) cycle; long photoperiod/short photoperiod (LP/SP), kept in 16.5:7.5 LD cycle for 18 days (phase A), then 17 days of gradual reductions in light time (phase B), then 18 days of shorter exposure (7.5:16.5 LD cycle, phase C); short photoperiod/long photoperiod (SP/LP) group, with same modifications as the LP/SP group, but in reverse order, starting phase A in 7.5:16.5 LD cycle. Activity and temperature were recorded constantly, and melatonin and cortisol concentrations were measured twice. Activity and temperature acrophases of all groups changed according to light. The correlation between activity and temperature was, overall, significantly lower for SP/LP group compared with LP/SP and CT groups. Regarding melatonin concentration, LP/SP group showed significant positive correlation between phase A and C (p = 0.018). Animals changed temperature and activity according to photoperiod and demonstrated better adaptability in transitioning from long to short photoperiod. Since this model imitates seasonal variation in light in a species that is largely used in behavioral experiments, it reveals promising methods to improve the reliability of experimental models and of further environmental health research.
Collapse
Affiliation(s)
- Caroline Luísa Quiles
- a Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA) , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| | - Melissa Alves Braga de Oliveira
- a Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA) , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| | - André Comiran Tonon
- a Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA) , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| | - Maria Paz Loayza Hidalgo
- a Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA) , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil.,b Pós-graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina (FAMED) , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brasil
| |
Collapse
|
22
|
Ikeno T, Deats SP, Soler J, Lonstein JS, Yan L. Decreased daytime illumination leads to anxiety-like behaviors and HPA axis dysregulation in the diurnal grass rat (Arvicanthis niloticus). Behav Brain Res 2015; 300:77-84. [PMID: 26684510 DOI: 10.1016/j.bbr.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
The impact of ambient light on mood and anxiety is best exemplified in seasonal affective disorder, in which patients experience depression and anxiety in winter when there is less light in the environment. However, the brain mechanisms underlying light-dependent changes in affective state remain unclear. Our previous work revealed increased depression-like behaviors in the diurnal Nile grass rat (Arvicanthis niloticus) housed in a dim light-dark (dim-LD) cycle as compared to the controls housed in a bright light-dark (bright-LD) condition. As depression is often comorbid with anxiety and is associated with dysregulation of the body's stress response system, the present study examined the anxiety-like behaviors as well as indicators of the hypothalamic-pituitary-adrenal (HPA) axis functioning in the grass rats. Animals housed in dim-LD showed increased anxiety-like behaviors compared to bright-LD controls, as revealed by fewer entries and less time spent at the center in the open field test and more marbles buried during the marble-burying test. Following the marble-burying test, dim-LD animals showed higher plasma corticosterone (CORT) levels and hippocampal Fos expression. Although the daily CORT rhythm was comparable between bright-LD and dim-LD groups, the day/night variation of corticotropin-releasing hormone mRNA expression in the paraventricular nucleus was diminished in dim-LD animals. In addition, glucocorticoid receptor and mineralocorticoid receptor mRNA expression were higher in the hippocampus of dim-LD animals. The results suggest that in diurnal species, reduced daytime illumination can lead to increased anxiety-like behaviors and altered HPA axis functioning, providing insights into the link between decreased environmental illumination and negative emotion.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Sean P Deats
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Joel Soler
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Short photoperiod condition increases susceptibility to stress in adolescent male rats. Behav Brain Res 2015; 300:38-44. [PMID: 26655789 DOI: 10.1016/j.bbr.2015.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022]
Abstract
The seasonality of depressive symptoms is prevalent in children and adolescents. However, the mechanisms that underlie such susceptibility to seasonal influences on mood disorders are unclear. We examined the effects of a short photoperiod condition on the susceptibility to subchronic unpredictable mild stress (SCUS) and rhythmic alterations of plasma corticosterone (CORT), melatonin, and neuropeptide Y (NPY) in adolescent male rats. Compared with the 12h/12h light/dark photoperiod control (CON) rats, the 8h/16h photoperiod SCUS rats exhibited significant anhedonia, a core symptom of human depression, together with a blunted diurnal rhythm and elevation of 24h CORT, melatonin, and NPY levels. The 8h/16h photoperiod condition also blunted the rhythmicity of CORT, caused a phase inversion of melatonin, and caused a phase delay of NPY compared with 12h/12h CON rats. Such abnormalities of plasma CORT, NPY, and melatonin might cause adolescent individuals to present higher stress reactivity and greater vulnerability to stress over their lifetimes. The present study provides evidence of the susceptibility to the seasonality of stress-related disorders in adolescence.
Collapse
|
24
|
Hypothalamic dopaminergic neurons in an animal model of seasonal affective disorder. Neurosci Lett 2015; 602:17-21. [PMID: 26116821 DOI: 10.1016/j.neulet.2015.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/26/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
Light has profound effects on mood regulation as exemplified in seasonal affective disorder (SAD) and the therapeutic benefits of light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD. Following housing conditions of either 12:12 h dim light:dark (DLD) or 8:16 h short photoperiod (SP), which mimic the lower light intensity or short day-length of winter, respectively, grass rats exhibit an increase in depression-like behavior compared to those housed in a 12:12 h bright light:dark (BLD) condition. Furthermore, we have shown that the orexinergic system is involved in mediating the effects of light on mood and anxiety. To explore other potential neural substrates involved in the depressive phenotype, the present study examined hypothalamic dopaminergic (DA) and somatostatin (SST) neurons in the brains of grass rats housed in DLD, SP and BLD. Using immunostaining for tyrosine hydroxylase (TH) and SST, we found that the number of TH- and SST-ir cells in the hypothalamus was significantly lower in the DLD and SP groups compared to the BLD group. We also found that treating BLD animals with a selective orexin receptor 1 (OX1R) antagonist SB-334867 significantly reduced the number of hypothalamic TH-ir cells. The present study suggests that the hypothalamic DA neurons are sensitive to daytime light deficiency and are regulated by an orexinergic pathway. The results support the hypothesis that the orexinergic pathways mediate the effects of light on other neuronal systems that collectively contribute to light-dependent changes in the affective state.
Collapse
|
25
|
Miller MA, Leckie RL, Donofry SD, Gianaros PJ, Erickson KI, Manuck SB, Roecklein KA. Photoperiod is associated with hippocampal volume in a large community sample. Hippocampus 2015; 25:534-43. [PMID: 25394737 DOI: 10.1002/hipo.22390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2014] [Indexed: 11/10/2022]
Abstract
Although animal research has demonstrated seasonal changes in hippocampal volume, reflecting seasonal neuroplasticity, seasonal differences in human hippocampal volume have yet to be documented. Hippocampal volume has also been linked to depressed mood, a seasonally varying phenotype. Therefore, we hypothesized that seasonal differences in day-length (i.e., photoperiod) would predict differences in hippocampal volume, and that this association would be linked to low mood. Healthy participants aged 30-54 (M=43; SD=7.32) from the University of Pittsburgh Adult Health and Behavior II project (n=404; 53% female) were scanned in a 3T MRI scanner. Hippocampal volumes were determined using an automated segmentation algorithm using FreeSurfer. A mediation model tested whether hippocampal volume mediated the relationship between photoperiod and mood. Secondary analyses included seasonally fluctuating variables (i.e., sleep and physical activity) which have been shown to influence hippocampal volume. Shorter photoperiods were significantly associated with higher BDI scores (R(2)=0.01, β=-0.12, P=0.02) and smaller hippocampal volumes (R(2)=0.40, β=0.08, P=0.04). However, due to the lack of an association between hippocampal volume and Beck Depression Inventory scores in the current sample, the mediation hypothesis was not supported. This study is the first to demonstrate an association between season and hippocampal volume. These data offer preliminary evidence that human hippocampal plasticity could be associated with photoperiod and indicates a need for longitudinal studies.
Collapse
Affiliation(s)
- Megan A Miller
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
26
|
Keeley RJ, Burger DK, Saucier DM, Iwaniuk AN. The size of non-hippocampal brain regions varies by season and sex in Richardson's ground squirrel. Neuroscience 2015; 289:194-206. [PMID: 25595988 DOI: 10.1016/j.neuroscience.2014.12.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/29/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022]
Abstract
Sex- and season-specific modulation of hippocampal size and function is observed across multiple species, including rodents. Other non-hippocampal-dependent behaviors exhibit season and sex differences, and whether the associated brain regions exhibit similar variation with sex and season remains to be fully characterized. As such, we examined the brains of wild-caught Richardson's ground squirrels (RGS; Urocitellus richardsonii) for seasonal (breeding, non-breeding) and sex differences in the volumes of specific brain areas, including: total brain volume, corpus callosum (CC), anterior commissure (AC), medial prefrontal cortex (mPFC), total neocortex (NC), entorhinal cortex (EC), and superior colliculus (SC). Analyses of variance and covariance revealed significant interactions between season and sex for almost all areas studied, primarily resulting from females captured during the breeding season exhibiting larger volumes than females captured during the non-breeding season. This was observed for volumes of the AC, mPFC, NC, EC, and SC. Where simple main effects of season were observed for males (the NC and the SC), the volume advantage favoured males captured during the NBr season. Only two simple main effects of sex were observed: males captured in the non-breeding season had significantly larger total brain volume than females captured in the non-breeding season, and females captured during the breeding season had larger volumes of the mPFC and EC than males captured in the breeding season. These results indicate that females have more pronounced seasonal differences in brain and brain region sizes. The extent to which seasonal differences in brain region volumes vary with behaviour is unclear, but our data do suggest that seasonal plasticity is not limited to the hippocampus and that RGS is a useful mammalian species for understanding seasonal plasticity in an ecologically relevant context.
Collapse
Affiliation(s)
- R J Keeley
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada.
| | - D K Burger
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - D M Saucier
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| | - A N Iwaniuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
27
|
Beery AK, Vahaba DM, Grunberg DM. Corticotropin-releasing factor receptor densities vary with photoperiod and sociality. Horm Behav 2014; 66:779-86. [PMID: 25284436 DOI: 10.1016/j.yhbeh.2014.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/03/2023]
Abstract
Life in social groups relies on prosocial behaviors as well as on reduction of antisocial behaviors such as aggression and territoriality. The mechanisms supporting variation in behaviors that give rise to group living (sociality) are largely unknown. Female meadow voles exhibit natural seasonal variation in sociality: females are aggressive and territorial in summer, while in winter they share burrows and nest in mixed-sex groups. This behavioral shift is paralleled in the lab by day length-dependent variation in partner preference formation and social huddling. We exploit natural variation in meadow vole sociality in order to examine changes in neural pathways that coincide with environmental and behavioral variations. Mounting evidence suggests that the corticotropin-releasing factor system, encompassing multiple peptides and two receptor subtypes (CRF1 and CRF2), may play an important role in regulating social behaviors. We report day-length dependent variation in CRF1 and CRF2 receptor binding in female meadow voles, and relate these findings to previously collected oxytocin receptor (OTR) binding data and behavioral data for the same individuals. CRF1 receptor binding was greater in summer-like long day lengths (LD), particularly in the hippocampus, while CRF2 receptor binding was greater in winter-like short day lengths (SD) in the cingulate cortex and hippocampus. OTR varied with day length in the bed nucleus of the stria terminalis, nucleus accumbens, and hippocampus. SD voles huddled more extensively than LD voles, and greater huddling time was associated with more CRF1 receptor binding and less CRF2 receptor binding in subregions of the lateral septum. CRF2 receptor associations with behavior mirrored those of OTR in the lateral septum. Finally, estradiol treatment affected density of CRF receptors in multiple brain regions. CRF receptors and their ligands are promising candidates for enhancing understanding of the regulation of non-sexual social behavior between group living peers.
Collapse
Affiliation(s)
- Annaliese K Beery
- Department of Psychology, Department of Biology, Program in Neuroscience, Smith College, Northampton, MA 01063, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Daniel M Vahaba
- Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Diana M Grunberg
- Department of Psychology, Department of Biology, Program in Neuroscience, Smith College, Northampton, MA 01063, USA
| |
Collapse
|
28
|
Ikeno T, Nelson RJ. Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters. Hippocampus 2014; 25:142-8. [PMID: 25160468 DOI: 10.1002/hipo.22358] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/29/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
Abstract
In the hippocampus of Siberian hamsters, dendritic length and dendritic complexity increase in the CA1 region whereas dendritic spine density decreases in the dentate gyrus region at night. However, the underlying mechanism of the diurnal rhythmicity in hippocampal neuronal remodeling is unknown. In mammals, most daily rhythms in physiology and behaviors are regulated by a network of circadian clocks. The central clock, located in the hypothalamus, controls melatonin secretion at night and melatonin modifies peripheral clocks by altering expression of circadian clock genes. In this study, we examined the effects of acute melatonin treatment on the circadian clock system as well as on morphological changes of hippocampal neurons. Male Siberian hamsters were injected with melatonin in the afternoon; 4 h later, mRNA levels of hypothalamic and hippocampal circadian clock genes and hippocampal neuron dendritic morphology were assessed. In the hypothalamus, melatonin treatment did not alter Period1 and Bmal1 expression. However, melatonin treatment increased both Period1 and Bmal1 expression in the hippocampus, suggesting that melatonin affected molecular oscillations in the hippocampus. Melatonin treatment also induced rapid remodeling of hippocampal neurons; melatonin increased apical dendritic length and dendritic complexity in the CA1 region and reduced the dendritic spine density in the dentate gyrus region. These data suggest that structural changes in hippocampal neurons are regulated by a circadian clock and that melatonin functions as a nighttime signal to coordinate the diurnal rhythm in neuronal remodeling.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | |
Collapse
|
29
|
Grizzell JA, Iarkov A, Holmes R, Mori T, Echeverria V. Cotinine reduces depressive-like behavior, working memory deficits, and synaptic loss associated with chronic stress in mice. Behav Brain Res 2014; 268:55-65. [DOI: 10.1016/j.bbr.2014.03.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 12/21/2022]
|
30
|
Abstract
Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.
Collapse
|
31
|
Ikeno T, Weil Z, Nelson R. Timing of light pulses and photoperiod on the diurnal rhythm of hippocampal neuronal morphology of Siberian hamsters. Neuroscience 2014; 270:69-75. [DOI: 10.1016/j.neuroscience.2014.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/05/2014] [Accepted: 04/01/2014] [Indexed: 11/16/2022]
|
32
|
Gracceva G, Herde A, Groothuis TGG, Koolhaas JM, Palme R, Eccard JA. Turning Shy on a Winter's Day: Effects of Season on Personality and Stress Response inMicrotus arvalis. Ethology 2014. [DOI: 10.1111/eth.12246] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giulia Gracceva
- Behavioural Physiology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
- Behavioural Biology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
| | - Antje Herde
- Department of Animal Ecology; Institute of Biochemistry and Biology; University of Potsdam; Potsdam Germany
| | - Ton G. G. Groothuis
- Behavioural Biology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
| | - Jaap M. Koolhaas
- Behavioural Physiology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
| | - Rupert Palme
- Institute for Medical Biochemistry; University of Veterinary Medicine; Vienna Austria
| | - Jana A. Eccard
- Department of Animal Ecology; Institute of Biochemistry and Biology; University of Potsdam; Potsdam Germany
| |
Collapse
|
33
|
Burger DK, Gulbrandsen T, Saucier DM, Iwaniuk AN. The effects of season and sex on dentate gyrus size and neurogenesis in a wild rodent, Richardson's ground squirrel (Urocitellus richardsonii). Neuroscience 2014; 272:240-51. [PMID: 24813432 DOI: 10.1016/j.neuroscience.2014.04.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/07/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022]
Abstract
Sex and reproductive status affect hippocampal neurogenesis and dentate gyrus (DG) size in rodents. Relatively few studies, however, address these two effects simultaneously and even fewer studies address this issue in wild populations. Here, we examined seasonal and sex differences in neurogenesis and DG size in a wild, polygynous and social rodent, Richardson's ground squirrel (Uriocitellus richardsonii). Based on the behavioral ecology of this species, we predicted that both neurogenesis and DG size would be sexually dimorphic and the degree of dimorphism would be greatest in the breeding season. Using unbiased stereology and doublecortin (DCX) immunohistochemistry, we found that brain volume, DG size and number of DCX cells varied significantly between breeding and non-breeding seasons, but only brain volume and the number of DCX labeled cells differed between the sexes. Both sex and seasonal differences likely reflect circulating hormone levels, but the extent to which these differences relate to space use in this species is unclear. Based on the degree of seasonal differences in neurogenesis and the DG, we suggest that ground squirrels could be considered model species in which to examine hippocampal plasticity in an ecologically valid context.
Collapse
Affiliation(s)
- D K Burger
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - T Gulbrandsen
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - D M Saucier
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - A N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
34
|
Aubrecht TG, Weil ZM, Nelson RJ. Melatonin treatment during early life interacts with restraint to alter neuronal morphology and provoke depressive-like responses. Behav Brain Res 2014; 263:90-7. [PMID: 24486255 DOI: 10.1016/j.bbr.2014.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 12/19/2022]
Abstract
Stressors during early life induce anxiety- and depressive-like responses in adult rodents. Siberian hamsters (Phodopus sungorus) exposed to short days post-weaning also increase adult anxiety- and depressive-like behaviors. To test the hypothesis that melatonin and exposure to stressors early in life interact to alter adult affective responses, we administered melatonin either during the perinatal (gestational day 7 to postnatal day 14) or postnatal (day 15-56) periods and also exposed a subset of dams to restraint during gestation (1 h-2×/day for 4 days). During the final week of injections, depressive-like behaviors were assessed using the sucrose anhedonia and forced swim tests. Hamsters exposed to prenatal restraint and treated with melatonin only during the postnatal period increased depressive-like responses in the forced swim test relative to all other groups. Offspring from restrained dams increased the number of fecal boli produced during the forced swim test, an anxiety-like response. In the present study, prenatal restraint reduced CA1 dendritic branching overall and perinatal melatonin protected hamsters from this restraint-induced reduction. These results suggest that the photoperiodic conditions coincident with birth and early life stressors are important in the development of adult affective responses.
Collapse
Affiliation(s)
- Taryn G Aubrecht
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Zachary M Weil
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Abstract
Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regulate circadian rhythms. Recent evidence, however, demonstrates that ipRGCs also project to limbic brain regions, suggesting that, through this pathway, light may have a role in cognition and mood. Therefore, it follows that unnatural exposure to light may have negative consequences for mood or behavior. Modern environmental lighting conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights. We hypothesized that nocturnal light exposure (i.e., dim LAN) would induce depressive responses and alter neuronal structure in hamsters (Phodopus sungorus). If this effect is mediated by ipRGCs, which have reduced sensitivity to red wavelength light, then we predicted that red LAN would have limited effects on brain and behavior compared with shorter wavelengths. Additionally, red LAN would not induce c-Fos activation in the SCN. Our results demonstrate that exposure to LAN influences behavior and neuronal plasticity and that this effect is likely mediated by ipRGCs. Modern sources of LAN that contain blue wavelengths may be particularly disruptive to the circadian system, potentially contributing to altered mood regulation.
Collapse
|
36
|
Canbeyli R. Sensorimotor modulation of mood and depression: in search of an optimal mode of stimulation. Front Hum Neurosci 2013; 7:428. [PMID: 23908624 PMCID: PMC3727046 DOI: 10.3389/fnhum.2013.00428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala, and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down) processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up) unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multimodal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research.
Collapse
Affiliation(s)
- Resit Canbeyli
- Psychobiology Laboratory, Department of Psychology, Bogazici University , Istanbul , Turkey
| |
Collapse
|
37
|
Ikeno T, Weil ZM, Nelson RJ. Photoperiod affects the diurnal rhythm of hippocampal neuronal morphology of siberian hamsters. Chronobiol Int 2013; 30:1089-100. [DOI: 10.3109/07420528.2013.800090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Abstract
Humans and other organisms have adapted to a consistent and predictable 24-h solar cycle, but over the past ~130 years the widespread adoption of electric light has transformed our environment. Instead of aligning behavioral and physiological processes to the natural solar cycle, individuals respond to artificial light cycles created by social and work schedules. Urban light pollution, night shift work, transmeridian travel, televisions and computers have dramatically altered the timing of light used to entrain biological rhythms. In humans and other mammals, light is detected by the retina and intrinsically photosensitive retinal ganglion cells project this information both to the circadian system and limbic brain regions. Therefore, it is possible that exposure to light at night, which has become pervasive, may disrupt both circadian timing and mood. Notably, the rate of major depression has increased in recent decades, in parallel with increasing exposure to light at night. Strong evidence already links circadian disruption to major depression and other mood disorders. Emerging evidence from the past few years suggests that exposure to light at night also negatively influences mood. In this review, we discuss evidence from recent human and rodent studies supporting the novel hypothesis that nighttime exposure to light disrupts circadian organization and contributes to depressed mood.
Collapse
Affiliation(s)
- T A Bedrosian
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | |
Collapse
|
39
|
Walton JC, Chen Z, Travers JB, Nelson RJ. Exogenous melatonin reproduces the effects of short day lengths on hippocampal function in male white-footed mice, Peromyscus leucopus. Neuroscience 2013; 248:403-13. [PMID: 23806713 DOI: 10.1016/j.neuroscience.2013.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/23/2013] [Accepted: 06/13/2013] [Indexed: 12/26/2022]
Abstract
Photoperiodism is a biological phenomenon, common among organisms living outside of the tropics, by which environmental day length is used to ascertain the time of year to engage in seasonally-appropriate adaptations. White-footed mice (Peromyscus leucopus) are small photoperiodic rodents which display a suite of adaptive winter responses to short day lengths mediated by the extended duration of nightly melatonin secretion. Exposure to short days alters hippocampal dendritic morphology, impairs spatial learning and memory, and impairs hippocampal long-term potentiation (LTP). To determine the role of melatonin in these photoperiod-induced alterations of behavioral, neuroanatomical, and neurophysiological processes in this species, we implanted male mice subcutaneously with melatonin or empty Silastic capsules and exposed them to long or short day lengths. After 10 weeks, mice were assessed for hippocampal LTP, tested for spatial learning and memory in the Barnes maze, and morphometric analysis of neurons in the hippocampus using Golgi staining. Extending the duration of melatonin exposure, by short-day exposure or via melatonin implants, impaired both Schaffer collateral LTP in the CA1 region of the hippocampus and spatial learning and memory, and altered neuronal morphology in all hippocampal regions. The current results demonstrate that chronic melatonin implants reproduce the effects of short days on the hippocampus and implicate melatonin signaling as a critical factor in day-length-induced changes in the structure and function of the hippocampus in a photoperiodic rodent.
Collapse
Affiliation(s)
- J C Walton
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Z Chen
- Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, OH, 43210, USA
| | - J B Travers
- Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, OH, 43210, USA
| | - R J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
40
|
Zhang X, Cai Z, Wang G, Wang H, Liu Z, Guo X, Yang C, Wang X, Wang H, Shu C, Xiao L. F-actin may play an important role in IL-1β-stimulated hippocampal neurons. Behav Brain Res 2013; 243:165-70. [DOI: 10.1016/j.bbr.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/29/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
|
41
|
Adamah-Biassi EB, Stepien I, Hudson RL, Dubocovich ML. Automated video analysis system reveals distinct diurnal behaviors in C57BL/6 and C3H/HeN mice. Behav Brain Res 2013; 243:306-12. [PMID: 23337734 DOI: 10.1016/j.bbr.2013.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/31/2012] [Accepted: 01/05/2013] [Indexed: 11/29/2022]
Abstract
Advances in rodent behavior dissection using automated video recording and analysis allows detailed phenotyping. This study compared and contrasted 15 diurnal behaviors recorded continuously using an automated behavioral analysis system for a period of 14 days under a 14/10 light/dark cycle in single housed C3H/HeN (C3H) or C57BL/6 (C57) male mice. Diurnal behaviors, recorded with minimal experimental interference and analyzed using phenotypic array and temporal distribution analysis showed bimodal and unimodal profiles in the C57 and C3H mice, respectively. Phenotypic array analysis revealed distinct behavioral rhythms in Activity-Like Behaviors (i.e. walk, hang, jump, come down) (ALB), Exploration-Like Behaviors (i.e. dig, groom, rear up, sniff, stretch) (ELB), Ingestion-Like Behaviors (i.e. drink, eat) (ILB) and Resting-Like Behaviors (i.e. awake, remain low, rest, twitch) (RLB) of C3H and C57 mice. Temporal distribution analysis demonstrated that strain and time of day affects the magnitude and distribution of the spontaneous homecage behaviors. Wheel running activity, water and food measurements correlated with timing of homecage behaviors. Subcutaneous (3 mg/kg, sc) or oral (0.02 mg/ml, oral) melatonin treatments in C57 mice did not modify either the total 24 h magnitude or temporal distribution of homecage behaviors when compared with vehicle treatments. We conclude that C3H and C57 mice show different spontaneous activity and behavioral rhythms specifically during the night period which are not modulated by melatonin.
Collapse
Affiliation(s)
- E B Adamah-Biassi
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo SUNY, Buffalo, NY 14214, United States
| | | | | | | |
Collapse
|
42
|
Seasonal and sex differences in the hippocampus of a wild rodent. Behav Brain Res 2012; 236:131-138. [PMID: 22974551 DOI: 10.1016/j.bbr.2012.08.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/29/2012] [Accepted: 08/28/2012] [Indexed: 01/14/2023]
Abstract
Studies across and within species suggest that hippocampus size is sexually dimorphic in polygamous species, but not in monogamous species. Although hippocampal volume varies with sex, season and mating system, few studies have simultaneously tested for sex and seasonal differences. Here, we test for sex and seasonal differences in the hippocampal volume of wild Richardson's ground squirrels (Urocitellus richardsonii), a polygamous species that lives in matrilineal, kin-based social groups and has profound sex differences in behavior. Based on the behavior and ecology of this species, we predicted that males would have a significantly larger hippocampus than females and that the hippocampus would be largest in males during the breeding season. Analyses of both absolute and relative volumes of the hippocampus yielded a significant difference between the sexes and seasons as well as an interaction between the two such that non-breeding males have significantly larger hippocampal volumes than breeding males or females from either season. Dentate gyrus, CA1 and CA3 subfield volumes were generally larger in the non-breeding season and in males, but no significant interaction effects were detected. This sex and seasonal variation in hippocampal volume is likely the result of their social organization and male-only food caching behavior during the non-breeding season. The demonstration of a sex and seasonal variation in hippocampal volume suggests that Richardson's ground squirrel may be a useful model for understanding hippocampal plasticity within a natural context.
Collapse
|
43
|
Walton J, Grier A, Weil Z, Nelson R. Photoperiod and stress regulation of corticosteroid receptor, brain-derived neurotrophic factor, and glucose transporter GLUT3 mRNA in the hippocampus of male Siberian hamsters (Phodopus sungorus). Neuroscience 2012; 213:106-11. [DOI: 10.1016/j.neuroscience.2012.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
|