1
|
Zambon A, Rico LC, Herman M, Gundacker A, Telalovic A, Hartenberger LM, Kuehn R, Romanov RA, Hussaini SA, Harkany T, Pollak DD. Gestational immune activation disrupts hypothalamic neurocircuits of maternal care behavior. Mol Psychiatry 2024; 29:859-873. [PMID: 35581295 PMCID: PMC9112243 DOI: 10.1038/s41380-022-01602-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/27/2022]
Abstract
Immune activation is one of the most common complications during pregnancy, predominantly evoked by viral infections. Nevertheless, how immune activation affects mother-offspring relationships postpartum remains unknown. Here, by using the polyinosinic-polycytidylic acid (Poly I:C) model of gestational infection we show that viral-like immune activation at mid-gestation persistently changes hypothalamic neurocircuit parameters in mouse dams and, consequently, is adverse to parenting behavior. Poly I:C-exposed dams favor non-pup-directed exploratory behavior at the expense of pup retrieval. These behavioral deficits are underlain by dendrite pruning and lesser immediate early gene activation in Galanin (Gal)+ neurons with dam-specific transcriptional signatures that reside in the medial preoptic area (mPOA). Reduced activation of an exclusively inhibitory contingent of these distal-projecting Gal+ neurons allows for increased feed-forward inhibition onto putative dopaminergic neurons in the ventral tegmental area (VTA) in Poly I:C-exposed dams. Notably, destabilized VTA output specifically accompanies post-pup retrieval epochs. We suggest that gestational immunogenic insults bias both threat processing and reward perception, manifesting as disfavored infant caregiving.
Collapse
Affiliation(s)
- Alice Zambon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Mathieu Herman
- Department of Pathology and Cell Biology, Taub Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Amina Telalovic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lisa-Marie Hartenberger
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rebekka Kuehn
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - S Abid Hussaini
- Department of Pathology and Cell Biology, Taub Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Creisher PS, Parish MA, Lei J, Liu J, Perry JL, Campbell AD, Sherer ML, Burd I, Klein SL. Suppression of progesterone by influenza A virus mediates adverse maternal and fetal outcomes in mice. mBio 2024; 15:e0306523. [PMID: 38190129 PMCID: PMC10865978 DOI: 10.1128/mbio.03065-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Influenza A virus infection during pregnancy can cause adverse maternal and fetal outcomes but the mechanism responsible remains elusive. Infection of outbred mice with 2009 H1N1 at embryonic day (E) 10 resulted in significant maternal morbidity, placental tissue damage and inflammation, fetal growth restriction, and developmental delays that lasted through weaning. Restriction of pulmonary virus replication was not inhibited during pregnancy, but infected dams had suppressed circulating and placental progesterone (P4) concentrations that were caused by H1N1-induced upregulation of pulmonary cyclooxygenase (COX)-1-, but not COX-2-, dependent synthesis and secretion of prostaglandin (PG) F2α. Treatment with 17-α-hydroxyprogesterone caproate (17-OHPC), a synthetic progestin that is safe to use in pregnancy, ameliorated the adverse maternal and fetal outcomes from H1N1 infection and prevented placental cell death and inflammation. These findings highlight the therapeutic potential of progestin treatments for influenza during pregnancy.IMPORTANCEPregnant individuals are at risk of severe outcomes from both seasonal and pandemic influenza A viruses. Influenza infection during pregnancy is associated with adverse fetal outcomes at birth and adverse consequences for offspring into adulthood. When outbred dams, with semi-allogenic fetuses, were infected with 2009 H1N1, in addition to pulmonary virus replication, lung damage, and inflammation, the placenta showed evidence of transient cell death and inflammation that was mediated by increased activity along the arachidonic acid pathway leading to suppression of circulating progesterone. Placental damage and suppressed progesterone were associated with detrimental effects on perinatal growth and developmental delays in offspring. Treatment of H1N1-infected pregnant mice with 17-OHPC, a synthetic progestin treatment that is safe to use in pregnancy, prevented placental damage and inflammation and adverse fetal outcomes. This novel therapeutic option for the treatment of influenza during pregnancy should be explored clinically.
Collapse
Affiliation(s)
- Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maclaine A. Parish
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jun Lei
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jin Liu
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jamie L. Perry
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ariana D. Campbell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Morgan L. Sherer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Waddell NJ, Liu Y, Chitaman JM, Kaplan GJ, Wang Z, Feng J. Transcription and DNA methylation signatures of paternal behavior in hippocampal dentate gyrus of prairie voles. Sci Rep 2023; 13:11020. [PMID: 37419920 PMCID: PMC10328943 DOI: 10.1038/s41598-023-37521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
In socially monogamous prairie voles (Microtus ochrogaster), parental behaviors not only occur in mothers and fathers, but also exist in some virgin males. In contrast, the other virgin males display aggressive behaviors towards conspecific pups. However, little is known about the molecular underpinnings of this behavioral dichotomy, such as gene expression changes and their regulatory mechanisms. To address this, we profiled the transcriptome and DNA methylome of hippocampal dentate gyrus of four prairie vole groups, namely attacker virgin males, parental virgin males, fathers, and mothers. While we found a concordant gene expression pattern between parental virgin males and fathers, the attacker virgin males have a more deviated transcriptome. Moreover, numerous DNA methylation changes were found in pair-wise comparisons among the four groups. We found some DNA methylation changes overlapping with transcription differences, across gene-bodies and promoter regions. Furthermore, the gene expression changes and methylome alterations are selectively enriched in certain biological pathways, such as Wnt signaling, which suggest a canonical transcription regulatory role of DNA methylation in paternal behavior. Therefore, our study presents an integrated view of prairie vole dentate gyrus transcriptome and epigenome that provides a DNA epigenetic based molecular insight of paternal behavior.
Collapse
Affiliation(s)
- Nicholas J Waddell
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Yan Liu
- Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Javed M Chitaman
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Graham J Kaplan
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| | - Jian Feng
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
4
|
Moreno A, Rajagopalan S, Tucker MJ, Lunsford P, Liu RC. Hearing Vocalizations during First Social Experience with Pups Increase Bdnf Transcription in Mouse Auditory Cortex. Neural Plast 2023; 2023:5225952. [PMID: 36845359 PMCID: PMC9946766 DOI: 10.1155/2023/5225952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
While infant cues are often assumed to innately motivate maternal response, recent research highlights how the neural coding of infant cues is altered through maternal care. Infant vocalizations are important social signals for caregivers, and evidence from mice suggests that experience caring for mouse pups induces inhibitory plasticity in the auditory cortex (AC), though the molecular mediators for such AC plasticity during the initial pup experience are not well delineated. Here, we used the maternal mouse communication model to explore whether transcription in AC of a specific, inhibition-linked, memory-associated gene, brain-derived neurotrophic factor (Bdnf) changes due to the very first pup caring experience hearing vocalizations, while controlling for the systemic influence of the hormone estrogen. Ovariectomized and estradiol or blank-implanted virgin female mice hearing pup calls with pups present had significantly higher AC exon IV Bdnf mRNA compared to females without pups present, suggesting that the social context of vocalizations induces immediate molecular changes at the site of auditory cortical processing. E2 influenced the rate of maternal behavior but did not significantly affect Bdnf mRNA transcription in the AC. To our knowledge, this is the first time Bdnf has been associated with processing social vocalizations in the AC, and our results suggest that it is a potential molecular component responsible for enhancing future recognition of infant cues by contributing to AC plasticity.
Collapse
Affiliation(s)
- Amielle Moreno
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia 30332, USA
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | - Matthew J. Tucker
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Parker Lunsford
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- College of Science Undergraduate Neuroscience Program, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
5
|
Winters C, Gorssen W, Wöhr M, D’Hooge R. BAMBI: A new method for automated assessment of bidirectional early-life interaction between maternal behavior and pup vocalization in mouse dam-pup dyads. Front Behav Neurosci 2023; 17:1139254. [PMID: 36935889 PMCID: PMC10020184 DOI: 10.3389/fnbeh.2023.1139254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Vital early-life dyadic interaction in mice requires a pup to signal its needs adequately, and a dam to recognize and respond to the pup's cues accurately and timely. Previous research might have missed important biological and/or environmental elements of this complex bidirectional interaction, because it often focused on one dyadic member only. In laboratory rodents, the Pup Retrieval Test (PRT) is the leading procedure to assess pup-directed maternal care. The present study describes BAMBI (Bidirectional Automated Mother-pup Behavioral Interaction test), a novel automated PRT methodology based on synchronous video recording of maternal behavior and audio recording of pup vocalizations, which allows to assess bidirectional dam-pup dyadic interaction. We were able to estimate pup retrieval and pup vocalization parameters accurately in 156 pups from 29 dams on postnatal days (PND) 5, 7, 9, 11, and 13. Moreover, we showed an association between number of emitted USVs and retrieval success, indicating dyadic interdependency and bidirectionality. BAMBI is a promising new automated home-cage behavioral method that can be applied to both basic and preclinical studies investigating complex phenotypes related to early-life social development.
Collapse
Affiliation(s)
- Carmen Winters
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- *Correspondence: Carmen Winters, ,
| | - Wim Gorssen
- Department of Biosystems, Center for Animal Breeding and Genetics, KU Leuven, Leuven, Belgium
| | - Markus Wöhr
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Rudi D’Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Mayer HS, Rosinger ZJ, Kruithof VB, Mishra S, BlackOwl AL, Stolzenberg DS. Effects of maternal experience on pup-induced activation of maternal neural circuits in virgin mice. Horm Behav 2022; 141:105129. [PMID: 35168026 PMCID: PMC10866554 DOI: 10.1016/j.yhbeh.2022.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
Abstract
Maternal experience can promote a long-lasting increase in maternal motivation. This maintenance of caregiving behaviors, rather than avoidant or agnostic responses towards young, is advantageous for the survival of subsequent offspring. We have previously reported that maternal motivation is associated with differential immediate early gene expression in central motivation circuits and aversion circuits. Here we ask how these circuits come to differentially respond to infant cues. We used Targeted Recombination in Active Populations (TRAP) to identify cells that respond to pups in maternally hesitant TRAP2;Ai14 virgin female mice. Following an initial 60 min exposure to foster pups, virgin TRAP2;Ai14 mice were injected with 4-hydroxytamoxifen to induce recombination in c-Fos expressing cells and subsequent permanent expression of a red fluorescent reporter. We then examined whether the same cells that encode pup cues are reactivated during maternal memory retrieval two weeks later using c-Fos immunohistochemistry. Whereas initial pup exposure induced c-Fos activation exclusively in the medial preoptic area (MPOA), following repeated experience, c-Fos expression was significantly higher than baseline in multiple regions of maternal and central aversion circuits (e.g., ventral bed nucleus of the stria terminalis, nucleus accumbens, basolateral amygdala, prefrontal cortex, medial amygdala, and ventromedial nucleus of the hypothalamus). Further, cells in many of these sites were significantly reactivated during maternal memory retrieval. These data suggest that cells across both maternal motivation and central aversion circuits are stably responsive to pups and thus may form the cellular representation of maternal memory.
Collapse
Affiliation(s)
- Heather S Mayer
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Vivian B Kruithof
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Shambhavi Mishra
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Anthony L BlackOwl
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Danielle S Stolzenberg
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America.
| |
Collapse
|
7
|
Seward CH, Saul MC, Troy JM, Dibaeinia P, Zhang H, Sinha S, Stubbs LJ. An epigenomic shift in amygdala marks the transition to maternal behaviors in alloparenting virgin female mice. PLoS One 2022; 17:e0263632. [PMID: 35192674 PMCID: PMC8863255 DOI: 10.1371/journal.pone.0263632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/23/2022] [Indexed: 11/25/2022] Open
Abstract
Adults of many species will care for young offspring that are not their own, a phenomenon called alloparenting. However, in many cases, nonparental adults must be sensitized by repeated or extended exposures to newborns before they will robustly display parental-like behaviors. To capture neurogenomic events underlying the transition to active parental caring behaviors, we analyzed brain gene expression and chromatin profiles of virgin female mice co-housed with pregnant dams during pregnancy and after birth. After an initial display of antagonistic behaviors and a surge of defense-related gene expression, we observed a dramatic shift in the chromatin landscape specifically in amygdala of the pup-exposed virgin females compared to females co-housed with mother before birth, accompanied by a dampening of anxiety-related gene expression. This epigenetic shift coincided with hypothalamic expression of the oxytocin gene and the emergence of behaviors and gene expression patterns classically associated with maternal care. The results outline a neurogenomic program associated with dramatic behavioral changes and suggest molecular networks relevant to human postpartum mental health.
Collapse
Affiliation(s)
- Christopher H. Seward
- Pacific Northwest Research Institute, Seattle, WA, United States of America
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
| | - Michael C. Saul
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
| | - Joseph M. Troy
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
| | - Payam Dibaeinia
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Lisa J. Stubbs
- Pacific Northwest Research Institute, Seattle, WA, United States of America
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
| |
Collapse
|
8
|
Swart JM, Grattan DR, Ladyman SR, Brown RSE. Changes in maternal motivation across reproductive states in mice: A role for prolactin receptor activation on GABA neurons. Horm Behav 2021; 135:105041. [PMID: 34385119 DOI: 10.1016/j.yhbeh.2021.105041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023]
Abstract
The survival of newborn offspring in mammals is dependent on sustained maternal care. Mammalian mothers are highly motivated to interact with and care for offspring, however, it is unclear how hormonal signals act on neural circuitry to promote maternal motivation during the transition to motherhood. In this study we aimed to establish methods that enable us to evaluate change in maternal motivation across the reproductive life cycle in female mice. Using two behavioural testing paradigms; a novel T-maze retrieval test and a barrier climbing test, we found that pup retrieval behaviour was low in virgin and pregnant mice compared to lactating females, indicating that maternal motivation arises around the time of parturition. Furthermore, in reproductively experienced females, maternal motivation declined over time after weaning of pups. As we have previously shown that lactogenic action mediated through the prolactin receptor (Prlr) in the medial preoptic area (MPOA) is essential for the expression of maternal behaviour, we aimed to investigate the role of lactogenic hormones in promoting pup-related motivational behaviours. With GABAergic neurons expressing Prlr in multiple brain regions important for maternal behaviour, we conditionally deleted Prlr from GABA neurons. Compared to control females, lactating GABA neuron-specific Prlr knockout mice showed slower and incomplete pup retrieval behaviour in the T-maze test. Testing of anxiety behaviour on an elevated plus maze indicated that these mice did not have increased anxiety levels, suggesting that lactogenic action on GABA neurons is necessary for the full expression of motivational aspects of maternal behaviour during lactation.
Collapse
Affiliation(s)
- Judith M Swart
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand; Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand; Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand; Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand; Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
9
|
Carrizo E, Domini J, Quezada RYJ, Serra SV, Soria EA, Miranda AR. [Variations of the cognitive status in the puerperium and their determinants: a narrative review]. CIENCIA & SAUDE COLETIVA 2021; 25:3321-3334. [PMID: 32785563 DOI: 10.1590/1413-81232020258.26232018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
The neurobiological modifications that women experience during the puerperium, together with the consequent psychosocial changes, lead to variations in cognitive functions. In order to describe the cognitive variations that occur during postpartum and the determining factors, a narrative review was conducted by means of a bibliographic search in PubMed and Google Scholar. A steady increase in the number of published works was located (PubMed = 186; Google Scholar = 26,730). The analysis of the articles made it possible to: a) characterize the cognitive functions during the puerperium; b) analyze the neuropsychological effects produced by the endocrinological and anatomophysiological changes; c) analyze the effect of the quality of sleep on cognition; d) analyze cognitive functions according to obstetric experiences. In conclusion, puerperal women are characterized by variations in their cognitive functions, which are determined by structural, functional, psychological and social changes. It is necessary to conduct neuropsychological research in this population, since postpartum care still focuses on the care of the newborn, without addressing the puerperal woman in a comprehensive manner.
Collapse
Affiliation(s)
- Eugenia Carrizo
- Escuela de Fonoaudiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Av. La Reforma, Ciudad Universitaria. 5014 Córdoba Argentina.
| | - Julia Domini
- Escuela de Fonoaudiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Av. La Reforma, Ciudad Universitaria. 5014 Córdoba Argentina.
| | - Ruth Yohana Julieta Quezada
- Escuela de Fonoaudiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Av. La Reforma, Ciudad Universitaria. 5014 Córdoba Argentina.
| | - Silvana Valeria Serra
- Escuela de Fonoaudiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Av. La Reforma, Ciudad Universitaria. 5014 Córdoba Argentina.
| | - Elio Andrés Soria
- Consejo Nacional de Investigaciones Científicas y Técnicas. Córdoba Argentina
| | - Agustín Ramiro Miranda
- Escuela de Fonoaudiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Av. La Reforma, Ciudad Universitaria. 5014 Córdoba Argentina.
| |
Collapse
|
10
|
A Scientometric Approach to Review the Role of the Medial Preoptic Area (MPOA) in Parental Behavior. Brain Sci 2021; 11:brainsci11030393. [PMID: 33804634 PMCID: PMC8003755 DOI: 10.3390/brainsci11030393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Research investigating the neural substrates underpinning parental behaviour has recently gained momentum. Particularly, the hypothalamic medial preoptic area (MPOA) has been identified as a crucial region for parenting. The current study conducted a scientometric analysis of publications from 1 January 1972 to 19 January 2021 using CiteSpace software to determine trends in the scientific literature exploring the relationship between MPOA and parental behaviour. In total, 677 scientific papers were analysed, producing a network of 1509 nodes and 5498 links. Four major clusters were identified: “C-Fos Expression”, “Lactating Rat”, “Medial Preoptic Area Interaction” and “Parental Behavior”. Their content suggests an initial trend in which the properties of the MPOA in response to parental behavior were studied, followed by a growing attention towards the presence of a brain network, including the reward circuits, regulating such behavior. Furthermore, while attention was initially directed uniquely to maternal behavior, it has recently been extended to the understanding of paternal behaviors as well. Finally, although the majority of the studies were conducted on rodents, recent publications broaden the implications of previous documents to human parental behavior, giving insight into the mechanisms underlying postpartum depression. Potential directions in future works were also discussed.
Collapse
|
11
|
Paternal care in rodents: Ultimate causation and proximate mechanisms. RUSSIAN JOURNAL OF THERIOLOGY 2020. [DOI: 10.15298/rusjtheriol.19.1.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Imbe H, Kimura A. Significance of medial preoptic area among the subcortical and cortical areas that are related to pain regulation in the rats with stress-induced hyperalgesia. Brain Res 2020; 1735:146758. [PMID: 32135148 DOI: 10.1016/j.brainres.2020.146758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Psychophysical stresses frequently increase sensitivity and response to pain, which is termed stress-induced hyperalgesia (SIH). However, the mechanism remains unknown. The subcortical areas such as medial preoptic area (MPO), dorsomedial nucleus of the hypothalamus (DMH), basolateral (BLA) and central nuclei of the amygdala (CeA), and the cortical areas such as insular (IC) and anterior cingulate cortices (ACC) play an important role in pain control via the descending pain modulatory system. In the present study we examined the expression of phosphorylated -cAMP-response element binding protein (pCREB) and the acetylation of histone H3 in these subcortical and cortical areas after repeated restraint stress to reveal changes in the subcortical and cortical areas that affect the function of descending pain modulatory system in the rats with SIH. The repeated restraint stress for 3 weeks induced a decrease in mechanical threshold in the rat hindpaw, an increase in the expression of pCREB in the MPO and an increase in the acetylation of histone H3 in the MPO, BLA and IC. The MPO was the only area that showed an increase in both the expression of pCREB and the acetylation of histone H3 among these examined areas after the repeated restraint stress. Furthermore, the number of pCREB-IR or acetylated histone H3-IR cells in the MPO was negatively correlated with the mechanical threshold. Together, our data represent the importance of the MPO among the subcortical and cortical areas that control descending pain modulatory system under the condition of SIH.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan.
| | - Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan
| |
Collapse
|
13
|
Romero-Morales L, Cárdenas M, Martínez-Torres M, Cárdenas R, Álvarez-Rodríguez C, Luis J. Estradiol and estrogen receptor α in the mPOA and MeA in dwarf hamster (Phodopus campbelli) fathers. Horm Behav 2020; 119:104653. [PMID: 31816282 DOI: 10.1016/j.yhbeh.2019.104653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022]
Abstract
E2 and its alpha receptor (ERα) have an essential role in the regulation of maternal behavior. In dwarf hamster (Phodopus campbelli), E2 facilitates the display of paternal care, and it is possible that ERα is part of the neuroendocrine mechanisms that regulate this behavior. The aim of this study was to analyze the influence of copulation, cohabitation with the pregnant mate and the presence of the pups on paternal behavior, circulating E2 levels and the presence of ERα in the medial preoptic area (mPOA) and medial amygdala (MeA) in dwarf hamsters. Eight males were mated with intact females (IFs), 8 with tubally ligated females (TLFs) and 8 with ovariectomized females (OFs). In males mated with IFs, paternal behavior tests were performed after copulation, halfway through pregnancy and 24 h after the birth of their pups. Males mated with TLFs were subjected to paternal behavior tests at equivalent periods as the males mated with IFs. In males mated with OFs, paternal behavior tests were performed on days 1, 5 and 10 of cohabitation. After the last paternal behavior tests, blood samples were taken for quantification of E2 by radioimmunoassay (RIA), and the brains were dissected to determine ERα immunoreactivity (ir) in the mPOA and MeA. Fathers mated with IFs had higher serum E2 concentrations and more ERα-ir cells in the mPOA than those of males mated with TLFs and OFs. These results suggest that E2 and its ERα may be associated with paternity in the dwarf hamster.
Collapse
Affiliation(s)
- Luis Romero-Morales
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - Mario Cárdenas
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México, Mexico
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - Rene Cárdenas
- Laboratorio de Biología Experimental, Depto. De Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico
| | - Carmen Álvarez-Rodríguez
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - Juana Luis
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| |
Collapse
|
14
|
Behura SK, Dhakal P, Kelleher AM, Balboula A, Patterson A, Spencer TE. The brain-placental axis: Therapeutic and pharmacological relevancy to pregnancy. Pharmacol Res 2019; 149:104468. [PMID: 31600597 PMCID: PMC6944055 DOI: 10.1016/j.phrs.2019.104468] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/23/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
The placenta plays a critical role in mammalian reproduction. Although it is a transient organ, its function is indispensable to communication between the mother and fetus, and supply of nutrients and oxygen to the growing fetus. During pregnancy, the placenta is vulnerable to various intrinsic and extrinsic conditions which can result in increased risk of fetal neurodevelopmental disorders as well as fetal death. The placenta controls the neuroendocrine secretion in the brain as a means of adaptive processes to safeguard the fetus from adverse programs, to optimize fetal development and other physiological changes necessary for reproductive success. Although a wealth of information is available on neuroendocrine functions in pregnancy, they are largely limited to the regulation of hypothalamus-pituitary-adrenal/gonad (HPA/ HPG) axis, particularly the oxytocin and prolactin system. There is a major gap in knowledge on systems-level functional interaction between the brain and placenta. In this review, we aim to outline the current state of knowledge about the brain-placental axis with description of the functional interactions between the placenta and the maternal and fetal brain. While describing the brain-placental interactions, a special emphasis has been given on the therapeutics and pharmacology of the placental receptors to neuroligands expressed in the brain during gestation. As a key feature of this review, we outline the prospects of integrated pharmacogenomics, single-cell sequencing and organ-on-chip systems to foster priority areas in this field of research. Finally, we remark on the application of precision genomics approaches to study the brain-placental axis in order to accelerate personalized medicine and therapeutics to treat placental and fetal brain disorders.
Collapse
Affiliation(s)
- Susanta K Behura
- Division of Animal Sciences, University of Missouri, United States; Informatics Institute, University of Missouri, United States.
| | - Pramod Dhakal
- Division of Animal Sciences, University of Missouri, United States
| | | | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, United States
| | - Amanda Patterson
- Division of Animal Sciences, University of Missouri, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, United States
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, United States
| |
Collapse
|
15
|
Mayer HS, Crepeau M, Duque-Wilckens N, Torres LY, Trainor BC, Stolzenberg DS. Histone deacetylase inhibitor treatment promotes spontaneous caregiving behaviour in non-aggressive virgin male mice. J Neuroendocrinol 2019; 31:e12734. [PMID: 31081252 PMCID: PMC7571573 DOI: 10.1111/jne.12734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023]
Abstract
The majority of mammalian species are uniparental, with the mother solely providing care for young conspecifics, although fathering behaviours can emerge under certain circumstances. For example, a great deal of individual variation in response to young pups has been reported in multiple inbred strains of laboratory male mice. Furthermore, sexual experience and subsequent cohabitation with a female conspecific can induce caregiving responses in otherwise indifferent, fearful or aggressive males. Thus, a highly conserved parental neural circuit is likely present in both sexes; however, the extent to which infants are capable of activating this circuit may vary. In support of this idea, fearful or indifferent responses toward pups in female mice are linked to greater immediate early gene (IEG) expression in a fear/defensive circuit involving the anterior hypothalamus compared to that in an approach/attraction circuit involving the ventral tegmental area. However, experience with infants, particularly in combination with histone deacetylase inhibitor (HDACi) treatment, can reverse this pattern of pup-induced activation of fear/defence circuitry and promote approach behaviour. Thus, HDACi treatment may increase the transcription of primed/poised genes that play a role in the activation and selection of a maternal approach circuit in response to pup stimuli. In the present study, we investigated whether HDACi treatment would impact behavioural response selection and associated IEG expression changes in virgin male mice that are capable of ignoring, attacking or caring for pups. The results obtained indicate that systemic HDACi treatment induces spontaneous caregiving behaviour in non-aggressive male mice and alters the pattern of pup-induced IEG expression across a fear/defensive neural circuit.
Collapse
Affiliation(s)
- Heather S Mayer
- Department of Psychology, University of California, Davis, Davis, California
| | - Marc Crepeau
- Department of Psychology, University of California, Davis, Davis, California
| | | | - Lisette Y Torres
- Department of Psychology, University of California, Davis, Davis, California
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, Davis, California
| | | |
Collapse
|
16
|
James LS, Fan R, Sakata JT. Behavioural responses to video and live presentations of females reveal a dissociation between performance and motivational aspects of birdsong. ACTA ACUST UNITED AC 2019; 222:jeb.206318. [PMID: 31331939 DOI: 10.1242/jeb.206318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Understanding the regulation of social behavioural expression requires insight into motivational and performance aspects. While a number of studies have independently assessed these aspects of social behaviours, few have examined how they relate to each other. By comparing behavioural variation in response to live or video presentations of conspecific females, we analysed how variation in the motivation to produce courtship song covaries with variation in performance aspects of courtship song in male zebra finches (Taeniopygia guttata). In agreement with previous reports, we observed that male zebra finches were less motivated to produce courtship songs to videos of females than to live presentations of females. However, we found that acoustic features that reflect song performance were not significantly different between songs produced in response to videos of females, and those produced in response to live females. For example, songs directed at video presentations of females were just as fast and stereotyped as songs directed at live females. These experimental manipulations and correlational analyses reveal a dissociation between motivational and performance aspects of birdsong and suggest a refinement of neural models of song production and control. In addition, they support the efficacy of videos to study both motivational and performance aspects of social behaviours.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Raina Fan
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
17
|
Rogers FD, Bales KL. Mothers, Fathers, and Others: Neural Substrates of Parental Care. Trends Neurosci 2019; 42:552-562. [PMID: 31255381 PMCID: PMC6660995 DOI: 10.1016/j.tins.2019.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/29/2019] [Accepted: 05/23/2019] [Indexed: 12/29/2022]
Abstract
Parental care is essential for the survival of offspring in altricial mammalian species. However, in most mammals, virgin females tend to avoid or attack infants. Moreover, most males demonstrate avoidance and aggression toward infants, and have little to no involvement in parental care. What mechanisms suppress avoidance, and support approach towards pups, to promote maternal care? In biparental and cooperatively breeding species, what mechanisms allow nonmothers (i.e., fathers and alloparents) to demonstrate parental care? In this review we consider the mechanisms that subserve parental care in mothers, fathers, and others (i.e., alloparents). We emphasize recent discoveries and research trends with particular emphasis on neuroendocrinology, neuroplasticity, transcriptomics, and epigenetics. Finally, we consider outstanding questions and outline opportunities for future research.
Collapse
Affiliation(s)
- Forrest Dylan Rogers
- Graduate Program in Psychology, University of California, Davis, CA 95616, USA; Department of Psychology, University of California, Davis, CA 95616, USA
| | - Karen Lisa Bales
- Department of Psychology, University of California, Davis, CA 95616, USA; California National Primate Research Center, Davis, CA 95616, USA.
| |
Collapse
|
18
|
Keller SM, Doherty TS, Roth TL. Pharmacological manipulation of DNA methylation normalizes maternal behavior, DNA methylation, and gene expression in dams with a history of maltreatment. Sci Rep 2019; 9:10253. [PMID: 31311968 PMCID: PMC6635500 DOI: 10.1038/s41598-019-46539-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/25/2019] [Indexed: 01/02/2023] Open
Abstract
The quality of parental care received during development profoundly influences an individual's phenotype, including that of maternal behavior. We previously found that female rats with a history of maltreatment during infancy mistreat their own offspring. One proposed mechanism through which early-life experiences influence behavior is via epigenetic modifications. Indeed, our lab has identified a number of brain epigenetic alterations in female rats with a history of maltreatment. Here we sought to investigate the role of DNA methylation in aberrant maternal behavior. We administered zebularine, a drug known to alter DNA methylation, to dams exposed during infancy to the scarcity-adversity model of low nesting resources, and then characterized the quality of their care towards their offspring. First, we replicate that dams with a history of maltreatment mistreat their own offspring. Second, we show that maltreated-dams treated with zebularine exhibit lower levels of adverse care toward their offspring. Third, we show that administration of zebularine in control dams (history of nurturing care) enhances levels of adverse care. Lastly, we show altered methylation and gene expression in maltreated dams normalized by zebularine. These findings lend support to the hypothesis that epigenetic alterations resulting from maltreatment causally relate to behavioral outcomes.
Collapse
Affiliation(s)
- Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Tiffany S Doherty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
19
|
Stolzenberg DS, Mayer HS. Experience-dependent mechanisms in the regulation of parental care. Front Neuroendocrinol 2019; 54:100745. [PMID: 31009675 PMCID: PMC7347228 DOI: 10.1016/j.yfrne.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
Maternal behavior is a defining characteristic of mammals, which is regulated by a core, conserved neural circuit. However, mothering behavior is not always a default response to infant conspecifics. For example, initial fearful, fragmented or aggressive responses toward infants in laboratory rats and mice can give way to highly motivated and organized caregiving behaviors following appropriate hormone exposure or repeated experience with infants. Therefore hormonal and/or experiential factors must be involved in determining the extent to which infants access central approach and avoidance neural systems. In this review we describe evidence supporting the idea that infant conspecifics are capable of activating distinct neural pathways to elicit avoidant, aggressive and parental responses from adult rodents. Additionally, we discuss the hypothesis that alterations in transcriptional regulation within the medial preoptic area of the hypothalamus may be a key mechanism of neural plasticity involved in programming the differential sensitivity of these neural pathways.
Collapse
Affiliation(s)
- Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States.
| | - Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States
| |
Collapse
|
20
|
Gallagher JM, Nephew BC, Poirier G, King JA, Bridges RS. Estrogen receptor-alpha knockouts and maternal memory in nulliparous rats. Horm Behav 2019; 110:40-45. [PMID: 30822411 DOI: 10.1016/j.yhbeh.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
Abstract
The current study investigated the role of estrogen receptor alpha (Esr1) in maternal memory in rats, comparing the induction and retention responses of Esr1 knockout (KO) and wild type (WT) nulliparous rats towards foster pups. Thirty days after completion of induction testing, subjects were tested for the retention of maternal care in their home cage and then for maternal behaviors in a novel cage. Both WT and Esr1 KO females displayed similar latencies to respond to foster young during the initial induction testing. Likewise, reinduction latencies to display full maternal responsiveness were similar in the Esr1 KO and WT groups during maternal memory testing in the home cage. However, in the novel cage testing WT subjects displayed modest modifications in maternal care. WT females had shorter latencies to first retrieve and mouth a test pup. These findings suggest that while Esr1 does not appear to affect the establishment of maternal care or the display of maternal memory, it may modulate aspects of pup-directed behaviors associated with the reinduction of maternal care in female rats.
Collapse
Affiliation(s)
- J M Gallagher
- Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536, United States of America
| | - B C Nephew
- Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536, United States of America
| | - G Poirier
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01655, United States of America
| | - J A King
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01655, United States of America
| | - R S Bridges
- Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536, United States of America.
| |
Collapse
|
21
|
Behura SK, Kelleher AM, Spencer TE. Evidence for functional interactions between the placenta and brain in pregnant mice. FASEB J 2019; 33:4261-4272. [PMID: 30521381 PMCID: PMC6404589 DOI: 10.1096/fj.201802037r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
The placenta plays a pivotal role in the development of the fetal brain and also influences maternal brain function, but our understanding of communication between the placenta and brain remains limited. Using a gene expression and network analysis approach, we provide evidence that the placenta transcriptome is tightly interconnected with the maternal brain and fetal brain in d 15 pregnant C57BL/6J mice. Activation of serotonergic synapse signaling and inhibition of neurotrophin signaling were identified as potential mediators of crosstalk between the placenta and maternal brain and fetal brain, respectively. Genes encoding specific receptors and ligands were predicted to affect functional interactions between the placenta and brain. Paralogous genes, such as sex comb on midleg homolog 1/scm-like with 4 mbt domains 2 and polycomb group ring finger (Pcgf) 2/ Pcgf5, displayed antagonistic regulation between the placenta and brain. Additionally, conditional ablation of forkhead box a2 ( Foxa2) in the glands of the uterus altered the transcriptome of the d 15 placenta, which provides novel evidence of crosstalk between the uterine glands and placenta. Furthermore, expression of cathepsin 6 and monocyte to macrophage differentiation associated 2 was significantly different in the fetal brain of Foxa2 conditional knockout mice compared with control mice. These findings provide a better understanding of the intricacies of uterus-placenta-brain interactions during pregnancy and provide a foundation and model system for their exploration.-Behura, S. K., Kelleher, A. M., Spencer, T. E. Evidence for functional interactions between the placenta and brain in pregnant mice.
Collapse
Affiliation(s)
- Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA; and
| | - Andrew M. Kelleher
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
22
|
Capacities and neural mechanisms for auditory statistical learning across species. Hear Res 2019; 376:97-110. [PMID: 30797628 DOI: 10.1016/j.heares.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 11/22/2022]
Abstract
Statistical learning has been proposed as a possible mechanism by which individuals can become sensitive to the structures of language fundamental for speech perception. Since its description in human infants, statistical learning has been described in human adults and several non-human species as a general process by which animals learn about stimulus-relevant statistics. The neurobiology of statistical learning is beginning to be understood, but many questions remain about the underlying mechanisms. Why is the developing brain particularly sensitive to stimulus and environmental statistics, and what neural processes are engaged in the adult brain to enable learning from statistical regularities in the absence of external reward or instruction? This review will survey the statistical learning abilities of humans and non-human animals with a particular focus on communicative vocalizations. We discuss the neurobiological basis of statistical learning, and specifically what can be learned by exploring this process in both humans and laboratory animals. Finally, we describe advantages of studying vocal communication in rodents as a means to further our understanding of the cortical plasticity mechanisms engaged during statistical learning. We examine the use of rodents in the context of pup retrieval, which is an auditory-based and experience-dependent form of maternal behavior.
Collapse
|
23
|
Mayer HS, Helton J, Torres LY, Cortina I, Brown WM, Stolzenberg DS. Histone deacetylase inhibitor treatment induces postpartum-like maternal behavior and immediate early gene expression in the maternal neural pathway in virgin mice. Horm Behav 2019; 108:94-104. [PMID: 29499221 PMCID: PMC6135716 DOI: 10.1016/j.yhbeh.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/02/2018] [Accepted: 02/24/2018] [Indexed: 01/29/2023]
Abstract
The peripartum period is associated with the onset of behaviors that shelter, feed and protect young offspring from harm. The neural pathway that regulates caregiving behaviors has been mapped in female rats and is conserved in mice. However, rats rely on late gestational hormones to shift their perception of infant cues from aversive to attractive, whereas laboratory mice are "spontaneously" maternal, but their level of responding depends on experience. For example, pup-naïve virgin female mice readily care for pups in the home cage, but avoid pups in a novel environment. In contrast, pup-experienced virgin mice care for pups in both contexts. Thus, virgin mice rely on experience to shift their perception of infant cues from aversive to attractive in a novel context. We hypothesize that alterations in immediate early gene activation may underlie the experience-driven shift in which neural pathways (fear/avoidance versus maternal/approach) are activated by pups to modulate context-dependent changes in maternal responding. Here we report that the effects of sodium butyrate, a drug that allows for an amplification of experience-induced histone acetylation and gene expression in virgins, are comparable to the natural onset of caregiving behaviors in postpartum mice and induce postpartum-like patterns of immediate early gene expression across brain regions. These data suggest that pups can activate a fear/defensive circuit in mice and experience-driven improvements in caregiving behavior could be regulated in part through decreased activation of this pathway.
Collapse
Affiliation(s)
- Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Jamie Helton
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Lisette Y Torres
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Ignacio Cortina
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Whitney M Brown
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA.
| |
Collapse
|
24
|
Towers AJ, Tremblay MW, Chung L, Li XL, Bey AL, Zhang W, Cao X, Wang X, Wang P, Duffney LJ, Siecinski SK, Xu S, Kim Y, Kong X, Gregory S, Xie W, Jiang YH. Epigenetic dysregulation of Oxtr in Tet1-deficient mice has implications for neuropsychiatric disorders. JCI Insight 2018; 3:120592. [PMID: 30518695 DOI: 10.1172/jci.insight.120592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023] Open
Abstract
OXTR modulates a variety of behaviors in mammals, including social memory and recognition. Genetic and epigenetic dysregulation of OXTR has been suggested to be implicated in neuropsychiatric disorders, including autism spectrum disorder (ASD). While the involvement of DNA methylation is suggested, the mechanism underlying epigenetic regulation of OXTR is largely unknown. This has hampered the experimental design and interpretation of the results of epigenetic studies of OXTR in neuropsychiatric disorders. From the generation and characterization of a new line of Tet1 mutant mice - by deleting the largest coding exon 4 (Tet1Δe4) - we discovered for the first time to our knowledge that Oxtr has an array of mRNA isoforms and a complex transcriptional regulation. Select isoforms of Oxtr are significantly reduced in the brain of Tet1Δe4-/- mice. Accordingly, CpG islands of Oxtr are hypermethylated during early development and persist into adulthood. Consistent with the reduced express of OXTR, Tet1Δe4-/- mice display impaired maternal care, social behavior, and synaptic responses to oxytocin stimulation. Our findings elucidate a mechanism mediated by TET1 protein in regulating Oxtr expression by preventing DNA hypermethylation of Oxtr. The discovery of epigenetic dysregulation of Oxtr in TET1-deficient mouse brain supports the necessity of a reassessment of existing findings and a value of future studies of OXTR in neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Leeyup Chung
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xin-Lei Li
- Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Laboratory of Molecular Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexandra L Bey
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Wenhao Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinyu Cao
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xiaoming Wang
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Ping Wang
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Lara J Duffney
- Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | | | - Sonia Xu
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Yuna Kim
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xiangyin Kong
- Laboratory of Molecular Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simon Gregory
- University Program in Genetics and Genomics and.,Department of Neurology and Duke Molecular Physiology Institute
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong-Hui Jiang
- University Program in Genetics and Genomics and.,Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Department of Neurobiology, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, and.,Program in Cellular and Molecular Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
25
|
Kowalczyk AS, Davila RF, Trainor BC. Effects of social defeat on paternal behavior and pair bonding behavior in male California mice (Peromyscus californicus). Horm Behav 2018; 98:88-95. [PMID: 29289657 PMCID: PMC5828991 DOI: 10.1016/j.yhbeh.2017.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/11/2017] [Accepted: 12/23/2017] [Indexed: 12/22/2022]
Abstract
Male parental care is an important social behavior for several mammalian species. Psychosocial stress is usually found to inhibit maternal behavior, but effects on paternal behavior have been less consistent. We tested the effects of social defeat stress on pair bond formation and paternal behavior in the monogamous California mouse (Peromyscus californicus). Social defeat reduced time spent in a chamber with a stranger female during a partner preference test conducted 24h after pairing, but increased latency to the first litter. In 10min partner preference tests conducted after the birth of pups, both control and stressed males exhibited selective aggression towards stranger females. Unlike prairie voles, side by side contact was not observed in either partner preference test. Stressed male California mice engaged in more paternal behavior than controls and had reduced anxiety-like responses in the open-field test. Defeat stress enhanced prodynorphin and KOR expression in the medial preoptic area (MPOA) but not PVN. Increased KOR signaling has been linked to increased selective aggression in prairie voles. Together the results show that defeat stress enhances behaviors related to parental care and pair bonding in male California mice.
Collapse
Affiliation(s)
- Alex S Kowalczyk
- Department of Psychology, University of California, Davis, United States
| | - Randy F Davila
- Department of Psychology, University of California, Davis, United States
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, United States.
| |
Collapse
|
26
|
Roth TL. Epigenetic Advances in Behavioral and Brain Sciences have Relevance for Public Policy. ACTA ACUST UNITED AC 2017; 4:202-209. [PMID: 29202007 DOI: 10.1177/2372732217719091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nature and nurture work together to drive development, behavior, and health. Behavioral epigenetics research has uncovered the underlying mechanisms for how this happens. Children's early years in development may offer the greatest opportunity for environmental and experiential factors to influence epigenome (chemical compounds telling our genes what to do), but evidence suggests it is never too late. The policy implications of this research are vast, including relevance for child development, health, and disease intervention and prevention.
Collapse
Affiliation(s)
- Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark DE
| |
Collapse
|
27
|
Elvir L, Duclot F, Wang Z, Kabbaj M. Epigenetic regulation of motivated behaviors by histone deacetylase inhibitors. Neurosci Biobehav Rev 2017; 105:305-317. [PMID: 29020607 DOI: 10.1016/j.neubiorev.2017.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
Growing evidence has begun to elucidate the contribution of epigenetic mechanisms in the modulation and maintenance of gene expression and behavior. Histone acetylation is one such epigenetic mechanism, which has been shown to profoundly alter gene expression and behaviors. In this review, we begin with an overview of the major epigenetic mechanisms including histones acetylation. We next focus on recent evidence about the influence of environmental stimuli on various motivated behaviors through histone acetylation and highlight how histone deacetylase inhibitors can correct some of the pathologies linked to motivated behaviors including substance abuse, feeding and social attachments. Particularly, we emphasize that the effects of histone deacetylase inhibitors on motivated behaviors are time and context-dependent.
Collapse
Affiliation(s)
- Lindsay Elvir
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Florian Duclot
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Zuoxin Wang
- Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, USA; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA.
| |
Collapse
|
28
|
Garfinkel BP, Arad S, Neuner SM, Netser S, Wagner S, Kaczorowski CC, Rosen CJ, Gal M, Soreq H, Orly J. HP1BP3 expression determines maternal behavior and offspring survival. GENES BRAIN AND BEHAVIOR 2017; 15:678-88. [PMID: 27470444 DOI: 10.1111/gbb.12312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/03/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
Maternal care is an indispensable behavioral component necessary for survival and reproductive success in mammals, and postpartum maternal behavior is mediated by an incompletely understood complex interplay of signals including effects of epigenetic regulation. We approached this issue using our recently established mice with targeted deletion of heterochromatin protein 1 binding protein 3 (HP1BP3), which we found to be a novel epigenetic repressor with critical roles in postnatal growth. Here, we report a dramatic reduction in the survival of pups born to Hp1bp3(-/-) deficient mouse dams, which could be rescued by co-fostering with wild-type dams. Hp1bp3(-/-) females failed to retrieve both their own pups and foster pups in a pup retrieval test, and showed reduced anxiety-like behavior in the open-field and elevated-plus-maze tests. In contrast, Hp1bp3(-/-) females showed no deficits in behaviors often associated with impaired maternal care, including social behavior, depression, motor coordination and olfactory capability; and maintained unchanged anxiety-associated hallmarks such as cholinergic status and brain miRNA profiles. Collectively, our results suggest a novel role for HP1BP3 in regulating maternal and anxiety-related behavior in mice and call for exploring ways to manipulate this epigenetic process.
Collapse
Affiliation(s)
- B P Garfinkel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. .,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - S Arad
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Biomedical Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - S Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - C C Kaczorowski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - C J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - M Gal
- Biomedical Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,The IVF Unit - Obstetrics and Gynecology Department, Shaare Zedek Medical Center, Jerusalem, Israel
| | - H Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
29
|
Horrell ND, Perea-Rodriguez JP, Harris BN, Saltzman W. Effects of repeated pup exposure on behavioral, neural, and adrenocortical responses to pups in male California mice (Peromyscus californicus). Horm Behav 2017; 90:56-63. [PMID: 28232065 PMCID: PMC5410176 DOI: 10.1016/j.yhbeh.2017.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/11/2017] [Accepted: 02/17/2017] [Indexed: 12/28/2022]
Abstract
In biparental mammals, the factors facilitating the onset of male parental behavior are not well understood. While hormonal changes in fathers may play a role, prior experience with pups has also been implicated. We evaluated effects of prior exposure to pups on paternal responsiveness in the biparental California mouse (Peromyscus californicus). We analyzed behavioral, neural, and corticosterone responses to pups in adult virgin males that were interacting with a pup for the first time, adult virgin males that had been exposed to pups 3 times for 20min each in the previous week, and new fathers. Control groups of virgins were similarly tested with a novel object (marble). Previous exposure to pups decreased virgins' latency to approach pups and initiate paternal care, and increased time spent in paternal care. Responses to pups did not differ between virgins with repeated exposure to pups and new fathers. In contrast, repeated exposure to a marble had no effects. Neither basal corticosterone levels nor corticosterone levels following acute pup or marble exposure differed among groups. Finally, Fos expression in the medial preoptic area, ventral and dorsal bed nucleus of the stria terminalis was higher following exposure to a pup than to a marble. Fos expression was not, however, affected by previous exposure to these stimuli. These results suggest that previous experience with pups can facilitate the onset of parental behavior in male California mice, similar to findings in female rodents, and that this effect is not associated with a general reduction in neophobia.
Collapse
Affiliation(s)
- Nathan D Horrell
- Graduate Program in Neuroscience, University of California, Riverside, United States; Department of Biology, University of California, Riverside, United States
| | - Juan P Perea-Rodriguez
- Department of Biology, University of California, Riverside, United States; Evolution, Ecology, and Organismal Biology Graduate Program, University of California, Riverside, United States
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, United States
| | - Wendy Saltzman
- Graduate Program in Neuroscience, University of California, Riverside, United States; Department of Biology, University of California, Riverside, United States; Evolution, Ecology, and Organismal Biology Graduate Program, University of California, Riverside, United States.
| |
Collapse
|
30
|
Pereira M. Structural and Functional Plasticity in the Maternal Brain Circuitry. New Dir Child Adolesc Dev 2017; 2016:23-46. [PMID: 27589496 DOI: 10.1002/cad.20163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social experience while the reciprocal relationship between the mother and her infant forms and develops. These alterations account for the remarkable behavioral plasticity of mothers. This review will examine the molecular and neurobiological modulation and plasticity through which parenting develops and adjusts in new mothers, primarily discussing recent findings in nonhuman animals. A better understanding of how parenting impacts the brain at the molecular, cellular, systems/network, and behavioral levels is likely to significantly contribute to novel strategies for treating postpartum neuropsychiatric disorders in new mothers, and critical for both the mother's physiological and mental health and the development and well-being of her young.
Collapse
|
31
|
Parent C, Wen X, Dhir SK, Ryan R, Diorio J, Zhang TY. Maternal care associates with differences in morphological complexity in the medial preoptic area. Behav Brain Res 2017; 326:22-32. [PMID: 28259675 DOI: 10.1016/j.bbr.2017.02.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
Abstract
The medial preoptic area (MPOA) is implicated in the expression of maternal behavior including the frequency of pup licking/grooming (LG) in the rat. Cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB) is a transcription factor that regulates the expression of many genes. We found that lactating rats that are more maternal towards their pups showing increased licking/grooming (i.e. high-LG mothers) had increased levels of phosphorylated CREB (pCREB) in the MPOA following a nursing bout and they displayed a reduced population of greater dendritic complexity index (DCI) neurons compared to less maternal rats showing decreased licking/grooming (i.e. low-LG mothers). CREB overexpression in MPOA neuronal cultures associated with a decrease in dendritic complexity and an increase in the expression of Rem2 and brain-derived neurotrophic factor (BDNF), genes implicated in dendritic pruning. While there were no differences in Rem2 expression in virgin high and low-LG female rats, Rem2 was significantly increased in the MPOA of high-LG compared to low-LG lactating rats. CREB activity in the MPOA associates with maternal behavior and reduced dendritic complexity possibly by increasing Rem2 expression.
Collapse
Affiliation(s)
- Carine Parent
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Xianglan Wen
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Sabine K Dhir
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Richard Ryan
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Josie Diorio
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Tie-Yuan Zhang
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada.
| |
Collapse
|
32
|
Orikasa C, Kondo Y, Katsumata H, Terada M, Akimoto T, Sakuma Y, Minami S. Vomeronasal signal deficiency enhances parental behavior in socially isolated male mice. Physiol Behav 2016; 168:98-102. [PMID: 27840094 DOI: 10.1016/j.physbeh.2016.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
Abstract
We previously reported that social isolation promotes parental care in sexually naïve male mice. This effect was blocked by exposure to chemosensory and auditory social signals derived from males in an adjacent compartment. In the present study, we examined whether the chemosensory signals detected in the vomeronasal organ (VNO) are involved in parental behavior by using mice deficient for a VNO-specific ion channel (Trpc2-/-) and thus impaired in VNO-input signaling. We housed virgin homozygous Trpc2-/- and heterozygous Trpc2± males for 3weeks during puberty (5-8weeks old) alone or in groups of 3-5 males. At 8weeks of age, the mice were placed with three pups in an observation cage and tested for parental behavior. The Trpc2-/- males housed under isolated conditions spent significantly longer in the vicinity of pups than did the Trpc2-/- males than had been group housed, whereas no isolation effect was observed in heterozygous Trpc2± males. Both Trpc2 knockout and isolation housing significantly increased the time males spent licking pups and crouching (arched back posture over pups to enable nursing), whereas only isolation housing increased the incidence of retrieval behavior. These results demonstrated that social signals transmitted not only through the VNO but also from other modalities, independent of each other, suppress the expression of parental behavior during puberty in sexually naïve males.
Collapse
Affiliation(s)
- Chitose Orikasa
- Institute for Advanced Medical Sciences, Nippon Medical School, Kanagawa 211-8533, Japan.
| | - Yasuhiko Kondo
- Department of Animal Sciences, Teikyo University of Science, Tokyo 120-0045, Japan
| | - Harumi Katsumata
- Institute for Advanced Medical Sciences, Nippon Medical School, Kanagawa 211-8533, Japan
| | - Misao Terada
- Laboratory Animal Research Center, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Toshio Akimoto
- Division of Laboratory Animal Science, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yasuo Sakuma
- University of Tokyo Health Science, Tokyo 206-0033, Japan
| | - Shiro Minami
- Institute for Advanced Medical Sciences, Nippon Medical School, Kanagawa 211-8533, Japan
| |
Collapse
|
33
|
de Moura AC, da Silva IRV, Reinaldo G, Dani C, Elsner VR, Giovenardi M. Global Histone H4 Acetylation in the Olfactory Bulb of Lactating Rats with Different Patterns of Maternal Behavior. Cell Mol Neurobiol 2016; 36:1209-13. [PMID: 26620050 PMCID: PMC11482361 DOI: 10.1007/s10571-015-0306-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/17/2015] [Indexed: 12/26/2022]
Abstract
In rats, variations in the levels of neuromodulatory molecules and in the expression of their receptors are observed during pregnancy and postpartum. These changes may contribute to the development and management of maternal behavior. The frequency of licking the pups is used to evaluate maternal care, having mothers with low licking (LL) and high licking (HL) frequencies. Previously, we found that HL had increased levels of transcriptional expression of the receptors for serotonin (HTR1a, HTR1b), estrogen (Erα), dopamine (D1a), and prolactin (Prlr) than LL in the olfactory bulb (OB); however, the molecular mechanisms behind this phenomenon are unknown. Since evidences pointed out that epigenetic marks, which may alter gene expression, are modulated by environmental factors such as exercise, diet, maternal care, and xenobiotic exposure, our objective was to verify the acetylation levels of histone-H4 in the OB of LL and HL rats. Maternal behavior was studied for the first 7 postpartum days. LL (n = 4) and HL (n = 5) mothers were selected according to the behavior of licking their pups. Acetylation levels of histone-H4 were determined using the Global Histone-H4 Acetylation Assay Kit and expressed as ng/mg protein (mean ± SD). Analysis revealed that HL (278.36 ± 68.95) had increased H4 acetylation levels than LL (183.24 ± 73.05; p = 0.045). The enhanced expression of the previously studied receptors in the OB could be related, at least in part, to the hyperacetylation status of histone-H4 here observed. Afterward, the modulation of histone acetylation levels could exert a pivotal role through molecular mechanisms involved in the different patterns of maternal behavior.
Collapse
Affiliation(s)
- Ana Carolina de Moura
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Sala 308, Porto Alegre, RS, 90050-170, Brazil.
| | - Ivy Reichert Vital da Silva
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Porto Alegre, RS, Brazil
| | - Gustavo Reinaldo
- Curso de Fisioterapia do Centro Universitário Metodista do IPA, Porto Alegre, RS, Brazil
| | - Caroline Dani
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsner
- Programa de Pós Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Porto Alegre, RS, Brazil
| | - Márcia Giovenardi
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Sala 308, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
34
|
Keller SM, Roth TL. Environmental influences on the female epigenome and behavior. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw007. [PMID: 27746953 PMCID: PMC5065103 DOI: 10.1093/eep/dvw007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Environmental factors have long-lasting effects on brain development and behavior. One way experiences are propagated is via epigenetic modifications to the genome. Environmentally-driven epigenetic modifications show incredible brain region- and sex-specificity, and many brain regions affected are ones involved in maternal behavior. In rodent models, females are typically the primary caregiver and thus, any environmental factors that modulate the epigenotype of the mother could have consequences for her current and future offspring. Here we review evidence of the susceptibility of the female epigenome to environmental factors, with a focus on brain regions involved in maternal behavior. Accordingly, implications for interventions that target the mother's epigenome and parenting behavior are discussed.
Collapse
Affiliation(s)
- Samantha M. Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Tania L. Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
35
|
Nephew BC. The Neurobiology of Parenting: Basic Research. Curr Behav Neurosci Rep 2016. [DOI: 10.1007/s40473-016-0059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Numan M, Young LJ. Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications. Horm Behav 2016; 77:98-112. [PMID: 26062432 PMCID: PMC4671834 DOI: 10.1016/j.yhbeh.2015.05.015] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
This article is part of a Special Issue "Parental Care". Mother-infant bonding is a characteristic of virtually all mammals. The maternal neural system may have provided the scaffold upon which other types of social bonds in mammals have been built. For example, most mammals exhibit a polygamous mating system, but monogamy and pair bonding between mating partners occur in ~5% of mammalian species. In mammals, it is plausible that the neural mechanisms that promote mother-infant bonding have been modified by natural selection to establish the capacity to develop a selective bond with a mate during the evolution of monogamous mating strategies. Here we compare the details of the neural mechanisms that promote mother-infant bonding in rats and other mammals with those that underpin pair bond formation in the monogamous prairie vole. Although details remain to be resolved, remarkable similarities and a few differences between the mechanisms underlying these two types of bond formation are revealed. For example, amygdala and nucleus accumbens-ventral pallidum (NA-VP) circuits are involved in both types of bond formation, and dopamine and oxytocin actions within NA appear to promote the synaptic plasticity that allows either infant or mating partner stimuli to persistently activate NA-VP attraction circuits, leading to an enduring social attraction and bonding. Further, although the medial preoptic area is essential for maternal behavior, its role in pair bonding remains to be determined. Our review concludes by examining the broader implications of this comparative analysis, and evidence is provided that the maternal care system may have also provided the basic neural foundation for other types of strong social relationships, beyond pair bonding, in mammals, including humans.
Collapse
Affiliation(s)
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
37
|
Pereira M, Ferreira A. Neuroanatomical and neurochemical basis of parenting: Dynamic coordination of motivational, affective and cognitive processes. Horm Behav 2016; 77:72-85. [PMID: 26296592 DOI: 10.1016/j.yhbeh.2015.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
This article is part of a Special Issue "Parental Care". Becoming a parent is arguably the most profound transforming experience in life. It is also inherently very emotionally and physically demanding, such that the reciprocal interaction with the young changes the brain and behavior of the parents. In this review, we examine the neurobiological mechanisms of parenting primarily discussing recent research findings in rodents and primates, especially humans. We argue that it is essential to consider parenting within a conceptual framework that recognizes the dynamics of the reciprocal mother-young relationship, including both the complexity and neuroplasticity of its underlying mechanisms. Converging research suggests that the concerted activity of a distributed network of subcortical and cortical brain structures regulates different key aspects of parenting, including the sensory analysis of infant stimuli as well as motivational, affective and cognitive processes. The interplay among these processes depends on the action of various neurotransmitters and hormones that modulate the timely and coordinated execution of caregiving responses of the maternal circuitry exquisitely attuned to the young's affect, needs and developmental stage. We conclude with a summary and a set of questions that may guide future research.
Collapse
Affiliation(s)
- Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, USA.
| | - Annabel Ferreira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
38
|
Stolzenberg DS, Champagne FA. Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Horm Behav 2016; 77:204-10. [PMID: 26172856 DOI: 10.1016/j.yhbeh.2015.07.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022]
Abstract
This article is part of a Special Issue "Parental Care". Though hormonal changes occurring throughout pregnancy and at the time of parturition have been demonstrated to prime the maternal brain and trigger the onset of mother-infant interactions, extended experience with neonates can induce similar behavioral interactions. Sensitization, a phenomenon in which rodents engage in parental responses to young following constant cohabitation with donor pups, was elegantly demonstrated by Rosenblatt (1967) to occur in females and males, independent of hormonal status. Study of the non-hormonal basis of maternal behavior has contributed significantly to our understanding of hormonal influences on the maternal brain and the cellular and molecular mechanisms that mediate maternal behavior. Here, we highlight our current understanding regarding both hormone-induced and experience-induced maternal responsivity and the mechanisms that may serve as a common pathway through which increases in maternal behavior are achieved. In particular, we describe the epigenetic changes that contribute to chromatin remodeling and how these molecular mechanisms may influence the neural substrates of the maternal brain. We also consider how individual differences in these systems emerge during development in response to maternal care. This research has broad implications for our understanding of the parental brain and the role of experience in the induction of neurobiological and behavior changes.
Collapse
|
39
|
Reproductive experiential regulation of cognitive and emotional resilience. Neurosci Biobehav Rev 2015; 58:92-106. [DOI: 10.1016/j.neubiorev.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/16/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
|
40
|
Orikasa C, Nagaoka K, Katsumata H, Sato M, Kondo Y, Minami S, Sakuma Y. Social isolation prompts maternal behavior in sexually naïve male ddN mice. Physiol Behav 2015; 151:9-15. [PMID: 26166155 DOI: 10.1016/j.physbeh.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
Maternal behavior in mice is considered to be sexually dimorphic; that is, females show maternal care for their offspring, whereas this behavior is rarely shown in males. Here, we examined how social isolation affects the interaction of adult male mice with pups. Three weeks of isolation during puberty (5-8 weeks old) induced retrieving and crouching when exposed to pups, while males with 1 week isolation (7-8 weeks old) also showed such maternal care, but were less responsive to pups. We also examined the effect of isolation during young adulthood (8-11 weeks old), and found an induction of maternal behavior comparable to that in younger male mice. This effect was blocked by exposure to chemosensory and auditory social signals derived from males in an attached compartment separated by doubled opaque barriers. These results demonstrate that social isolation in both puberty and postpuberty facilitates male maternal behavior in sexually naïve mice. The results also indicate that air-borne chemicals and/or sounds of male conspecifics, including ultrasonic vocalization and noise by their movement may be sufficient to interfere with the isolation effect on induction of maternal behavior in male mice.
Collapse
Affiliation(s)
- Chitose Orikasa
- Institute for Advanced Medical Science, Nippon Medical School, Kanagawa 211-8533, Japan.
| | - Kentaro Nagaoka
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-0054, Japan
| | - Harumi Katsumata
- Institute for Advanced Medical Science, Nippon Medical School, Kanagawa 211-8533, Japan
| | - Manami Sato
- Department of Animal Sciences, Teikyo University of Science, Tokyo 120-0045, Japan
| | - Yasuhiko Kondo
- Department of Animal Sciences, Teikyo University of Science, Tokyo 120-0045, Japan
| | - Shiro Minami
- Institute for Advanced Medical Science, Nippon Medical School, Kanagawa 211-8533, Japan
| | - Yasuo Sakuma
- University of Tokyo Health Science, Tokyo 206-0033, Japan
| |
Collapse
|
41
|
McHenry JA, Rubinow DR, Stuber GD. Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward. Front Neuroendocrinol 2015; 38:65-72. [PMID: 25910426 PMCID: PMC4853820 DOI: 10.1016/j.yfrne.2015.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Abstract
Postpartum neuropsychiatric disorders are a major source of morbidity and mortality and affect at least 10% of childbearing women. Affective dysregulation within this context has been identified in association with changes in reproductive steroids. Steroids promote maternal actions and modulate affect, but can also destabilize mood in some but not all women. Potential brain regions that mediate these effects include the medial preoptic area (mPOA) and ventral bed nucleus of the stria terminalis (vBNST). Herein, we review the regulation of neural activity in the mPOA/vBNST by environmental and hormonal concomitants in puerperal females. Such activity may influence maternal anxiety and motivation and have significant implications for postpartum affective disorders. Future directions for research are also explored, including physiological circuit-level approaches to gain insight into the functional connectivity of hormone-responsive maternal circuits that modulate affect.
Collapse
Affiliation(s)
- Jenna A McHenry
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Postdoctoral Training Program in Reproductive Mood Disorders, Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, United States; Neuroscience Center, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
42
|
Female breeding experience affects parental care strategies of both parents in a monogamous cichlid fish. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Bridges RS. Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol 2015; 36:178-96. [PMID: 25500107 PMCID: PMC4342279 DOI: 10.1016/j.yfrne.2014.11.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/31/2014] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
The expression of maternal behavior in mammals is regulated by the developmental and experiential events over a female's lifetime. In this review the relationships between the endocrine and neural systems that play key roles in these developmental and experiential processes that affect both the establishment and maintenance of maternal care are presented. The involvement of the hormones estrogen, progesterone, and lactogens are discussed in the context of ligand, receptor, and gene activity in rodents and to a lesser extent in higher mammals. The roles of neuroendocrine factors, including oxytocin, vasopressin, classical neurotransmitters, and other neural gene products that regulate aspects of maternal care are set forth, and the interactions of hormones with central nervous system mediators of maternal behavior are discussed. The impact of prior developmental factors, including epigenetic events, and maternal experience on subsequent maternal care are assessed over the course of the female's lifespan. It is proposed that common neuroendocrine mechanisms underlie the regulation of maternal care in mammals.
Collapse
Affiliation(s)
- Robert S Bridges
- Department of Biomedical Sciences, Neuroscience and Reproductive Biology Section, Tufts University - Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.
| |
Collapse
|
44
|
Szabó ÉR, Cservenák M, Lutz TA, Gévai L, Endrényi M, Simon L, Dobolyi Á. Behavioural changes in mothers and maternally sensitised female mice. BEHAVIOUR 2015. [DOI: 10.1163/1568539x-00003305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The maternal motivation and depression-like behaviour of primiparous mother and maternally sensitised virgin female mice were investigated. During a 1-h test period, dams and sensitised female mice spent significantly more time in pup-associated than in control cages when they could freely choose between them, while virgin control and ovariectomised females had no such preference. In the forced swim test, the time spent in active (swimming and struggling) and passive (floating) behaviours was measured for 6 min. Mother mice spent more time engaged in active behaviours than virgin and sensitised female mice, while the latter two groups did not differ from each other in the forced swim test. The results suggest that maternal motivation is increased in postpartum mothers and maternally sensitised female mice. We also provide the first demonstration that postpartum mother mice display anti-depression-like behaviours in the forced swim test, while maternally sensitised females do not show such emotional changes.
Collapse
Affiliation(s)
- Éva R. Szabó
- aMTA-ELTE-NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- bLaboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Cservenák
- aMTA-ELTE-NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- bLaboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Thomas A. Lutz
- cInstitute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Lőrinc Gévai
- dSensorimotory Adaptation and Vestibular Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Miklós Endrényi
- dSensorimotory Adaptation and Vestibular Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - László Simon
- dSensorimotory Adaptation and Vestibular Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Árpád Dobolyi
- aMTA-ELTE-NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- bLaboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Vrtačnik P, Ostanek B, Mencej-Bedrač S, Marc J. The many faces of estrogen signaling. Biochem Med (Zagreb) 2014; 24:329-42. [PMID: 25351351 PMCID: PMC4210253 DOI: 10.11613/bm.2014.035] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022] Open
Abstract
Estrogens have long been known as important regulators of the female reproductive functions; however, our understanding of the role estrogens play in the human body has changed significantly over the past years. It is now commonly accepted that estrogens and androgens have important functions in both female and male physiology and pathology. This is in part due to the local synthesis and action of estrogens that broadens the role of estrogen signaling beyond that of the endocrine system. Furthermore, there are several different mechanisms through which the three estrogen receptors (ERs), ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER1) are able to regulate target gene transcription. ERα and ERβ are mostly associated with the direct and indirect genomic signaling pathways that result in target gene expression. Membrane-bound GPER1 is on the other hand responsible for the rapid non-genomic actions of estrogens that activate various protein-kinase cascades. Estrogen signaling is also tightly connected with another important regulatory entity, i.e. epigenetic mechanisms. Posttranslational histone modifications, microRNAs (miRNAs) and DNA methylation have been shown to influence gene expression of ERs as well as being regulated by estrogen signaling. Moreover, several coregulators of estrogen signaling also exhibit chromatin-modifying activities further underlining the importance of epigenetic mechanisms in estrogen signaling. This review wishes to highlight the newer aspects of estrogen signaling that exceed its classical endocrine regulatory role, especially emphasizing its tight intertwinement with epigenetic mechanisms.
Collapse
Affiliation(s)
- Peter Vrtačnik
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Barbara Ostanek
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Simona Mencej-Bedrač
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Janja Marc
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| |
Collapse
|
46
|
Dobolyi A, Grattan DR, Stolzenberg DS. Preoptic inputs and mechanisms that regulate maternal responsiveness. J Neuroendocrinol 2014; 26:627-40. [PMID: 25059569 DOI: 10.1111/jne.12185] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/16/2022]
Abstract
The preoptic area is a well-established centre for the control of maternal behaviour. An intact medial preoptic area (mPOA) is required for maternal responsiveness because lesion of the area abolishes maternal behaviours. Although hormonal changes in the peripartum period contribute to the initiation of maternal responsiveness, inputs from pups are required for its maintenance. Neurones are activated in different parts of the mPOA in response to pup exposure. In the present review, we summarise the potential inputs to the mPOA of rodent dams from the litter that can activate mPOA neurones. The roles of potential indirect effects through increased prolactin levels, as well as neuronal inputs to the preoptic area, are described. Recent results on the pathway mediating the effects of suckling to the mPOA suggest that neurones containing the neuropeptide tuberoinfundibular peptide of 39 residues in the posterior thalamus are candidates for conveying the suckling information to the mPOA. Although the molecular mechanism through which these inputs alter mPOA neurones to support the maintenance of maternal responding is not yet known, altered gene expression is a likely candidate. Here, we summarise gene expression changes in the mPOA that have been linked to maternal behaviour and explore the idea that chromatin remodelling during mother-infant interactions mediates the long-term alterations in gene expression that sustain maternal responding.
Collapse
Affiliation(s)
- A Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Institute of Biology, NAP-Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
47
|
Stolzenberg DS, Stevens JS, Rissman EF. Histone deacetylase inhibition induces long-lasting changes in maternal behavior and gene expression in female mice. Endocrinology 2014; 155:3674-83. [PMID: 24932804 PMCID: PMC4138561 DOI: 10.1210/en.2013-1946] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In many species, including mice, maternal responsiveness is experience-dependent and permanent, lasting for long periods (months to years). We have shown that after brief exposures to pups, virgin female mice continue to respond maternally toward pups for at least one month. Administration of a histone deacetylase inhibitor (HDACi) reduces the amount of maternal experience required to affect maternal behavior and gene expression. In this set of studies, we examined the epigenetic mechanisms that underlie these motivated behaviors. We assessed whether the effects of HDACi persisted 1 month after the initial experience (in the absence of continued pup experience or HDACi treatment) and whether the maintenance of maternal memory was associated with stable changes in gene expression. Using chromatin immunoprecipitation, we examined whether Esr2 and Oxt gene expression might be mediated by recruitment of the histone acetyltransferase cAMP response element binding protein (CBP) to their promoter regions after maternal memory consolidation. We report that HDACi treatment induced long-lasting changes in maternal responsiveness. Maternal learning was associated with increased recruitment of CBP to the Esr2 and Oxt gene promoters during the consolidation of maternal memory as well as a persistent increase in estrogen receptor-β (Esr2) mRNA and decreased expression of the de novo DNA methyltransferase Dnmt3a within the medial preoptic area. The consolidation of the maternal experience may involve the CBP recruitment and stable changes in gene expression, which maintain increased maternal responsiveness for long periods of time.
Collapse
Affiliation(s)
- Danielle S Stolzenberg
- Department of Psychology (D.S.S.), University of California, Davis, Davis, California 95616; and Department of Biochemistry and Molecular Genetics (J.S.S., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | | | |
Collapse
|
48
|
|
49
|
MacDonald K, Feifel D. Oxytocin's role in anxiety: a critical appraisal. Brain Res 2014; 1580:22-56. [PMID: 24468203 DOI: 10.1016/j.brainres.2014.01.025] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/21/2013] [Accepted: 01/15/2014] [Indexed: 12/16/2022]
Abstract
A growing literature suggests that the oxytocin (OT) system may play a role in human anxiety states, anxiety-related traits, and moreover, that this system may be a target for the development of novel anxiolytic treatments. However, studies of OT's acute and chronic effects on various aspects of anxiety have produced mixed results. In this forward-looking review, we discuss the myriad phenomena to which the term "anxiety" is applied in the OT literature and the problem this presents developing a coherent picture of OT's role in anxiety. We then survey several different fields of research that support the role of the OT system in human anxiety, including evolutionary perspectives, translational and neuroimaging research, genetic studies, and clinical trials of intranasal OT. As an outgrowth of this data, we propose a "bowtie" model of OT's role at the interface of social attachment and anxiety. We next direct attention to understudied brain regions and neural circuits which may be important to study in OT experiments in humans anxiety disorders. Finally, we conclude by proposing questions and priorities for studying both the clinical potential of OT in anxiety, as well as mechanisms that may underlie this potential. Crucially, these priorities include targeted proof-of-concept clinical trials of IN OT in certain anxiety disorders, including investigations of individual moderators of OT's anxiolytic effects (i.e. sex, genetic factors, and early experience). This article is part of a Special Issue entitled Oxytocin and Social Behav.
Collapse
Affiliation(s)
- Kai MacDonald
- University of San Diego, Department of Psychiatry, 140 Arbor Drive, CA 92103, USA.
| | - David Feifel
- University of San Diego, Department of Psychiatry, 140 Arbor Drive, CA 92103, USA
| |
Collapse
|
50
|
Nephew B, Murgatroyd C. The role of maternal care in shaping CNS function. Neuropeptides 2013; 47:371-8. [PMID: 24210943 PMCID: PMC3874801 DOI: 10.1016/j.npep.2013.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Maternal care involves the consistent and coordinated expression of a variety of behaviours over an extended period of time, and adverse changes in maternal care can have profound impacts on the CNS and behaviour of offspring. This complex behavioural pattern depends on a number of integrated neuroendocrine mechanisms. This review will discuss the use of animal models in the study of the role of maternal care in shaping CNS function, the contributions of corticosteroid releasing hormone, vasopressin, oxytocin, and prolactin in this process, the molecular mechanisms involved, and the translational relevance of this research.
Collapse
Affiliation(s)
- Benjamin Nephew
- Tufts University Cummings School of Veterinary Medicine, Biomedical Sciences, 200 Wesboro Rd., Peabody Pavilion, North Grafton, MA 01536, UNITED STATES, 508-641-0865,
| | | |
Collapse
|