1
|
Rigney N, Horie K, Guo JD, Blumenthal SA, Johnson ZV, Young LJ. Neural connectivity of oxytocin receptor-expressing neurons in the nucleus accumbens and their role in social attachment. Horm Behav 2025; 171:105726. [PMID: 40153918 DOI: 10.1016/j.yhbeh.2025.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Oxytocin receptor (OXTR) activity in the nucleus accumbens (NAc) is critical for pair bonding in prairie voles. Oxtr knockdown or pharmacological blockade in this region prevents mating-induced partner preferences, while overexpression facilitates bonding. However, no prior work has selectively interrogated or manipulated Oxtr-expressing neurons during dynamic bonding behaviors. We have developed an Oxtr-P2A-Cre prairie vole line that enables direct access to specific Oxtr neural populations. We utilized Oxtr-P2A-Cre prairie voles to express inhibitory DREADDs selectively in OXTR-expressing NAc neurons. Inhibiting NAc OXTR cells during initial cohabitation did not affect subsequent partner preference formation; however, inhibition during partner preference testing increased partner-directed huddling behavior, revealing a complex role for these neurons in social interactions. Using a viral tracing approach, we found that NAc OXTR-expressing neurons receive prominent inputs from the medial prefrontal cortex, hippocampus, thalamus, and hypothalamus, while projecting strongly to the ventral pallidum, ventral tegmental area, and lateral hypothalamus. Our cell-type-specific manipulation reveals how oxytocin receptor signaling in the NAc may modulate emotional state and facilitate the complex social behaviors underlying monogamous pair bonding. This Cre-recombinase approach demonstrates the utility of cell-type-specific targeting for elucidating oxytocin neural circuit mechanisms regulating emotional and social behavior in prairie voles.
Collapse
Affiliation(s)
- Nicole Rigney
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Kengo Horie
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ji-Dong Guo
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Sarah A Blumenthal
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Zachary V Johnson
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Horie K, Blumenthal SA, Inoue K, Yada S, Nishimori K, Young LJ. Male, but not female, oxytocin receptor knockout prairie voles (Microtus ochrogaster) show impaired consolation behavior. Horm Behav 2025; 169:105708. [PMID: 39965529 DOI: 10.1016/j.yhbeh.2025.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Prosocial behaviors, including empathetic consoling toward others, contribute to maintaining social groups and social connections between individuals in many mammalian species, including monogamous prairie voles (Microtus ochrogaster). Prairie voles display consolation toward distressed partners by increasing allogrooming behavior toward the partner. A previous pharmacological study showed that oxytocin signaling contributes to consolation in male prairie voles, although possible sex differences in the regulation of consoling have not been explored. Here, we demonstrate that male, but not female, oxytocin receptor knockout (Oxtr-/-) prairie voles display disrupted consoling behavior toward distressed opposite sex partners who spend 24 h with their partners to form a pair bond. Notably, both male and female Oxtr-/- prairie voles showed normal partner preference following 24 h of cohabitation. Autoradiography for the vasopressin 1a receptor (AVPR1A) reveals no differences between genotypes in AVPR1A levels in the lateral septum, ventral pallidum, laterodorsal thalamic nucleus, and central amygdala, suggesting that the lack of OXTR does not lead to compensation via AVPR1A system at the receptor expression level in these selected brain regions. These findings demonstrate that OXTR modulates consolation in a sex-specific manner in prairie voles, while the lack of OXTR does not influence pair bonding.
Collapse
Affiliation(s)
- Kengo Horie
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Sarah A Blumenthal
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kiyoshi Inoue
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Saori Yada
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine,Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Vitale EM, Tbaba AH, Sanchez S, Hale L, Kenkel WM, Johnson MA, Smith AS. Pair bond quality influences social conditioned place preference expression, passive coping behavior, and central oxytocin receptor expression following partner loss in male prairie voles. Soc Neurosci 2024; 19:273-286. [PMID: 39577457 DOI: 10.1080/17470919.2024.2428598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/17/2024] [Indexed: 11/24/2024]
Abstract
The dissolving of social bonds is disruptive and leads to increased stress responsivity and a strong desire for reunion. The oxytocin (OXT) system is critical for the formation of social attachments, such as pair bonds, and is also involved in social recognition, social memory, and social vigilance. Therefore, long-term changes in the OXT system resulting from cohabitation and pair bonding may contribute to reunion-seeking behavior. Here, we employed social conditioned place preference (SCPP) and the forced swim test (FST) to examine sensitivity to partner-associated contexts and passive stress coping following a period of partner separation. We found that opposite-sex cohabitation led to SCPP formation only in male prairie voles with a strong preference for their partner, and this SCPP was maintained following short-term loss of a pair bonded partner. Furthermore, pair bonded males that were separated from their partner displayed more passive stress-coping than those that were not bonded to their lost partner, suggesting that differences in prairie vole mating tactics (i.e. formation of a bond or not) influence the behavioral response to partner separation. Finally, we found changes in OXTR binding that may reflect variation in loss-related behavioral phenotypes based on different mating strategies.
Collapse
Affiliation(s)
- Erika M Vitale
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Amina H Tbaba
- Program in Neuroscience, University of Kansas, Lawrence, KS, USA
| | - Sophia Sanchez
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Luanne Hale
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - William M Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Michael A Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Adam S Smith
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
- Program in Neuroscience, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
4
|
Johnson MC, Zweig JA, Zhang Y, Nunez L, Ryabinina OP, Hibert M, Ryabinin AE. Effects of oxytocin receptor agonism on acquisition and expression of pair bonding in male prairie voles. Transl Psychiatry 2024; 14:286. [PMID: 39009600 PMCID: PMC11251033 DOI: 10.1038/s41398-024-02993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
There is much interest in targeting the activity in the oxytocin system to regulate social bonding. However, studies with exogenous administration of oxytocin face the caveats of its low stability, poor brain permeability and insufficient receptor specificity. The use of a small-molecule oxytocin receptor-specific agonist could overcome these caveats. Prior to testing the potential effects of a brain-penetrant oxytocin receptor agonist in clinical settings, it is important to assess how such an agonist would affect social bonds in animal models. The facultatively monogamous prairie voles (Microtus ochrogaster), capable of forming long-term social attachments between adult individuals, are an ideal rodent model for such testing. Therefore, in a series of experiments we investigated the effects of the recently developed oxytocin receptor-specific agonist LIT-001 on the acquisition and expression of partner preference, a well-established model of pair bonding, in prairie voles. LIT-001 (10 mg/kg, intraperitoneal), as expected, facilitated the acquisition of partner preference when administered prior to a 4hr cohabitation. In contrast, while animals injected with vehicle after the 4hr cohabitation exhibited significant partner preference, animals that were injected with LIT-001 did not show such partner preference. This result suggests that OXTR activation during expression of pair bonding can inhibit partner preference. The difference in effects of LIT-001 on acquisition versus expression was not due to basal differences in partner preference between the experiments, as LIT-001 had no significant effects on expression of partner preference if administered following a shorter (2hr-long) cohabitation. Instead, this difference agrees with the hypothesis that the activation of oxytocin receptors acts as a signal of presence of a social partner. Our results indicate that the effects of pharmacological activation of oxytocin receptors crucially depend on the phase of social attachments.
Collapse
Affiliation(s)
- Michael C Johnson
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan A Zweig
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yangmiao Zhang
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Louis Nunez
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Olga P Ryabinina
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, Strasbourg, IL, France
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Ryabinin A, Johnson M, Zweig J, Zhang Y, Nunez L, Ryabinina O, Hibert M. Effects of Oxytocin Receptor Agonism on Acquisition and Expression of Pair Bonding in Male Prairie Voles. RESEARCH SQUARE 2024:rs.3.rs-4351761. [PMID: 38798348 PMCID: PMC11118693 DOI: 10.21203/rs.3.rs-4351761/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
There is much interest in targeting the activity in the oxytocin system to regulate social bonding. However, studies with exogenous administration of oxytocin face the caveats of its low stability, poor brain permeability and insufficient receptor specificity. The use of a small-molecule oxytocin receptor-specific agonist could overcome these caveats. Prior to testing the potential effects of a brain-penetrant oxytocin receptor agonist in clinical settings, it is important to assess how such an agonist would affect social bonds in animal models. The facultatively monogamous prairie voles (Microtus ochrogaster), capable of forming long-term social attachments between adult individuals, are an ideal rodent model for such testing. Therefore, in a series of experiments we investigated the effects of the recently developed oxytocin receptor-specific agonist LIT-001 on the acquisition and expression of partner preference, a well-established model of pair bonding, in prairie voles. LIT-001 (10 mg/kg, intraperitoneal), as expected, facilitated the acquisition of partner preference when administered prior to a 4-hour cohabitation. In contrast, while animals injected with vehicle after the 4-hour cohabitation exhibited significant partner preference, animals that were injected with LIT-001 did not show such partner preference. This result suggests that OXTR activation during expression of pair bonding can inhibit partner preference. The difference in effects of LIT-001 on acquisition versus expression was not due to basal differences in partner preference between the experiments, as LIT-001 had no significant effects on expression of partner preference if administered following a shorter (2 hour-long) cohabitation. Instead, this difference agrees with the hypothesis that the activation of oxytocin receptors acts as a signal of presence of a social partner. Our results indicate that the effects of pharmacological activation of oxytocin receptors crucially depend on the phase of social attachments.
Collapse
|
6
|
Sadino JM, Donaldson ZR. Prairie voles as a model for adaptive reward remodeling following loss of a bonded partner. Ann N Y Acad Sci 2024; 1535:20-30. [PMID: 38594916 PMCID: PMC11334365 DOI: 10.1111/nyas.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Loss of a loved one is a painful event that substantially elevates the risk for physical and mental illness and impaired daily function. Socially monogamous prairie voles are laboratory-amenable rodents that form life-long pair bonds and exhibit distress upon partner separation, mirroring phenotypes seen in humans. These attributes make voles an excellent model for studying the biology of loss. In this review, we highlight parallels between humans and prairie voles, focusing on reward system engagement during pair bonding and loss. As yearning is a unique feature that differentiates loss from other negative mental states, we posit a model in which the homeostatic reward mechanisms that help to maintain bonds are disrupted upon loss, resulting in yearning and other negative impacts. Finally, we synthesize studies in humans and voles that delineate the remodeling of reward systems during loss adaptation. The stalling of these processes likely contributes to prolonged grief disorder, a diagnosis recently added to the Diagnostic and Statistical Manual for Psychiatry.
Collapse
Affiliation(s)
- Julie M. Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
7
|
Ford CL, McDonough AA, Horie K, Young LJ. Melanocortin agonism in a social context selectively activates nucleus accumbens in an oxytocin-dependent manner. Neuropharmacology 2024; 247:109848. [PMID: 38253222 PMCID: PMC10923148 DOI: 10.1016/j.neuropharm.2024.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 10/18/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Social deficits are debilitating features of many psychiatric disorders, including autism. While time-intensive behavioral therapy is moderately effective, there are no pharmacological interventions for social deficits in autism. Many studies have attempted to treat social deficits using the neuropeptide oxytocin for its powerful neuromodulatory abilities and influence on social behaviors and cognition. However, clinical trials utilizing supplementation paradigms in which exogenous oxytocin is chronically administered independent of context have failed. An alternative treatment paradigm suggests pharmacologically activating the endogenous oxytocin system during behavioral therapy to enhance the efficacy of therapy by facilitating social learning. To this end, melanocortin receptor agonists like Melanotan II (MTII), which induces central oxytocin release and accelerates formation of partner preference, a form of social learning, in prairie voles, are promising pharmacological tools. To model pharmacological activation of the endogenous oxytocin system during behavioral therapy, we administered MTII prior to social interactions between male and female voles. We assessed its effect on oxytocin-dependent activity in brain regions subserving social learning using Fos expression as a proxy for neuronal activation. In non-social contexts, MTII only activated hypothalamic paraventricular nucleus, a primary site of oxytocin synthesis. However, during social interactions, MTII selectively increased oxytocin-dependent activation of nucleus accumbens, a site critical for social learning. These results suggest a mechanism for the MTII-induced acceleration of partner preference formation observed in previous studies. Moreover, they are consistent with the hypothesis that pharmacologically activating the endogenous oxytocin system with a melanocortin agonist during behavioral therapy has potential to facilitate social learning.
Collapse
Affiliation(s)
- Charles L Ford
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA.
| | - Anna A McDonough
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Kengo Horie
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Jiménez A, Jiménez P, Inoue K, Young LJ, González-Mariscal G. Oxytocin antagonist does not disrupt rabbit maternal behavior despite binding to brain oxytocin receptors. J Neuroendocrinol 2023; 35:e13236. [PMID: 36762715 PMCID: PMC10363570 DOI: 10.1111/jne.13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
We explored a possible role of oxytocin (OXT) for the onset and maintenance of rabbit maternal behavior by: (a) confirming that a selective oxytocin receptor antagonist (OTA) widely used in rodents selectively binds to OXT receptors (OXTR) in the rabbit brain and (b) determining the effect of daily intracerebroventricular (icv) injections of OTA to primiparous and multiparous does from gestation day 29 to lactation day 3. OTA efficiently displaced the high affinity, selective oxytocin receptor (OXTR) radioligand, 125 I-labeled ornithine vasotocin analog (125 I-OVTA), but was much less effective at displacing the selective V1a vasopressin receptor radioligand, 125 I-labeled linear vasopressin, thus showing high affinity and selectivity of OTA for rabbit OXTR as in rodents. Further, ICV OTA injections did not modify nest-building, latency to enter the nest box, time spent nursing or the amount of milk produced, relative to vehicle-injected does. The percentage of mothers suckling the litter was also similar between both groups, regardless of parity. Together, our results do not support a role of OXT for the initiation or maintenance of rabbit maternal behavior. Future studies are warranted to determine if OXT participates in fine-tuning additional aspects of the maternal ethogram, for example, circadian periodicity of nursing and nest defense.
Collapse
Affiliation(s)
- Angeles Jiménez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, México
| | - Pedro Jiménez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, México
| | - Kiyoshi Inoue
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Larry J. Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | |
Collapse
|
10
|
Potretzke S, Zhang Y, Li J, Fecteau KM, Erikson DW, Hibert M, Ryabinin AE. Male-selective effects of oxytocin agonism on alcohol intake: behavioral assessment in socially housed prairie voles and involvement of RAGE. Neuropsychopharmacology 2023; 48:920-928. [PMID: 36369481 PMCID: PMC10156683 DOI: 10.1038/s41386-022-01490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Targeting the oxytocin (OXT) peptide system has emerged as a promising new approach for the treatment of alcohol use disorder (AUD). However, further advancements in this development depend on properly modeling various complex social aspects of AUD and its treatment. Here we examined behavioral and molecular underpinnings of OXT receptor (OXTR) agonism in prairie voles, a rodent species with demonstrated translational validity for neurobiological mechanisms regulating social affiliations. To further improve translational validity of these studies, we examined effects of intranasal (IN) OXT administration in male and female prairie voles socially housed in the presence of untreated cagemates. IN OXT selectively inhibited alcohol drinking in male, but not female, animals. Further, we confirmed that exogenously administered OXT penetrates the prairie vole brain and showed that Receptor for Advanced Glycation End-products assists this penetration after IN, but not intraperitoneal (IP), OXT administration. Finally, we demonstrated that IP administration of LIT-001, a small-molecule OXTR agonist, inhibits alcohol intake in male, but not female, prairie voles socially housed in the presence of untreated cagemates. Taken together, results of this study support the promise of selectively targeting OXTR for individualized treatment of AUD.
Collapse
Affiliation(s)
- Sheena Potretzke
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Yangmiao Zhang
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ju Li
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kristopher M Fecteau
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 Route du Rhin, F-67412, Illkirch, France
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
11
|
Danoff JS, Whelan EA, Connelly JJ. Is oxytocin receptor signaling really dispensable for social attachment? COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 14:100178. [PMID: 36872951 PMCID: PMC9981807 DOI: 10.1016/j.cpnec.2023.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Affiliation(s)
- Joshua S Danoff
- Department of Psychology, Program in Fundamental Neuroscience, University of Virginia, United States
| | - Emma A Whelan
- Department of Psychology, Program in Fundamental Neuroscience, University of Virginia, United States
| | - Jessica J Connelly
- Department of Psychology, Program in Fundamental Neuroscience, University of Virginia, United States
| |
Collapse
|
12
|
Fricker BA, Roshko VC, Jiang J, Kelly AM. Partner separation rescues pair bond-induced decreases in hypothalamic oxytocin neural densities. Sci Rep 2023; 13:4835. [PMID: 36964221 PMCID: PMC10037388 DOI: 10.1038/s41598-023-32076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
Studies in prairie voles (Microtus ochrogaster) have shown that although formation of the pair bond is accompanied by a suite of behavioral changes, a bond between two voles can dissolve and individuals can form new pair bonds with other conspecifics. However, the neural mechanisms underlying this behavioral flexibility have not been well-studied. Here we examine plasticity of nonapeptide, vasopressin (VP) and oxytocin (OT), neuronal populations in relation to bonding and the dissolution of bonds. Using adult male and female prairie voles, animals were either pair bonded, co-housed with a same-sex sibling, separated from their pair bond partner, or separated from their sibling. We examined neural densities of VP and OT cell groups and observed plasticity in the nonapeptide populations of the paraventricular nucleus of the hypothalamus (PVN). Voles that were pair bonded had fewer PVN OT neurons, suggesting that PVN OT neural densities decrease with pair bonding, but increase and return to a pre-pair bonded baseline after the dissolution of a pair bond. Our findings suggest that the PVN nonapeptide cell groups are particularly plastic in adulthood, providing a mechanism by which voles can exhibit context-appropriate behavior related to bond status.
Collapse
Affiliation(s)
- Brandon A Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Venezia C Roshko
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Jinrun Jiang
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Sadino JM, Bradeen XG, Kelly CJ, Brusman LE, Walker DM, Donaldson ZR. Prolonged partner separation erodes nucleus accumbens transcriptional signatures of pair bonding in male prairie voles. eLife 2023; 12:e80517. [PMID: 36852906 PMCID: PMC10112888 DOI: 10.7554/elife.80517] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
The loss of a spouse is often cited as the most traumatic event in a person's life. However, for most people, the severity of grief and its maladaptive effects subside over time via an understudied adaptive process. Like humans, socially monogamous prairie voles (Microtus ochrogaster) form opposite-sex pair bonds, and upon partner separation, show stress phenotypes that diminish over time. We test the hypothesis that extended partner separation diminishes pair bond-associated behaviors and causes pair bond transcriptional signatures to erode. Opposite-sex or same-sex paired males were cohoused for 2 weeks and then either remained paired or were separated for 48 hours or 4 weeks before collecting fresh nucleus accumbens tissue for RNAseq. In a separate cohort, we assessed partner-directed affiliation at these time points. We found that these behaviors persist despite prolonged separation in both same-sex and opposite-sex paired voles. Opposite-sex pair bonding led to changes in accumbal transcription that were stably maintained while animals remained paired but eroded following prolonged partner separation. Eroded genes are associated with gliogenesis and myelination, suggesting a previously undescribed role for glia in pair bonding and loss. Further, we pioneered neuron-specific translating ribosomal affinity purification in voles. Neuronally enriched transcriptional changes revealed dopaminergic-, mitochondrial-, and steroid hormone signaling-associated gene clusters sensitive to acute pair bond disruption and loss adaptation. Our results suggest that partner separation erodes transcriptomic signatures of pair bonding despite core behavioral features of the bond remaining intact, revealing potential molecular processes priming a vole to be able to form a new bond.
Collapse
Affiliation(s)
- Julie M Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Xander G Bradeen
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
- Department of Adult Hematology, University of Colorado- Anschutz Medical CampusAuroraUnited States
| | - Conor J Kelly
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Liza E Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science University, School of MedicinePortlandUnited States
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
14
|
Freund-Mercier MJ. [How oxytocin became overtime the attachment-mediating hormone]. Biol Aujourdhui 2023; 216:113-123. [PMID: 36744977 DOI: 10.1051/jbio/2022014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 02/07/2023]
Abstract
Oxytocin is a pleiotropic molecule which, in addition to its facilitating action during parturition and milk ejection, is involved in social and prosocial behaviors such as attachment. This article presents, after a brief historical review, the action of oxytocin during the milk ejection reflex. Oxytocin is indeed essential for this vital function in mammals. It is both a neurohormone released into the bloodstream by the axon terminals of the posterior pituitary and a neuromodulator released in the hypothalamus by the soma and dendrites of oxytocinergic magnocellular neurons. In addition, oxytocin is also released by the axon terminals of parvocellular neurons and axon collaterals of magnocellular neurons in the brain. Both maternal attachment in rats and ewes and attachment between sexual partners in the prairie vole, one of the few monogamous rodent species, are mediated by central oxytocin. However, neither administering oxytocin into the brain nor increasing expression of the oxytocin receptor in the nucleus accumbens using a gene transfer technique converts polygamous voles to monogamous ones. Unfortunately, translation of animal data to human remains problematic due to still unsolved difficulties in modifying the level of oxytocin in the brain.
Collapse
Affiliation(s)
- Marie-José Freund-Mercier
- Institut des Neurosciences cellulaires et intégratives, UPR CNRS 3212, Université de Strasbourg, 4, rue Blaise Pascal, 67081 Strasbourg, France
| |
Collapse
|
15
|
Coccia G, La Greca F, Di Luca M, Scheggia D. Dissecting social decision-making: A spotlight on oxytocinergic transmission. Front Mol Neurosci 2022; 15:1061934. [PMID: 36618824 PMCID: PMC9813388 DOI: 10.3389/fnmol.2022.1061934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Social decision-making requires the ability to balance both the interests of the self and the interests of others to survive in social environments. Empathy is essential to the regulation of this type of interaction, and it often sustains relevant prosocial behaviors such as altruism and helping behavior. In the last decade, our capacity to assess affective and empathy-like behaviors in rodents has expanded our understanding of the neurobiological substrates that underly social decision-making processes such as prosocial behaviors. Within this context, oxytocinergic transmission is profoundly implicated in modulating some of the major components of social decision-making. Thus, this review will present evidence of the association between oxytocin and empathy-like and prosocial behaviors in nonhuman animals. Then, we will dissect the involvement of oxytocinergic transmission-across different brain regions and pathways-in some of the key elements of social decision-making such as emotional discrimination, social recognition, emotional contagion, social dominance, and social memory. Evidence of the modulatory role of oxytocin on social decision-making has raised considerable interest in its clinical relevance, therefore we will also discuss the controversial findings on intranasal oxytocin administration.
Collapse
Affiliation(s)
| | | | | | - Diego Scheggia
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Powell JM, Garvin MM, Lee NS, Kelly AM. Behavioral trajectories of aging prairie voles (Microtus ochrogaster): Adapting behavior to social context wanes with advanced age. PLoS One 2022; 17:e0276897. [PMCID: PMC9665403 DOI: 10.1371/journal.pone.0276897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies using mice have examined the effects of aging on cognitive tasks, as well as sensory and motor functions. However, few studies have examined the influence of aging on social behavior. Prairie voles (Microtus ochrogaster) are a socially monogamous and biparental rodent that live in small family groups and are now among the most popular rodent models for studies examining social behavior. Although the social behavioral trajectories of early-life development in prairie voles have been well-studied, how social behavior may change throughout adulthood remains unknown. Here we examined behavior in virgin male and female prairie voles in four different age groups: postnatal day (PND) 60–80, 140–160, 220–240, and 300–320. All animals underwent testing in a novel object task, a dominance test, a resident-intruder test, and several iterations of social approach and social interaction tests with varying types of social stimuli (i.e., novel same-sex conspecific, novel opposite-sex conspecific, familiar same-sex sibling/cagemate, small group of novel same-sex conspecifics). We found that age influenced neophobia and dominance, but not social approach behavior. Further, we found that young adult, but not older adult, prairie voles adapt prosocial and aggressive behavior relative to social context, and that selective aggression occurs in relation to age even in the absence of a pair bond. Our results suggest that prairie voles calibrate social phenotype in a context-dependent manner in young adulthood and stop adjusting behavior to social context in advanced age, demonstrating that social behavior is plastic not only throughout early development, but also well into adulthood. Together, this study provides insight into age-related changes in social behavior in prairie voles and shows that prairie voles may be a viable model for studying the cognitive and physiological benefits of social relationships and social engagement in advanced age.
Collapse
Affiliation(s)
- Jeanne M. Powell
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Madison M. Garvin
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Nicholas S. Lee
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Aubrey M. Kelly
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Inoue K, Ford CL, Horie K, Young LJ. Oxytocin receptors are widely distributed in the prairie vole (Microtus ochrogaster) brain: Relation to social behavior, genetic polymorphisms, and the dopamine system. J Comp Neurol 2022; 530:2881-2900. [PMID: 35763609 PMCID: PMC9474670 DOI: 10.1002/cne.25382] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022]
Abstract
Oxytocin regulates social behavior via direct modulation of neurons, regulation of neural network activity, and interaction with other neurotransmitter systems. The behavioral effects of oxytocin signaling are determined by the species-specific distribution of brain oxytocin receptors. The socially monogamous prairie vole has been a useful model organism for elucidating the role of oxytocin in social behaviors, including pair bonding, response to social loss, and consoling. However, there has been no comprehensive mapping of oxytocin receptor-expressing cells throughout the prairie vole brain. Here, we employed a highly sensitive in situ hybridization, RNAscope, to construct an exhaustive, brain-wide map of oxytocin receptor mRNA-expressing cells. We found that oxytocin receptor mRNA expression was widespread and diffused throughout the brain, with specific areas displaying a particularly robust expression. Comparing receptor binding with mRNA revealed that regions of the hippocampus and substantia nigra contained oxytocin receptor protein but lacked mRNA, indicating that oxytocin receptors can be transported to distal neuronal processes, consistent with presynaptic oxytocin receptor functions. In the nucleus accumbens, a region involved in oxytocin-dependent social bonding, oxytocin receptor mRNA expression was detected in both the D1 and D2 dopamine receptor-expressing subtypes of cells. Furthermore, natural genetic polymorphisms robustly influenced oxytocin receptor expression in both D1 and D2 receptor cell types in the nucleus accumbens. Collectively, our findings further elucidate the extent to which oxytocin signaling is capable of influencing brain-wide neural activity, responses to social stimuli, and social behavior. KEY POINTS: Oxytocin receptor mRNA is diffusely expressed throughout the brain, with strong expression concentrated in certain areas involved in social behavior. Oxytocin receptor mRNA expression and protein localization are misaligned in some areas, indicating that the receptor protein may be transported to distal processes. In the nucleus accumbens, oxytocin receptors are expressed on cells expressing both D1 and D2 dopamine receptor subtypes, and the majority of variation in oxytocin receptor expression between animals is attributable to polymorphisms in the oxytocin receptor gene.
Collapse
Affiliation(s)
- Kiyoshi Inoue
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Kengo Horie
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Larry J. Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
18
|
López-Gutiérrez MF, Mejía-Chávez S, Alcauter S, Portillo W. The neural circuits of monogamous behavior. Front Neural Circuits 2022; 16:978344. [PMID: 36247729 PMCID: PMC9559370 DOI: 10.3389/fncir.2022.978344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The interest in studying the neural circuits related to mating behavior and mate choice in monogamous species lies in the parallels found between human social structure and sexual behavior and that of other mammals that exhibit social monogamy, potentially expanding our understanding of human neurobiology and its underlying mechanisms. Extensive research has suggested that social monogamy, as opposed to non-monogamy in mammals, is a consequence of the neural encoding of sociosensory information from the sexual partner with an increased reward value. Thus, the reinforced value of the mate outweighs the reward value of mating with any other potential sexual partners. This mechanism reinforces the social relationship of a breeding pair, commonly defined as a pair bond. In addition to accentuated prosocial behaviors toward the partner, other characteristic behaviors may appear, such as territorial and partner guarding, selective aggression toward unfamiliar conspecifics, and biparental care. Concomitantly, social buffering and distress upon partner separation are also observed. The following work intends to overview and compare known neural and functional circuits that are related to mating and sexual behavior in monogamous mammals. We will particularly discuss reports on Cricetid rodents of the Microtus and Peromyscus genus, and New World primates (NWP), such as the Callicebinae subfamily of the titi monkey and the marmoset (Callithrix spp.). In addition, we will mention the main factors that modulate the neural circuits related to social monogamy and how that modulation may reflect phenotypic differences, ultimately creating the widely observed diversity in social behavior.
Collapse
Affiliation(s)
| | | | | | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
19
|
Rigney N, de Vries GJ, Petrulis A, Young LJ. Oxytocin, Vasopressin, and Social Behavior: From Neural Circuits to Clinical Opportunities. Endocrinology 2022; 163:bqac111. [PMID: 35863332 PMCID: PMC9337272 DOI: 10.1210/endocr/bqac111] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/19/2022]
Abstract
Oxytocin and vasopressin are peptide hormones secreted from the pituitary that are well known for their peripheral endocrine effects on childbirth/nursing and blood pressure/urine concentration, respectively. However, both peptides are also released in the brain, where they modulate several aspects of social behaviors. Oxytocin promotes maternal nurturing and bonding, enhances social reward, and increases the salience of social stimuli. Vasopressin modulates social communication, social investigation, territorial behavior, and aggression, predominantly in males. Both peptides facilitate social memory and pair bonding behaviors in monogamous species. Here we review the latest research delineating the neural circuitry of the brain oxytocin and vasopressin systems and summarize recent investigations into the circuit-based mechanisms modulating social behaviors. We highlight research using modern molecular genetic technologies to map, monitor activity of, or manipulate neuropeptide circuits. Species diversity in oxytocin and vasopressin effects on social behaviors are also discussed. We conclude with a discussion of the translational implications of oxytocin and vasopressin for improving social functioning in disorders with social impairments, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA
| | - Geert J de Vries
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Aras Petrulis
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30329, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
20
|
Putnam PT, Chang SWC. Interplay between the oxytocin and opioid systems in regulating social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210050. [PMID: 35858101 PMCID: PMC9272147 DOI: 10.1098/rstb.2021.0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 07/30/2023] Open
Abstract
The influence of neuromodulators on brain activity and behaviour is undeniably profound, yet our knowledge of the underlying mechanisms, or ability to reliably reproduce effects across varying conditions, is still lacking. Oxytocin, a hormone that acts as a neuromodulator in the brain, is an example of this quandary; it powerfully shapes behaviours across nearly all mammalian species, yet when manipulated exogenously can produce unreliable or sometimes unexpected behavioural results across varying contexts. While current research is rapidly expanding our understanding of oxytocin, interactions between oxytocin and other neuromodulatory systems remain underappreciated in the current literature. This review highlights interactions between oxytocin and the opioid system that serve to influence social behaviour and proposes a parallel-mechanism hypothesis to explain the supralinear effects of combinatorial neuropharmacological approaches. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
21
|
Borie AM, Young LJ, Liu RC. Sex-specific and social experience-dependent oxytocin-endocannabinoid interactions in the nucleus accumbens: implications for social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210057. [PMID: 35858094 PMCID: PMC9272148 DOI: 10.1098/rstb.2021.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 08/31/2023] Open
Abstract
Oxytocin modulates social behaviour across diverse vertebrate taxa, but the precise nature of its effects varies across species, individuals and lifetimes. Contributing to this variation is the fact that oxytocin's physiological effects are mediated through interaction with diverse neuromodulatory systems and can depend on the specifics of the local circuits it acts on. Furthermore, those effects can be influenced by both genetics and experience. Here we discuss this complexity through the lens of a specific neuromodulatory system, endocannabinoids, interacting with oxytocin in the nucleus accumbens to modulate prosocial behaviours in prairie voles. We provide a survey of current knowledge of oxytocin-endocannabinoid interactions in relation to social behaviour. We review in detail recent research in monogamous female prairie voles demonstrating that social experience, such as mating and pair bonding, can change how oxytocin modulates nucleus accumbens glutamatergic signalling through the recruitment of endocannabinoids to modulate prosocial behaviour toward the partner. We then discuss potential sex differences in experience-dependent modulation of the nucleus accumbens by oxytocin in voles based on new data in males. Finally, we propose that future oxytocin-based precision medicine therapies should consider how prior social experience interacts with sex and genetics to influence oxytocin actions. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Amélie M. Borie
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Larry J. Young
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert C. Liu
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Borie AM, Agezo S, Lunsford P, Boender AJ, Guo JD, Zhu H, Berman GJ, Young LJ, Liu RC. Social experience alters oxytocinergic modulation in the nucleus accumbens of female prairie voles. Curr Biol 2022; 32:1026-1037.e4. [PMID: 35108521 PMCID: PMC8930613 DOI: 10.1016/j.cub.2022.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/11/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Abstract
Social relationships are dynamic and evolve with shared and personal experiences. Whether the functional role of social neuromodulators also evolves with experience to shape the trajectory of relationships is unknown. We utilized pair bonding in the socially monogamous prairie vole as an example of socio-sexual experience that dramatically alters behaviors displayed toward other individuals. We investigated oxytocin-dependent modulation of excitatory synaptic transmission in the nucleus accumbens as a function of pair-bonding status. We found that an oxytocin receptor agonist decreases the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in sexually naive virgin, but not pair-bonded, female voles, while it increases the amplitude of electrically evoked EPSCs in paired voles, but not in virgins. This oxytocin-induced potentiation of synaptic transmission relies on the de novo coupling between oxytocin receptor signaling and endocannabinoid receptor type 1 (CB1) receptor signaling in pair-bonded voles. Blocking CB1 receptors after pair-bond formation increases the occurrence of a specific form of social rejection-defensive upright response-that is displayed toward the partner, but not toward a novel individual. Altogether, our results demonstrate that oxytocin's action in the nucleus accumbens is changed through social experience in a way that regulates the trajectory of social interactions as the relationship with the partner unfolds, potentially promoting the maintenance of a pair bond by inhibiting aggressive responses. These results provide a mechanism by which social experience and context shift oxytocinergic signaling to impact neural and behavioral responses to social cues.
Collapse
Affiliation(s)
- Amélie M Borie
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Sena Agezo
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Parker Lunsford
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Arjen J Boender
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Ji-Dong Guo
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Hong Zhu
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Gordon J Berman
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8555, Japan.
| | - Robert C Liu
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Lee NS, Beery AK. Selectivity and Sociality: Aggression and Affiliation Shape Vole Social Relationships. Front Behav Neurosci 2022; 16:826831. [PMID: 35330842 PMCID: PMC8940285 DOI: 10.3389/fnbeh.2022.826831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
The formation of selective social relationships is not a requirement of group living; sociality can be supported by motivation for social interaction in the absence of preferences for specific individuals, and by tolerance in place of social motivation. For species that form selective social relationships, these can be maintained by preference for familiar partners, as well as by avoidance of or aggression toward individuals outside of the social bond. In this review, we explore the roles that aggression, motivation, and tolerance play in the maintenance of selective affiliation. We focus on prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus) as rodent species that both exhibit the unusual tendency to form selective social relationships, but differ with regard to mating system. These species provide an opportunity to investigate the mechanisms that underlie social relationships, and to compare mechanisms supporting pair bonds with mates and same-sex peer relationships. We then relate this to the role of aggression in group composition in a comparative context.
Collapse
Affiliation(s)
- Nicole S. Lee
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, United States
| | - Annaliese K. Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Annaliese K. Beery,
| |
Collapse
|
24
|
Cook CN, Freeman AR, Liao JC, Mangiamele LA. The Philosophy of Outliers: Reintegrating Rare Events Into Biological Science. Integr Comp Biol 2022; 61:2191-2198. [PMID: 34283241 PMCID: PMC9076997 DOI: 10.1093/icb/icab166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Individual variation in morphology, physiology, and behavior has been a topic of great interest in the biological sciences. While scientists realize the importance of understanding diversity in individual phenotypes, historically the "minority" results (i.e., outlier observations or rare events) of any given experiment have been dismissed from further analysis. We need to reframe how we view "outliers" to improve our understanding of biology. These rare events are often treated as problematic or spurious, when they can be real rare events or individuals driving evolution in a population. It is our perspective that to understand what outliers can tell us in our data, we need to: (1) Change how we think about our data philosophically, (2) Fund novel collaborations using science "weavers" in our national funding agencies, and (3) Bridge long-term field and lab studies to reveal these outliers in action. By doing so, we will improve our understanding of variation and evolution. We propose that this shift in culture towards more integrative science will incorporate diverse teams, citizen scientists and local naturalists, and change how we teach future students.
Collapse
Affiliation(s)
- Chelsea N Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Angela R Freeman
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - James C Liao
- Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, Gainesville, FL 32611, USA
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| |
Collapse
|
25
|
Vahaba DM, Halstead ER, Donaldson ZR, Ahern TH, Beery AK. Sex differences in the reward value of familiar mates in prairie voles. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12790. [PMID: 35044087 PMCID: PMC8917082 DOI: 10.1111/gbb.12790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022]
Abstract
The rewarding properties of social interactions facilitate relationship formation and maintenance. Prairie voles are one of the few laboratory species that form selective relationships, manifested as "partner preferences" for familiar partners versus strangers. While both sexes exhibit strong partner preferences, this similarity in outward behavior likely results from sex-specific neurobiological mechanisms. We recently demonstrated that in operant trials, females worked hardest for access to familiar conspecifics of either sex, while males worked equally hard for access to any female, indicating a sex difference in social motivation. As tests were performed with one social target at a time, males might have experienced a ceiling effect, and familiar females might be more relatively rewarding in a choice scenario. Here we performed an operant social choice task in which voles lever-pressed to gain temporary access to either the chamber containing their mate or one containing a novel opposite-sex vole. Females worked hardest to access their mate, while males pressed at similar rates for either female. Individual male behavior was heterogeneous, congruent with multiple mating strategies in the wild. Voles exhibited preferences for favorable over unfavorable environments in a non-social operant task, indicating that lack of social preference does not reflect lack of discrimination. Natural variation in oxytocin receptor genotype at the intronic single nucleotide polymorphism NT213739 was associated with oxytocin receptor density, and predicted individual variation in stranger-directed aggressive behavior. These findings suggest that convergent preference behavior in male and female voles results from sex-divergent pathways, particularly in the realm of social motivation.
Collapse
Affiliation(s)
- Daniel M. Vahaba
- Program in Neuroscience, Department of BiologySmith CollegeNorthamptonMassachusettsUSA
| | - Emily R. Halstead
- Program in Neuroscience, Department of BiologySmith CollegeNorthamptonMassachusettsUSA
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, Department of Psychology & NeuroscienceUniversity of Colorado BoulderBoulderColoradoUSA
| | - Todd H. Ahern
- Center for Behavioral NeuroscienceQuinnipiac UniversityHamdenConnecticutUSA
| | - Annaliese K. Beery
- Program in Neuroscience, Department of BiologySmith CollegeNorthamptonMassachusettsUSA,Department of Integrative BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
26
|
Beery AK, Lopez SA, Blandino KL, Lee NS, Bourdon NS. Social selectivity and social motivation in voles. eLife 2021; 10:e72684. [PMID: 34726153 PMCID: PMC8594915 DOI: 10.7554/elife.72684] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Selective relationships are fundamental to humans and many other animals, but relationships between mates, family members, or peers may be mediated differently. We examined connections between social reward and social selectivity, aggression, and oxytocin receptor signaling pathways in rodents that naturally form enduring, selective relationships with mates and peers (monogamous prairie voles) or peers (group-living meadow voles). Female prairie and meadow voles worked harder to access familiar versus unfamiliar individuals, regardless of sex, and huddled extensively with familiar subjects. Male prairie voles displayed strongly selective huddling preferences for familiar animals, but only worked harder to repeatedly access females versus males, with no difference in effort by familiarity. This reveals a striking sex difference in pathways underlying social monogamy and demonstrates a fundamental disconnect between motivation and social selectivity in males-a distinction not detected by the partner preference test. Meadow voles exhibited social preferences but low social motivation, consistent with tolerance rather than reward supporting social groups in this species. Natural variation in oxytocin receptor binding predicted individual variation in prosocial and aggressive behaviors. These results provide a basis for understanding species, sex, and individual differences in the mechanisms underlying the role of social reward in social preference.
Collapse
Affiliation(s)
- Annaliese K Beery
- Department of Integrative Biology, University of California BerkeleyBerkeleyUnited States
- Program in Neuroscience, Departments of Psychology and Biology, Smith CollegeNorthamptonUnited States
- Neuroscience and Behavior Graduate Program, University of MassachusettsAmherst, MAUnited States
| | - Sarah A Lopez
- Program in Neuroscience, Departments of Psychology and Biology, Smith CollegeNorthamptonUnited States
| | - Katrina L Blandino
- Program in Neuroscience, Departments of Psychology and Biology, Smith CollegeNorthamptonUnited States
| | - Nicole S Lee
- Neuroscience and Behavior Graduate Program, University of MassachusettsAmherst, MAUnited States
| | - Natalie S Bourdon
- Program in Neuroscience, Departments of Psychology and Biology, Smith CollegeNorthamptonUnited States
| |
Collapse
|
27
|
Gossman KR, Dykstra B, García BH, Swopes AP, Kimbrough A, Smith AS. Pair Bond-Induced Affiliation and Aggression in Male Prairie Voles Elicit Distinct Functional Connectivity in the Social Decision-Making Network. Front Neurosci 2021; 15:748431. [PMID: 34720866 PMCID: PMC8553992 DOI: 10.3389/fnins.2021.748431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Complex social behaviors are governed by a neural network theorized to be the social decision-making network (SDMN). However, this theoretical network is not tested on functional grounds. Here, we assess the organization of regions in the SDMN using c-Fos, to generate functional connectivity models during specific social interactions in a socially monogamous rodent, the prairie voles (Microtus ochrogaster). Male voles displayed robust selective affiliation toward a female partner, while exhibiting increased threatening, vigilant, and physically aggressive behaviors toward novel males and females. These social interactions increased c-Fos levels in eight of the thirteen brain regions of the SDMN. Each social encounter generated a distinct correlation pattern between individual brain regions. Thus, hierarchical clustering was used to characterize interrelated regions with similar c-Fos activity resulting in discrete network modules. Functional connectivity maps were constructed to emulate the network dynamics resulting from each social encounter. Our partner functional connectivity network presents similarities to the theoretical SDMN model, along with connections in the network that have been implicated in partner-directed affiliation. However, both stranger female and male networks exhibited distinct architecture from one another and the SDMN. Further, the stranger-evoked networks demonstrated connections associated with threat, physical aggression, and other aversive behaviors. Together, this indicates that distinct patterns of functional connectivity in the SDMN can be detected during select social encounters.
Collapse
Affiliation(s)
- Kyle R. Gossman
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Benjamin Dykstra
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Byron H. García
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Arielle P. Swopes
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
28
|
Freeman H, Scholl JL, AnisAbdellatif M, Gnimpieba E, Forster GL, Jacob S. I only have eyes for you: Oxytocin administration supports romantic attachment formation through diminished interest in close others and strangers. Psychoneuroendocrinology 2021; 134:105415. [PMID: 34607172 DOI: 10.1016/j.psyneuen.2021.105415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
Animal studies confirm oxytocin's (OT) role in regulating monogamous sexual behavior in pair-bonding rodents; and human studies are beginning to translate how this highly conserved neuropeptide is implicated in romantic attachment formation. A number of studies have shown how OT promotes relationship exclusivity by diminishing interest in strangers and increasing reward response to partners. Less clear is whether these effects are modulated by romantic duration or life history factors, or if OT's social distancing effects generalize beyond strangers to close relationships. We report the results of a double-blind, placebo-controlled crossover study on the effects of a single dose of intranasal OT (24 IU) on forty-four young adults (91% female) in different stages of romantic attachment formation (M duration=21 months). Participants completed a screening survey and two lab visits separated by 4-weeks, including a diagrammatic measure of attachment to parents and peers, attitudes related to sexual conservatism and partner infidelity, ratings scales of closeness to romantic partners, and visual attractiveness ratings of strangers. Individual differences were examined by life history factors, including maternal love withdrawal and parental separation. Results indicated that OT administration decreased attachment to mothers, decreased attachment to subsidiary attachment figures, and decreased attraction to strangers. In all cases, emotional distancing was stronger among participants in newer romantic relationships. OT increased arousal to partner infidelity and increased sexual conservatism among participants with negative life history experiences (parental separation and high love withdrawal), whereas the reverse was true for participants reporting a more positive life history. Findings suggest that OT supports exclusivity through social distancing from strangers and close others within a sensitive period of attachment formation. In addition, findings indicate OT plays a different role in mate retention strategies by life history.
Collapse
Affiliation(s)
- Harry Freeman
- Division of Counseling and Psychology in Education & Center for Brain and Behavior Research, School of Education, University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, United States.
| | - Jamie L Scholl
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, United States
| | - Musheera AnisAbdellatif
- Division of Counseling and Psychology in Education & Center for Brain and Behavior Research, School of Education, University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, United States
| | - Etienne Gnimpieba
- Biomedical Engineering, School of Arts & Sciences, University of South Dakota, United States
| | - Gina L Forster
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Suma Jacob
- Department of Psychiatry and Behavioral Sciences, Child & Adolescent Psychiatry, University of Minnesota Medical School, United States
| |
Collapse
|
29
|
Camerino C. Oxytocin Involvement in Body Composition Unveils the True Identity of Oxytocin. Int J Mol Sci 2021; 22:ijms22126383. [PMID: 34203705 PMCID: PMC8232088 DOI: 10.3390/ijms22126383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023] Open
Abstract
The origin of the Oxytocin/Vasopressin system dates back about 600 million years. Oxytocin (Oxt) together with Vasopressin (VP) regulate a diversity of physiological functions that are important for osmoregulation, reproduction, metabolism, and social behavior. Oxt/VP-like peptides have been identified in several invertebrate species and they are functionally related across the entire animal kingdom. Functional conservation enables future exploitation of invertebrate models to study Oxt’s functions not related to pregnancy and the basic mechanisms of central Oxt/VP signaling. Specifically, Oxt is well known for its effects on uteri contractility and milk ejection as well as on metabolism and energy homeostasis. Moreover, the striking evidence that Oxt is linked to energy regulation is that Oxt- and Oxytocin receptor (Oxtr)-deficient mice show late onset obesity. Interestingly Oxt−/− or Oxtr−/− mice develop weight gain without increasing food intake, suggesting that a lack of Oxt reduce metabolic rate. Oxt is expressed in a diversity of skeletal muscle phenotypes and regulates thermogenesis and bone mass. Oxt may increases skeletal muscle tonicity and/or increases body temperature. In this review, the author compared the three most recent theories on the effects of Oxt on body composition.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology (Section of Pharmacology), School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
30
|
Abstract
In contrast to traditional laboratory animals, prairie voles form socially monogamous partnerships in the wild and exhibit lasting social preferences for familiar individuals-both mates and same-sex peers-in the laboratory. Decades of research into the mechanisms supporting pair bonding behavior have made prairie voles an important model organism for the study of social relationships. The partner preference test is a laboratory test of familiarity preference that takes place over an extended interval (typically 3 hr), during which test subjects can directly interact with conspecifics and often engage in resting side-by-side contact (i.e., huddling). The use of this test has enabled study of the neural pathways and mechanisms involved in promoting or impairing relationship formation. The tendency to form partner preferences is also used as a behavioral indicator of the effects of early life experiences and environmental exposures. While this test was developed to assess the extent of social preference for mates in prairie voles, it has been adapted for use in other social contexts and in multiple other species. This article provides instructions for conducting the classic partner preference test, as well as variations including same-sex "peer" partner preference tests. The effects of several protocol variations are examined, including duration of cohousing, separation interval, use of tethers versus barriers, linear versus branched apparatus configuration, and duration of the test. The roles of social variables including sex of the focal individual, sex of conspecifics, reproductive state, and use of the test in other species are then considered. Finally, sample data are provided along with discussion of scoring and statistical analysis of partner preference tests. © 2021 Wiley Periodicals LLC. Basic Protocol: Partner preference test Support Protocol: Behavioral scoring.
Collapse
|
31
|
Abstract
Prairie voles have emerged as an important rodent model for understanding the neuroscience of social behavior. Prairie voles are well known for their capacity for pair bonding and alloparental care. These behavioral phenomena overlap with human social behavior but are not commonly observed in traditional rodent models. In this article, we highlight the many benefits of using prairie voles in neuroscience research. We begin by describing the advantages of using diverse and non-traditional study models. We then focus on social behaviors, including pair bonding, alloparental care, and peer interactions, that have brought voles to the forefront of social neuroscience. We describe many additional features of prairie vole biology and behavior that provide researchers with opportunities to address an array of research questions. We also survey neuroethological methods that have been used with prairie voles, from classic to modern techniques. Finally, we conclude with a discussion of other vole species, particularly meadow voles, and their own unique advantages for neuroscience studies. This article provides a foundation for researchers who are new to working with voles, as well as for experienced neuroscientists who want to expand their research scope. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- William M. Kenkel
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716
| | - Morgan L. Gustison
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Annaliese K. Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
32
|
Tripp JA, Berrio A, McGraw LA, Matz MV, Davis JK, Inoue K, Thomas JW, Young LJ, Phelps SM. Comparative neurotranscriptomics reveal widespread species differences associated with bonding. BMC Genomics 2021; 22:399. [PMID: 34058981 PMCID: PMC8165761 DOI: 10.1186/s12864-021-07720-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation. RESULTS We first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles. CONCLUSIONS These results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Alejandro Berrio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Present Address: Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Lisa A McGraw
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jamie K Davis
- Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Kiyoshi Inoue
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - James W Thomas
- National Institutes of Health Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, MD, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Steven M Phelps
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
33
|
Horie K, Inoue K, Nishimori K, Young LJ. Investigation of Oxtr-expressing Neurons Projecting to Nucleus Accumbens using Oxtr-ires-Cre Knock-in prairie Voles (Microtus ochrogaster). Neuroscience 2021; 448:312-324. [PMID: 33092784 DOI: 10.1016/j.neuroscience.2020.08.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/10/2023]
Abstract
Social bonds such as parent-infant attachment or pair bonds can be critical for mental and physical well-being. The monogamous prairie vole (Microtus ochrogaster) has proven useful for examining the neural substrates regulating social behaviors, including social bonding. Oxytocin (OXT) and oxytocin receptor (OXTR) play critical roles in alloparental care, pair bonding and consoling behavior in prairie voles. While OXTR in a few regions, such as the nucleus accumbnes (NAcc), prefrontal cortex (PFC) and anterior cingulate cortex (ACC), have been implicated in regulating these behaviors, the extent to which other OXT sensitive areas modulate social behaviors has not been investigated. The NAcc is a central hub for modulating OXTR dependent social behaviors. To identify neurons expressing Oxtr in prairie vole brain, we generated gene knock-in voles expressing Cre recombinase in tandem with Oxtr (Oxtr-ires-Cre) using CRISPR/Cas9 genome editing. We confirmed Oxtr and Cre mRNA co-localization in NAcc, validating this model. Next, we identified putative Oxtr-expressing neurons projecting to NAcc by infusing retrograde CRE-dependent EGFP AAV into NAcc and visualizing fluorescence. We found enhanced green fluorescent protein (EGFP) positive neurons in anterior olfactory nucleus, PFC, ACC, insular cortex (IC), paraventricular thalamus (PVT), basolateral amygdala (BLA), and posteromedial and posterolateral cortical amygdaloid area (PMCo, PLCo). The ACC to NAcc OXTR projection may represent a species-specific circuit since Oxtr-expressing neurons in the ACC of mice were reported not to project to the NAcc. This is the first delineation of Oxtr-expressing neural circuits in the prairie vole, and demonstrates the utility of this novel genetically modified organism for characterizing OXTR circuits involved in social behaviors.
Collapse
Affiliation(s)
- Kengo Horie
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan; Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Kiyoshi Inoue
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Road, Atlanta, GA 30329, USA.
| |
Collapse
|
34
|
Abstract
Oxytocin regulates parturition, lactation, parental nurturing, and many other social behaviors in both sexes. The circuit mechanisms by which oxytocin modulates social behavior are receiving increasing attention. Here, we review recent studies on oxytocin modulation of neural circuit function and social behavior, largely enabled by new methods of monitoring and manipulating oxytocin or oxytocin receptor neurons in vivo. These studies indicate that oxytocin can enhance the salience of social stimuli and increase signal-to-noise ratios by modulating spiking and synaptic plasticity in the context of circuits and networks. We highlight oxytocin effects on social behavior in nontraditional organisms such as prairie voles and discuss opportunities to enhance the utility of these organisms for studying circuit-level modulation of social behaviors. We then discuss recent insights into oxytocin neuron activity during social interactions. We conclude by discussing some of the major questions and opportunities in the field ahead.
Collapse
Affiliation(s)
- Robert C Froemke
- Skirball Institute, Neuroscience Institute, and Departments of Otolaryngology and Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA; .,Center for Neural Science, New York University, New York, NY 10003, USA
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.,Center for Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
35
|
Petersen CL, Davis SED, Patel B, Hurley LM. Social Experience Interacts with Serotonin to Affect Functional Connectivity in the Social Behavior Network following Playback of Social Vocalizations in Mice. eNeuro 2021; 8:ENEURO.0247-20.2021. [PMID: 33658309 PMCID: PMC8114900 DOI: 10.1523/eneuro.0247-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Past social experience affects the circuitry responsible for producing and interpreting current behaviors. The social behavior network (SBN) is a candidate neural ensemble to investigate the consequences of early-life social isolation. The SBN interprets and produces social behaviors, such as vocalizations, through coordinated patterns of activity (functional connectivity) between its multiple nuclei. However, the SBN is relatively unexplored with respect to murine vocal processing. The serotonergic system is sensitive to past experience and innervates many nodes of the SBN; therefore, we tested whether serotonin signaling interacts with social experience to affect patterns of immediate early gene (IEG; cFos) induction in the male SBN following playback of social vocalizations. Male mice were separated into either social housing of three mice per cage or into isolated housing at 18-24 d postnatal. After 28-30 d in housing treatment, mice were parsed into one of three drug treatment groups: control, fenfluramine (FEN; increases available serotonin), or pCPA (depletes available serotonin) and exposed to a 60-min playback of female broadband vocalizations (BBVs). FEN generally increased the number of cFos-immunoreactive (-ir) neurons within the SBN, but effects were more pronounced in socially isolated mice. Despite a generalized increase in cFos immunoreactivity, isolated mice had reduced functional connectivity, clustering, and modularity compared with socially reared mice. These results are analogous to observations of functional dysconnectivity in persons with psychopathologies and suggests that early-life social isolation modulates serotonergic regulation of social networks.
Collapse
Affiliation(s)
- Christopher L Petersen
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
- Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, Bloomington, IN 47405
| | - Sarah E D Davis
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
| | - Bhumi Patel
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
| | - Laura M Hurley
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
- Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, Bloomington, IN 47405
- Department of Neuroscience, Indiana University Bloomington, Bloomington, IN 47406
| |
Collapse
|
36
|
Oxytocin in Schizophrenia: Pathophysiology and Implications for Future Treatment. Int J Mol Sci 2021; 22:ijms22042146. [PMID: 33670047 PMCID: PMC7926349 DOI: 10.3390/ijms22042146] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Schizophrenia is a form of mental disorder that is behaviorally characterized by abnormal behavior, such as social function deficits or other behaviors that are disconnected from reality. Dysregulation of oxytocin may play a role in regulating the expression of schizophrenia. Given oxytocin’s role in social cognition and behavior, a variety of studies have examined the potential clinical benefits of oxytocin in improving the psychopathology of patients with schizophrenia. In this review, we highlight the evidence for the role of endogenous oxytocin in schizophrenia, from animal models to human studies. We further discuss the potential of oxytocin as a therapeutic agent for schizophrenia and its implication in future treatment.
Collapse
|
37
|
The promiscuity of the oxytocin-vasopressin systems and their involvement in autism spectrum disorder. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:121-140. [PMID: 34266588 DOI: 10.1016/b978-0-12-819973-2.00009-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxytocin and vasopressin systems have been studied separately in autism spectrum disorder (ASD). Here, we provide evidence from an evolutionary and neuroscience perspective about the shared mechanisms and the common roles in regulating social behaviors. We first discuss findings on the evolutionary history of oxytocin and vasopressin ligands and receptors that highlight their common origin and clarify the evolutionary background of the crosstalk between them. Second, we conducted a comprehensive review of the increasing evidence for the role of both neuropeptides in regulating social behaviors. Third, we reviewed the growing evidence on the associations between the oxytocin/vasopressin systems and ASD, which includes oxytocin and vasopressin dysfunction in animal models of autism and in human patients, and the impact of treatments targeting the oxytocin or the vasopressin systems in children and in adults. Here, we highlight the potential of targeting the oxytocin/vasopressin systems to improve social deficits observed in ASD and the need for further investigations on how to transfer these research innovations into clinical applications.
Collapse
|
38
|
Lu Q, Hu S. Sex differences of oxytocin and vasopressin in social behaviors. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:65-88. [PMID: 34225950 DOI: 10.1016/b978-0-12-820107-7.00005-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neuropeptides oxytocin (OT) and vasopressin (VP) are known to mediate social cognition and behaviors in a sex-dependent manner. This chapter reviews the sex-dependent influence of OT and VP on social behaviors, focusing on (1) partner preference and sexual orientation, (2) memory modulation, (3) emotion regulation, and (4) trust-related behaviors. Most studies suggest that OT promotes familiar (opposite-sex) partner preference, strengthens memory, relieves anxiety, and increases trust. However, VP-regulated social cognition has been studied less than OT. VP facilitates familiar (opposite-sex) partner preference, enhances memory, induces anxiety, and influences happiness/anger perception. Detailed sex differences of these effects are reviewed. There is a male preponderance in the use of animal models and many study results are too complex to draw firm conclusions. Clarifying the complex interplay between the OT/VP system and sex hormones in the regulation of social behaviors is needed.
Collapse
Affiliation(s)
- Qiaoqiao Lu
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
39
|
Translational opportunities for circuit-based social neuroscience: advancing 21st century psychiatry. Curr Opin Neurobiol 2020; 68:1-8. [PMID: 33260106 DOI: 10.1016/j.conb.2020.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
The recent advancements of social behavioral neuroscience are unprecedented. Through manipulations targeting neural circuits, complex behaviors can be switched on and off, social bonds can be induced, and false memories can be 'incepted.' Psychiatry, however, remains tethered to concepts and techniques developed over half a century ago, including purely behavioral definitions of psychopathology and chronic, brain-wide pharmacological interventions. Drawing on recent animal and human research, we outline a circuit-level approach to the social brain and highlight studies demonstrating the translational potential of this approach. We conclude by suggesting ways both clinical practice and translational research can apply circuit-level neuroscientific knowledge to advance psychiatry, including adopting neuroscience-based nomenclature, stratifying patients into diagnostic subgroups based on neurobiological phenotypes, and pharmacologically enhancing psychotherapy.
Collapse
|
40
|
Boender AJ, Young LJ. Oxytocin, vasopressin and social behavior in the age of genome editing: A comparative perspective. Horm Behav 2020; 124:104780. [PMID: 32544402 PMCID: PMC7486992 DOI: 10.1016/j.yhbeh.2020.104780] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Behavioral neuroendocrinology has a rich history of using diverse model organisms to elucidate general principles and evolution of hormone-brain-behavior relationships. The oxytocin and vasopressin systems have been studied in many species, revealing their role in regulating social behaviors. Oxytocin and vasopressin receptors show remarkable species and individual differences in distribution in the brain that have been linked to diversity in social behaviors. New technologies allow for unprecedented interrogation of the genes and neural circuitry regulating behaviors, but these approaches often require transgenic models and are most often used in mice. Here we discuss seminal findings relating the oxytocin and vasopressin systems to social behavior with a focus on non-traditional animal models. We then evaluate the potential of using CRISPR/Cas9 genome editing to examine the roles of genes and enable circuit dissection, manipulation and activity monitoring of the oxytocin and vasopressin systems. We believe that it is essential to incorporate these genetic and circuit level techniques in comparative behavioral neuroendocrinology research to ensure that our field remains innovative and attractive for the next generation of investigators and funding agencies.
Collapse
Affiliation(s)
- Arjen J Boender
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA.
| |
Collapse
|
41
|
Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat Neurosci 2020; 23:1125-1137. [PMID: 32719563 DOI: 10.1038/s41593-020-0674-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Oxytocin (OT) is a great facilitator of social life but, although its effects on socially relevant brain regions have been extensively studied, OT neuron activity during actual social interactions remains unexplored. Most OT neurons are magnocellular neurons, which simultaneously project to the pituitary and forebrain regions involved in social behaviors. In the present study, we show that a much smaller population of OT neurons, parvocellular neurons that do not project to the pituitary but synapse onto magnocellular neurons, is preferentially activated by somatosensory stimuli. This activation is transmitted to the larger population of magnocellular neurons, which consequently show coordinated increases in their activity during social interactions between virgin female rats. Selectively activating these parvocellular neurons promotes social motivation, whereas inhibiting them reduces social interactions. Thus, parvocellular OT neurons receive particular inputs to control social behavior by coordinating the responses of the much larger population of magnocellular OT neurons.
Collapse
|
42
|
Thompson RR. An updated field guide for snark hunting: Comparative contributions to behavioral neuroendocrinology in the era of model organisms. Horm Behav 2020; 122:104742. [PMID: 32173444 DOI: 10.1016/j.yhbeh.2020.104742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Studying neuroendocrine behavioral regulatory mechanisms in a variety of species across vertebrate groups is critical for determining how they work in natural contexts, how they evolved, and ultimately what can be generalized from them, potentially even to humans. All of the above are difficult, at best, if work within our field is exclusively done in traditional laboratory organisms. The importance of comparative approaches for understanding the relationships between hormones and behavior has been recognized and advocated for since our field's inception through a series of papers centered upon a poetic metaphor of Snarks and Boojums, all of which have articulated the benefits that come from studying a diverse range of species and the risks associated with a narrow focus on "model organisms." This mini-review follows in the footsteps of those powerful arguments, highlighting some of the comparative work since the latest interactions of the metaphor that has shaped how we think about three major conceptual frameworks within our field, two of them formalized - the Organization/Activation Model of sexual differentiation and the Social Brain Network - and one, context-dependency, that is generally associated with virtually all modern understandings of how hormones affect behavior. Comparative approaches are broadly defined as those in which the study of mechanism is placed within natural and/or evolutionary contexts, whether they directly compare different species or not. Studies are discussed in relation to how they have either extended or challenged generalities associated with the frameworks, how they have shaped subsequent work in model organisms to further elucidate neuroendocrine behavioral regulatory mechanisms, and how they have stimulated work to determine if and when similar mechanisms influence behavior in our own species.
Collapse
|
43
|
Freeman AR, Aulino EA, Caldwell HK, Ophir AG. Comparison of the distribution of oxytocin and vasopressin 1a receptors in rodents reveals conserved and derived patterns of nonapeptide evolution. J Neuroendocrinol 2020; 32:e12828. [PMID: 31925983 DOI: 10.1111/jne.12828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Oxytocin (OT) and vasopressin (VP) are known modulators of social behaviour across rodents. Research has revealed the location of action of these nonapeptides through localization of their associated receptors, which include the oxytocin receptor (OTR) and the vasopressin 1a receptor (V1aR). As research into these complex systems has progressed, studies investigating how these systems modulate behaviour have remained relatively narrow in scope (ie, focused on how a single brain region shapes behaviour in only a handful of species). However, the brain regions that regulate social behaviour are part of interconnected neural networks for which coordinated activity enables behavioural variation. Thus, to better understand how nonapeptide systems have evolved under different selective pressures among rodent species, we conducted a meta-analysis using a multivariate comparative method to examine the patterns of OTR and V1aR density expression in this taxon. Several brain regions were highly correlated based on their OTR and V1aR binding patterns across species, supporting the notion that the distribution of these receptors is highly conserved in rodents. However, our results also revealed that specific patterns of V1aR density differed from OTR density, and within-genus variance for V1aR was low compared to between-genus variance, suggesting that these systems have responded and evolved quite differently to selective pressures over evolutionary time. We propose that, in addition to examining single brain regions of interest, taking a broad comparative approach when studying the OT and VP systems is important for understanding how the systemic action of nonapeptides modulate social behaviour across species.
Collapse
Affiliation(s)
| | | | - Heather K Caldwell
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | | |
Collapse
|
44
|
Abstract
Oxytocin is a central neuromodulator required for facilitating mate preferences for familiar individuals in a monogamous rodent (prairie vole), irrespective of sex. While the role of oxytocin in mate choice is only understood in a few monogamous species, its function in nonmonogamous species, comprising the vast majority of vertebrate species, remains unclear. To address this issue, we evaluated the involvement of an oxytocin homolog (isotocin, referred herein as oxt) in mate choice in medaka fish (Oryzias latipes). Female medaka prefer to choose familiar mates, whereas male medaka court indiscriminately, irrespective of familiarity. We generated mutants of the oxt ligand (oxt) and receptor genes (oxtr1 and oxtr2) and revealed that the oxt-oxtr1 signaling pathway was essential for eliciting female mate preference for familiar males. This pathway was also required for unrestricted and indiscriminate mating strategy in males. That is, either oxt or oxtr1 mutation in males decreased the number of courtship displays toward novel females, but not toward familiar females. Further, males with these mutations exhibited enhanced mate-guarding behaviors toward familiar females, but not toward novel females. In addition, RNA-sequencing (seq) analysis revealed that the transcription of genes involved in gamma-amino butyric acid metabolism as well as those encoding ion-transport ATPase are up-regulated in both oxt and oxtr1 mutants only in female medaka, potentially explaining the sex difference of the mutant phenotype. Our findings provide genetic evidence that oxt-oxtr1 signaling plays a role in the mate choice for familiar individuals in a sex-specific manner in medaka fish.
Collapse
|
45
|
Modi ME, Sahin M. A unified circuit for social behavior. Neurobiol Learn Mem 2019; 165:106920. [PMID: 30149055 PMCID: PMC6387844 DOI: 10.1016/j.nlm.2018.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Recent advances in circuit manipulation technologies have enabled the association of distinct neural circuits with complex social behaviors. The brain areas identified through historical anatomical characterizations as mediators of sexual and parental behaviors can now be functionally linked to adult social behaviors within a unified circuit. In vivo electrophysiology, optogenetics and chemogenetics have been used to follow the processing of social sensory stimuli from perception by the olfactory system to valence detection by the amygdala and mesolimbic dopamine system to integration by the cerebral and cerebellar cortices under modulation of hypothalamic neuropeptides. Further, these techniques have been able to identify the distinct functional changes induced by social as opposed to non-social stimuli. Together this evidence suggests that there is a distinct, functionally coupled circuit that is selectively activated by social stimuli. A unified social circuit provides a new framework against which synaptopathic autism related mutations can be considered and novel pharmacotherapeutic strategies can be developed.
Collapse
Affiliation(s)
- Meera E Modi
- Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, United States
| | - Mustafa Sahin
- Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, United States.
| |
Collapse
|
46
|
Hennessy MB, Tai F, Carter KA, Watanasriyakul WT, Gallimore DM, Molina AL, Schiml PA. Central oxytocin alters cortisol and behavioral responses of guinea pig pups during isolation in a novel environment. Physiol Behav 2019; 212:112710. [PMID: 31629763 DOI: 10.1016/j.physbeh.2019.112710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Abstract
The neuropeptide oxytocin plays key roles in social bonding and stress reduction, and thus appears to be a likely mediator of maternal buffering of infant stress responses. In the guinea pig, the presence of the mother in a threatening environment buffers cortisol elevations as well as active (vocalizing) and passive (e.g. crouching) responses typical of isolation in this species; yet, effects of OT in guinea pig pups under any conditions have not been reported. Here, we examined the ability of intracerebroventricular (ICV) OT to moderate plasma cortisol levels and behavior in guinea pig pups isolated in a brightly lit, novel environment, and the ability of a highly selective OT antagonist (OTA) to reduce buffering by the mother. We found that ICV OT moderated cortisol levels and vocalizations, but increased time spent in the crouched stance, particularly in females. In addition, OT modulated other ongoing behaviors in a sex-dependent fashion. In females, OT reduced duration of walking and rearing, and increased time spent quiet, while in males OT increased duration of rearing. OTA, however, was without effect on cortisol levels or behavior. These findings, including sex differences in response, extend results from other species to the guinea pig. Further, while demonstrating that exogenous OT is sufficient to reduce biobehavioral stress responses typical of isolated guinea pig infants, the results suggest that endogenous OT is not necessary for maternal buffering of infant responses in this species.
Collapse
Affiliation(s)
- Michael B Hennessy
- Department of Psychology, Wright State University, 335 Fawcett Hall, 3640 Col Glenn Hwy, Dayton, OH 45435, United States.
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China; Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, China
| | - Kendra A Carter
- Department of Psychology, Wright State University, 335 Fawcett Hall, 3640 Col Glenn Hwy, Dayton, OH 45435, United States
| | - W Tang Watanasriyakul
- Department of Psychology, Wright State University, 335 Fawcett Hall, 3640 Col Glenn Hwy, Dayton, OH 45435, United States
| | - Darci M Gallimore
- Department of Psychology, Wright State University, 335 Fawcett Hall, 3640 Col Glenn Hwy, Dayton, OH 45435, United States
| | - Andrea L Molina
- Department of Psychology, Wright State University, 335 Fawcett Hall, 3640 Col Glenn Hwy, Dayton, OH 45435, United States
| | - Patricia A Schiml
- Department of Psychology, Wright State University, 335 Fawcett Hall, 3640 Col Glenn Hwy, Dayton, OH 45435, United States
| |
Collapse
|
47
|
DeMayo MM, Young LJ, Hickie IB, Song YJC, Guastella AJ. Circuits for social learning: A unified model and application to Autism Spectrum Disorder. Neurosci Biobehav Rev 2019; 107:388-398. [PMID: 31560922 DOI: 10.1016/j.neubiorev.2019.09.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/13/2019] [Accepted: 09/22/2019] [Indexed: 12/31/2022]
Abstract
Early life social experiences shape neural pathways in infants to develop lifelong social skills. This review presents the first unified circuit-based model of social learning that can be applied to early life social development, drawing together unique human developmental milestones, sensitive learning periods, and behavioral and neural scaffolds. Circuit domains for social learning are identified governing Activation, Integration, Discrimination, Response and Reward (AIDRR) to sculpt and drive human social learning. This unified model can be used to identify social delays earlier in development. We propose social impairments observed in Autism Spectrum Disorder are underpinned by early mistimed sensitive periods in brain development and alterations in amygdala development to disrupt the AIDRR circuits. This model directs how interventions can target neural circuits for social development and be applied early in life. To illustrate, the role of oxytocin and its use as an intervention is explored. The AIDRR model shifts focus away from delivering broad treatments based only on diagnostic classifications, to specifying and targeting the relevant circuits, at the right time of development, to optimize social learning.
Collapse
Affiliation(s)
- Marilena M DeMayo
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.
| | - Ian B Hickie
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Yun Ju C Song
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Adam J Guastella
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| |
Collapse
|
48
|
Abstract
Love is one of our most powerful emotions, inspiring some of the greatest art, literature and conquests of human history. Although aspects of love are surely unique to our species, human romantic relationships are displays of a mating system characterized by pair bonding, likely built on ancient foundational neural mechanisms governing individual recognition, social reward, territorial behaviour and maternal nurturing. Studies in monogamous prairie voles and mice have revealed precise neural mechanisms regulating processes essential for the pair bond. Here, we discuss current viewpoints on the biology underlying pair bond formation, its maintenance and associated behaviours from neural and evolutionary perspectives.
Collapse
|
49
|
Iwasa T, Matsuzaki T, Mayila Y, Yanagihara R, Yamamoto Y, Kawakita T, Kuwahara A, Irahara M. Oxytocin treatment reduced food intake and body fat and ameliorated obesity in ovariectomized female rats. Neuropeptides 2019; 75:49-57. [PMID: 30885500 DOI: 10.1016/j.npep.2019.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/05/2019] [Accepted: 03/10/2019] [Indexed: 02/06/2023]
Abstract
Recent studies have shown that oxytocin reduces food intake and body weight gain and promotes lipolysis in some species, including humans. Interestingly, these effects of oxytocin are more marked in obese individuals. Although the menopausal loss of ovarian function induces increased visceral adiposity and some metabolic disorders, no safe medical interventions for these conditions have been established. In this study, we evaluated the effects of oxytocin on appetite, body weight, and fat mass in ovariectomized rats. Six-day oxytocin treatment attenuated cumulative food intake and body weight gain, and reduced visceral and subcutaneous fat weight and adipocyte cell area in ovariectomized rats. Blood examinations indicated that 6-day oxytocin treatment did not alter renal or hepatic functions. Instead, it might prevent ovariectomy-induced liver damage. In addition, acute oxytocin treatment did not affect body temperature or locomotor activity. These results indicate that oxytocin might be useful for treating or preventing menopause-induced metabolic disorders, without causing any adverse effects.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan.
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Yiliyasi Mayila
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Rie Yanagihara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| |
Collapse
|
50
|
Lu Q, Lai J, Du Y, Huang T, Prukpitikul P, Xu Y, Hu S. Sexual dimorphism of oxytocin and vasopressin in social cognition and behavior. Psychol Res Behav Manag 2019; 12:337-349. [PMID: 31191055 PMCID: PMC6529726 DOI: 10.2147/prbm.s192951] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
The neuropeptides oxytocin (OT) and vasopressin (VP) are hormones that are known to mediate social behavior and cognition, but their influence may be sex-dependent. This paper aims to provide a comprehensive review of the sex-related influence of OT and VP on social cognition, focusing on partner preference and sexual orientation, trust and relevant behaviors, memory modulation, and emotion regulation. Most studies have suggested that OT facilitates familiar-partner preference in both sexes, with females being more significant, increased trust in others, especially for male, enhanced memory in either sex, and reduced anxious emotion in males. However, VP-regulated social cognition has been less studied. Other relevant studies have indicated that VP facilitated familiar-partner preference, improved memory, induced empathy formation, increased positive-emotion recognition, and induced anxiety without any sex difference. However, there was a male preponderance among studies, and results were often too complex to draw firm conclusions. Clarifying the interplay between OT/VP and sex hormones in the regulation of social cognition is necessary for further applications.
Collapse
Affiliation(s)
- Qiaoqiao Lu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Department of Clinical Medicine, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jianbo Lai
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, People's Republic of China.,Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, People's Republic of China
| | - Yanli Du
- Department of Clinical Medicine, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Tingting Huang
- Department of Clinical Medicine, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Pornkanok Prukpitikul
- Department of Clinical Medicine, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, People's Republic of China.,Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, People's Republic of China
| | - Shaohua Hu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, People's Republic of China.,Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, People's Republic of China
| |
Collapse
|