1
|
Almasoudi SH, Al-Kuraishy HM, Al-Gareeb AI, Eliwa D, Alexiou A, Papadakis M, Batiha GES. Role of mitogen-activated protein kinase inhibitors in Alzheimer's disease: Rouge of brain kinases. Brain Res Bull 2025; 224:111296. [PMID: 40073950 DOI: 10.1016/j.brainresbull.2025.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Alzheimer's disease (AD) is the chief cause of dementia and related mortality worldwide due to progressive accumulation of amyloid peptide (Aβ) and hyperphosphorylated tau protein. These neuropathological changes lead to cognitive impairment and memory dysfunction. Notably, most Food drug Administration (FDA) approved anti-AD medications such as tacrine and donepezil are engaged with symptomatic relief of cognitive impairment but do not reverse the underlying AD neuropathology. Therefore, searching for new anti-AD is advisable. It has been shown that the inflammatory signaling pathways such as mitogen-activated protein kinases (MAPK) are intricate with the Aβ and tau protein neuropathology in AD. In addition, inhibition of brain MAPK plays a critical role in mitigating cognitive dysfunction in early-onset AD. Though, the fundamental mechanisms for the beneficial effects of MAPK inhibitors were not fully explained. Therefore, this review aims to discuss the potential molecular mechanisms of MAPK inhibitors in AD.
Collapse
Affiliation(s)
- Suad Hamdan Almasoudi
- Department of Biology, College of Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department Of Clinical Pharmacology and Medicine, College Of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Head of Jabir ibn Hayyan Medical University, P.O.Box13 Kufa, Al-Ameer Qu, Najaf, Iraq.
| | - Duaa Eliwa
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; AFNP Med, Wien 1030, Austria
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
2
|
Song D, Gui F, Li G, Zhuang S, Sun J, Tan X, Hong C, Huang J. Neuritin improves cognitive impairments in APP/PS1 Alzheimer's disease mice model by mitigating neuronal ferroptosis via PI3K/Akt activation. Int J Biol Macromol 2025; 303:140662. [PMID: 39914536 DOI: 10.1016/j.ijbiomac.2025.140662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
The neurotrophic factor Neuritin is known to enhance cognitive capacity and to mitigate synaptic impairments in the APP/PS1 Alzheimer's disease (AD) mouse model, suggesting therapeutic potential for clinical treatment. However, the core molecular mechanisms remain elusive. Ferroptosis, a form of programmed cell death linked to iron dysregulation and oxidative stress, contributes to neurodegeneration in AD in part by accelerating amyloid-β deposition and neurofibrillary tangle formation. Here we examined if Neuritin can mitigate cognitive decline and neural degeneration in AD model mice by suppressing ferroptosis. Age-dependent cognitive decline was associated with Neuritin downregulation and increased ferroptosis in the hippocampus. Intracerebroventricular injection of exogenous Neuritin mitigated spatial and fear learning deficits as well as neural oxidative stress, apoptosis, and ferroptosis in the hippocampus without causing deleterious side effects. Neuritin injection also upregulated the activity of NAD+ kinase (NADK), the enzyme responsible for converting NAD to anti-ferroptotic NADPH, in the hippocampus of AD mice as well as in cultured hippocampal neurons. Reduced Neuritin expression in the hippocampus AD mice was associated with reduced phosphorylation (activation) of Akt (p-Akt), and Neuritin administration enhanced p-Akt expression in both HT22 cells and AD model mice. Conversely, blocking the PI3K/Akt pathway in HT22 cells reversed the Neuritin-induced increase in NADK activity and reduction in ferroptosis, indicating that Neuritin protects neurons from AD-induced damage by enhancing NADK activity through the PI3K/Akt pathway. Collectively, our results support Neuritin upregulation as a potential therapeutic strategy for early-phase AD.
Collapse
Affiliation(s)
- Dandan Song
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, PR China; Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Fei Gui
- Laboratory Animal Center, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, PR China
| | - Guoxiang Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, PR China
| | - Shuai Zhuang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, PR China
| | - Jiawei Sun
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, PR China
| | - Xiaohua Tan
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China.
| | - Chenglin Hong
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Jin Huang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, PR China.
| |
Collapse
|
3
|
Hong CT, Chen JH, Hu CJ. Role of glucagon-like peptide-1 receptor agonists in Alzheimer's disease and Parkinson's disease. J Biomed Sci 2024; 31:102. [PMID: 39501255 PMCID: PMC11539687 DOI: 10.1186/s12929-024-01090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common complications of diabetes, arising from insulin resistance, inflammation, and other pathological processes in the central nervous system. The potential of numerous antidiabetic agents to modify neurodegenerative disease progression, both preclinically and clinically, has been assessed. These agents may provide additional therapeutic benefits beyond glycemic control. Introduced in the twenty-first century, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a class of antidiabetic drugs noted not only for their potent glucose-lowering effects but also for their cardiovascular and renal protective benefits. Various GLP-1RAs have been demonstrated to have significant benefits in in vitro and in vivo models of neurodegenerative diseases through modulating a variety of pathogenic mechanisms, including neuroinflammation, autophagy, mitochondrial dysfunction, and the abnormal phosphorylation of pathognomonic proteins. These agents also have substantial protective effects on cognitive and behavioral functions, such as motor function. However, clinical trials investigating GLP-1RAs in diseases such as AD, PD, mild cognitive impairment, psychiatric disorders, and diabetes have yielded mixed results for cognitive and motor function. This review examines the link between diabetes and neurodegenerative diseases, explores the effects of antidiabetic agents on neurodegeneration, provides a concise overview of the GLP-1 pathway, and discusses both preclinical and clinical trial outcomes of GLP-1RAs for neurodegenerative diseases, including their effects on cognition in AD and PD. This review also proposed new strategies for the design of future clinical trials on GLP-1 RAs for both AD and PD.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan.
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Zhou Q, Guo X, Chen T, Liu Y, Ji H, Sun Y, Yang X, Ouyang C, Liu X, Lei M. The neuroprotective role of celastrol on hippocampus in diabetic rats by inflammation restraint, insulin signaling adjustment, Aβ reduction and synaptic plasticity alternation. Biomed Pharmacother 2024; 179:117397. [PMID: 39232386 DOI: 10.1016/j.biopha.2024.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Celastrol, the primary constituent of Tripterygium wilfordii, has demonstrated neuroprotective properties in rats with dementia by reducing inflammation. A high-fat diet and streptozotocin injection were utilized to establish a diabetic rat model, which was then employed to investigate the possible protective effect of celastrol against the development of diabetes-induced learning and memory deficits. Afterwards, the experimental animals received a dose of celastrol by gavage (4 mg/kg/d). An animal study showed that celastrol enhanced insulin sensitivity and glucose tolerance in diabetic rats. In the Morris water maze test, rats with diabetes performed poorly in terms of spatial learning and memory; treatment with celastrol improved these outcomes. Additionally, administration of celastrol downregulated the expression of inflammatory-related proteins (NF-κB, IKKα, TNF-α, IL-1β, and IL-6) and greatly reduced the generation of Aβ in the diabetic hippocampus tissue. Moreover, the insulin signaling pathway-related proteins PI3K, AKT, and GSK-3β were significantly upregulated in diabetic rats after celastrol was administered. Also, celastrol prevented damage to the brain structures and increased the synthesis of synaptic proteins like PSD-95 and SYT1. In conclusion, celastrol exerts a neuroprotective effect by modulating the insulin signaling system and reducing inflammatory responses, which helps to ameliorate the cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Qiaofeng Zhou
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tu Chen
- Xianning Public Inspection and Testing Center, Xianning 437100, China
| | - Yumin Liu
- Wuhan Huake Reproductive Specialist Hospital, Wuhan 430000, China
| | - Huimin Ji
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yixuan Sun
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Changhan Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| | - Min Lei
- Hubei Key Laboratory of Diabetes And Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
5
|
Zhao J, Wei M, Guo M, Wang M, Niu H, Xu T, Zhou Y. GSK3: A potential target and pending issues for treatment of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14818. [PMID: 38946682 PMCID: PMC11215492 DOI: 10.1111/cns.14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Glycogen synthase kinase-3 (GSK3), consisting of GSK3α and GSK3β subtypes, is a complex protein kinase that regulates numerous substrates. Research has observed increased GSK3 expression in the brains of Alzheimer's disease (AD) patients and models. AD is a neurodegenerative disorder with diverse pathogenesis and notable cognitive impairments, characterized by Aβ aggregation and excessive tau phosphorylation. This article provides an overview of GSK3's structure and regulation, extensively analyzing its relationship with AD factors. GSK3 overactivation disrupts neural growth, development, and function. It directly promotes tau phosphorylation, regulates amyloid precursor protein (APP) cleavage, leading to Aβ formation, and directly or indirectly triggers neuroinflammation and oxidative damage. We also summarize preclinical research highlighting the inhibition of GSK3 activity as a primary therapeutic approach for AD. Finally, pending issues like the lack of highly specific and affinity-driven GSK3 inhibitors, are raised and expected to be addressed in future research. In conclusion, GSK3 represents a target in AD treatment, filled with hope, challenges, opportunities, and obstacles.
Collapse
Affiliation(s)
- Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Wei
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Future Health Laboratory, Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Minsong Guo
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Mengyao Wang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Hongxia Niu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
6
|
Crook H, Edison P. Incretin Mimetics as Potential Disease Modifying Treatment for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S357-S370. [PMID: 39422964 DOI: 10.3233/jad-240730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease is a devastating neurodegenerative condition that exerts a significant global burden. Despite recent efforts, disease modifying therapies remain extremely limited, with a tremendous proportion of patients having to rely on symptomatic treatment only. Epidemiological and pathological overlaps exist between Alzheimer's disease and diabetes mellitus type 2, with people with diabetes mellitus type 2 at a significantly increased risk of developing Alzheimer's disease in the future. Incretin mimetics, also known as GLP-1/GIP receptor agonists, are useful tools licensed for the treatment of diabetes mellitus type 2 which have recently been the subject of news coverage for their off-label use as weight loss medications. Emerging evidence highlights the possible neuroprotective function of incretin mimetics in models of Alzheimer's disease as well as in clinical studies. This review details the pre-clinical and clinical studies that have explored the effectiveness of incretin mimetics to alleviate Alzheimer's disease associated pathology and cognitive impairment, while also highlighting the progress made to examine the effectiveness of these molecules in Parkinson's disease. Should clinical trials prove effective, incretin mimetics may be able to be repurposed and become useful novel tools as disease-modifying treatments for Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Harry Crook
- Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Faculty of Medicine, Imperial College London, London, UK
- Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
de la Monte SM. Conquering Insulin Network Dysfunctions in Alzheimer's Disease: Where Are We Today? J Alzheimers Dis 2024; 101:S317-S343. [PMID: 39422949 PMCID: PMC11807374 DOI: 10.3233/jad-240069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Functional impairments in the brain's insulin and insulin-like growth factor (IGF) signal transduction networks are recognized mediators of dysregulated energy metabolism, a major driver of the Alzheimer's disease (AD) neurodegeneration cascade. AD-associated insulin-deficient and insulin-resistant states mimic those of diabetes mellitus and affect all cell types in the brain. Besides accounting for abundant amyloid-β and hyperphosphorylated tau lesions in AD, insulin/IGF pathway dysfunctions cause cortical atrophy, loss of synaptic plasticity, white matter myelin/oligodendrocyte degeneration, astrocyte and microglial neuroinflammation and oxidative stress, deficits in energy metabolism, mitochondrial dysfunction, and microvascular disease. These same neuropathological processes have been linked to cognitive impairment in type 2 diabetes mellitus, Parkinson's disease, and vascular dementia. Strategies to address metabolic mediators of cognitive impairment have been borrowed from diabetes and other insulin-resistant diseases and leveraged on preclinical AD model data. The repurposing of diabetes drugs led to clinical trials with intranasal insulin, followed by insulin sensitizers including metformin and peroxisome-proliferator-activated receptor agonists, and then incretin mimetics primarily targeting GLP-1 receptors. In addition, other glucose-lowering agents have been tested for their efficacy in preventing cognitive declines. The strengths and limitations of these approaches are discussed. The main conclusion of this review is that we have now arrived at a stage in which it is time to address long-term deficits in trophic factor availability and receptor responsiveness, signaling abnormalities that extend beyond insulin and include IGFs and interconnected pathways, and the need for multi-pronged rather than single-pronged therapeutic targeting to remediate AD and other forms of neurodegeneration.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Zhihong Y, Chen W, Qianqian Z, Lidan S, Qiang Z, Jing H, Wenxi W, Bhawal R. Emerging roles of oxyntomodulin-based glucagon-like peptide-1/glucagon co-agonist analogs in diabetes and obesity. Peptides 2023; 162:170955. [PMID: 36669563 DOI: 10.1016/j.peptides.2023.170955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Oxyntomodulin (OXM) is an endogenous peptide hormone secreted from the intestines following nutrient ingestion that activates both glucagon-like peptide-1 (GLP-1) and glucagon receptors. OXM is known to exert various effects, including improvement in glucose tolerance, promotion of energy expenditure, acceleration of liver lipolysis, inhibition of food intake, delay of gastric emptying, neuroprotection, and pain relief. The antidiabetic and antiobesity properties have led to the development of biologically active and enzymatically stable OXM-based analogs with proposed therapeutic promise for metabolic diseases. Structural modification of OXM was ongoing to enhance its potency and prolong half-life, and several GLP-1/glucagon dual receptor agonist-based therapies are being explored in clinical trials for the treatment of type 2 diabetes mellitus and its complications. In the present article, we provide a brief overview of the physiology of OXM, focusing on its structural-activity relationship and ongoing clinical development.
Collapse
Affiliation(s)
- Yao Zhihong
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Wang Chen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Zhu Qianqian
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Sun Lidan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wang Wenxi
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, Shi X, Zhang S, Chen J, Yu X, Yang Y. Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell 2022; 21:e13704. [PMID: 36056774 PMCID: PMC9577946 DOI: 10.1111/acel.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
With the aging world population, the prevalence of aging-related disorders is on the rise. Diseases such as Alzheimer's, type 2 diabetes mellitus (T2DM), Parkinson's, atherosclerosis, hypertension, and osteoarthritis are age-related, and most of these diseases are comorbidities or risk factors for AD; however, our understandings of molecular events that regulate the occurrence of these diseases are still not fully understood. Brain and muscle Arnt-like protein-1 (Bmal1) is an irreplaceable clock gene that governs multiple important physiological processes. Continuous research of Bmal1 in AD and associated aging-related diseases is ongoing, and this review picks relevant studies on a detailed account of its role and mechanisms in these diseases. Oxidative stress and inflammation turned out to be common mechanisms by which Bmal1 deficiency promotes AD and associated aging-related diseases, and other Bmal1-dependent mechanisms remain to be identified. Promising therapeutic strategies involved in the regulation of Bmal1 are provided, including melatonin, natural compounds, metformin, d-Ser2-oxyntomodulin, and other interventions, such as exercise, time-restricted feeding, and adiponectin. The establishment of the signaling pathway network for Bmal1 in aging-related diseases will lead to advances in the comprehension of the molecular and cellular mechanisms, shedding light on novel treatments for aging-related diseases and promoting aging-associated brain health.
Collapse
Affiliation(s)
- Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| |
Collapse
|
10
|
Wang G, Zhao Z, Ren B, Yu W, Zhang X, Liu J, Wang L, Si D, Yang M. Exenatide exerts a neuroprotective effect against diabetic cognitive impairment in rats by inhibiting apoptosis: Role of the JNK/c‑JUN signaling pathway. Mol Med Rep 2022; 25:111. [PMID: 35119079 PMCID: PMC8845025 DOI: 10.3892/mmr.2022.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Exenatide could reduce blood glucose and alleviate cognitive dysfunction induced by diabetes mellitus (DM). In the present study, a diabetic model was established in Sprague‑Dawley rats to further explore the mechanism of exenatide on diabetes‑induced cognitive impairment. Notably, the model rats performed poorly in the Morris water maze test and had more apoptotic neurons compared with the control rats. By contrast, exenatide attenuated cognitive impairment and inhibited neuronal apoptosis in the DM rat model. To explore the neuroprotective mechanisms of exenatide, western blotting was performed to detect the expression levels of markers of endoplasmic reticulum stress, including cytochrome c (Cyt‑c), Caspase‑3, JNK and c‑JUN, in hippocampal tissue. Reverse transcription‑quantitative PCR was also performed to measure the mRNA expression levels of Cyt‑c and Caspase‑3. After 16 weeks of treatment, exenatide treatment downregulated Cyt‑c, Caspase‑3, phosphorylated (p)‑JNK and p‑c‑JUN expression in the hippocampal tissue of diabetic rats. Moreover, Cyt‑c, Caspase‑3, JNK and JUN expression levels were detected following treatment with a specific inhibitor of JNK (SP600125). The results revealed that SP600125 had similar inhibitory effects on the JNK pathway and ERS‑related protein expression (Cyt‑t, Caspase‑3, p‑JNK and p‑c‑JUN). These results suggested that exenatide improved cognitive dysfunction in DM rats and that the underlying mechanism may be associated with inhibiting apoptosis by suppressing the activation of JNK/c‑JUN.
Collapse
Affiliation(s)
- Gengyin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Zongquan Zhao
- General Practice, Pingjiang Xincheng Community Health Service Center, Suzhou, Jiangsu 215101, P.R. China
| | - Bo Ren
- Medical Experimental Center, Jitang College of North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Wu Yu
- School Hospital, Hengshui University, Hengshui, Hebei 053010, P.R. China
| | - Xudong Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jiang Liu
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Liping Wang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Daowen Si
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Meiliu Yang
- Department of Life Sciences, Hengshui University, Hengshui, Hebei 053010, P.R. China
| |
Collapse
|
11
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Mallo F. Effects of Glucagon-like peptide 1 (GLP-1) analogs in the hippocampus. VITAMINS AND HORMONES 2022; 118:457-478. [PMID: 35180937 DOI: 10.1016/bs.vh.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone very well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain, and it displays critical roles in neuroprotection by activating the GLP-1 receptor signaling pathways. GLP-1 enhances learning and memory in the hippocampus, promotes neurogenesis, decreases inflammation and apoptosis, modulates reward behavior, and reduces food intake. Its pharmacokinetics have been improved to enhance the peptide's half-life, enhancing exposure and time of action. The GLP-1 agonists are successfully in clinical use for the treatment of type-2 diabetes, obesity, and clinical evaluation for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.
| | - Salvador Herrera-Pérez
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Lucas C González-Matías
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Federico Mallo
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| |
Collapse
|
12
|
Yang GZ, Gao QC, Li WR, Cai HY, Zhao HM, Wang JJ, Zhao XR, Wang JX, Wu MN, Zhang J, Hölscher C, Qi JS, Wang ZJ. (D-Ser2) oxyntomodulin recovers hippocampal synaptic structure and theta rhythm in Alzheimer's disease transgenic mice. Neural Regen Res 2022; 17:2072-2078. [PMID: 35142699 PMCID: PMC8848598 DOI: 10.4103/1673-5374.335168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In our previous studies, we have shown that (D-Ser2) oxyntomodulin (Oxm), a glucagon-like peptide 1 (GLP-1) receptor (GLP1R)/glucagon receptor (GCGR) dual agonist peptide, protects hippocampal neurons against Aβ1–42 -induced cytotoxicity, and stabilizes the calcium homeostasis and mitochondrial membrane potential of hippocampal neurons. Additionally, we have demonstrated that (D-Ser2) Oxm improves cognitive decline and reduces the deposition of amyloid-beta in Alzheimer's disease model mice. However, the protective mechanism remains unclear. In this study, we showed that 2 weeks of intraperitoneal administration of (D-Ser2) Oxm ameliorated the working memory and fear memory impairments of 9-month-old 3×Tg Alzheimer's disease model mice. In addition, electrophysiological data recorded by a wireless multichannel neural recording system implanted in the hippocampal CA1 region showed that (D-Ser2) Oxm increased the power of the theta rhythm. In addition, (D-Ser2) Oxm treatment greatly increased the expression level of synaptic-associated proteins SYP and PSD-95 and increased the number of dendritic spines in 3×Tg Alzheimer's disease model mice. These findings suggest that (D-Ser2) Oxm improves the cognitive function of Alzheimer's disease transgenic mice by recovering hippocampal synaptic function and theta rhythm.
Collapse
Affiliation(s)
- Guang-Zhao Yang
- Department of Cardiovascular Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qi-Chao Gao
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Wei-Ran Li
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hui-Min Zhao
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Jian-Ji Wang
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Xin-Rui Zhao
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Jia-Xin Wang
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Mei-Na Wu
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Jun Zhang
- Functional Laboratory Center, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Christian Hölscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Jin-Shun Qi
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| | - Zhao-Jun Wang
- Department of Physiology, Shanxi Medical University; Key Laboratory of Cellular Physiology, Ministry of Education; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, Shanxi Province, China
| |
Collapse
|
13
|
Du H, Meng X, Yao Y, Xu J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease. Front Endocrinol (Lausanne) 2022; 13:1033479. [PMID: 36465634 PMCID: PMC9714676 DOI: 10.3389/fendo.2022.1033479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Since type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's disease (AD) and both have the same pathogenesis (e.g., insulin resistance), drugs used to treat T2DM have been gradually found to reduce the progression of AD in AD models. Of these drugs, glucagon-like peptide 1 receptor (GLP-1R) agonists are more effective and have fewer side effects. GLP-1R agonists have reducing neuroinflammation and oxidative stress, neurotrophic effects, decreasing Aβ deposition and tau hyperphosphorylation in AD models, which may be a potential drug for the treatment of AD. However, this needs to be verified by further clinical trials. This study aims to summarize the current information on the mechanisms and effects of GLP-1R agonists in AD.
Collapse
Affiliation(s)
- Haiyang Du
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yu Yao
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Xu
- Division of Orthopedics, Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jun Xu,
| |
Collapse
|
14
|
Meng L, Du CP, Lu CY, Zhang K, Li L, Yan JZ, Hou XY. Neuronal activity-induced SUMOylation of Akt1 by PIAS3 is required for long-term potentiation of synaptic transmission. FASEB J 2021; 35:e21769. [PMID: 34288124 DOI: 10.1096/fj.202002728r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 01/29/2023]
Abstract
Neuronal activity regulates spatial distribution of the SUMOylation system in cytosolic and dendritic sites, which has been implicated in learning, memory, and underlying synaptic structural and functional remodeling in the hippocampus. However, the functional target proteins for activated small ubiquitin-like modifiers (SUMOs) and downstream molecular consequences behind long-term potentiation (LTP) of synaptic plasticity remain to be elucidated. In this study, we showed that N-methyl-D-aspartate receptor-mediated neuronal activity induced the covalent modification of cytosolic Akt1 by small ubiquitin-like modifier 1 (SUMO1) in rat cortical and hippocampal CA1 neurons. Protein inhibitor of activated STAT3 (PIAS3) was involved in the activity-induced Akt1 SUMO1-ylation, and K64 and K276 residues were major SUMOylated sites. Importantly, Akt1 SUMOylation at K64 and K276 enhanced its enzymatic activity and facilitated T308 phosphorylation. Furthermore, the N-terminal SAP domain of PIAS3 bound Akt1 directly. The disruption of Akt1-PIAS3 interaction by Tat-SAP, a synthetic Tat-fused cell-permeable peptide containing PIAS3 SAP domain, inhibited neuronal activity-induced Akt1 SUMOylation and impaired LTP expression and late phase LTP maintenance in the hippocampus. Correlatedly, Tat-SAP not only blocked the LTP-related extracellular signal-regulated kinase (ERK)1/2-Elk-1-brain-derived neurotrophic factor (BDNF)/Arc signaling, but also disrupted mammalian target of rapamycin (mTOR)-eIF4E-binding protein 1 (4E-BP1) pathway. These findings reveal an activity-induced Akt1 SUMOylation by PIAS3 that contributes to ERK1/2-BDNF/Arc and mTOR-4E-BP1 cascades, and in turn, long-lasting excitatory synaptic responses.
Collapse
Affiliation(s)
- Li Meng
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Cai-Ping Du
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Chun-Yuan Lu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Kun Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Lin Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Jing-Zhi Yan
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yu Hou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Cai HY, Yang D, Qiao J, Yang JT, Wang ZJ, Wu MN, Qi JS, Hölscher C. A GLP-1/GIP Dual Receptor Agonist DA4-JC Effectively Attenuates Cognitive Impairment and Pathology in the APP/PS1/Tau Model of Alzheimer's Disease. J Alzheimers Dis 2021; 83:799-818. [PMID: 34366339 DOI: 10.3233/jad-210256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a degenerative disorder, accompanied by progressive cognitive decline, for which there is no cure. Recently, the close correlation between AD and type 2 diabetes mellitus (T2DM) has been noted, and a promising anti-AD strategy is the use of anti-T2DM drugs. OBJECTIVE To investigate if the novel glucagon-like peptide-1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist DA4-JC shows protective effects in the triple APP/PS1/tau mouse model of AD. METHODS A battery of behavioral tests were followed by in vivo recording of long-term potentiation (LTP) in the hippocampus, quantified synapses using the Golgi method, and biochemical analysis of biomarkers. RESULTS DA4-JC improved cognitive impairment in a range of tests and relieved pathological features of APP/PS1/tau mice, enhanced LTP in the hippocampus, increased numbers of synapses and dendritic spines, upregulating levels of post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), normalized volume and numbers of mitochondria and improving the phosphatase and tensin homologue induced putative kinase 1 (PINK1) - Parkin mitophagy signaling pathway, while downregulating amyloid, p-tau, and autophagy marker P62 levels. CONCLUSION DA4-JC is a promising drug for the treatment of AD.
Collapse
Affiliation(s)
- Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China
| | - Dan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jing Qiao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jun-Ting Yang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Mei-Na Wu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jin-Shun Qi
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Neuroscience Research Group, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
16
|
Zhang H, Song B, Zhu W, Liu L, He X, Wang Z, An K, Cao W, Shi J, Wang S. Glucagon-like peptide-1 attenuated carboxymethyl lysine induced neuronal apoptosis via peroxisome proliferation activated receptor-γ. Aging (Albany NY) 2021; 13:19013-19027. [PMID: 34326274 PMCID: PMC8351674 DOI: 10.18632/aging.203351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/08/2021] [Indexed: 01/19/2023]
Abstract
Backgrounds and aims: The role of peroxisome proliferator activated receptor-γ (PPAR-γ) in neuronal apoptosis remains unclear. We aim to investigate the role of PPAR-γ in glucagon-like peptide-1 (GLP-1) alleviated neuronal apoptosis induced by carboxymethyl-lysine (CML). Materials and Methods: In vitro, PC12 cells were treated by CML/GLP-1. Moreover. the function of PPAR-γ was blocked by GW9662. In vivo, streptozotocin (STZ) was used to induce diabetic rats with neuronal apoptosis. The cognitive function of rats was observed by Morris water maze. Apoptosis was detected by TUNEL assay. Bcl2, Bax, PPAR-γ and receptor of GLP-1 (GLP-1R) were measured by western blotting or immunofluorescence. Results: In vitro experiment, CML triggered apoptosis, down-regulated GLP-1R and PPAR-γ. Moreover, GLP-1 not only alleviated the apoptosis, but also increased levels of PPAR-γ. GW9662 abolished the neuroprotective effect of GLP-1 on PC12 cells from apoptosis. Furthermore, GLP-1R promoter sequences were detected in the PPAR-γ antibody pulled mixture. GPL-1 levels decreased, while CML levels increased in diabetic rats, compared with control rats. Additionally, we observed elevated bax, decreased bcl2, GLP-1R and PPAR-γ in diabetic rats. Conclusions: GLP-1 could attenuate neuronal apoptosis induced by CML. Additionally, PPAR-γ involves in this process.
Collapse
Affiliation(s)
- Haoqiang Zhang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Bing Song
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 1210001, Liaoning Province, China
| | - Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Lili Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 1210001, Liaoning Province, China
| | - Xiqiao He
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 1210001, Liaoning Province, China
| | - Zheng Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Wuyou Cao
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Jijing Shi
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
17
|
Hölscher C. Brain insulin resistance: role in neurodegenerative disease and potential for targeting. Expert Opin Investig Drugs 2020; 29:333-348. [PMID: 32175781 DOI: 10.1080/13543784.2020.1738383] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: This review evaluates the novel strategy of treating Alzheimer's and Parkinson's disease (AD and PD) withdrugs that initially have been developed to treat type 2 diabetes. As insulin signalling has been found to be de-sensitized in the brains of patients, drugs that can re-sensitize insulin signalling have been tested to evaluate if this strategy can alter disease progression.Areas covered: The review will give an overview of preclinical and clinical tests in AD and PD of drugs activating insulin receptors, glucagon-like peptide -1 (GLP-1) receptors, and glucose-dependent insulinotropic polypeptide (GIP) receptors.Expert opinion: Insulin, GLP-1 and GIP receptor agonists have shown good effects in preclinical studies. First clinical trials in MCI/AD patients have shown that insulin can improve on key pathological symptoms of AD such as memory impairment, brain activity, neuronal energy utilization, and inflammation markers. A GLP-1 receptor agonist has shown disease-modifying effects in PD patients, and first pilot studies have shown encouraging effects of a GLP-1 receptor agonist in AD patients. Novel dual GLP-1/GIP receptor agonists that cross the blood brain barrier show superior neuroprotective effects compared to single GLP-1 or GIP receptor agonists, and show great promise as novel treatments of AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, PR China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| |
Collapse
|