1
|
Sajjad U, Ahmed M, Iqbal MZ, Riaz M, Mustafa M, Biedermann T, Klar AS. Exploring mesenchymal stem cells homing mechanisms and improvement strategies. Stem Cells Transl Med 2024; 13:1161-1177. [PMID: 39550211 PMCID: PMC11631218 DOI: 10.1093/stcltm/szae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/16/2024] [Indexed: 11/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with high self-renewal and multilineage differentiation abilities, playing an important role in tissue healing. Recent advancements in stem cell-based technologies have offered new and promising therapeutic options in regenerative medicine. Upon tissue damage, MSCs are immediately mobilized from the bone marrow and move to the injury site via blood circulation. Notably, allogenically transplanted MSCs can also home to the damaged tissue site. Therefore, MSCs hold great therapeutic potential for curing various diseases. However, one major obstacle to this approach is attracting MSCs specifically to the injury site following systemic administration. In this review, we describe the molecular pathways governing the homing mechanism of MSCs and various strategies for improving this process, including targeted stem cell administration, target tissue modification, in vitro priming, cell surface engineering, genetic modifications, and magnetic guidance. These strategies are crucial for directing MSCs precisely to the injury site and, consequently, enhancing their migration and local tissue repair properties. Specifically, our review provides a guide to improving the therapeutic efficacy of clinical applications of MSCs through optimized in vivo administration and homing capacities.
Collapse
Affiliation(s)
- Umar Sajjad
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ahmed
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - M Zohaib Iqbal
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mahrukh Riaz
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College University, Lahore, Pakistan
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Jang KW, Tu TW, Rosenblatt RB, Burks SR, Frank JA. MR-guided pulsed focused ultrasound improves mesenchymal stromal cell homing to the myocardium. J Cell Mol Med 2020; 24:13278-13288. [PMID: 33067927 PMCID: PMC7701528 DOI: 10.1111/jcmm.15944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
Image-guided pulsed focused ultrasound (pFUS) is a non-invasive technique that can increase tropism of intravenously (IV)-infused mesenchymal stromal cells (MSC) to sonicated tissues. MSC have shown promise for cardiac regenerative medicine strategies but can be hampered by inefficient homing to the myocardium. This study sonicated the left ventricles (LV) in rats with magnetic resonance imaging (MRI)-guided pFUS and examined both proteomic responses and subsequent MSC tropism to treated myocardium. T2-weighted MRI was used for pFUS targeting of the entire LV. pFUS increased numerous pro- and anti-inflammatory cytokines, chemokines, and trophic factors and cell adhesion molecules in the myocardial microenvironment for up to 48 hours post-sonication. Cardiac troponin I and N-terminal pro-B-type natriuretic peptide were elevated in the serum and myocardium. Immunohistochemistry revealed transient hypoxia and immune cell infiltration in pFUS-targeted regions. Myocardial tropism of IV-infused human MSC following pFUS increased twofold-threefold compared with controls. Proteomic and histological changes in myocardium following pFUS suggested a reversible inflammatory and hypoxic response leading to increased tropism of MSC. MR-guided pFUS could represent a non-invasive modality to improve MSC therapies for cardiac regenerative medicine approaches.
Collapse
Affiliation(s)
- Kee W Jang
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert B Rosenblatt
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Frost PA, Chen S, Rodriguez-Ayala E, Laviada-Molina HA, Vaquera Z, Gaytan-Saucedo JF, Li WH, Haack K, Grayburn PA, Sayers K, Cole SA, Bastarrachea RA. Research methodology for in vivo measurements of resting energy expenditure, daily body temperature, metabolic heat and non-viral tissue-specific gene therapy in baboons. Res Vet Sci 2020; 133:136-145. [PMID: 32979746 DOI: 10.1016/j.rvsc.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
A large number of studies have shown that the baboon is one of the most commonly used non-human primate (NHP) research model for the study of immunometabolic complex traits such as type 2 diabetes (T2D), insulin resistance (IR), adipose tissue dysfunction (ATD), dyslipidemia, obesity (OB) and cardiovascular disease (CVD). This paper reports on innovative technologies and advanced research strategies for energetics and translational medicine with this NHP model. This includes the following: measuring resting energy expenditure (REE) with the mobile indirect calorimeter Breezing®; monitoring daily body temperature using subcutaneously implanted data loggers; quantifying metabolic heat with veterinary infrared thermography (IRT) imaging, and non-viral non-invasive, tissue-specific ultrasound-targeted microbubble destruction (UTMD) gene-based therapy. These methods are of broad utility; for example, they may facilitate the engineering of ectopic overexpression of brown adipose tissue (BAT) mUCP-1 via UTMD-gene therapy into baboon SKM to achieve weight loss, hypophagia and immunometabolic improvement. These methods will be valuable to basic and translational research, and human clinical trials, in the areas of metabolism, cardiovascular health, and immunometabolic and infectious diseases.
Collapse
Affiliation(s)
- Patrice A Frost
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Shuyuan Chen
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Ernesto Rodriguez-Ayala
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Norte, Naucalpan de Juárez 52786, Mexico
| | - Hugo A Laviada-Molina
- Escuela de Ciencias de la Salud, Universidad Marista de Mérida, Mérida 97300, Yucatán, Mexico
| | - Zoila Vaquera
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Janeth F Gaytan-Saucedo
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Wen-Hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Paul A Grayburn
- Division of Cardiology, Department of Internal Medicine, Baylor University Medical Center and the Baylor Scott and White Heart and Vascular Hospital, Dallas, TX, United States of America
| | - Ken Sayers
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Raul A Bastarrachea
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA.
| |
Collapse
|
4
|
Liu DD, Ullah M, Concepcion W, Dahl JJ, Thakor AS. The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Transl Med 2020; 9:850-866. [PMID: 32157802 PMCID: PMC7381806 DOI: 10.1002/sctm.19-0391] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been a popular platform for cell-based therapy in regenerative medicine due to their propensity to home to damaged tissue and act as a repository of regenerative molecules that can promote tissue repair and exert immunomodulatory effects. Accordingly, a great deal of research has gone into optimizing MSC homing and increasing their secretion of therapeutic molecules. A variety of methods have been used to these ends, but one emerging technique gaining significant interest is the use of ultrasound. Sound waves exert mechanical pressure on cells, activating mechano-transduction pathways and altering gene expression. Ultrasound has been applied both to cultured MSCs to modulate self-renewal and differentiation, and to tissues-of-interest to make them a more attractive target for MSC homing. Here, we review the various applications of ultrasound to MSC-based therapies, including low-intensity pulsed ultrasound, pulsed focused ultrasound, and extracorporeal shockwave therapy, as well as the use of adjunctive therapies such as microbubbles. At a molecular level, it seems that ultrasound transiently generates a local gradient of cytokines, growth factors, and adhesion molecules that facilitate MSC homing. However, the molecular mechanisms underlying these methods are far from fully elucidated and may differ depending on the ultrasound parameters. We thus put forth minimal criteria for ultrasound parameter reporting, in order to ensure reproducibility of studies in the field. A deeper understanding of these mechanisms will enhance our ability to optimize this promising therapy to assist MSC-based approaches in regenerative medicine.
Collapse
Affiliation(s)
- Daniel D. Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| | - Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| | | | - Jeremy J. Dahl
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| |
Collapse
|
5
|
Aydin O, Lorsung R, Chandran P, Cohen G, Burks SR, Frank JA. The Proteomic Effects of Pulsed Focused Ultrasound on Tumor Microenvironments of Murine Melanoma and Breast Cancer Models. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3232-3245. [PMID: 31530419 PMCID: PMC7456468 DOI: 10.1016/j.ultrasmedbio.2019.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/18/2019] [Accepted: 08/20/2019] [Indexed: 05/08/2023]
Abstract
Non-ablative pulsed focused ultrasound (pFUS) targets non-thermal forces that activate local molecular and cellular immune responses. Optimal parameters to stimulate immunotherapeutic tumor microenvironments (TME) and responses in different tumor types remain uninvestigated. Flank B16 murine melanoma and 4T1 breast tumors received 1 MHz pFUS at 1-8 MPa peak negative pressures (PNP) and were analyzed 24 hr post-sonication. Necrosis or hemorrhage were unaltered in both tumors, but pFUS induced DNA strand breaks in tumor cells at PNP ≥6 MPa. pFUS at >4 MPa suppressed anti-inflammatory cytokines in B16 tumors. pFUS to 4T1 tumors decreased anti-inflammatory cytokines and increased pro-inflammatory cytokines and cell adhesion molecules. pFUS at 6 MPa increased calreticulin and alterations in check-point proteins along with tumoral and splenic immune cell changes that could be consistent with a shift towards an anti-TME. pFUS-induced TME alterations shows promise in generating anti-tumor immune responses, but non-uniform responses between tumor types require additional investigation to assess pFUS as a suitable anti-tumor therapy.
Collapse
Affiliation(s)
- Omer Aydin
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
- Erciyes University, School of Engineering, Department of Biomedical Engineering, 38039, Talas, Kayseri, Turkey
- To whom correspondence may be addressed. ;
| | - Rebecca Lorsung
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Parwathy Chandran
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Gadi Cohen
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Scott R. Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Joseph A. Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence may be addressed. ;
| |
Collapse
|
6
|
Applications of Ultrasound to Stimulate Therapeutic Revascularization. Int J Mol Sci 2019; 20:ijms20123081. [PMID: 31238531 PMCID: PMC6627741 DOI: 10.3390/ijms20123081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Many pathological conditions are characterized or caused by the presence of an insufficient or aberrant local vasculature. Thus, therapeutic approaches aimed at modulating the caliber and/or density of the vasculature by controlling angiogenesis and arteriogenesis have been under development for many years. As our understanding of the underlying cellular and molecular mechanisms of these vascular growth processes continues to grow, so too do the available targets for therapeutic intervention. Nonetheless, the tools needed to implement such therapies have often had inherent weaknesses (i.e., invasiveness, expense, poor targeting, and control) that preclude successful outcomes. Approximately 20 years ago, the potential for using ultrasound as a new tool for therapeutically manipulating angiogenesis and arteriogenesis began to emerge. Indeed, the ability of ultrasound, especially when used in combination with contrast agent microbubbles, to mechanically manipulate the microvasculature has opened several doors for exploration. In turn, multiple studies on the influence of ultrasound-mediated bioeffects on vascular growth and the use of ultrasound for the targeted stimulation of blood vessel growth via drug and gene delivery have been performed and published over the years. In this review article, we first discuss the basic principles of therapeutic ultrasound for stimulating angiogenesis and arteriogenesis. We then follow this with a comprehensive cataloging of studies that have used ultrasound for stimulating revascularization to date. Finally, we offer a brief perspective on the future of such approaches, in the context of both further research development and possible clinical translation.
Collapse
|
7
|
Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 2019; 15:421-438. [PMID: 31121468 PMCID: PMC6529790 DOI: 10.1016/j.isci.2019.05.004] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for their therapeutic potential in regenerative medicine, owing to their ability to home damaged tissue and serve as a reservoir of growth factors and regenerative molecules. As such, clinical applications of MSCs are reliant on these cells successfully migrating to the desired tissue following their administration. Unfortunately, MSC homing is inefficient, with only a small percentage of cells reaching the target tissue following systemic administration. This attrition represents a major bottleneck in realizing the full therapeutic potential of MSC-based therapies. Accordingly, a variety of strategies have been employed in the hope of improving this process. Here, we review the molecular mechanisms underlying MSC homing, based on a multistep model involving (1) initial tethering by selectins, (2) activation by cytokines, (3) arrest by integrins, (4) diapedesis or transmigration using matrix remodelers, and (5) extravascular migration toward chemokine gradients. We then review the various strategies that have been investigated for improving MSC homing, including genetic modification, cell surface engineering, in vitro priming of MSCs, and in particular, ultrasound techniques, which have recently gained significant interest. Contextualizing these strategies within the multistep homing model emphasizes that our ability to optimize this process hinges on our understanding of its molecular mechanisms. Moving forward, it is only with a combined effort of basic biology and translational work that the potential of MSC-based therapies can be realized.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA.
| |
Collapse
|
8
|
Do HD, Couillaud BM, Doan BT, Corvis Y, Mignet N. Advances on non-invasive physically triggered nucleic acid delivery from nanocarriers. Adv Drug Deliv Rev 2019; 138:3-17. [PMID: 30321618 DOI: 10.1016/j.addr.2018.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
Nucleic acids (NAs) have been considered as promising therapeutic agents for various types of diseases. However, their clinical applications still face many limitations due to their charge, high molecular weight, instability in biological environment and low levels of transfection. To overcome these drawbacks, therapeutic NAs should be carried in a stable nanocarrier, which can be viral or non-viral vectors, and released at specific target site. Various controllable gene release strategies are currently being evaluated with interesting results. Endogenous stimuli-responsive systems, for example pH-, redox reaction-, enzymatic-triggered approaches have been widely studied based on the physiological differences between pathological and normal tissues. Meanwhile, exogenous triggered release strategies require the use of externally non-invasive physical triggering signals such as light, heat, magnetic field and ultrasound. Compared to internal triggered strategies, external triggered gene release is time and site specifically controllable through active management of outside stimuli. The signal induces changes in the stability of the delivery system or some specific reactions which lead to endosomal escape and/or gene release. In the present review, the mechanisms and examples of exogenous triggered gene release approaches are detailed. Challenges and perspectives of such gene delivery systems are also discussed.
Collapse
|
9
|
Jang KW, Tu TW, Nagle ME, Lewis BK, Burks SR, Frank JA. Molecular and histological effects of MR-guided pulsed focused ultrasound to the rat heart. J Transl Med 2017; 15:252. [PMID: 29237455 PMCID: PMC5729396 DOI: 10.1186/s12967-017-1361-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Image-guided high intensity focused ultrasound has been used as an extracorporeal cardiac pacing tool and to enhance homing of stem cells to targeted tissues. However, molecular changes in the myocardium after sonication have not been widely investigated. Magnetic-resonance (MR)-guided pulsed focused ultrasound (pFUS) was targeted to the rat myocardium over a range of pressures and the microenvironmental and histological effects were evaluated over time. METHODS Eight-to-ten-week-old Sprague-Dawley rats received T2-weighted MR images to target pFUS to the left ventricular and septum without cardiac or respiratory gating. Rats were sonicated through the thoracic wall at peak negative pressures (PNP) from 1 to 8 MPa at a center frequency of 1 MHz, 10 ms pulse duration and 1 Hz pulse repetition frequency for 100 pulses per focal target. Following pFUS, myocardium was harvested over 24 h and subjected to imaging, proteomic, and histological measurements. RESULTS pFUS to the myocardium increased expression of cytokines, chemokines, and trophic factors characterized by an initial increase in tumor necrosis factor (TNF)-α followed by increases in pro- and anti-inflammatory factors that returned to baseline by 24 h. Immediately after pFUS, there was a transient (< 1 h) increase in N-terminal pro b-type natriuretic peptide (NT-proBNP) without elevation of other cardiac injury markers. A relationship between PNP and expression of TNF-α and NT-proBNP was observed with significant changes (p < 0.05 ANOVA) ≥ 4 MPa compared to untreated controls. Contrast-enhanced ex vivo T1-weighted MRI revealed vascular leakage in sonicated myocardium that was accompanied by the presence of albumin upon immunohistochemistry. Histology revealed infiltration of neutrophils and macrophages without morphological myofibril changes in sonicated tissue accompanied by pulmonary hemorrhage at PNP > 4 MPa. CONCLUSIONS MR-guided pFUS to myocardium induced transient proteomic and histological changes. The temporal proteomic changes in the myocardium indicate a short-lived sterile inflammatory response consistent with ischemia or contusion. Further study of myocardial function and strain is needed to determine if pFUS could be developed as an experimental model of cardiac injury and chest trauma.
Collapse
Affiliation(s)
- Kee W Jang
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA.
| | - Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Matthew E Nagle
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Bobbi K Lewis
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Su G, Liu L, Yang L, Mu Y, Guan L. Homing of endogenous bone marrow mesenchymal stem cells to rat infarcted myocardium via ultrasound-mediated recombinant SDF-1α adenovirus in microbubbles. Oncotarget 2017; 9:477-487. [PMID: 29416629 PMCID: PMC5787482 DOI: 10.18632/oncotarget.23068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Stem cells can promote myocardial regeneration and accelerate the formation of new blood vessels. As such, transplanted stem cells represent a promising treatment modality for acute myocardial infarction (AMI). Stem cells spontaneously home to the infarcted myocardium using chemotaxis, in which the stromal cell-derived factor (SDF-1α) has been shown to be one of the most important chemokines. However, spontaneously secreted SDF-1α is short-lived, and therefore does not meet the needs of tissue repair. In this study, adenoviruses carrying SDF-1α genes were loaded on microbubble carriers and the adenoviruses were released into AMI rats by ultrasound targeted microbubble destruction. The possibility of in vivo self-transplantation of bone marrow mesenchymal stem cells (BMSCs) induced by overexpression of SDF-1α in the infarcted myocardium was explored by detecting the number of BMSCs homing from the peripheral blood to the myocardial infarcts. The concentration of SDF-1α in peripheral blood was significantly higher after transfection, and the number of BMSCs was significantly higher in the peripheral blood and infarcted area. Further analyses indicated that the number of homing BMSCs increased with increased SDF-1α expression. In conclusion, our results suggest that ultrasound mediated transduction of exogenous SDF-1α genes into myocardial infarcted AMI rats can effectively promote the homing of endogenous BMSCs into the heart. Moreover, the number of homing stem cells was controlled by the level of SDF-1α expression.
Collapse
Affiliation(s)
- Gaofeng Su
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liyun Liu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Medical animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lingjie Yang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Medical animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Xinjiang Key Laboratory of Medical animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
11
|
Illigens BMW, Casar Berazaluce A, Poutias D, Gasser R, Del Nido PJ, Friehs I. Vascular Endothelial Growth Factor Prevents Endothelial-to-Mesenchymal Transition in Hypertrophy. Ann Thorac Surg 2017; 104:932-939. [PMID: 28483153 DOI: 10.1016/j.athoracsur.2017.01.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND In hypertrophy, progressive loss of function caused by impaired diastolic compliance correlates with advancing cardiac fibrosis. Endothelial cells contribute to this process through endothelial-to-mesenchymal transition (EndMT) resulting from inductive signals such as transforming growth factor (TGF-β). Vascular endothelial growth factor (VEGF) has proven effective in preserving systolic function and delaying the onset of failure. In this study, we hypothesize that VEGF inhibits EndMT and prevents cardiac fibrosis, thereby preserving diastolic function. METHODS The descending aorta was banded in newborn rabbits. At 4 and 6 weeks, hypertrophied animals were treated with intrapericardial VEGF protein and compared with controls (n = 7 per group). Weekly transthoracic echocardiography measured peak systolic stress. At 7 weeks, diastolic stiffness was determined through pressure-volume curves, fibrosis by Masson trichrome stain and hydroxyproline assay, EndMT by immunohistochemistry, and activation of TGF-β and SMAD2/3 by quantitative real-time polymerase chain reaction. RESULTS Peak systolic stress was preserved during the entire observation period, and diastolic compliance was maintained in treated animals (hypertrophied: 20 ± 1 vs treated: 11 ± 3 and controls: 12 ± 2; p < 0.05). Collagen was significantly higher in the hypertrophied group by Masson trichrome (hypertrophied: 3.1 ± 0.9 vs treated: 1.8 ± 0.6) and by hydroxyproline assay (hypertrophied: 2.8 ± 0.6 vs treated: 1.4 ± 0.4; p < 0.05). Fluorescent immunostaining showed active EndMT in the hypertrophied group but significantly less in treated hearts, which was directly associated with a significant increase in TGF-β/SMAD-2 messenger RNA expression. CONCLUSIONS EndMT contributes to cardiac fibrosis in hypertrophied hearts. VEGF treatment inhibits EndMT and prevents the deposition of collagen that leads to myocardial stiffness through TGF-β/SMAD-dependent activation. This presents a therapeutic opportunity to prevent diastolic failure and preserve cardiac function in pressure-loaded hearts.
Collapse
Affiliation(s)
- Ben M-W Illigens
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Alejandra Casar Berazaluce
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Dimitrios Poutias
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Robert Gasser
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Elnaggar MA, Subbiah R, Han DK, Joung YK. Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin Drug Deliv 2017; 14:1341-1353. [PMID: 28117595 DOI: 10.1080/17425247.2017.1285904] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahmoud A. Elnaggar
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Hypoxic Preconditioning Combined with Microbubble-Mediated Ultrasound Effect on MSCs Promote SDF-1/CXCR4 Expression and its Migration Ability: An In Vitro Study. Cell Biochem Biophys 2017; 73:749-57. [PMID: 27259320 DOI: 10.1007/s12013-015-0698-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Our objective is to investigate the promoting effect of hypoxic preconditioning combined with microbubble (MB)-mediated ultrasound (US) on the SDF-1/CXCR4 expression and the migration ability of mesenchymal stem cells (MSCs). Based on the uniform design, the parameters of MB-mediated US, such as the total treatment time (T), acoustic intensity (Q), and the dosage of MBs, were optimized firstly. The results were assessed by regression analysis. Using the optimum irradiation parameters, the concentration of SDF-1 in the supernatant, the expression levels of membrane CXCR4, and the cell viability of hypoxic MSCs or normoxic MSCs were compared. The in vitro transwell migration assay was performed as well. The best combination of parameters for more SDF-1 secretion and less MSCs death was T = 30 s, A = 0.6 W/cm(2), and MB = 10(6)/ml. After 24 h of hypoxic preconditioning, the expression of SDF-1 and surface CXCR4 was increased in the hypoxic MSC group as compared to the normoxic MSC group (P < 0.05). On the basis of that, MB-mediated US could further upregulate the expression of SDF-1/CXCR4 with the optimum parameters (P < 0.05), while the cell viability was only decreased by about 9-10 % compared to the untreated groups. The number of successfully migrated cells was also the largest in the hypoxic preconditioning combined with MB-mediated US group than all the other groups. The results obtained indicate the combination of hypoxic preconditioning, and MB-mediated US can upregulate the SDF-1/CXCR4 expression and improve the migration ability in MSCs.
Collapse
|
14
|
Erikson JM, Valente AJ, Mummidi S, Kandikattu HK, DeMarco VG, Bender SB, Fay WP, Siebenlist U, Chandrasekar B. Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling. J Biol Chem 2017; 292:2345-2358. [PMID: 28053087 DOI: 10.1074/jbc.m116.764522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- John M Erikson
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Anthony J Valente
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Srinivas Mummidi
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Hemanth Kumar Kandikattu
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Vincent G DeMarco
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Shawn B Bender
- the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and.,Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - William P Fay
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Ulrich Siebenlist
- Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Bysani Chandrasekar
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211, .,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and
| |
Collapse
|
15
|
Ultrasound-targeted microbubble destruction enhances delayed BMC delivery and attenuates post-infarction cardiac remodelling by inducing engraftment signals. Clin Sci (Lond) 2016; 130:2105-2120. [PMID: 27609823 DOI: 10.1042/cs20160085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022]
Abstract
Delayed administration of bone marrow cells (BMCs) at 2-4 weeks after successful reperfusion in patients with acute myocardial infarction (MI) does not improve cardiac function. The reduction in engraftment signals observed following this time interval might impair the effects of delayed BMC treatment. In the present study, we aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) treatment could increase engraftment signals, enhance the delivery of delayed BMCs and subsequently attenuate post-infarction cardiac remodelling. A myocardial ischaemia/reperfusion (I/R) model was induced in Wistar rats via left coronary ligation for 45 min followed by reperfusion. Western blotting revealed that engraftment signals peaked at 7 days post-I/R and were dramatically lower at 14 days post-I/R. The lower engraftment signals at 14 days post-I/R could be triggered by UTMD treatment at a mechanical index of 1.0-1.9. The troponin I levels in the 1.9 mechanical index group were higher than in the other groups. Simultaneous haematoxylin and eosin staining and fluorescence revealed that the number of engrafted BMCs in the ischaemic zone was greater in the group treated with both UTMD and delayed BMC transplantation than in the control groups (P<0.05). Both UTMD and delayed BMC transplantation improved cardiac function and decreased cardiac fibrosis at 4 weeks after treatment, as compared with control groups (both P<0.05). Histopathology demonstrated that UTMD combined with delayed BMC transplantation increased capillary density, myocardial cell proliferation and c-kit+ cell proliferation. These findings indicated that UTMD treatment could induce engraftment signals and enhance homing of delayed BMCs to ischaemic myocardium, attenuating post-infarction cardiac remodelling by promoting neovascularization, cardiomyogenesis and expansion of cardiac c-kit+ cells.
Collapse
|
16
|
Fan X, Wang L, Guo Y, Xiong X, Zhu L, Fang K. Inhibition of prostate cancer growth using doxorubicin assisted by ultrasound-targeted nanobubble destruction. Int J Nanomedicine 2016; 11:3585-96. [PMID: 27536100 PMCID: PMC4973723 DOI: 10.2147/ijn.s111808] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ultrasound (US)-targeted microbubble destruction has been widely used as an effective drug-delivery system. However, nanobubbles (NBs) have better stability and stronger penetration than microbubbles, and drug delivery assisted by US-targeted NB destruction (UTND) still needs to be investigated. Our aim was to investigate the effect of doxorubicin (DOX) on the inhibition of prostate cancer growth under UTND. Contrast-enhanced US imaging of transplanted PC3 prostate cancer in mice showed that under a combination of 1 W/cm2 US power and a 100 Hz intermittent pulse with a “5 seconds on, 5 seconds off” mode, NBs with an average size of (485.7±33) nm were effectively destroyed within 15 minutes in the tumor location. PC3 cells and 20 tumor-bearing mice were divided into four groups: a DOX group, a DOX + NB group, a DOX + US group, and a DOX + NB + US group. The cell growth-inhibition rate and DOX concentration of xenografts in the DOX + NB + US group were highest. Based on another control group and these four groups, another 25 tumor-bearing mice were used to observe the treatment effect of nine DOX injections under UTND. The xenografts in the DOX + NB + US group decreased more obviously and had more cellular apoptosis than other groups. Finally, electron microscopy was used to estimate the cavitation effect of NBs under US irradiation in the control group, NB group, US group, and NB + US group. The results of scanning electron microscopy showed that PC3 cells in the DOX + NB + US group had more holes and significantly increased cell-surface folds. Meanwhile, transmission electric microscopy confirmed that more lanthanum nitrate particles entered the parenchymal cells in xenografts in the NB + US group compared with the other groups. This study suggested that UTND technology could be an effective method to promote drugs to function in US-irradiated sites, and the underlying mechanism may be associated with a cavitation effect.
Collapse
Affiliation(s)
| | - Luofu Wang
- Department of Urology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital
| | | | - Lianhua Zhu
- Department of Ultrasound, Southwest Hospital
| | - Kejing Fang
- Department of Ultrasound, Southwest Hospital
| |
Collapse
|
17
|
Kort EJ, Croskey L, Scibienski T, Rajasekaran S, Jovinge S. Circulating Progenitor Cells and Childhood Cardiovascular Disease. Pediatr Cardiol 2016; 37:225-31. [PMID: 26554720 DOI: 10.1007/s00246-015-1300-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
Abstract
Circulating progenitor cells have been extensively studied in the context of heart disease in adults. In these patients, they have been demonstrated to be markers of myocardial injury and recovery as well as potential therapeutic agents. However, studies in children are much more limited. Here we review current knowledge pertaining to circulating progenitor cells in the context of childhood cardiovascular disease. Priorities for further research are also highlighted.
Collapse
Affiliation(s)
- Eric J Kort
- DeVos Cardiovascular Research Program of Spectrum Health and Van Andel Research Institute, 100 Michigan Street NE, Grand Rapids, MI, 49503, USA.
- Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA.
- Helen DeVos Children's Hospital, 100 Michigan Street NE, Grand Rapids, MI, USA.
| | - Lacey Croskey
- Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA
| | - Taryn Scibienski
- Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA
| | - Surender Rajasekaran
- Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA
- Helen DeVos Children's Hospital, 100 Michigan Street NE, Grand Rapids, MI, USA
| | - Stefan Jovinge
- DeVos Cardiovascular Research Program of Spectrum Health and Van Andel Research Institute, 100 Michigan Street NE, Grand Rapids, MI, 49503, USA
- Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
18
|
Tebebi PA, Burks SR, Kim SJ, Williams RA, Nguyen BA, Venkatesh P, Frenkel V, Frank JA. Cyclooxygenase-2 or tumor necrosis factor-α inhibitors attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cell homing to healthy and dystrophic muscle. Stem Cells 2016; 33:1173-86. [PMID: 25534849 DOI: 10.1002/stem.1927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/05/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022]
Abstract
Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (nonspecific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients, and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine.
Collapse
Affiliation(s)
- Pamela A Tebebi
- Department of Biomedical Engineering, Catholic University of America, Washington, District of Columbia, USA; Frank Lab, Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Burks SR, Nguyen BA, Tebebi PA, Kim SJ, Bresler MN, Ziadloo A, Street JM, Yuen PST, Star RA, Frank JA. Pulsed focused ultrasound pretreatment improves mesenchymal stromal cell efficacy in preventing and rescuing established acute kidney injury in mice. Stem Cells 2016; 33:1241-53. [PMID: 25640064 DOI: 10.1002/stem.1965] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/28/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022]
Abstract
Animal studies have shown that mesenchymal stromal cell (MSC) infusions improve acute kidney injury (AKI) outcomes when administered early after ischemic/reperfusion injury or within 24 hours after cisplatin administration. These findings have spurred several human clinical trials to prevent AKI. However, no specific therapy effectively treats clinically obvious AKI or rescues renal function once advanced injury is established. We investigated if noninvasive image-guided pulsed focused ultrasound (pFUS) could alter the kidney microenvironment to enhance homing of subsequently infused MSC. To examine the efficacy of pFUS-enhanced cell homing in disease, we targeted pFUS to kidneys to enhance MSC homing after cisplatin-induced AKI. We found that pFUS enhanced MSC homing at 1 day post-cisplatin, prior to renal functional deficits, and that enhanced homing improved outcomes of renal function, tubular cell death, and regeneration at 5 days post-cisplatin compared to MSC alone. We then investigated whether pFUS+MSC therapy could rescue established AKI. MSC alone at 3 days post-cisplatin, after renal functional deficits were obvious, significantly improved 7-day survival of animals. Survival was further improved by pFUS and MSC. pFUS prior to MSC injections increased IL-10 production by MSC that homed to kidneys and generated an anti-inflammatory immune cell profile in treated kidneys. This study shows pFUS is a neoadjuvant approach to improve MSC homing to diseased organs. pFUS with MSC better prevents AKI than MSC alone and allows rescue therapy in established AKI, which currently has no meaningful therapeutic options.
Collapse
Affiliation(s)
- Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA; Imaging Sciences Training Program, Clinical Center and National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gu JY, Shi HF, Gao XL, Ma QQ, Zhang B. Effect of CXCR4 pretreated with ultrasound-exposed microbubbles on accelerating homing of bone marrow mesenchymal stem cells to ischemic myocardium in AMI rats. ASIAN PAC J TROP MED 2015; 8:766-71. [PMID: 26433665 DOI: 10.1016/j.apjtm.2015.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To investigate the role and potential mechanism of CXCR4 in promoting targeted homing of bone marrow mesenchymal stem cells (BMSCs) with ultrasound-exposed microbubbles (UM) pretreatment. METHODS Third generation BMSCs were divided into four groups control group, ultrasound (US) group, UM group and ultrasound-exposed microbubbles plus catalase group. RT-PCR and western blot were performed to determine the levels of CXCR4 mRNA transcription and protein expression, respectively. Third generation BMSCs were labeled with Fluo-α/AM and divided into three groups: control group, US group and UM group, and fluorescence intensities in the cells were observed immediately, 5 min and 15 min after intervention under fluorescence microscope. The calcium iron levels in the cells were analyzed. BMSCs were divided into five group: group A without calcium in the medium, group B, group C, group D and group E containing calcium chloride with concentration of l mol, 2 mol, 4 mol, anti-calcium-sensing receptor antibody, respectively. RT-PCR and western blot were performed to determine the levels of CXCR4 mRNA transcription and proteins expression of the third generation BMSCs of each group, respectively. RESULTS The levels of CXCR4 mRNA transcription and protein expression between US group and control group had no statistically significant difference (P > 0.05) shown by RT-PCR and western blot; the transcription level in the UM group was significantly higher than that in US group and control group (P < 0.05); and in the ultrasound-exposed microbubbles plus catalase group, the transcription level was much lower than that in UM group. Fluorescence intensify in the cells of US group had no significant difference compared with that in the cells of the control group (P > 0.05), which in the cells of UM group was significantly higher than that in the cells of both US group and control group (P < 0.05). Compared to group A, expressions of CXCR4 of group B to D were significantly increased in concentration-dependent manner showed by RT-PCR and western blot (P < 0.05). Compared to group C, expressions of CXCR4 of group E were significantly decreased (P < 0.05). CONCLUSIONS UM can promote the influx of calcium in BMSCs and increase mRNA transcription and protein expression of CXCR4. The latter may partly be caused by influx of calcium.
Collapse
Affiliation(s)
- Jun-Yi Gu
- Department of Ultrasound in Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui-Fen Shi
- Department of Ultrasound in Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiu-Li Gao
- Department of Ultrasound in Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qing-Qing Ma
- Department of Ultrasound in Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bo Zhang
- Department of Ultrasound in Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
21
|
Li L, Wu S, Liu Z, Zhuo Z, Tan K, Xia H, Zhuo L, Deng X, Gao Y, Xu Y. Ultrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4: A Pilot Study. Stem Cells Int 2015; 2015:691310. [PMID: 26074977 PMCID: PMC4436519 DOI: 10.1155/2015/691310] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy shows considerable promise for the treatment of myocardial infarction (MI). However, the inefficient migration and homing of MSCs after systemic infusion have limited their therapeutic applications. Ultrasound-targeted microbubble destruction (UTMD) has proven to be promising to improve the homing of MSCs to the ischemic myocardium, but the concrete mechanism remains unclear. We hypothesize that UTMD promotes MSC homing by upregulating SDF-1/CXCR4, and this study was aimed at exploring this potential mechanism. We analyzed SDF-1/CXCR4 expression after UTMD treatment in vitro and in vivo and counted the number of homing MSCs in MI areas. The in vitro results demonstrated that UTMD not only led to elevated secretion of SDF-1 but also resulted in an increased proportion of MSCs that expressed surface CXCR4. The in vivo findings show an increase in the number of homing MSCs and higher expression of SDF-1/CXCR4 in the UTMD combined with MSCs infusion group compared to other groups. In conclusion, UTMD can increase SDF-1 expression in the ischemic myocardium and upregulate the expression of surface CXCR4 on MSCs, which provides a molecular mechanism for the homing of MSCs assisted by UTMD via SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Lu Li
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Shengzheng Wu
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Zhongxiong Zhuo
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Kaibin Tan
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Hongmei Xia
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Lisha Zhuo
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Xiaojun Deng
- Department of Blood Transfusion, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Yunhua Gao
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Yali Xu
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
22
|
Wang X, Zachman AL, Haglund NA, Maltais S, Sung HJ. Combined Usage of Stem Cells in End-Stage Heart Failure Therapies. J Cell Biochem 2014; 115:1217-24. [DOI: 10.1002/jcb.24782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/03/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Xintong Wang
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| | - Angela L. Zachman
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| | | | - Simon Maltais
- Division of Cardiovascular Surgery; Vanderbilt University; Nashville Tennessee
| | - Hak-Joon Sung
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| |
Collapse
|
23
|
Katsikis A, Koutelou M. Cardiac Stem Cell Imaging by SPECT and PET. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-014-9265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Tong J, Ding J, Shen X, Chen L, Bian Y, Ma G, Yao Y, Yang F. Mesenchymal stem cell transplantation enhancement in myocardial infarction rat model under ultrasound combined with nitric oxide microbubbles. PLoS One 2013; 8:e80186. [PMID: 24244646 PMCID: PMC3828189 DOI: 10.1371/journal.pone.0080186] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/30/2013] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE This study evaluated the effects of ultrasound combined with the homemade nitric oxide (NO) micro-bubble destruction on the in vitro proliferation, apoptosis, and migration of mesenchymal stem cells (MSCs). Furthermore, we studied whether or not irradiation of the NO micro-bubble combined with bone-marrow derived MSC infusion had a better effect on treating myocardial infarction. The possible mechanism of MSC delivery into the infarcted myocardium was also investigated. METHODS The murine bone marrow-derived MSCs were isolated, cultured, irradiated, and combined with different concentrations of NO microbubbles. MTT proliferation assay, annexin V-FITC apoptosis detection, migration assay, and RT-PCR were performed 24 h after the irradiation. The NO micro-bubbles was a intravenously injected, followed by the infusion of MSCs, which were labeled by CM-Dil. Myocardium was harvested 48 h later and the distribution of MSCs was observed by laser scanning confocal microscope after frozen sectioning. Echocardiography, histological examination, RT-PCR, and western blotting were performed four weeks after the cell transplantation. RESULTS Ultrasound combined with 1:70 NO micro-bubbles had no significant impact on the proliferation or apoptosis of MSCs. Transwell chamber findings demonstrated that MSCs migrated more efficiently in group that underwent ultrasound combined with 1:70 NO micro-bubbles. The Real-time PCR results indicated that the expression of CXCR4 was much higher in the group undergoing ultrasound combined with 1:70 NO micro-bubbles. The normalized fluorescence intensity greatly increased in the group of US+NO micro-bubbles and the cardiac function was also markedly improved. Immunohistochemical staining showed that the capillary density was much greater in the group of US+NO micro-bubbles as compared to that of the other groups. RT-PCR and western blotting also revealed a higher SDF-1 and VEGF expression in the group of US+NO micro-bubbles. CONCLUSIONS NO micro-bubbles could be used in the cell transplantation, which efficiently promoted the MSC homing into the infarcted myocardium.
Collapse
Affiliation(s)
- Jiayi Tong
- Institute of Cardiology, Southeast University, Nanjing, Jiangsu Province, China
| | - Jiandong Ding
- Institute of Cardiology, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiangbo Shen
- Institute of Cardiology, Southeast University, Nanjing, Jiangsu Province, China
| | - Long Chen
- Institute of Cardiology, Southeast University, Nanjing, Jiangsu Province, China
| | - Yeping Bian
- Jiangsu Province Official Hospital, Nanjing, Jiangsu Province, China
| | - Genshan Ma
- Institute of Cardiology, Southeast University, Nanjing, Jiangsu Province, China
| | - Yuyu Yao
- Institute of Cardiology, Southeast University, Nanjing, Jiangsu Province, China
| | - Fang Yang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
25
|
Ling ZY, Shu SY, Zhong SG, Luo J, Su L, Liu ZZ, Lan XB, Yuan GB, Zheng YY, Ran HT, Wang ZG, Yin YH. Ultrasound targeted microbubble destruction promotes angiogenesis and heart function by inducing myocardial microenvironment change. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2001-2010. [PMID: 23969167 DOI: 10.1016/j.ultrasmedbio.2013.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 05/13/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
The myocardial microenvironment plays a decisive role in the survival, migration and differentiation of stem cells. We studied myocardial micro-environmental changes induced by ultrasound-targeted microbubble destruction (UTMD) and their influence on the transplantation of mesenchymal stem cells (MSCs). Various intensities of ultrasound were applied to the anterior chest in canines with myocardial infarction after intravenous injection of microbubbles. The expression of cytokines and adhesion molecules in the infarcted area of the myocardium was detected after three sessions of UTMD in 1 wk. Real-time quantitative reverse transcription polymerase chain reaction (RTQ-PCR) showed that the expression of vascular cell adhesion molecule-1 (VCAM-1), stromal cell-derived factor-1 (SDF-1) and vascular endothelial growth factor (VEGF) in the 1.5 W/cm(2) and 1 W/cm(2) groups was markedly increased compared with the 0.5 W/cm(2) or the control groups (3.8- to 4.7-fold, p < 0.01), and the expression of interleukin-1β (IL-1β) in the 1.5 W/cm(2) group was increased twofold over the 1.0 W/cm(2) group, whereas the 0.5 W/cm(2) group experienced no significant changes. UTMD at 1.0 W/cm(2) was performed as previously described before mesenchymal stem cell (MSC) transplantation. Myocardial perfusion, angiogenesis and heart function were investigated before and 1 month after MSC transplantation. Coronary angiography and 99mTc-tetrofosmin scintigraphy revealed that myocardial perfusion was markedly improved after UTMD + MSCs treatment (p < 0.05). At echocardiographic analysis, heart function and the wall motion score index were significantly improved by UTMD + MSCs treatment compared with MSCs or UTMD alone and the control. In a canine model of myocardial infarction, therapeutic effects were markedly enhanced by MSC transplantation after the myocardial micro-environmental changes induced by UTMD; therefore, this novel method may be useful as an efficient approach for cellular therapy.
Collapse
Affiliation(s)
- Zhi-Yu Ling
- Department of Cardiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Burks SR, Ziadloo A, Kim SJ, Nguyen BA, Frank JA. Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications. Stem Cells 2013; 31:2551-60. [PMID: 23922277 PMCID: PMC3834159 DOI: 10.1002/stem.1495] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 12/13/2022]
Abstract
Stem cells are promising therapeutics for cardiovascular diseases, and i.v. injection is the most desirable route of administration clinically. Subsequent homing of exogenous stem cells to pathological loci is frequently required for therapeutic efficacy and is mediated by chemoattractants (cell adhesion molecules, cytokines, and growth factors). Homing processes are inefficient and depend on short-lived pathological inflammation that limits the window of opportunity for cell injections. Noninvasive pulsed focused ultrasound (pFUS), which emphasizes mechanical ultrasound-tissue interactions, can be precisely targeted in the body and is a promising approach to target and maximize stem cell delivery by stimulating chemoattractant expression in pFUS-treated tissue prior to cell infusions. We demonstrate that pFUS is nondestructive to murine skeletal muscle tissue (no necrosis, hemorrhage, or muscle stem cell activation) and initiates a largely M2-type macrophage response. We also demonstrate that local upregulation of chemoattractants in pFUS-treated skeletal muscle leads to enhance homing, permeability, and retention of human mesenchymal stem cells (MSC) and human endothelial precursor cells (EPC). Furthermore, the magnitude of MSC or EPC homing was increased when pFUS treatments and cell infusions were repeated daily. This study demonstrates that pFUS defines transient "molecular zip codes" of elevated chemoattractants in targeted muscle tissue, which effectively provides spatiotemporal control and tunability of the homing process for multiple stem cell types. pFUS is a clinically translatable modality that may ultimately improve homing efficiency and flexibility of cell therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Scott R. Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
- Imaging Sciences Training Program, Clinical Center and National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Ali Ziadloo
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Saejeong J. Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Ben A. Nguyen
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Joseph A. Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD 20892
| |
Collapse
|
27
|
Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 2013; 113:810-34. [PMID: 23989721 PMCID: PMC3892665 DOI: 10.1161/circresaha.113.300219] [Citation(s) in RCA: 443] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/07/2013] [Indexed: 12/28/2022]
Abstract
Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, KY, USA
| | | |
Collapse
|
28
|
Rennert RC, Sorkin M, Garg RK, Gurtner GC. Stem cell recruitment after injury: lessons for regenerative medicine. Regen Med 2013; 7:833-50. [PMID: 23164083 DOI: 10.2217/rme.12.82] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue repair and regeneration are thought to involve resident cell proliferation as well as the selective recruitment of circulating stem and progenitor cell populations through complex signaling cascades. Many of these recruited cells originate from the bone marrow, and specific subpopulations of bone marrow cells have been isolated and used to augment adult tissue regeneration in preclinical models. Clinical studies of cell-based therapies have reported mixed results, however, and a variety of approaches to enhance the regenerative capacity of stem cell therapies are being developed based on emerging insights into the mechanisms of progenitor cell biology and recruitment following injury. This article discusses the function and mechanisms of recruitment of important bone marrow-derived stem and progenitor cell populations following injury, as well as the emerging therapeutic applications targeting these cells.
Collapse
Affiliation(s)
- Robert C Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | | | | | | |
Collapse
|
29
|
Song S, Noble M, Sun S, Chen L, Brayman AA, Miao CH. Efficient microbubble- and ultrasound-mediated plasmid DNA delivery into a specific rat liver lobe via a targeted injection and acoustic exposure using a novel ultrasound system. Mol Pharm 2012; 9:2187-96. [PMID: 22779401 DOI: 10.1021/mp300037t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To develop efficient gene delivery in larger animals, based on a previous mouse study, we explored the luciferase reporter gene transfer in rats by establishing a novel unfocused ultrasound system with simultaneous targeted injection of a plasmid and microbubble mixture into a specific liver lobe through a portal vein branch. Luciferase expression was significantly enhanced over 0-30 vol % of the Definity microbubbles, with a plateau between 0.5 and 30 vol %. The increase of gene delivery efficiency also depended on the acoustic peak negative pressure, achieving over 100-fold enhancement at 2.5 MPa compared with plasmid only controls. Transient, modest liver damage following treatment was assessed by transaminase assays and histology, both of which correlated with gene expression induced by acoustic cavitation. In addition, pulse-train ultrasound exposures (i.e., with relatively long quiescent periods between groups of pulses to allow tissue refill with microbubbles) produced gene expression levels comparable to the standard US exposure but reduced the extent of liver damage. These results indicated that unfocused high intensity therapeutic ultrasound exposure with microbubbles is highly promising for safe and efficient gene delivery into the liver of rats or larger animals.
Collapse
Affiliation(s)
- Shuxian Song
- Seattle Children's Research Institute, Seattle, Washington
| | | | | | | | | | | |
Collapse
|
30
|
Toyama Y, Sasaki KI, Tachibana K, Ueno T, Kajimoto H, Yokoyama S, Ohtsuka M, Koiwaya H, Nakayoshi T, Mitsutake Y, Chibana H, Itaya N, Imaizumi T. Ultrasound stimulation restores impaired neovascularization-related capacities of human circulating angiogenic cells. Cardiovasc Res 2012; 95:448-59. [PMID: 22641844 DOI: 10.1093/cvr/cvs173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIMS Unsatisfactory effects of therapeutic angiogenesis in critical limb ischaemia may be ascribed to use of circulating angiogenic cells (CACs) derived from atherosclerotic patients with impaired neovascularization-related capacities. We tested whether ultrasound cell stimulation can restore the impaired capacities. METHODS AND RESULTS During culture of human peripheral blood-derived mononuclear cells for 4 days to achieve CACs, we stimulated the cells in culture daily with low-intensity pulsed ultrasound stimulation (LIPUS). Application of LIPUS to cells in culture derived from healthy volunteers augmented the generation and migration capacities of CACs, increased concentrations of angiopoietin 2 and nitrogen oxides in the culture medium, and increased the expression of phosphorylated-Akt and endothelial nitric oxide synthase in CACs on western blotting. Application of LIPUS to cells in culture derived from atherosclerotic patients also augmented the generation and migration capacities of CACs. Although neovascularization in the ischaemic hindlimb of athymic nude mice was impaired after intramuscular injection of CACs derived from atherosclerotic patients compared with that using CACs derived from healthy volunteers, LIPUS of the cells in culture derived from atherosclerotic patients restored the neovascularization capacities. CONCLUSION Therapeutic angiogenesis with LIPUS-pre-treated CACs may be a new strategy to rescue critical limb ischaemia in atherosclerotic patients.
Collapse
MESH Headings
- Angiopoietin-2/metabolism
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Blotting, Western
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hindlimb
- Humans
- Ischemia/metabolism
- Ischemia/pathology
- Ischemia/physiopathology
- Ischemia/therapy
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Leukocytes, Mononuclear/transplantation
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Muscle, Skeletal/blood supply
- Neovascularization, Physiologic
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phenotype
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Time Factors
- Ultrasonics
- Up-Regulation
Collapse
Affiliation(s)
- Yasuyuki Toyama
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The angiogenic response is dependent on ultrasound contrast agent concentration. Vasc Cell 2012; 4:10. [PMID: 22587914 PMCID: PMC3583242 DOI: 10.1186/2045-824x-4-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/14/2012] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Ultrasound (US) and ultrasound contrast agents (UCAs) provide a way to noninvasively induce targeted angiogenesis. However, there exists a lack of understanding regarding the mechanisms of this process that has impeded progress. This study sought to characterize the angiogenic response, by both exploring the role of UCA concentration ([UCA]) in bioeffect induction at 0 days post exposure (DPE) and assessing the bioeffect as a possible potentiator of angiogenesis at 5 DPE. METHODS A 1-MHz ultrasonic transducer was used to expose the gracilis muscles of Sprague Dawley rats for 5 min with a 10-μs pulse duration, 10-Hz pulse repetition frequency, and 0.7-MPa peak rarefactional acoustic pressure (pr). Four [UCA]s were tested: 0x (saline), 1×, 5×, and 10×, where 1× is 5% Definity by volume of solution. Evans blue dye (EBD) was used to quantify changes in acute vascular permeability (0 DPE), and VEGF expression was quantified at 5 DPE to support that angiogenesis had occurred. CD31 staining was used to assess capillary density at both time points. RESULTS [UCA] was a significant parameter for determining EBD leakage (permeability) and VEGF expression (p < 0.001 for both). However, [UCA] was not a significant parameter for capillary density at 0 or 5 DPE. Multiple comparisons between 0 and 5 DPE showed that only 10× [UCA] at 5 DPE was significantly different than 0 DPE, suggesting a [UCA] dependence of the angiogenic response. CONCLUSIONS This study suggests that [UCA] was a significant parameter in the induction of an angiogenic response with US and UCAs. It also suggests that rather than damage from US and UCAs, as previously speculated, a nondestructive mechanical interaction between the UCAs and vascular endothelium induces bioeffects to potentiate the angiogenic response.
Collapse
|
32
|
Tang HL, Wang ZG, Li Q, Ran HT, Zheng YY, Ren JL, Ling ZY, Li A, Zhao B. Targeted delivery of bone mesenchymal stem cells by ultrasound destruction of microbubbles promotes kidney recovery in acute kidney injury. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:661-669. [PMID: 22390991 DOI: 10.1016/j.ultrasmedbio.2012.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
The aim of the present study was to explore whether ultrasound microbubble destruction augments site-targeted engraftment of bone marrow mesenchymal stem cells (BM-MSCs) to kidney tissue and promotes recovery of the kidney in acute kidney injury (AKI) in rats. AKI was induced by the subcutaneous injection of mercuric chloride (HgCl₂). Forty Sprague-Dawley (SD) rats were randomly divided into the following groups after the establishment of rat models of AKI (n = 10): (1) Model group alone (control group); (2) 1.0 W/cm² ultrasound (US) + microbubble (MB) (US/MB group); (3) MSCs group; and (4) 1.0 W/cm² US+MB + MSCs group (US/MB + MSCs group). The number of 4',6-diamidino-2-phenylindole (DAPI) labelled MSCs was evaluated by fluorescence microscopy and real-time polymerase chain reaction (RT-PCR) and Western blotting and histological examination were performed 7 days after MSCs transplantation. It was observed via fluorescence microscopy that the number of DAPI-labelled MSCs in the kidney for the US/MB + MSCs group was significantly more than the MSCs group (p < 0.05). The results from RT-PCR revealed that the US/MB and US/MB + MSCs groups markedly increased the level of inter-cellular adhesion molecule 1 (ICAM-1) messenger ribonucleic acid (mRNA) compared with the control group and the MSCs group (p < 0.05). Western blot analysis showed that the expression of hepatocyte growth factor (HGF) and epidermal growth factor (EGF) in the US/MB + MSCs group were markedly increased compared with the all other groups (p < 0.01). The extent of tubular necrosis and dilation was significantly milder in the US/MB + MSCs group (acoustic exposure conditions: 5s at 1 MHz and 1.0 W/cm² with a 5s pause, totalling 60 s) than the all other groups (p < 0.05). Microbubble destruction by 1.0 W/cm² ultrasound can promote both the homing of BM-MSCs to kidney tissue and the recovery of the kidney in AKI in rats.
Collapse
Affiliation(s)
- Hai-Lin Tang
- Department of Ultrasound, Sir Run Run Shaw Hospital, Zhejiang University Medical College, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pfister R, Sharp SJ, Luben R, Wareham NJ, Khaw KT. Differential white blood cell count and incident heart failure in men and women in the EPIC-Norfolk study. Eur Heart J 2012; 33:523-530. [PMID: 22173908 DOI: 10.1093/eurheartj/ehr457] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
AIMS Markers of inflammation are associated with increased risk of heart failure, but data on differential white blood cell (WBC) count are lacking. We examined the prospective association between differential WBC count and incident heart failure events. METHODS AND RESULTS Hazard ratios (HRs) (per increase of 1000 cells/μL, 95% confidence interval) of total WBC count and individual components on heart failure were calculated in apparently healthy 7195 men and 8816 women aged 39-79 participating in the 'European Prospective Investigation into Cancer and Nutrition' (EPIC) study in Norfolk. During a mean follow-up of 12.4 years, 935 incident cases of heart failure occurred. In women, neither total WBC count (1.02, 0.96-1.09) nor individual components were associated with HR of heart failure after accounting for known risk factors. In men, HR of heart failure increased with increasing levels of total WBC count (1.09, 1.04-1.15) after accounting for established risk factors; analysis of WBC components showed increased hazard with increasing levels of granulocyte count (1.16, 1.09-1.24) and, independently of this, decreased hazard with increasing levels of monocyte count (0.71, 0.53-0.93); lymphocyte count was not significantly associated with heart failure (0.97, 0.83-1.13). Results did not change materially after excluding smokers, adjusting for intermediate myocardial infarction and coronary heart disease and C-reactive protein. CONCLUSION Inflammation as measured by WBC count was independently associated with incident heart failure in apparently healthy men but not women. The association observed in men was driven by granulocyte count, but there was an independent inverse association between monocyte count and incident heart failure.
Collapse
Affiliation(s)
- Roman Pfister
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK.
| | | | | | | | | |
Collapse
|
34
|
Chen ZY, Liang K, Qiu RX, Luo LP. Ultrasound- and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2011; 30:1247-1258. [PMID: 21876096 DOI: 10.7863/jum.2011.30.9.1247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVES Gene transfer to cardiomyocytes in vivo has received much research attention in the last decade but remains a substantial hurdle. Gene transfer using ultrasound-targeted microbubble destruction is a promising tool for gene therapy. Little data have shown the feasibility and optimization of this method for primary myocardial disease. In this study, we sought to determine the feasibility and efficiency of in vivo gene transfer to the myocardium mediated by ultrasound-targeted microbubble destruction accompanied by polyethylenimine. METHODS Three plasmids (luciferase reporter, red fluorescent protein reporter, and enhanced green fluorescent protein reporter) were used in this study. The ultrasound parameters were also optimized. A solution containing phosphate-buffered saline, a plasmid, plasmid complex, or polyethylenimine/plasmid, and liposome microbubbles was injected via a tail vein with (study) or without (control) transthoracic ultrasound irradiation. The efficiency of reporter gene transfer was determined by detection of luciferase activity or microscopy, and histologic investigations of the tissue specimens were performed. RESULTS Ultrasound-targeted microbubble destruction significantly increased luciferase activity in vivo compared to plasmids and microbubbles alone (P < .001). More importantly, the increase in transgene expression was significantly related to ultrasound-targeted microbubble destruction in the presence of polyethylenimine (P < .001). In addition, fluorescein expression was present in all sections that received ultrasound-targeted microbubble destruction. The fluorescent reporter genes and luciferase plasmid all had similar results. Regardless of ultrasound exposure, expression in other organs was close to a background level except for the liver and lung. Hematoxylin-eosin staining showed no notable myocardial injury or death in control and treated mice. CONCLUSIONS An atraumatic targeted gene delivery technique based on ultrasound-targeted microbubble destruction and polyethylenimine has been developed to transfect cardiomyocytes in vivo. If a suitable target gene is added, the novel technique could be highly effective in many kinds of heart disease.
Collapse
Affiliation(s)
- Zhi-Yi Chen
- Department of Medical Imaging Center, First Affiliated Hospital, Jinan University, 613 Huangpu Dadao Xi, 510632 Guangzhou, Guangdong, China
| | | | | | | |
Collapse
|
35
|
Fu Y, Azene N, Xu Y, Kraitchman DL. Tracking stem cells for cardiovascular applications in vivo: focus on imaging techniques. ACTA ACUST UNITED AC 2011; 3:473-486. [PMID: 22287982 DOI: 10.2217/iim.11.33] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite rapid translation of stem cell therapy into clinical practice, the treatment of cardiovascular disease using embryonic stem cells, adult stem and progenitor cells or induced pluripotent stem cells has not yielded satisfactory results to date. Noninvasive stem cell imaging techniques could provide greater insight into not only the therapeutic benefit, but also the fundamental mechanisms underlying stem cell fate, migration, survival and engraftment in vivo. This information could also assist in the appropriate choice of stem cell type(s), delivery routes and dosing regimes in clinical cardiovascular stem cell trials. Multiple imaging modalities, such as MRI, PET, SPECT and CT, have emerged, offering the ability to localize, monitor and track stem cells in vivo. This article discusses stem cell labeling approaches and highlights the latest cardiac stem cell imaging techniques that may help clinicians, research scientists or other healthcare professionals select the best cellular therapeutics for cardiovascular disease management.
Collapse
Affiliation(s)
- Yingli Fu
- Russell H Morgan Department of Radiology & Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
36
|
Johnson CA, Miller RJ, O'Brien WD. Ultrasound contrast agents affect the angiogenic response. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2011; 30:933-41. [PMID: 21705726 PMCID: PMC3401069 DOI: 10.7863/jum.2011.30.7.933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/11/2011] [Indexed: 05/31/2023]
Abstract
OBJECTIVES The interaction of ultrasound contrast agents (UCAs) and ultrasound (US) provides a way to spatially and temporally target tissues. Recently, UCAs have been used therapeutically to induce localized angiogenesis. Ultrasound contrast agents, however, have been documented to induce negative bioeffects. To further understand the balance of risks and benefits of UCAs and to examine the mechanism of US-UCA-induced angiogenesis, this study explored the role of UCAs, in particular Definity (Lantheus Medical Imaging, Inc, North Billerica, MA), in producing an angiogenic response. METHODS The gracilis muscles of Sprague Dawley rats were exposed to 1-MHz US. The rats were euthanized the same day or allowed to recover for 3 or 6 days post exposure (DPE). Ultrasound peak rarefactional pressures (P(r)s) of 0.25, 0.83, 1.4, and 2.0 MPa were used while rats were infused with either saline or Definity. Assessments for angiogenesis included capillary density, inflammation, and vascular endothelial growth factor (VEGF), both acutely (0 DPE) and at 3 and 6 DPE. RESULTS The results of this study suggest that the angiogenic response is dependent on infusion media, P(r), and DPE. While capillary density did not reach significance, VEGF expression was significant for infusion media, P(r), and DPE with inflammation co-occurrence (P < .05). CONCLUSIONS These results suggest that the angiogenic response is elicited by a mechanical effect of US-UCA stimulation of VEGF that is potentially optimized when collapse occurs.
Collapse
Affiliation(s)
- Chenara A Johnson
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 405 N Mathews, Urbana, IL 61801 USA
| | | | | |
Collapse
|
37
|
|
38
|
Explorations of high-intensity therapeutic ultrasound and microbubble-mediated gene delivery in mouse liver. Gene Ther 2011; 18:1006-14. [PMID: 21451579 DOI: 10.1038/gt.2011.34] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ultrasound (US) combined with microbubbles (MBs) is a promising technology for non-viral gene delivery. Significant enhancements of gene expression have been obtained in our previous studies. To optimize and prepare for application to larger animal models, the luciferase reporter gene transfer efficacy of lipid-based Definity MBs of various concentrations, pressure amplitudes and a novel unfocused high-intensity therapeutic US (HITU) system were explored. Luciferase expression exhibited a dependence on MB dose over the range of 0-25 vol%, and a strong dependence on acoustic peak negative pressure at over the range of 0-3.2 MPa. Gene expression reached an apparent plateau at MB concentration ≥2.5 vol% or at negative pressures >1.8 MPa. Maximum gene expression in treated animals was 700-fold greater than in negative controls. Pulse train US exposure protocols produced an upward trend of gene expression with increasing quiescent time. The hyperbolic correlation of gene expression and transaminase levels suggested that an optimum gene delivery effect can be achieved by maximizing acoustic cavitation-induced enhancement of DNA uptake and minimizing unproductive tissue damage. This study validated the new HITU system equipped with an unfocused transducer with a larger footprint capable of scanning large tissue areas to effectively enhance gene transfer efficiencies.
Collapse
|
39
|
Forte E, Chimenti I, Barile L, Gaetani R, Angelini F, Ionta V, Messina E, Giacomello A. Cardiac Cell Therapy: The Next (Re)Generation. Stem Cell Rev Rep 2011; 7:1018-30. [DOI: 10.1007/s12015-011-9252-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
40
|
Vascular gene transfer of SDF-1 promotes endothelial progenitor cell engraftment and enhances angiogenesis in ischemic muscle. Mol Ther 2011; 19:895-902. [PMID: 21364544 DOI: 10.1038/mt.2011.18] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene therapy approaches to enhance endothelial progenitor cell (EPC) homing may augment cell engraftment to ischemic tissue and lead to a greater therapeutic response. Therefore, we assessed the effects of ultrasound-mediated (UM) transfection of the chemokine stromal cell-derived factor-1 (SDF-1) on homing and engraftment of intravenously administered EPCs and the subsequent angiogenic response in chronically ischemic skeletal muscle. Bone marrow-derived EPCs were isolated from donor Fisher 344 rats, cultured and labeled in preparation for injection into recipient animals via a jugular vein. Using a model of chronic hindlimb ischemia in rats, we demonstrated that UM destruction of intravenous carrier microbubbles loaded with SDF-1 plasmid DNA resulted in targeted transfection of the vascular endothelium within ischemic muscle and greater local engraftment of EPCs. The combination of SDF-1gene therapy and EPCs lead to the greatest increase in tissue perfusion and microvascular density within ischemic muscle, compared to no treatment or either monotherapy alone. Our results demonstrate that UM transfection of SDF-1 improves EPC targeting to chronically ischemic tissue, enhancing vascular engraftment and leading to a more robust neovascularization response.
Collapse
|
41
|
Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J 2011; 32:1197-206. [PMID: 21362705 DOI: 10.1093/eurheartj/ehr018] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the absence of effective endogenous repair mechanisms after cardiac injury, cell-based therapies have rapidly emerged as a potential novel therapeutic approach in ischaemic heart disease. After the initial characterization of putative endothelial progenitor cells and their potential to promote cardiac neovascularization and to attenuate ischaemic injury, a decade of intense research has examined several novel approaches to promote cardiac repair in adult life. A variety of adult stem and progenitor cells from different sources have been examined for their potential to promote cardiac repair and regeneration. Although early, small-scale clinical studies underscored the potential effects of cell-based therapy largely by using bone marrow (BM)-derived cells, subsequent randomized-controlled trials have revealed mixed results that might relate, at least in part, to differences in study design and techniques, e.g. differences in patient population, cell sources and preparation, and endpoint selection. Recent meta-analyses have supported the notion that administration of BM-derived cells may improve cardiac function on top of standard therapy. At this stage, further optimization of cell-based therapy is urgently needed, and finally, large-scale clinical trials are required to eventually proof its clinical efficacy with respect to outcomes, i.e. morbidity and mortality. Despite all promises, pending uncertainties and practical limitations attenuate the therapeutic use of stem/progenitor cells for ischaemic heart disease. To advance the field forward, several important aspects need to be addressed in carefully designed studies: comparative studies may allow to discriminate superior cell populations, timing, dosing, priming of cells, and delivery mode for different applications. In order to predict benefit, influencing factors need to be identified with the aim to focus resources and efforts. Local retention and fate of cells in the therapeutic target zone must be improved. Further understanding of regenerative mechanisms will enable optimization at all levels. In this context, cell priming, bionanotechnology, and tissue engineering are emerging tools and may merge into a combined biological approach of ischaemic tissue repair.
Collapse
Affiliation(s)
- Jörn Tongers
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, Germany.
| | | | | |
Collapse
|
42
|
Johnson CA, Sarwate S, Miller RJ, O'Brien WD. A temporal study of ultrasound contrast agent-induced changes in capillary density. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2010; 29:1267-75. [PMID: 20733181 PMCID: PMC3069919 DOI: 10.7863/jum.2010.29.9.1267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
OBJECTIVE The ability of ultrasound (US) and ultrasound contrast agents (UCAs) to induce angiogenesis has been explored as a means of restoring blood flow to ischemic muscle. Because UCAs demonstrate an increasing percentage of collapse cavitation with increasing US pressure (Pr), this study sought to explore the effects of a US Pr that produces 100% collapse cavitation, determine the capillary density changes, and determine the time point of angiogenic rebound in a normal animal model. METHODS Using a 1-MHz focused transducer and a peak rarefactional US Pr of 3.8 MPa, rat gracilis muscles were exposed to US, and bioeffects were assessed. Capillary density, as a measure of angiogenesis, was examined. As an additional measure, inflammatory cells were quantified via a color threshold analysis to detect the presence of CD31 and CD34 as a percentage of the total section on stained slides. Six groups (0, 3, 6, 13, 20, and 27 days postexposure [DPE]; n = 3 each) and 5 cage controls were used to characterize the angiogenic response. RESULTS Ultrasound-UCA treatment caused the capillary density to decrease acutely (0 DPE) by 70% and inflammatory cells to increase by up to 250%. The angiogenic rebound was observed at 3 DPE but did not return to control levels by 27 DPE, suggesting an incomplete healing response. CONCLUSIONS Capillary destruction and inflammation played an important role in the angiogenic response induced by US-UCA. Exposure that causes 100% collapse cavitation causes capillary destruction from which normal rats are unable to recover and suggests a nontherapeutic effect.
Collapse
Affiliation(s)
- Chenara A Johnson
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
43
|
Yan Y, Liao Y, Yang L, Wu J, Du J, Xuan W, Ji L, Huang Q, Liu Y, Bin J. Late-phase detection of recent myocardial ischaemia using ultrasound molecular imaging targeted to intercellular adhesion molecule-1. Cardiovasc Res 2010; 89:175-83. [PMID: 20733010 DOI: 10.1093/cvr/cvq269] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS in this study, we attempted to detect a recent myocardial ischaemic event using ultrasound molecular imaging (UMI) with microbubbles (MB) targeted to intercellular adhesion molecule-1 (ICAM-1) in the late phase of reperfusion. METHODS AND RESULTS we created a myocardial ischaemia-reperfusion model in 60 C57/BL male mice to simulate an angina attack (ischaemia for 15 min, reperfusion for 1-24 h). The degree of myocardial inflammation and levels of ICAM-1 protein were determined by histological and immunohistochemical analyses. UMI with MB targeted to endothelial ICAM-1, as well as routine non-invasive methods including electrocardiography, echocardiography, and plasma troponin I levels, were utilized to evaluate ischaemia over the time course of reperfusion. Levels of ICAM-1 in the vascular endothelium were significantly increased over the time course of reperfusion (8-24 h) of the ischaemic myocardium. The video intensity of ICAM-1 molecular images of the ischaemic anterior wall was almost three times greater than that in the non-ischaemic posterior wall during the late phase (8-24 h) of reperfusion. In contrast, routine methods yielded only weak evidence of ischaemia. CONCLUSION UMI with MB targeted to endothelial ICAM-1 provides reliable evidence of a recent myocardial ischaemic event in the late phase of reperfusion.
Collapse
Affiliation(s)
- Yi Yan
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yanai S, Adachi Y, Shi M, Shigematsu A, Shima C, Imai Y, Kwon AH, Ikehara S. Adult bone marrow cells can differentiate into hemopoietic cells and endothelial cells but not into other lineage cells in normal growth and normal life. Int J Hematol 2010; 91:213-218. [PMID: 20087796 DOI: 10.1007/s12185-009-0479-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 12/05/2009] [Accepted: 12/10/2009] [Indexed: 01/20/2023]
Abstract
There have been reports that bone marrow cells (BMCs) can differentiate into various cells and tissues and that BMCs improve the function of the injured organs or reduce the organ damage, thereby rescuing the individuals from death. However, these reports also noted that injuries were induced in the organs. Therefore, it is not clear whether BMCs can differentiate into parenchymal cells in organs in normal life or whether BMCs can supply organ-specific stem cells. In this paper, we examine whether adult BMCs could contribute to the development of various organs in normal development after birth and in normal life. BMCs from adult eGFP mice (8 weeks old) were injected into the liver of newborn C57BL/6 mice. The existence of donor-derived cells in various organs was examined 1 year after the injection. In the organs of recipient mice, some of the CD45(+) hemopoietic cells (1.4-13.2%) and CD31(+) endothelial cells (0-2.2%) expressed eGFP, though no other lineage cells did so. These results suggest that adult BMCs can differentiate into not only hemopoietic cells but also vascular endothelial cells, but cannot differentiate into other lineage cells in normal growth and normal life.
Collapse
Affiliation(s)
- Seiji Yanai
- First Department of Pathology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi City, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wollert KC, Drexler H. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 2010; 7:204-15. [DOI: 10.1038/nrcardio.2010.1] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Apostolakis S, Lip GYH, Shantsila E. Monocytes in heart failure: relationship to a deteriorating immune overreaction or a desperate attempt for tissue repair? Cardiovasc Res 2009; 85:649-60. [PMID: 19805399 DOI: 10.1093/cvr/cvp327] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Monocytes play an important role in immune defence, inflammation, and tissue remodelling. Nevertheless, the role of monocytes in cardiovascular disease is obscure. Indeed, monocytes infiltrate dysfunctional tissue and augment tissue damage and are actively involved in tissue regeneration and healing. In support of the latter, recent studies have provided data on the functional and structural plasticity of monocytes. Monocytes are also actively involved in processes associated with tissue regeneration such as angiogenesis and vasculogenesis, either by producing pro-angiogenic factors or even by evolving to structural components of the vascular wall. This review article provides an overview on whether monocytes represent deteriorating immune overreaction in heart failure (HF), or a desperate attempt for tissue repair or physiological compensation in the failing heart. Perhaps, it is time to reconsider our attitude towards monocytes and consider more 'monocyte activation' rather than 'monocyte suppression' as a potential therapeutic target in HF.
Collapse
Affiliation(s)
- Stavros Apostolakis
- Haemostasis Thrombosis and Vascular Biology Unit, University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, UK
| | | | | |
Collapse
|
47
|
Técnicas no invasivas de imagen cardiovascular en investigación básica: aplicación en la terapia celular. Rev Esp Cardiol 2009. [DOI: 10.1016/s0300-8932(09)72074-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Haider HK, Akbar SA, Ashraf M. Angiomyogenesis for myocardial repair. Antioxid Redox Signal 2009; 11:1929-44. [PMID: 19361254 PMCID: PMC2848517 DOI: 10.1089/ars.2009.2471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 01/30/2009] [Accepted: 02/07/2009] [Indexed: 01/14/2023]
Abstract
The conventional therapeutic modalities for myocardial infarction have limited success in preventing the progression of left ventricular remodeling and congestive heart failure. The heart cell therapy and therapeutic angiogenesis are two promising strategies for the treatment of ischemic heart disease. After extensive assessment of safety and effectiveness in vitro and in experimental animal studies, both of these approaches have accomplished the stage of clinical utility, albeit with limited success due to the inherent limitations and problems of each approach. Neomyogenesis without restoration of regional blood flow may be less meaningful. A combined stem-cell and gene-therapy approach of angiomyogenesis is expected to yield better results as compared with either of the approaches as a monotherapy. The combined therapy approach will help to restore the mechanical contractile function of the weakened myocardium and alleviate ischemic condition by restoration of regional blood flow. In providing an overview of both stem cell therapy and gene therapy, this article is an in-depth and critical appreciation of combined cell and gene therapy approach for myocardial repair.
Collapse
Affiliation(s)
- Husnain Kh Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0529, USA.
| | | | | |
Collapse
|
49
|
Laing ST, McPherson DD. Cardiovascular therapeutic uses of targeted ultrasound contrast agents. Cardiovasc Res 2009; 83:626-35. [PMID: 19581314 DOI: 10.1093/cvr/cvp192] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The therapeutic use of ultrasound contrast agents (UCAs) is an emerging methodology with high potential for enhanced directed therapeutic gene, bioactive gas, drug, and stem cell delivery. Ultrasound-targeted microbubble destruction has already demonstrated feasibility for plasmid DNA delivery. Similarly, therapeutic ultrasound for thrombolysis treatment has been taken into the clinical setting, and the addition of UCAs for therapeutic delivery or enhanced effect through cavitation is a natural progression to this investigation. However, as with any new technique, safety needs to be first demonstrated before translation into clinical practice. This review article will focus on the development of UCAs for cardiac and vascular therapeutics as well as the limitations/concerns for the use of therapeutic ultrasound in clinical medicine in order to lay a foundation for investigators planning to enter this exciting field or for those who want to broaden their understanding.
Collapse
Affiliation(s)
- Susan T Laing
- Division of Cardiology, Department of Internal Medicine, University of Texas Health Sciences Center-Houston, 6431 Fannin Street, MSB 1.246, Houston, TX 77030, USA.
| | | |
Collapse
|
50
|
Ghanem A, Steingen C, Brenig F, Funcke F, Bai ZY, Hall C, Chin CT, Nickenig G, Bloch W, Tiemann K. Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction. J Mol Cell Cardiol 2009; 47:411-8. [PMID: 19540842 DOI: 10.1016/j.yjmcc.2009.06.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/30/2009] [Accepted: 06/11/2009] [Indexed: 12/17/2022]
Abstract
Intravascular transplantation of bone marrow-derived mesenchymal stem cells (MSCs) is a promising therapeutic approach after acute myocardial infarction. Efficacy and targeting of myocardial cell engraftment are crucial variables determining the therapeutic value of MSC transplantation. Highly focused ultrasound-mediated stimulation of microbubbles (hf-UMS) allows locoregional pre-treatment of target tissue. In a "proof of concept" study, we investigated augmentation of site-targeted MSC engraftment with hf-UMS. We further evaluated the ability of transplanted MSCs to transmigrate across the endothelial barrier into non-ischemic and post-ischemic myocardium in vivo. After acute myocardial ischemia and reperfusion, rats received hf-UMS focused on the anterior left-ventricular wall followed by intravascular transplantation of MSCs. Global and regional myocardial engraftment of MSCs was quantified by means of confocal laser-scanning microscopy; endothelial adhesion, transendothelial migration and invasion of basement membrane were distinguished. Targeted myocardium exhibited higher amount of transplanted MSCs vs. non-targeted tissue. The rate of transendothelial migration was lowest in non-ischemic (41.2+/-2%) compared to post-ischemic myocardium (53+/-5.7%, p<0.01). Hf-UMS significantly increased the transmigration rate to 50+/-6.1% (p<0.05) and 64+/-8.9% (p<0.05), respectively. Additionally, myocardial segments exposed to hf-UMS revealed an onset of protease activity. Signs of undesired biological effects, such as induction of apoptosis and/or myocardial necrosis were not observed. This study provides the first evidence of the migration of MSCs across the myocardial endothelium in vivo. Hf-UMS not only improves myocardial engraftment of MSCs but also allows locoregional targeting of post-ischemic myocardium.
Collapse
Affiliation(s)
- Alexander Ghanem
- Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|