1
|
Castillero E, Camillo C, Levine D, D'Angelo AM, Kosuri Y, Grau JB, Levy RJ, Ferrari G. Serotonin transporter deficiency in mice results in an increased susceptibility to HTR2B-dependent pro-fibrotic mechanisms in the cardiac valves and left ventricular myocardium. Cardiovasc Pathol 2025; 74:107689. [PMID: 39245153 PMCID: PMC11585425 DOI: 10.1016/j.carpath.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Increased serotonin (5HT) concentration and signaling, can lead to pathological remodeling of the cardiac valves. We previously showed that a reduction of the 5HT transporter (SERT) expression in the mitral valve (MV) contributes to the progression of degenerative MV regurgitation (MR). We sought to investigate the myocardial and valvular phenotype of SERT-/- mice in order to identify remodeling mechanisms specific to the MV and left ventricular (LV) remodeling. Using 8- and 16-week-old WT and SERT-/- mice we show that male and female animals deficient of SERT have pathological remodeling of the cardiac valves, myocardial fibrosis, diminished ejection fraction and altered left ventricular dimensions. In the MV and intervalvular area of the aortic valve (AV)-MV, gene expression, including Col1a1 mRNA, was progressively altered with age up until 16 weeks of age. In contrast, in the AV and myocardium, most gene expression changes occurred earlier and plateaued by 8 weeks. To explore basal differences in susceptibility to remodeling stimuli among cardiac valves, valve interstitial cells (VIC) were isolated from AV, MV, tricuspid valve (TV), pulmonary valve (PV) and fibroblasts (Fb) from the myocardial apex from 16 weeks old wild type (WT) mice. After 24h stimulation with 10 µM of 5HT, the gene expression of Col1a1 and Acta2 were upregulated in MVIC to a higher degree than in VIC from other valves and Fb. Treatment with TGFβ1 similarly upregulated Cola1 and Acta2 in MVIC and AVIC, while the increase was milder in right heart VIC and Fb. Experiments were also carried out with human VIC. In comparison to mice, human left heart VIC were more sensitive to 5HT and TGFβ1, upregulating COL1A1 and ACTA2; TGFβ1 upregulated HTR2B expression in all VIC. Our results support the hypothesis that a deleterious cardiac effect of SERT downregulation may be mediated by increased susceptibility to HTR2B-dependent pro-fibrotic mechanisms, which are distinct among VIC populations and cardiac fibroblasts, regardless of SERT activity. Given that HTR2B mechanisms involved in VIC and myocardial remodeling response are due to both 5HT and also to downstream related TGFβ1 and TNFα activity, targeting HTR2B could be a therapeutic strategy for dual treatment of MR and LV remodeling.
Collapse
MESH Headings
- Animals
- Fibrosis
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Serotonin Plasma Membrane Transport Proteins/deficiency
- Mice, Knockout
- Male
- Female
- Ventricular Remodeling
- Collagen Type I, alpha 1 Chain/metabolism
- Collagen Type I, alpha 1 Chain/genetics
- Receptor, Serotonin, 5-HT2B/metabolism
- Receptor, Serotonin, 5-HT2B/genetics
- Disease Models, Animal
- Ventricular Function, Left
- Collagen Type I/metabolism
- Collagen Type I/genetics
- Mice, Inbred C57BL
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Cells, Cultured
- Humans
- Phenotype
- Heart Valves/pathology
- Heart Valves/metabolism
- Myocardium/pathology
- Myocardium/metabolism
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/genetics
- Mice
- Signal Transduction
- Mitral Valve Insufficiency/pathology
- Mitral Valve Insufficiency/physiopathology
- Mitral Valve Insufficiency/metabolism
Collapse
Affiliation(s)
- Estibaliz Castillero
- Department of Surgery, Columbia University; New York, NY 10032, USA; Department of Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Chiara Camillo
- Department of Surgery, Columbia University; New York, NY 10032, USA
| | - Dov Levine
- Department of Surgery, Columbia University; New York, NY 10032, USA
| | - Alex M D'Angelo
- Department of Surgery, Columbia University; New York, NY 10032, USA
| | - Yaagnik Kosuri
- Department of Surgery, Columbia University; New York, NY 10032, USA
| | - Juan B Grau
- Valley Hospital Heart Institute, Ridgewood, NJ 07450, USA
| | - Robert J Levy
- The Topolewski Pediatric Heart Valve Center, and the Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Giovanni Ferrari
- Department of Surgery, Columbia University; New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
2
|
Genes involved in paediatric apnoea and death based on knockout animal models: Implications for sudden infant death syndrome (SIDS). Paediatr Respir Rev 2022; 44:53-60. [PMID: 34750067 DOI: 10.1016/j.prrv.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
The mechanism of death in Sudden infant death syndrome (SIDS) remains unknown but it is hypothesised that cardiorespiratory failure of brainstem origin results in early post-natal death. For a subset of SIDS infants, an underlying genetic cause may be present, and genetic abnormalities affecting brainstem respiratory control may result in abnormalities that are detectable before death. Genetic knockout mice models were developed in the 1990s and have since helped to elucidate the physiological roles of a number of genes. This systematic review aimed to identify which genes, when knocked out, result in the phenotypes of abnormal cardiorespiratory control and/or early post-natal death. Three major genes were identified: Pet1- a serotonin transcription factor, the neurotrophin pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor (PAC1). Knockouts targeting these genes had blunted hypercapnic and/or hypoxic responses and early post-natal death. The hypothesis that these genes have a role in SIDS is supported by their being identified as abnormal in SIDS cohorts. Future research in SIDS cohorts will be important to determine whether these genetic abnormalities coexist and their potential applicability as biomarkers.
Collapse
|
3
|
Domingues RR, Wiltbank MC, Hernandez LL. Pregnancy Complications and Neonatal Mortality in a Serotonin Transporter Null Mouse Model: Insight Into the Use of Selective Serotonin Reuptake Inhibitor During Pregnancy. Front Med (Lausanne) 2022; 9:848581. [PMID: 35360732 PMCID: PMC8960382 DOI: 10.3389/fmed.2022.848581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are widely prescribed to pregnant woman. Although some SSRI compounds are known to cause pregnancy loss and fetal malformations, other SSRI continue to be used by pregnant women. However, several studies have associated the use of SSRI with adverse pregnancy outcomes: intrauterine growth restriction, preterm birth, and neonatal morbidity. Nonetheless, interpretation of studies in humans are typically complicated by the adverse pregnancy outcomes caused by depression itself. Therefore, we used a mutant mouse model with genetic ablation of the serotonin transporter, the target site for SSRI, to unravel the role of the serotonin transporter on pregnancy outcomes. The serotonin transporter null mice had increased pregnancy loss (17.5 vs. 0%), decreased number of pups born (6.6 ± 0.2 vs. 7.5 ± 0.2), and increased neonatal mortality (2.3-fold). Furthermore, preterm birth, dystocia, and fetal malformations were only observed in serotonin transporter null mice. This genetically ablated serotonin transporter mouse recapitulates several adverse pregnancy outcomes similar to those in women undergoing SSRI treatment during gestation. Additionally, neonatal loss in the present study reproduced a sudden infant death phenotype as in humans and mice with altered serotonergic signaling. In conclusion, findings from this study demonstrate a role for serotonin transporter in pregnancy maintenance and neonatal health. Additionally, it suggests that the adverse pregnancy outcomes in women taking SSRI during gestation might be due to altered serotonin transporter function caused by SSRI independent of underlying depression. This is a critical finding, given the number of women prescribed SSRI during pregnancy, and provides the framework for critical research in this area.
Collapse
Affiliation(s)
- Rafael R. Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Milo C. Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Laura L. Hernandez,
| |
Collapse
|
4
|
Oyama MA, Elliott C, Loughran KA, Kossar AP, Castillero E, Levy RJ, Ferrari G. Comparative pathology of human and canine myxomatous mitral valve degeneration: 5HT and TGF-β mechanisms. Cardiovasc Pathol 2020; 46:107196. [PMID: 32006823 DOI: 10.1016/j.carpath.2019.107196] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 12/25/2022] Open
Abstract
Myxomatous mitral valve degeneration (MMVD) is a leading cause of valve repair or replacement secondary to the production of mitral regurgitation, cardiac enlargement, systolic dysfunction, and heart failure. The pathophysiology of myxomatous mitral valve degeneration is complex and incompletely understood, but key features include activation and transformation of mitral valve (MV) valvular interstitial cells (VICs) into an active phenotype leading to remodeling of the extracellular matrix and compromise of the structural components of the mitral valve leaflets. Uncovering the mechanisms behind these events offers the potential for therapies to prevent, delay, or reverse myxomatous mitral valve degeneration. One such mechanism involves the neurotransmitter serotonin (5HT), which has been linked to development of valvulopathy in a variety of settings, including valvulopathy induced by serotonergic drugs, Serotonin-producing carcinoid tumors, and development of valvulopathy in laboratory animals exposed to high levels of serotonin. Similar to humans, the domestic dog also experiences naturally occurring myxomatous mitral valve degeneration, and in some breeds of dogs, the lifetime prevalence of myxomatous mitral valve degeneration reaches 100%. In dogs, myxomatous mitral valve degeneration has been associated with high serum serotonin, increased expression of serotonin-receptors, autocrine production of serotonin within the mitral valve leaflets, and downregulation of serotonin clearance mechanisms. One pathway closely associated with serotonin involves transforming growth factor beta (TGF-β) and the two pathways share a common ability to activate mitral valve valvular interstitial cells in both humans and dogs. Understanding the role of serotonin and transforming growth factor beta in myxomatous mitral valve degeneration gives rise to potential therapies, such as 5HT receptor (5HT-R) antagonists. The main purposes of this review are to highlight the commonalities between myxomatous mitral valve degeneration in humans and dogs, with specific regards to serotonin and transforming growth factor beta, and to champion the dog as a relevant and particularly valuable model of human disease that can accelerate development of novel therapies.
Collapse
Affiliation(s)
- Mark A Oyama
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chad Elliott
- Department of Surgery, Columbia Cardiovascular Institute and College of Physicians and Surgeons at Columbia University, New York, NY, USA
| | - Kerry A Loughran
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander P Kossar
- Department of Surgery, Columbia Cardiovascular Institute and College of Physicians and Surgeons at Columbia University, New York, NY, USA
| | - Estibaliz Castillero
- Department of Surgery, Columbia Cardiovascular Institute and College of Physicians and Surgeons at Columbia University, New York, NY, USA
| | - Robert J Levy
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Giovanni Ferrari
- Department of Surgery, Columbia Cardiovascular Institute and College of Physicians and Surgeons at Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Zhang X, Xie H, Chang P, Zhao H, Xia Y, Zhang L, Guo X, Huang C, Yan F, Hu L, Lin C, Li Y, Xiong Z, Wang X, Li G, Deng L, Wang S, Tao L. Glycoprotein M6B Interacts with TβRI to Activate TGF-β-Smad2/3 Signaling and Promote Smooth Muscle Cell Differentiation. Stem Cells 2018; 37:190-201. [PMID: 30372567 PMCID: PMC7379588 DOI: 10.1002/stem.2938] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023]
Abstract
Smooth muscle cells (SMCs), which form the walls of blood vessels, play an important role in vascular development and the pathogenic process of vascular remodeling. However, the molecular mechanisms governing SMC differentiation remain poorly understood. Glycoprotein M6B (GPM6B) is a four-transmembrane protein that belongs to the proteolipid protein family and is widely expressed in neurons, oligodendrocytes, and astrocytes. Previous studies have revealed that GPM6B plays a role in neuronal differentiation, myelination, and osteoblast differentiation. In the present study, we found that the GPM6B gene and protein expression levels were significantly upregulated during transforming growth factor-β1 (TGF-β1)-induced SMC differentiation. The knockdown of GPM6B resulted in the downregulation of SMC-specific marker expression and repressed the activation of Smad2/3 signaling. Moreover, GPM6B regulates SMC Differentiation by Controlling TGF-β-Smad2/3 Signaling. Furthermore, we demonstrated that similar to p-Smad2/3, GPM6B was profoundly expressed and coexpressed with SMC differentiation markers in embryonic SMCs. Moreover, GPM6B can regulate the tightness between TβRI, TβRII, or Smad2/3 by directly binding to TβRI to activate Smad2/3 signaling during SMC differentiation, and activation of TGF-β-Smad2/3 signaling also facilitate the expression of GPM6B. Taken together, these findings demonstrate that GPM6B plays a crucial role in SMC differentiation and regulates SMC differentiation through the activation of TGF-β-Smad2/3 signaling via direct interactions with TβRI. This finding indicates that GPM6B is a potential target for deriving SMCs from stem cells in cardiovascular regenerative medicine. Stem Cells 2018 Stem Cells 2019;37:190-201.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Huaning Xie
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Pan Chang
- Central Laboratory, Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiong Guo
- Department of Cardiology, Hospital of People's Liberation Army, Golmud, Qinghai, People's Republic of China
| | - Chong Huang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Feng Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Lang Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Chen Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhenyu Xiong
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiong Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Guohua Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Longxiang Deng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
De Santis M, Huang XF, Deng C. Early antipsychotic treatment in juvenile rats elicits long-term alterations to the adult serotonin receptors. Neuropsychiatr Dis Treat 2018; 14:1569-1583. [PMID: 29950841 PMCID: PMC6011877 DOI: 10.2147/ndt.s158545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antipsychotic drug (APD) prescription/use in children has increased significantly worldwide, despite limited insight into potential long-term effects of treatment on adult brain functioning. While initial long-term studies have uncovered alterations to behaviors following early APD treatment, further investigations into potential changes to receptor density levels of related neurotransmitter (NT) systems are required. METHODS The current investigation utilized an animal model for early APD treatment with aripiprazole, olanzapine, and risperidone in male and female juvenile rats to investigate potential long-term changes to the adult serotonin (5-HT) NT system. Levels of 5-HT1A, 5-HT2A, and 5-HT2C receptors were measured in the prefrontal cortex (PFC), caudate putamen (CPu), nucleus accumbens (NAc), and hippocampus via Western Blot and receptor autoradiography. RESULTS In the male cohort, long-term changes to 5-HT2A and 5-HT2C receptors were found mostly across hippocampal and cortical brain regions following early aripiprazole and olanzapine treatment, while early risperidone treatment changed 5-HT1A receptor levels in the NAc and PFC. Lesser effects were uncovered in the female cohort with aripiprazole, olanzapine and risperidone to alter 5-HT1A and 5-HT2A receptors in NAc and hippocampal brain regions, respectively. CONCLUSION The results of this study suggest that early treatment of various APDs in juvenile rats may cause gender and brain regional specific changes in 5-HT2A and 5-HT2C receptors in the adult brain.
Collapse
Affiliation(s)
- Michael De Santis
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Pagnozzi LA, Butcher JT. Mechanotransduction Mechanisms in Mitral Valve Physiology and Disease Pathogenesis. Front Cardiovasc Med 2017; 4:83. [PMID: 29312958 PMCID: PMC5744129 DOI: 10.3389/fcvm.2017.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/07/2017] [Indexed: 01/13/2023] Open
Abstract
The mitral valve exists in a mechanically demanding environment, with the stress of each cardiac cycle deforming and shearing the native fibroblasts and endothelial cells. Cells and their extracellular matrix exhibit a dynamic reciprocity in the growth and formation of tissue through mechanotransduction and continuously adapt to physical cues in their environment through gene, protein, and cytokine expression. Valve disease is the most common congenital heart defect with watchful waiting and valve replacement surgery the only treatment option. Mitral valve disease (MVD) has been linked to a variety of mechano-active genes ranging from extracellular components, mechanotransductive elements, and cytoplasmic and nuclear transcription factors. Specialized cell receptors, such as adherens junctions, cadherins, integrins, primary cilia, ion channels, caveolae, and the glycocalyx, convert mechanical cues into biochemical responses via a complex of mechanoresponsive elements, shared signaling modalities, and integrated frameworks. Understanding mechanosensing and transduction in mitral valve-specific cells may allow us to discover unique signal transduction pathways between cells and their environment, leading to cell or tissue specific mechanically targeted therapeutics for MVD.
Collapse
Affiliation(s)
- Leah A. Pagnozzi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Jonathan T. Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Perez J, Diaz N, Tandon I, Plate R, Martindale C, Balachandran K. Elevated Serotonin Interacts with Angiotensin-II to Result in Altered Valve Interstitial Cell Contractility and Remodeling. Cardiovasc Eng Technol 2017; 9:168-180. [PMID: 28247311 DOI: 10.1007/s13239-017-0298-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 01/30/2023]
Abstract
While the valvulopathic effects of serotonin (5HT) and angiotensin-II (Ang-II) individually are known, it was not clear how 5HT and Ang-II might interact, specifically in the context of the mechanobiological responses due to altered valve mechanics potentiated by these molecules. In this context, the hypothesis of this study was that increased serotonin levels would result in accelerated progression toward disease in the presence of angiotensin-II-induced hypertension. C57/BL6 J mice were divided into four groups and subcutaneously implanted with osmotic pumps containing: PBS (control), 5HT (2.5 ng/kg/min), Ang-II (400 ng/kg/min), and 5HT + Ang-II (combination). Blood pressure was monitored using the tail cuff method. Echocardiography was performed on the mice before surgery and every week thereafter to assess ejection fraction. After three weeks, the mice were sacrificed and their hearts excised, embedded and sectioned for analysis of the aortic valves via histology and immunohistochemistry. In separate experiments, porcine valve interstitial cells (VICs) were directly stimulated with 5HT (10-7 M), Ang-II (100 nM) or both and assayed for cellular contractility, cytoskeletal organization and collagen remodeling. After three weeks, average systolic blood pressure was significantly increased in the 5HT, Ang-II and combination groups compared to control. Echocardiographic analysis demonstrated significantly reduced ejection fraction in Ang-II and the combination groups. H&E staining demonstrated thicker leaflets in the combination groups, suggesting a more aggressive remodeling process. Picrosirius red staining and image analysis suggested that the Ang-II and combination groups had the largest proportion of thicker collagen fibers. VIC orientation, cellular contractility and collagen gene expression was highest for the 5HT + Ang-II combination treatment compared to all other groups. Overall, our results suggest that 5HT and Ang-II interact to result in significantly detrimental alteration of function and remodeling in the valve.
Collapse
Affiliation(s)
- Jessica Perez
- Department of Biomedical Engineering, University of Arkansas, 122 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Nancy Diaz
- Department of Biomedical Engineering, University of Arkansas, 122 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, 122 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Rachel Plate
- Department of Biomedical Engineering, University of Arkansas, 122 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Christopher Martindale
- Department of Biomedical Engineering, University of Arkansas, 122 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, 122 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA.
| |
Collapse
|
9
|
Hainer C, Mosienko V, Koutsikou S, Crook JJ, Gloss B, Kasparov S, Lumb BM, Alenina N. Beyond Gene Inactivation: Evolution of Tools for Analysis of Serotonergic Circuitry. ACS Chem Neurosci 2015; 6:1116-29. [PMID: 26132472 DOI: 10.1021/acschemneuro.5b00045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the brain, serotonin (5-hydroxytryptamine, 5-HT) controls a multitude of physiological and behavioral functions. Serotonergic neurons in the raphe nuclei give rise to a complex and extensive network of axonal projections throughout the whole brain. A major challenge in the analysis of these circuits is to understand how the serotonergic networks are linked to the numerous functions of this neurotransmitter. In the past, many studies employed approaches to inactivate different genes involved in serotonergic neuron formation, 5-HT transmission, or 5-HT metabolism. Although these approaches have contributed significantly to our understanding of serotonergic circuits, they usually result in life-long gene inactivation. As a consequence, compensatory changes in serotonergic and other neurotransmitter systems may occur and complicate the interpretation of the observed phenotypes. To dissect the complexity of the serotonergic system with greater precision, approaches to reversibly manipulate subpopulations of serotonergic neurons are required. In this review, we summarize findings on genetic animal models that enable control of 5-HT neuronal activity or mapping of the serotonergic system. This includes a comparative analysis of several mouse and rat lines expressing Cre or Flp recombinases under Tph2, Sert, or Pet1 promoters with a focus on specificity and recombination efficiency. We further introduce applications for Cre-mediated cell-type specific gene expression to optimize spatial and temporal precision for the manipulation of serotonergic neurons. Finally, we discuss other temporally regulated systems, such as optogenetics and designer receptors exclusively activated by designer drugs (DREADD) approaches to control 5-HT neuron activity.
Collapse
Affiliation(s)
- Cornelia Hainer
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
| | | | | | | | - Bernd Gloss
- National Institute of Environmental Health Science, Durham, North Carolina 27709, United States
| | | | | | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
- Institute
of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
10
|
Schiattarella GG, Cerulo G, De Pasquale V, Cocchiaro P, Paciello O, Avallone L, Belfiore MP, Iacobellis F, Di Napoli D, Magliulo F, Perrino C, Trimarco B, Esposito G, Di Natale P, Pavone LM. The Murine Model of Mucopolysaccharidosis IIIB Develops Cardiopathies over Time Leading to Heart Failure. PLoS One 2015; 10:e0131662. [PMID: 26147524 PMCID: PMC4493027 DOI: 10.1371/journal.pone.0131662] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/04/2015] [Indexed: 01/03/2023] Open
Abstract
Mucopolysaccharidosis (MPS) IIIB is a lysosomal disease due to the deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU) required for heparan sulfate (HS) degradation. The disease is characterized by mild somatic features and severe neurological disorders. Very little is known on the cardiac dysfunctions in MPS IIIB. In this study, we used the murine model of MPS IIIB (NAGLU knockout mice, NAGLU-/-) in order to investigate the cardiac involvement in the disease. Echocardiographic analysis showed a marked increase in left ventricular (LV) mass, reduced cardiac function and valvular defects in NAGLU-/- mice as compared to wild-type (WT) littermates. The NAGLU-/- mice exhibited a significant increase in aortic and mitral annulus dimension with a progressive elongation and thickening of anterior mitral valve leaflet. A severe mitral regurgitation with reduction in mitral inflow E-wave-to-A-wave ratio was observed in 32-week-old NAGLU-/- mice. Compared to WT mice, NAGLU-/- mice exhibited a significantly lower survival with increased mortality observed in particular after 25 weeks of age. Histopathological analysis revealed a significant increase of myocardial fiber vacuolization, accumulation of HS in the myocardial vacuoles, recruitment of inflammatory cells and collagen deposition within the myocardium, and an increase of LV fibrosis in NAGLU-/- mice compared to WT mice. Biochemical analysis of heart samples from affected mice showed increased expression levels of cardiac failure hallmarks such as calcium/calmodulin-dependent protein kinase II, connexin43, α-smooth muscle actin, α-actinin, atrial and brain natriuretic peptides, and myosin heavy polypeptide 7. Furthermore, heart samples from NAGLU-/- mice showed enhanced expression of the lysosome-associated membrane protein-2 (LAMP2), and the autophagic markers Beclin1 and LC3 isoform II (LC3-II). Overall, our findings demonstrate that NAGLU-/- mice develop heart disease, valvular abnormalities and cardiac failure associated with an impaired lysosomal autophagic flux.
Collapse
Affiliation(s)
| | - Giuliana Cerulo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | | | | | | | - Fabio Magliulo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Paola Di Natale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
11
|
Gentile S. Early pregnancy exposure to selective serotonin reuptake inhibitors, risks of major structural malformations, and hypothesized teratogenic mechanisms. Expert Opin Drug Metab Toxicol 2015; 11:1585-97. [PMID: 26135630 DOI: 10.1517/17425255.2015.1063614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Selective serotonin reuptake inhibitors (SSRIs) are commonly used to manage antenatal depression. Hence, the aim of this systematic review is to assess the prevalence of birth defects associated with pregnancy exposure to such agents and summarize the hypothesized teratogenic mechanisms. AREAS COVERED Medical literature published in English (1980 - June 2015) was electronically searched to identify all articles reporting an increased prevalence of birth defects associated with prenatal SSRI exposure and hypothesizing teratogenic mechanisms. EXPERT OPINION The only recurrent pattern of congenital anomalies associated with antenatal SSRI exposure is heart defects. SSRIs may alter the function of serotonin and related receptors which are involved in the development of the monoamine-dependent cardiac structures. Nevertheless, the magnitude of this increase and, thus, its clinical significance are unclear. Therefore, a cautious approach of using SSRI during pregnancy only in the case of major depressive episodes should be applied. However, this risk should be balanced against the risks associated with the worsening of depressive symptoms, and take into consideration the large number of studies that found no associations between transplacental SSRI exposure and cardiac anomalies. Prenatal ultrasonography and Doppler sonography to detect early cardiac defects are also advisable. Non-pharmacological approaches are preferred for less severe psychiatric disorders.
Collapse
Affiliation(s)
- Salvatore Gentile
- a 1 Mental Health Center Cava de' Tirreni - Vietri sul Marei, Department of Mental Health ASL Salerno , Piazza Galdi, Salerno, Cava de' Tirreni, 841013, Italy +39 089 4455439 ; +39 089 4455440 ; .,b 2 University of Naples (Italy), Medical School "Federico II", Department of Neurosciences, Division of Psychiatry-Perinatal Psychiatry , Via s. Pansini, 5 80131 Naples, Italy
| |
Collapse
|
12
|
Cerulo G, Tafuri S, De Pasquale V, Rea S, Romano S, Costagliola A, Della Morte R, Avallone L, Pavone LM. Serotonin activates cell survival and apoptotic death responses in cultured epithelial thyroid cells. Biochimie 2014; 105:211-5. [DOI: 10.1016/j.biochi.2014.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/25/2014] [Indexed: 11/27/2022]
|
13
|
Cremer SE, Singletary GE, Olsen LH, Wallace K, Häggström J, Ljungvall I, Höglund K, Reynolds CA, Pizzinat N, Oyama MA. Serotonin concentrations in platelets, plasma, mitral valve leaflet, and left ventricular myocardial tissue in dogs with myxomatous mitral valve disease. J Vet Intern Med 2014; 28:1534-40. [PMID: 25146933 PMCID: PMC4895588 DOI: 10.1111/jvim.12420] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/08/2014] [Accepted: 06/19/2014] [Indexed: 11/29/2022] Open
Abstract
HYPOTHESIS/OBJECTIVES Altered serotonin (5-hydroxytryptamine, 5HT) signaling is postulated in development and progression of canine myxomatous mitral valve disease (MMVD). Little is known regarding platelet, plasma, valvular, or myocardial 5HT concentration ([5HT]) in affected dogs. We quantified [5HT] in platelet-rich plasma (PRP), platelet-poor plasma (PPP), mitral valve leaflets (MV), and left ventricular myocardium (LV). ANIMALS Forty-five dogs comprised 4 plasma groups of Cavalier King Charles Spaniels (CKCS) or non-CKCS, either healthy (CON) or MMVD affected: CKCS CON (n = 12); non-CKCS CON (n = 8); CKCS MMVD (n = 14); non-CKCS MMVD (n = 11). Twenty-four dogs comprised 3 tissue groups: MMVD (n = 8); other-HD (heart disease) (n = 7); non-HD, extracardiac disease (n = 9). METHODS High-performance liquid chromatography measured PRP, PPP, MV, and LV [5HT]. RESULTS Platelet-rich plasma platelet [5HT] was greater in CKCS CON (1.83 femtograms/platelet [fg/plt]; range, 0.20-4.76; P = .002), CKCS MMVD (1.58 fg/plt; range, 0.70-4.03; P = .005), and non-CKCS MMVD (1.72 fg/plt; range, 0.85-4.44; P = .003) versus non-CKCS CON (0.92 fg/plt; range, 0.63-1.30). There was no group difference in PPP [5HT]. MV [5HT] was significantly higher in MMVD (32.4 ng/mg; range, 8.4-106.7) versus non-HD (3.6 ng/mg; range, 0-28.3; P = .01) and LV [5HT] was significantly higher in MMVD (11.9 ng/mg; range, 4.0-104.8) versus other-HD (0.9 ng/mg; range, 0-10.1; P = .011) and non-HD (2.5 ng/mg; range, 0-6.9; P = .001). CONCLUSIONS AND CLINICAL IMPORTANCE Platelet [5HT] was highest in healthy CKCS and both MMVD groups, but plasma [5HT] showed no group differences. Tissue [5HT] was highest in MV and LV of MMVD-affected dogs, suggesting altered 5HT signaling as a potential feature of MMVD. Interactions of platelet, valvular, and myocardial 5HT signaling warrant further investigation.
Collapse
Affiliation(s)
- S E Cremer
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pavone LM, Norris RA. Distinct signaling pathways activated by "extracellular" and "intracellular" serotonin in heart valve development and disease. Cell Biochem Biophys 2014; 67:819-28. [PMID: 23605455 DOI: 10.1007/s12013-013-9606-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiac valve diseases are often due to developmental anomalies that progressively lead to the abnormal distribution and organization of extracellular matrix proteins overtime. Whereas mechanisms underlying adult valvulopathies are unknown, previous work has shown a critical involvement of the monoamine serotonin in disease pathogenesis. In particular, the interaction of serotonin with its receptors can activate transforming growth factor-β1 (TGF-β1) signaling, which in turn promotes extracellular matrix gene expression. Elevated levels of circulating serotonin can lead to aberrant TGF-β1 signaling with significant effects on cardiac valve structure and function. Additional functions of serotonin have recently been reported in which internalization of serotonin, through the serotonin transporter SERT, can exert important cytoskeletal functions in lieu of simply being degraded. Recent findings demonstrate that intracellular serotonin regulates cardiac valve remodeling, and perturbation of this pathway can also lead to heart valve defects. Thus, both extracellular and intracellular mechanisms of serotonin action appear to be operative in heart valve development, functionality, and disease. This review summarizes some of the salient aspects of serotonin activity during cardiac valve development and disease pathogenesis with an understanding that further elaboration of intracellular and extracellular serotonin pathways may lead to beneficial treatments for heart valve disease.
Collapse
Affiliation(s)
- Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, Naples, 80131, Italy,
| | | |
Collapse
|
15
|
Courts C, Grabmüller M, Madea B. Monoamine oxidase A gene polymorphism and the pathogenesis of sudden infant death syndrome. J Pediatr 2013; 163:89-93. [PMID: 23391042 DOI: 10.1016/j.jpeds.2012.12.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/07/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To test the hypothesis that there is a significant association between functionally relevant allelic variants of the monoamine oxidase A (MAO-A) polymorphism and sudden infant death syndrome (SIDS). STUDY DESIGN In a case-control study of 142 cases of SIDS and 280 sex-matched control cases, the distribution of allelic and genotype variants of a promoter polymorphism of the MAO-A gene was examined using polymerase chain reaction locus amplification and fluorescence based fragment length analysis. RESULTS There was a significantly differential distribution of allelic and genotype variants between females with SIDS and controls. Moreover, there was a significant association between SIDS in females and allelic and genotype variants, each related to a higher transcriptional activity at the MAO-A locus. CONCLUSIONS Our results suggest a role of MAO-A in female SIDS pathogenesis exerted by functionally relevant allelic and genotype variants of the MAO-A polymorphism. However, with the complex and inconsistent evidence available to date, the impact of the MAO-A promoter polymorphism on SIDS etiology remains unclear.
Collapse
|
16
|
Lychkova AE, Pavone LM. Role of serotonin receptors in regulation of contractile activity of urinary bladder in rabbits. Urology 2013; 81:696.e13-8. [PMID: 23290148 DOI: 10.1016/j.urology.2012.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/30/2012] [Accepted: 11/19/2012] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To evaluate the role of different serotonin (5-hydroxytryptamine [5-HT]) receptor subtypes on urinary bladder contraction, pharmacologic analysis of electromotor activity (EMA) variation was performed using a rabbit bladder model. MATERIALS AND METHODS Measurements of EMA were performed on 3 urinary bladder portions: top, body, and trigone. The experiments were performed on 24 Shinshilla rabbits of both sexes, 5-6 months old, and weighing 2.5-4.0 kg. The bladder was isolated. Noninvasive electrodes were superimposed on the surface of the top, body, and trigone of the bladder. Contact between the electrode tips and the bladder surface was achieved. The bladder EMA was measured using bipolar silver electrodes for extracellular recordings. RESULTS The stimulation of the serotoninergic fibers and parasympathetic nerve resulted in increased bladder EMA frequency and amplitude (72% and 25%, respectively). The increase in bladder EMA was prevented by administration of selective inhibitors of serotonin receptor subtypes such as droperidol, spiperone, and sumatriptan. Exogenous serotonin administered to the rabbits after vagus nerve excitation increased the typical EMA of the bladder body smooth muscle. CONCLUSION The serotoninergic system has been widely implicated in the control of urinary bladder function. In the present study, we have demonstrated that preganglionic fibers and ganglionic serotoninergic neurons, expressing the 5-HT3 and 5-HT4 receptors, and the effector smooth muscle cells, expressing 5-HT1 and 5-HT2 receptors, are actively involved in the regulation of the bladder contractile activity in rabbits.
Collapse
Affiliation(s)
- Alla E Lychkova
- Central Research Institute of Gastroenterology, Moscow, Russia
| | | |
Collapse
|
17
|
Buskohl PR, Sun MJ, Thompson RP, Butcher JT. Serotonin potentiates transforming growth factor-beta3 induced biomechanical remodeling in avian embryonic atrioventricular valves. PLoS One 2012; 7:e42527. [PMID: 22880017 PMCID: PMC3412853 DOI: 10.1371/journal.pone.0042527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/09/2012] [Indexed: 01/08/2023] Open
Abstract
Embryonic heart valve primordia (cushions) maintain unidirectional blood flow during development despite an increasingly demanding mechanical environment. Recent studies demonstrate that atrioventricular (AV) cushions stiffen over gestation, but the molecular mechanisms of this process are unknown. Transforming growth factor-beta (TGFβ) and serotonin (5-HT) signaling modulate tissue biomechanics of postnatal valves, but less is known of their role in the biomechanical remodeling of embryonic valves. In this study, we demonstrate that exogenous TGFβ3 increases AV cushion biomechanical stiffness and residual stress, but paradoxically reduces matrix compaction. We then show that TGFβ3 induces contractile gene expression (RhoA, aSMA) and extracellular matrix expression (col1α2) in cushion mesenchyme, while simultaneously stimulating a two-fold increase in proliferation. Local compaction increased due to an elevated contractile phenotype, but global compaction appeared reduced due to proliferation and ECM synthesis. Blockade of TGFβ type I receptors via SB431542 inhibited the TGFβ3 effects. We next showed that exogenous 5-HT does not influence cushion stiffness by itself, but synergistically increases cushion stiffness with TGFβ3 co-treatment. 5-HT increased TGFβ3 gene expression and also potentiated TGFβ3 induced gene expression in a dose-dependent manner. Blockade of the 5HT2b receptor, but not 5-HT2a receptor or serotonin transporter (SERT), resulted in complete cessation of TGFβ3 induced mechanical strengthening. Finally, systemic 5-HT administration in ovo induced cushion remodeling related defects, including thinned/atretic AV valves, ventricular septal defects, and outflow rotation defects. Elevated 5-HT in ovo resulted in elevated remodeling gene expression and increased TGFβ signaling activity, supporting our ex-vivo findings. Collectively, these results highlight TGFβ/5-HT signaling as a potent mechanism for control of biomechanical remodeling of AV cushions during development.
Collapse
Affiliation(s)
- Philip R Buskohl
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | | | | | | |
Collapse
|
18
|
Sauls K, de Vlaming A, Harris BS, Williams K, Wessels A, Levine RA, Slaugenhaupt SA, Goodwin RL, Pavone LM, Merot J, Schott JJ, Le Tourneau T, Dix T, Jesinkey S, Feng Y, Walsh C, Zhou B, Baldwin S, Markwald RR, Norris RA. Developmental basis for filamin-A-associated myxomatous mitral valve disease. Cardiovasc Res 2012; 96:109-19. [PMID: 22843703 DOI: 10.1093/cvr/cvs238] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS We hypothesized that the structure and function of the mature valves is largely dependent upon how these tissues are built during development, and defects in how the valves are built can lead to the pathological progression of a disease phenotype. Thus, we sought to uncover potential developmental origins and mechanistic underpinnings causal to myxomatous mitral valve disease. We focus on how filamin-A, a cytoskeletal binding protein with strong links to human myxomatous valve disease, can function as a regulatory interface to control proper mitral valve development. METHODS AND RESULTS Filamin-A-deficient mice exhibit abnormally enlarged mitral valves during foetal life, which progresses to a myxomatous phenotype by 2 months of age. Through expression studies, in silico modelling, 3D morphometry, biochemical studies, and 3D matrix assays, we demonstrate that the inception of the valve disease occurs during foetal life and can be attributed, in part, to a deficiency of interstitial cells to efficiently organize the extracellular matrix (ECM). This ECM organization during foetal valve gestation is due, in part, to molecular interactions between filamin-A, serotonin, and the cross-linking enzyme, transglutaminase-2 (TG2). Pharmacological and genetic perturbations that inhibit serotonin-TG2-filamin-A interactions lead to impaired ECM remodelling and engender progression to a myxomatous valve phenotype. CONCLUSIONS These findings illustrate a molecular mechanism by which valve interstitial cells, through a serotonin, TG, and filamin-A pathway, regulate matrix organization during foetal valve development. Additionally, these data indicate that disrupting key regulatory interactions during valve development can set the stage for the generation of postnatal myxomatous valve disease.
Collapse
Affiliation(s)
- Kimberly Sauls
- Department of Regenerative Medicine and Cell Biology, School of Medicine, Cardiovascular Developmental Biology Center, Children's Research Institute, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Casale V, Oneda R, Matturri L, Lavezzi AM. Investigation of 5-HTT expression using quantitative real-time PCR in the human brain in SIDS Italian cases. Exp Mol Pathol 2012; 94:239-42. [PMID: 22771822 DOI: 10.1016/j.yexmp.2012.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 12/01/2022]
Abstract
The sudden infant death syndrome (SIDS) is the main cause of postneonatal infant death, being defined as the sudden death of an infant under one year of age that remains unexplained after a complete clinical review, autopsy and death scene investigation. The neurotransmitter serotonin (5-HT) is involved in the regulation of a broad array of behavioral and biological functions. By controlling the reuptake of 5-HT from the extracellular space, the serotonin transporter (5-HTT) regulates the duration and strength of the interactions between 5-HT and its receptors. It has been shown that the activity of the human 5-HTT gene promoter is regulated by polymorphic repetitive elements, resulting in differences in the efficacy of 5-HTT reuptake among the allelic variants: the short (S) allele is associated with lower transcriptional efficiency of the promoter compared with the long (L) allele. Using qRT-PCR we studied the gene expression of 5-HTT in ten SIDS cases, previously analyzed at a molecular level and which showed the genetic S/S profile. In nine cases we observed 5-HTT expression levels comparable to those seen in the control case, while in one case there was a remarkable reduction in the expression of the gene. It is presumable that, despite the presence of the same S/S genotype, the different genetic background could influence the transcript stability and that the polimorphic variant of the 5-HTT gene could respond differently to the external environmental stimuli.
Collapse
Affiliation(s)
- Valentina Casale
- Lino Rossi Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy.
| | | | | | | |
Collapse
|
20
|
Pavone LM, Rea S, Trapani F, De Pasquale V, Tafuri S, Papparella S, Paciello O. Role of serotonergic system in the pathogenesis of fibrosis in canine idiopathic inflammatory myopathies. Neuromuscul Disord 2012; 22:549-57. [DOI: 10.1016/j.nmd.2012.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 01/06/2012] [Accepted: 01/16/2012] [Indexed: 01/01/2023]
|
21
|
Abstract
5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | | | | | | |
Collapse
|
22
|
Selective serotonin reuptake inhibitors in human pregnancy: to treat or not to treat? Obstet Gynecol Int 2011; 2012:698947. [PMID: 22190957 PMCID: PMC3236415 DOI: 10.1155/2012/698947] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are increasingly prescribed during pregnancy. The purpose of the present paper is to summarize and evaluate the current evidence for the risk/benefit analysis of SSRI use in human pregnancy. The literature has been inconsistent. Although most studies have not shown an increase in the overall risk of major malformations, several studies have suggested that SSRIs may be associated with a small increased risk for cardiovascular malformations. Others have noted associations between SSRIs and specific types of rare major malformations. In some studies, there appears to be a small increased risk for miscarriages, which may be associated with the underlying maternal condition. Neonatal effects have been described in up to 30% of neonates exposed to SSRIs late in pregnancy. Persistent pulmonary hypertension of the newborn has also been described with an absolute risk of <1%. The risk associated with treatment discontinuation, for example, higher frequency of relapse and increased risk of preterm delivery, should also be considered. The overall benefit of treatment seems to outweigh the potential risks.
Collapse
|
23
|
Dergacheva O, Kamendi HW, Wang X, Mendelowitz D. 5HT1A receptors inhibit glutamate inputs to cardiac vagal neurons post-hypoxia/hypercapnia. Respir Physiol Neurobiol 2011; 179:254-8. [PMID: 21930251 DOI: 10.1016/j.resp.2011.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/12/2011] [Accepted: 09/06/2011] [Indexed: 12/21/2022]
Abstract
Synaptic inputs to cardiac vagal neurons (CVNs) regulate parasympathetic activity to the heart. Previous work has shown insults such as hypoxia and hypercapnia (H/H) alter CVN activity by activating post-synaptic serotonergic, purinergic, and glutamatergic receptors in CVNs. This study examines the role of serotonergic 5HT1A receptors in modulating these excitatory neurotransmissions to CVNs during control conditions, H/H and recovery from H/H. Excitatory post-synaptic currents (EPSCs) were recorded from identified CVNs in vitro before, during and post H/H. The 5HT1A receptor antagonist WAY 100635 had no effect on EPSCs in CVNs before, and during H/H. However, during recovery from H/H inspiratory-related excitatory serotonergic and purinergic pathways were recruited to excite CVNs. However, when these serotonergic and purinergic pathways are blocked, the 5HT1A receptor antagonist WAY 100635 restores an excitatory glutamatergic neurotransmission to CVNs. This study indicates endogenous activation of serotonergic 5HT1A receptors diminishes glutamatergic neurotransmission to CVNs following H/H, likely via a presynaptic site of action.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, United States
| | | | | | | |
Collapse
|
24
|
Abstract
The sudden infant death syndrome (SIDS) is currently defined as "the sudden unexpected death of an infant less than 1 year of age with onset of the fatal episode apparently occurring during sleep, that remains unexplained after a thorough investigation". SIDS, whose etiology remains rather vague, is still the major cause of death among infants between 1 month and 1 year of age in industrialized countries with varying incidences in different populations. Herein, after touching on definitory approaches and several current hypotheses concerning SIDS etiology, we focus on the triple risk model of SIDS and discuss two large classes of genetic factors potentially contributing to or predisposing for the generation of a vulnerable infant that, when encountering an environmental trigger, may succumb to SIDS. We conclude by acknowledging that for the integration of the vast and complex genetic evidence concerning SIDS, a lot more research will be required and we briefly discuss the potential use of recently presented animal models for functional studies of SIDS pathology.
Collapse
Affiliation(s)
- Cornelius Courts
- Institute of Forensic Medicine, University of Bonn, Bonn, Germany.
| | | |
Collapse
|
25
|
Scialli AR. Paroxetine exposure during pregnancy and cardiac malformations. ACTA ACUST UNITED AC 2010; 88:175-7. [PMID: 20175190 DOI: 10.1002/bdra.20655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|