1
|
Chen Y, Qian F, Chen Y. Integrative Analyses of Biomarkers and Pathways in Oxidative Stress-Related Genes for Gestational Diabetes Mellitus. Am J Reprod Immunol 2025; 93:e70052. [PMID: 39876591 DOI: 10.1111/aji.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/17/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025] Open
Abstract
PROBLEM Oxidative stress (OS) plays a key role in the pathogenesis of gestational diabetes mellitus (GDM), but it was not well understood. We aimed to investigate the biomarkers and underlying mechanisms of OS-related genes in GDM. METHOD OF STUDY The GSE103552 and GSE70493 datasets of GDM were acquired from the Gene Expression Omnibus (GEO) database. Then, oxidative stress-related differentially expressed genes (OSDEGs) were screened between GDM and normal samples from these two datasets. Further analyses were conducted by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA) for these OSDEGs. Subsequently, protein-protein interaction (PPI) network analyses of these OSDEGs were carried out to screen the hub genes. Eventually, we used single-sample Gene-set enrichment analysis (ssGSEA) to compare the immune cell infiltration between GDM and normal samples. RESULTS We identified 26 OSDEGs. Enrichment analysis suggested that the OSDEGs enriched in OS and diabetes-related pathways. GSEA revealed that these OSDEGs enriched in sensory perception of taste and negative regulation of notch4 signaling pathways. Moreover, PPI analysis showed that 15 OSDEGs were the hub gene in GDM. A total of 14 hub genes were highly expressed in GDM and might be used as diagnosis biomarkers. Moreover, many potential agents might target 10 hub genes for GDM treatment. In addition, immune infiltrate analyses revealed that expression of 14 hub genes was positively correlated to immune infiltrates in GDM. CONCLUSION OSDEGs are significant in GDM and may provide potential diagnostic biomarkers and treatment targets for GDM.
Collapse
Affiliation(s)
- Yunyan Chen
- Department of gynecology and obstetrics, Deqing Hospital of Traditional Chinese Medicine, Deqing County, Zhejiang, China
| | - Fuchu Qian
- Department of Precision Medicine, Affiliated Central Hospital of Huzhou University, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou, Zhejiang, China
| | - Yingying Chen
- Department of gynecology and obstetrics, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Wu YT, Li QZ, Wu YQ, Mu M, Wu H, Tian HY, Zhao XK. Nintedanib attenuates NLRP3 inflammasome-driven liver fibrosis by targeting Src signaling. Int Immunopharmacol 2024; 143:113630. [PMID: 39549551 DOI: 10.1016/j.intimp.2024.113630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Liver injury induces an inflammatory response that activates hepatic stellate cells, which is the initial factor of liver fibrosis. Nintedanib, a multi-targeted tyrosine kinase inhibitor targeting the Src signalling pathway, has been approved for the treatment of idiopathic pulmonary fibrosis. However, it is still not known whether nintedanib ameliorates liver fibrosis by inhibiting inflammasome activation. Here, a carbon tetrachloride (CCl4)-induced liver fibrosis model was used to assess the anti-fibrotic efficacy of nintedanib in vivo. Lipopolysaccharide and ATP were used to activate nucleotide oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes in LX-2 cells, and the efficacy of nintedanib on NLRP3 inflammasome activation was evaluated. Moreover, we used Src-overexpressing and Src-downregulating lentiviruses to transfect LX-2 cells to explore the targets of nintedanib. Nintedanib attenuated inflammation and extracellular matrix accumulation in CCl4-induced fibrotic livers and reduced the expression of NLRP3, fibrotic makers, and the phosphorylation of Src, epidermal growth factor receptor (EGFR), AKT, ERK1/2 in LX-2 cells. Furthermore, nintedanib thwarted NLRP3 inflammasome activation by suppressing the phosphorylation of Src and its downstream signalling pathway and reducing reactive oxygen species production. Our study indicates that nintedanib effectively suppresses NLRP3 inflammasome activation and has the potential for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ye-Ting Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qi-Zhe Li
- Department of Sport Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi-Qi Wu
- The Second Clinical College of Hainan Medical University, Hainan, Haikou, China
| | - Mao Mu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Huan Wu
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hai-Ying Tian
- Department of Ultrasound Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xue-Ke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Ewoldt JK, Wang MC, McLellan MA, Cloonan PE, Chopra A, Gorham J, Li L, DeLaughter DM, Gao X, Lee JH, Willcox JAL, Layton O, Luu RJ, Toepfer CN, Eyckmans J, Seidman CE, Seidman JG, Chen CS. Hypertrophic cardiomyopathy-associated mutations drive stromal activation via EGFR-mediated paracrine signaling. SCIENCE ADVANCES 2024; 10:eadi6927. [PMID: 39413182 PMCID: PMC11482324 DOI: 10.1126/sciadv.adi6927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the left ventricular wall, diastolic dysfunction, and fibrosis, and is associated with mutations in genes encoding sarcomere proteins. While in vitro studies have used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study HCM, these models have not examined the multicellular interactions involved in fibrosis. Using engineered cardiac microtissues (CMTs) composed of HCM-causing MYH7-variant hiPSC-CMs and wild-type fibroblasts, we observed cell-cell cross-talk leading to increased collagen deposition, tissue stiffening, and decreased contractility dependent on fibroblast proliferation. hiPSC-CM conditioned media and single-nucleus RNA sequencing data suggested that fibroblast proliferation is mediated by paracrine signals from MYH7-variant cardiomyocytes. Furthermore, inhibiting epidermal growth factor receptor tyrosine kinase with erlotinib hydrochloride attenuated stromal activation. Last, HCM-causing MYBPC3-variant CMTs also demonstrated increased stromal activation and reduced contractility, but with distinct characteristics. Together, these findings establish a paracrine-mediated cross-talk potentially responsible for fibrotic changes observed in HCM.
Collapse
Affiliation(s)
- Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Micheal A. McLellan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Paige E. Cloonan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Linqing Li
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| | | | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua H. Lee
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jon A. L. Willcox
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Layton
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rebeccah J. Luu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Chen X, Qian J, Liang S, Qian J, Luo W, Shi Y, Zhu H, Hu X, Wu G, Li X, Liang G. Hyperglycemia activates FGFR1 via TLR4/c-Src pathway to induce inflammatory cardiomyopathy in diabetes. Acta Pharm Sin B 2024; 14:1693-1710. [PMID: 38572108 PMCID: PMC10985127 DOI: 10.1016/j.apsb.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 04/05/2024] Open
Abstract
Protein tyrosine kinases (RTKs) modulate a wide range of pathophysiological events in several non-malignant disorders, including diabetic complications. To find new targets driving the development of diabetic cardiomyopathy (DCM), we profiled an RTKs phosphorylation array in diabetic mouse hearts and identified increased phosphorylated fibroblast growth factor receptor 1 (p-FGFR1) levels in cardiomyocytes, indicating that FGFR1 may contribute to the pathogenesis of DCM. Using primary cardiomyocytes and H9C2 cell lines, we discovered that high-concentration glucose (HG) transactivates FGFR1 kinase domain through toll-like receptor 4 (TLR4) and c-Src, independent of FGF ligands. Knocking down the levels of either TLR4 or c-Src prevents HG-activated FGFR1 in cardiomyocytes. RNA-sequencing analysis indicates that the elevated FGFR1 activity induces pro-inflammatory responses via MAPKs-NFκB signaling pathway in HG-challenged cardiomyocytes, which further results in fibrosis and hypertrophy. We then generated cardiomyocyte-specific FGFR1 knockout mice and showed that a lack of FGFR1 in cardiomyocytes prevents diabetes-induced cardiac inflammation and preserves cardiac function in mice. Pharmacological inhibition of FGFR1 by a selective inhibitor, AZD4547, also prevents cardiac inflammation, fibrosis, and dysfunction in both type 1 and type 2 diabetic mice. These studies have identified FGFR1 as a new player in driving DCM and support further testing of FGFR1 inhibitors for possible cardioprotective benefits.
Collapse
Affiliation(s)
- Xiong Chen
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Wound Repair, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinfu Qian
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Shiqi Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yujuan Shi
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zhu
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Wound Repair, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Guang Liang
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| |
Collapse
|
5
|
Hu Z. Exploring the mechanism of curcumin in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and molecular docking technology. Medicine (Baltimore) 2024; 103:e36593. [PMID: 38363942 PMCID: PMC10869047 DOI: 10.1097/md.0000000000036593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 02/18/2024] Open
Abstract
Doxorubicin (DOX) is one of the most effective chemotherapeutic agents. However, the nonselective effect leads to serious cardiotoxicity risk in clinical use. Curcumin is a well-known dietary polyphenol that showed a protective effect against the cardiotoxic effect of DOX. This study aimed to assess the role of curcumin in protection against DOX-induced cardiotoxicity. Potential compound and disease targets were obtained from relevant databases, and common targets were screened. Protein-protein interaction (PPI) was used to predict the core targets. Gene ontology (GO) bioprocess analysis and Kyoto encyclopedia of genes and genome enrichment analysis enriched the possible biological processes (BP), cellular components, molecular function, and signaling pathways involved. Finally, the binding of curcumin to target proteins was evaluated through molecular docking. The docking score verified the reliability of the prediction results. In total, 205 curcumin and 700 disease targets were identified. A topological analysis of the PPI network revealed 10 core targets including TP53, tumor necrosis factor-alpha (TNF), AKT1, vascular endothelial growth factor A (VEGFA), prostaglandin-endoperoxide synthase 2 (PTGS2), signal transducer and activator of the transcription 3 (STAT3), HIF1A, MYC, epidermal growth factor receptor (EGFR), and CASP3 (Caspase-3). Furthermore, the enrichment analyses indicated that the effects of curcumin were mediated by genes related to oxidation, inflammation, toxification, cell proliferation, migration, apoptosis, wounding, metabolism, proteolysis, and the signaling pathway of calcium (Ca2+). Molecular docking showed that curcumin could bind with the target proteins with strong molecular force, exhibiting good docking activity. Curcumin has a multi-cardioprotective effect by modulating the core targets' expression in DOX-induced cardiotoxicity. This study elucidated the key target proteins and provided a theoretical basis for further exploring curcumin in the prevention and treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhen Hu
- Department of Electrocardiography, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
6
|
Ma T, Montaner S, Schneider A. Glucose upregulates amphiregulin in oral dysplastic keratinocytes: A potential role in diabetes-associated oral carcinogenesis. J Oral Pathol Med 2023; 52:1004-1012. [PMID: 37817274 PMCID: PMC10841538 DOI: 10.1111/jop.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Compelling evidence implicates diabetes-associated hyperglycemia as a promoter of tumor progression in oral potentially malignant disorders (OPMD). Yet, information on hyperglycemia-induced cell signaling networks in oral oncology remains limited. Our group recently reported that glucose-rich conditions significantly enhance oral dysplastic keratinocyte viability and migration through epidermal growth factor receptor (EGFR) activation, a pathway strongly linked to oral carcinogenesis. Here, we investigated the basal metabolic phenotype in these cells and whether specific glucose-responsive EGFR ligands mediate these responses. METHODS Cell energy phenotype and lactate concentration were evaluated via commercially available assays. EGFR ligands in response to normal (5 mM) or high (20 mM) glucose were analyzed by quantitative real-time PCR, ELISA, and western blotting. Cell viability and migration assays were performed in the presence of pharmacological inhibitors or RNA interference. RESULTS When compared to normal keratinocytes, basal glycolysis in oral dysplastic keratinocytes was significantly elevated. In highly glycolytic cells, high glucose-activated EGFR increasing viability and migration. Notably, we identified amphiregulin (AREG) as the predominant glucose-induced EGFR ligand. Indeed, enhanced cell migration in response to high glucose was blunted by EGFR inhibitor cetuximab and AREG siRNA. Conversely, AREG treatment under normal glucose conditions significantly increased cell viability, migration, lactate levels, and expression of glycolytic marker pyruvate kinase M2. CONCLUSION These novel findings point to AREG as a potential high glucose-induced EGFR activating ligand in highly glycolytic oral dysplastic keratinocytes. Future studies are warranted to gain more insight into the role of AREG in hyperglycemia-associated OPMD tumor progression.
Collapse
Affiliation(s)
- Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Jin B, Wang J, Chen Y, Zuo W, Hong B, Li J, Huang F, Zhang M, Wang Y. Focal adhesion kinase induces cardiac remodeling through NF-κB-mediated inflammatory responses in diabetic cardiomyopathy. Int Immunopharmacol 2023; 120:110280. [PMID: 37216798 DOI: 10.1016/j.intimp.2023.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/11/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Hyperglycemia-induced chronic inflammation is a crucial risk factor that causes undesirable cardiac alternations in diabetic cardiomyopathy (DCM). Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that primarily regulates cell adhesion and migration. Based on recent studies, FAK is involved in inflammatory signaling pathway activation in cardiovascular diseases. Here, we evaluated the possibility of FAK as a therapeutic target for DCM. METHODS A small molecular selective FAKinhibitor, PND-1186 (PND), was used to evaluate the effect of FAK on DCM in both high glucose-stimulated cardiomyocytes and streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) mice. RESULTS Increased FAK phosphorylation was found in the hearts of STZ-induced T1DM mice. PND treatment significantly decreased the expression of inflammatory cytokines and fibrogenic markers in cardiac specimens of diabetic mice. Notably, these reductions were correlated with improved cardiac systolic function. Furthermore, PND suppressed transforming growth factor-β-activated kinase 1 (TAK1) phosphorylation and NF-κB activation in the hearts of diabetic mice. Cardiomyocytes were identified as the main contributor to FAK-mediated cardiac inflammation and the involvement of FAK in cultured primary mouse cardiomyocytes and H9c2 cells was identified. Both FAK inhibition or FAK deficiency prevented hyperglycemia-induced inflammatory and fibrotic responses in cardiomyocytes owing to the inhibition of NF-κB. Herein, FAK activation was revealed to FAK directly binding to TAK1, leading to activation of TAK1 and downstream NF-κB signaling pathway. CONCLUSIONS FAK is a key regulator of diabetes-associated myocardial inflammatory injury by directly targeting to TAK1.
Collapse
Affiliation(s)
- Bo Jin
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Bo Hong
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jie Li
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Fang Huang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Mengpei Zhang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China.
| | - Yi Wang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Jiang B, Zhou X, Yang T, Wang L, Feng L, Wang Z, Xu J, Jing W, Wang T, Su H, Yang G, Zhang Z. The role of autophagy in cardiovascular disease: Cross-interference of signaling pathways and underlying therapeutic targets. Front Cardiovasc Med 2023; 10:1088575. [PMID: 37063954 PMCID: PMC10090687 DOI: 10.3389/fcvm.2023.1088575] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is a conserved lysosomal pathway for the degradation of cytoplasmic proteins and organelles, which realizes the metabolic needs of cells and the renewal of organelles. Autophagy-related genes (ATGs) are the main molecular mechanisms controlling autophagy, and their functions can coordinate the whole autophagic process. Autophagy can also play a role in cardiovascular disease through several key signaling pathways, including PI3K/Akt/mTOR, IGF/EGF, AMPK/mTOR, MAPKs, p53, Nrf2/p62, Wnt/β-catenin and NF-κB pathways. In this paper, we reviewed the signaling pathway of cross-interference between autophagy and cardiovascular diseases, and analyzed the development status of novel cardiovascular disease treatment by targeting the core molecular mechanism of autophagy as well as the critical signaling pathway. Induction or inhibition of autophagy through molecular mechanisms and signaling pathways can provide therapeutic benefits for patients. Meanwhile, we hope to provide a unique insight into cardiovascular treatment strategies by understanding the molecular mechanism and signaling pathway of crosstalk between autophagy and cardiovascular diseases.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Yang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Linlin Wang
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Longfei Feng
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng Wang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jin Xu
- Department of First Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Wang
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Haixiang Su
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - GuoWei Yang
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Li Z, Zeng M, Geng K, Lai D, Xu Z, Zhou W. Chemical Constituents and Hypoglycemic Mechanisms of Dendrobium nobile in Treatment of Type 2 Diabetic Rats by UPLC-ESI-Q-Orbitrap, Network Pharmacology and In Vivo Experimental Verification. Molecules 2023; 28:molecules28062683. [PMID: 36985655 PMCID: PMC10057382 DOI: 10.3390/molecules28062683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
This study aimed to systematically explore the chemical constituents of D. nobile and its hypoglycemic effect by UPLC-ESI-Q-Orbitrap, network pharmacology and in vivo experiment. The chemical constituents of D. nobile were qualitatively analyzed, and the hypoglycemic compounds were quickly identified. Network pharmacological analysis and molecular docking technique were applied to assist in the elucidation of the hypoglycemic mechanisms of D. nobile. A type 2 diabetic mellitus (T2DM) rat model was established using the HFD and STZ method for in vivo experimental verification, and these T2DM rats were treated with D. nobile extract and D. nobile polysaccharide for two months by gavage. The results showed that a total of 39 chemical constituents of D. nobile, including alkaloids, bibenzyls, phenanthrenes and other types of compounds, were identified. D. nobile extract and D. nobile polysaccharide could significantly ameliorate the body weight, hyperglycemia, insulin resistance, dyslipidemia and morphological impairment of the liver and pancreas in the T2DM rats. α-Linolenic acid, dihydroconiferyl dihydro-p-coumarate, naringenin, trans-N-feruloyltyramine, gigantol, moscatilin, 4-O-methylpinosylvic acid, venlafaxine, nordendrobin and tristin were regarded as the key hypoglycemic compounds of D. nobile, along with the hypoglycemic effect on the PI3K-AKT signaling pathway, the insulin signaling pathway, the FOXO signaling pathway, the improvement of insulin resistance and the AGE-RAGE signaling pathway. The Western blotting experiment results confirmed that D. nobile activated the PI3K/AKT pathway and insulin signaling pathway, promoted glycogen synthesis via regulating the expression of glycogen synthase kinase 3 beta (GSK-3β) and glucose transporter 4 (GLUT4), and inhibited liver gluconeogenesis by regulating the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6pase) in the liver. The results suggested that the hypoglycemic mechanism of D. nobile might be associated with liver glycogen synthesis and gluconeogenesis, contributing to improving insulin resistance and abnormal glucose metabolism in the T2DM rats.
Collapse
Affiliation(s)
- Zhaoyang Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Meiling Zeng
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Keyong Geng
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Donna Lai
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: (D.L.); (Z.X.); (W.Z.)
| | - Zhi Xu
- Guizhou Miaoaitang Health Management Co., Ltd., Guiyang 550025, China
- Correspondence: (D.L.); (Z.X.); (W.Z.)
| | - Wei Zhou
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (D.L.); (Z.X.); (W.Z.)
| |
Collapse
|
10
|
Zhu N, Huang B, Zhu L. Bibliometric analysis of the inflammation in diabetic cardiomyopathy. Front Cardiovasc Med 2022; 9:1006213. [PMID: 36582738 PMCID: PMC9792483 DOI: 10.3389/fcvm.2022.1006213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Maladaptive inflammation is implicated in the development of diabetic cardiomyopathy (DCM). This study aimed to visually analyze the global scientific output over the past two decades regarding research on inflammation associated with DCM. Methods All relevant articles and reviews were retrieved in the Web of Science (WOS) Core Collection (limited to SCIE) using "inflammation" and "diabetic cardiomyopathy" as search terms. Articles and reviews published from 1 January 2001 to 28 February 2021 were collected. Visualization analysis and statistical analysis were conducted by Microsoft 365 Excel and VOSviewer 1.6.18. Results A total of 578 documents were finally selected for further analysis. The publications regarding inflammation and DCM increased gradually over approximately 20 years. The most prolific country was China, with 296 documents and the most citations (9,366). The most influential author groups were Lu Cai and Yihui Tan who were from the United States. The bibliometric analysis of co-occurrence keywords showed that inflammation in DCM is composed of numerous molecules (NF-κB, NLRP3 inflammasome, Nrf-2, TNF-α, protein kinase C, PPARα, TLR4, p38 mitogen-activated protein kinase, TGF-β, Sirt1, and AKT), a variety of cardiac cell types (stem cell, fibroblast, and cardiomyocyte), physiological processes (apoptosis, oxidative stress, autophagy, endoplasmic reticulum stress, hypertrophy, mitochondrion dysfunction, and proliferation), and drugs (sulforaphane, metformin, empagliflozin, and rosuvastatin). Conclusion Our bibliometric analysis presents the characteristics and trends of inflammation in DCM and shows that research on inflammation in DCM will continue to be a hotspot.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University, Wenzhou People’s Hospital, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China,*Correspondence: Ning Zhu,
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuyan Zhu
- Department of General Practice, The Third Affiliated Hospital of Shanghai University, Wenzhou People’s Hospital, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart. Cells 2022; 11:cells11091553. [PMID: 35563860 PMCID: PMC9105930 DOI: 10.3390/cells11091553] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the significant decline in mortality, cardiovascular diseases are still the leading cause of death worldwide. Among them, myocardial infarction (MI) seems to be the most important. A further decline in the death rate may be achieved by the introduction of molecularly targeted drugs. It seems that the components of the PI3K/Akt signaling pathway are good candidates for this. The PI3K/Akt pathway plays a key role in the regulation of the growth and survival of cells, such as cardiomyocytes. In addition, it has been shown that the activation of the PI3K/Akt pathway results in the alleviation of the negative post-infarct changes in the myocardium and is impaired in the state of diabetes. In this article, the role of this pathway was described in each step of ischemia and subsequent left ventricular remodeling. In addition, we point out the most promising substances which need more investigation before introduction into clinical practice. Moreover, we present the impact of diabetes and widely used cardiac and antidiabetic drugs on the PI3K/Akt pathway and discuss the molecular mechanism of its effects on myocardial ischemia and left ventricular remodeling.
Collapse
Affiliation(s)
- Bartosz Walkowski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
12
|
Li XL, Yu F, Fu CL, Yu X, Xu M, Cheng M. Phosphoproteomics analysis of diabetic cardiomyopathy in aging-accelerated mice and effects of D-pinitol. Proteomics Clin Appl 2021; 16:e2100019. [PMID: 34510791 DOI: 10.1002/prca.202100019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE The molecular mechanisms of diabetic cardiomyopathy (DCM) development and D-pinitol (DP) in its treatment remain unclear. The present study is to explore the underlying mechanism of DCM in an elderly diabetic mouse model and to seek the protective targets of DP by phosphoproteomics. EXPERIMENTAL DESIGN We used streptozotocin to induce diabetes in SAMP8 and DP (150 mg/kg/day) intragastrically administrated to diabetic mice for 8 weeks. The heart tissues were harvested for label-free phosphoproteomic analysis from diabetic mice. Some differentially regulated phosphorylation sites were confirmed by parallel reaction monitoring. RESULTS Our results showed that 612 phosphorylation sites on 454 proteins had their phosphorylation levels significantly changed in the heart of untreated diabetic mice (DM). Of these phosphorylation sites, 216 phosphorylation sites on 182 proteins were normalized after DP treatment. We analyzed the functional signaling pathways in the heart of DP treated diabetic mice (DMT), including glucagon signaling pathway, insulin signaling pathway, mitophagy, apoptosis, and longevity regulating pathway. Two consensus motifs identified were targeted by Src and epidermal growth factor receptor between DMT and DM groups. CONCLUSIONS AND CLINICAL RELEVANCE Our study might help to better understand the mechanism of DCM, provide novel targets for estimating the protective effects of DP.
Collapse
Affiliation(s)
- Xiao-Li Li
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Fei Yu
- Department of Geriatric Medicine & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Chun-Li Fu
- Department of Geriatric Medicine & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xin Yu
- Department of Geriatric Medicine & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Mei Xu
- Department of Geriatric Medicine & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Mei Cheng
- Department of Geriatric Medicine & Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
13
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Li F, Du M, Yang Y, Wang Z, Zhang H, Wang X, Li Q. Zinc finger and BTB domain-containing protein 20 aggravates angiotensin II-induced cardiac remodeling via the EGFR-AKT pathway. J Mol Med (Berl) 2021; 100:427-438. [PMID: 34232352 DOI: 10.1007/s00109-021-02103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
Zinc finger and BTB domain-containing protein 20 (ZBTB20) play an important role in glucose and lipid homeostasis. ZBTB20 was shown to be a crucial protein for the maintenance of cardiac contractile function. However, the role of ZBTB20 in cardiac response remodeling has not been elucidated. Thus, this study aimed to explore the role of ZBTB20 in cardiac remodeling following angiotensin II insult. Mice were subjected to angiotensin II infusion to induce a cardiac adverse remodeling model. An adeno-associated virus (AAV) 9 system was used to deliver ZBTB20 to the mouse heart. Here, we demonstrate that ZBTB20 expression is elevated in angiotensin II-induced cardiac remodeling and in response to cardiomyocyte insults. Furthermore, AAV9-mediated overexpression of ZBTB20 caused cardiac wall hypertrophy, chamber dilation, increased fibrosis, and reduced ejection fraction. Additionally, ZBTB20 siRNA protected cardiomyocytes from angiotensin II-induced hypertrophy. Mechanistically, ZBTB20 interferes with EGFR and Akt signaling and modulates the remodeling response. Overexpression of constitutively active Akt counteracts ZBTB20 knockdown-mediated protection of adverse cardiac remodeling. These findings illustrate the role of ZBTB20 in the transition of adverse cardiac remodeling toward heart failure and provide evidence for the molecular programs inducing adverse cardiac remodeling. KEY MESSAGES: ZBTB20 is a transcription factor from the POK family. ZBTB20 is upregulated in heart tissue treated with angiotensin II. ZBTB20 influences cardiomyocyte hypertrophy via the EGFR-Akt pathway. Akt continuous activation leads to similar results to ZBTB20 overexpression.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Miaomiao Du
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Yiming Yang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Zhu Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Hu Zhang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Xiaoyu Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China
| | - Qing Li
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, People's Republic of China.
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
15
|
Yao R, Cao Y, Jiang R, Zhang X, Li F, Wang S. Pharmacokinetic characteristics of hydroxysafflor yellow A in normal and diabetic cardiomyopathy mice. Biomed Chromatogr 2021; 35:e5173. [PMID: 33982286 DOI: 10.1002/bmc.5173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/05/2022]
Abstract
Hydroxysafflor yellow A (HSYA), a major active water-soluble component in Carthamus tinctorius L., is considered a potential antioxidant with protective effects against myocardial injury. However, its pharmacokinetic characteristics in normal and diabetic cardiomyopathy (DCM) mice remain unknown. This study was designed to investigate the differences in the pharmacokinetics of HSYA between normal and streptozotocin-induced DCM mice. HSYA in the mouse plasma was quantified using LC-MS/MS. Compared with the normal group, the DCM group showed a significantly higher area under the curve (AUC(0-t) , AUC(0-∞) ) value and peak plasma concentration, suggesting a higher uptake of HSYA in the DCM mice, and a significantly lower plasma clearance and apparent volume of distribution, suggesting slower elimination of HSYA in the DCM mice. The levels of serum superoxide dismutase and glutathione peroxidase were significantly higher, and malondialdehyde content was significantly lower in DCM mice than in normal mice, indicating the antioxidative stress effect of HSYA. Furthermore, the correlation analysis revealed that the serum HSYA content in the DCM mice significantly positively correlated with antioxidant enzyme levels. These results showed that the pharmacokinetics of HSYA changed significantly in the DCM mice, and this may improve the antioxidative stress effect of the drug.
Collapse
Affiliation(s)
- Rui Yao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China.,Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Yu Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Ruibin Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Feng Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| |
Collapse
|
16
|
Li L, Xie W, Gui Y, Zheng XL. Bromodomain-containing protein 4 and its role in cardiovascular diseases. J Cell Physiol 2020; 236:4829-4840. [PMID: 33345363 DOI: 10.1002/jcp.30225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Bromodomain-containing protein 4 (BRD4), a chromatin-binding protein, is involved in the development of various tumors. Recent evidence suggests that BRD4 also plays a significant role in cardiovascular diseases, such as ischemic heart disease, hypertension, and cardiac hypertrophy. This review summarizes the roles of BRD4 as a potential regulator of various pathophysiological processes in cardiovascular diseases, implicating that BRD4 may be a new therapeutic target for cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Liang Li
- Department of Pathophysiology, Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Wei Xie
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, Hunan, China
| | - Yu Gui
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Inhibition of the ROS-EGFR Pathway Mediates the Protective Action of Nox1/4 Inhibitor GKT137831 against Hypertensive Cardiac Hypertrophy via Suppressing Cardiac Inflammation and Activation of Akt and ERK1/2. Mediators Inflamm 2020; 2020:1078365. [PMID: 32831633 PMCID: PMC7424508 DOI: 10.1155/2020/1078365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress, inflammation, and hypertension constitute a self-perpetuating vicious circle to exacerbate hypertension and subsequent hypertensive cardiac hypertrophy. NADPH oxidase (Nox) 1/4 inhibitor GKT137831 alleviates hypertensive cardiac hypertrophy in models of secondary hypertension; however, it remains unclear about its effect on hypertensive cardiac hypertrophy in models of essential hypertension. This study is aimed at determining the beneficial role of GKT137831 in hypertensive cardiac hypertrophy in spontaneously hypertensive rats (SHRs) and its mechanisms of action. Treating with GKT137831 prevented cardiac hypertrophy in SHRs. Likewise, decreasing production of reactive oxygen species (ROS) with GKT137831 reduced epidermal growth factor receptor (EGFR) activity in the left ventricle of SHRs. Additionally, EGFR inhibition also reduced ROS production in the left ventricle and blunted hypertensive cardiac hypertrophy in SHRs. Moreover, inhibition of the ROS-EGFR pathway with Nox1/4 inhibitor GKT137831 or selective EGFR inhibitor AG1478 reduced protein and mRNA levels of proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β), as well as the activities of Akt and extracellular signal-regulated kinase (ERK) 1/2 in the left ventricle of SHRs. In summary, GKT137831 prevents hypertensive cardiac hypertrophy in SHRs, Nox-deprived ROS regulated EGFR activation through positive feedback in the hypertrophic myocardium, and inhibition of the ROS-EGFR pathway mediates the protective role of GKT137831 in hypertensive cardiac hypertrophy via repressing cardiac inflammation and activation of Akt and ERK1/2. This research will provide additional details for GKT137831 to prevent hypertensive cardiac hypertrophy.
Collapse
|
18
|
Russell JS, Griffith TA, Peart JN, Headrick JP. Cardiomyoblast caveolin expression: effects of simulated diabetes, α-linolenic acid, and cell signaling pathways. Am J Physiol Cell Physiol 2020; 319:C11-C20. [PMID: 32348174 DOI: 10.1152/ajpcell.00499.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caveolins regulate myocardial substrate handling, survival signaling, and stress resistance; however, control of expression is incompletely defined. We test how metabolic features of type 2 diabetes (T2D), and modulation of cell signaling, influence caveolins in H9c2 cardiomyoblasts. Cells were exposed to glucose (25 vs. 5 mM), insulin (100 nM), or palmitate (0.1 mM), individually or combined, and the effects of adenylate cyclase (AC) activation (50 μM forskolin), focal adhesion kinase (FAK) or protein kinase C β2 (PKCβ2) inhibition (1 μM FAK inhibitor 14 or CGP-53353, respectively) or the polyunsaturated fatty acid (PUFA) α-linolenic acid (ALA; 10 μM) were tested. Simulated T2D (elevated glucose + insulin + palmitate) depressed caveolin-1 and -3 without modifying caveolin-2. Caveolin-3 repression was primarily palmitate dependent, whereas high glucose (HG) and insulin independently increased caveolin-3 (while reducing expression when combined). Differential control was evident: baseline caveolin-3 was suppressed by FAK/PKCβ2 and insensitive to AC activities, with baseline caveolin-1 and -2 suppressed by AC and insensitive to FAK/PKCβ2. Forskolin and ALA selectively preserved caveolin-3 in T2D cells, whereas PKCβ2 and FAK inhibition increased caveolin-3 under all conditions. Despite preservation of caveolin-3, ALA did not modify nucleosome content (apoptosis marker) or transcription of proinflammatory mediators in T2D cells. In summary, caveolin-1 and -3 are strongly repressed with simulated T2D, with caveolin-3 particularly sensitive to palmitate; intrinsic PKCβ2 and FAK activities depress caveolin-3 in healthy and stressed cells; ALA and AC activation and PKCβ2 inhibition preserve caveolin-3 under T2D conditions; and caveolin-3 changes with T2D and ALA appear unrelated to inflammatory signaling or extent of apoptosis.
Collapse
Affiliation(s)
- Jake S Russell
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Tia A Griffith
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Jason N Peart
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - John P Headrick
- School of Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| |
Collapse
|
19
|
Abstract
Diabetes mellitus predisposes affected individuals to a significant spectrum of cardiovascular complications, one of the most debilitating in terms of prognosis is heart failure. Indeed, the increasing global prevalence of diabetes mellitus and an aging population has given rise to an epidemic of diabetes mellitus-induced heart failure. Despite the significant research attention this phenomenon, termed diabetic cardiomyopathy, has received over several decades, understanding of the full spectrum of potential contributing mechanisms, and their relative contribution to this heart failure phenotype in the specific context of diabetes mellitus, has not yet been fully resolved. Key recent preclinical discoveries that comprise the current state-of-the-art understanding of the basic mechanisms of the complex phenotype, that is, the diabetic heart, form the basis of this review. Abnormalities in each of cardiac metabolism, physiological and pathophysiological signaling, and the mitochondrial compartment, in addition to oxidative stress, inflammation, myocardial cell death pathways, and neurohumoral mechanisms, are addressed. Further, the interactions between each of these contributing mechanisms and how they align to the functional, morphological, and structural impairments that characterize the diabetic heart are considered in light of the clinical context: from the disease burden, its current management in the clinic, and where the knowledge gaps remain. The need for continued interrogation of these mechanisms (both known and those yet to be identified) is essential to not only decipher the how and why of diabetes mellitus-induced heart failure but also to facilitate improved inroads into the clinical management of this pervasive clinical challenge.
Collapse
Affiliation(s)
- Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | - E. Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| |
Collapse
|
20
|
Prokineticin 2 (PK2) Rescues Cardiomyocytes from High Glucose/High Palmitic Acid-Induced Damage by Regulating the AKT/GSK3 β Pathway In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3163629. [PMID: 32509142 PMCID: PMC7251470 DOI: 10.1155/2020/3163629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
Prokineticin 2 (PK2) is a small 8 kDa protein that participates in many physiological processes, such as angiogenesis, inflammation, and neurogenesis. This experiment investigated the effect of PK2 on high glucose/high palmitic acid-induced oxidative stress, apoptosis, and autophagy in cardiomyocytes and the AKT/GSK3β signalling pathway. H9c2 cells were exposed to normal and high concentrations (33 mM) of glucose and palmitic acid (150 μM) with or without PK2 (10 nM) for 48 h. Reactive oxygen species were detected using the fluorescent probes DCFH-DA and DHE. Changes in apoptosis were assessed using flow cytometry, and autophagosomes were detected using Ad-GFP-LC3. Apoptotic proteins, such as Cleaved Caspase3, Bax, and Bcl-2; autophagy proteins, including Beclin-1 and LC3B; and PK2/PKR/AKT/GSK3β signals were evaluated using western blotting. Cardiomyocytes exposed to high glucose/high palmitic acid exhibited increases in intracellular ROS, apoptosis, and autophagosomes, and these increases were robustly prevented by PK2. In addition, high glucose/high palmitic acid remarkably suppressed PK2, PKR1, and PKR2 expression and p-AKT/AKT and p-GSK3β/GSK3β ratios, and these effects were significantly prevented by PK2. Moreover, an AKT1/2 kinase inhibitor (AKT inhibitor, 10 μM) blocked the effects of PK2 on the changes in cardiomyocyte exposure to high glucose/high palmitic acid. These results suggest that PK2 attenuates high glucose/high palmitic acid-induced cardiomyocyte apoptosis by inhibiting oxidative stress and autophagosome accumulation and that this protective effect is most likely mediated by the AKT-related signalling pathway.
Collapse
|
21
|
MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy. Nat Commun 2020; 11:2148. [PMID: 32358497 PMCID: PMC7195432 DOI: 10.1038/s41467-020-15978-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia activates toll-like receptor 4 (TLR4) to induce inflammation in diabetic cardiomyopathy (DCM). However, the mechanisms of TLR4 activation remain unclear. Here we examine the role of myeloid differentiation 2 (MD2), a co-receptor of TLR4, in high glucose (HG)- and diabetes-induced inflammatory cardiomyopathy. We show increased MD2 in heart tissues of diabetic mice and serum of human diabetic subjects. MD2 deficiency in mice inhibits TLR4 pathway activation, which correlates with reduced myocardial remodeling and improved cardiac function. Mechanistically, we show that HG induces extracellular advanced glycation end products (AGEs), which bind directly to MD2, leading to formation of AGEs-MD2-TLR4 complex and initiation of pro-inflammatory pathways. We further detect elevated AGE-MD2 complexes in heart tissues and serum of diabetic mice and human subjects with DCM. In summary, we uncover a new mechanism of HG-induced inflammatory responses and myocardial injury, in which AGE products directly bind MD2 to drive inflammatory DCM. The mechanisms underlying cardiac inflammation in diabetic cardiomyopathy are incompletely understood. Here the authors show that advanced glycation end products bind to the TLR4 co-receptor MD2 initiating pro-inflammatory pathways.
Collapse
|
22
|
Secreted Phospholipase A 2-IIA Modulates Transdifferentiation of Cardiac Fibroblast through EGFR Transactivation: An Inflammation-Fibrosis Link. Cells 2020; 9:cells9020396. [PMID: 32046347 PMCID: PMC7072256 DOI: 10.3390/cells9020396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Secreted phospholipase A2-IIA (sPLA2-IIA) is a pro-inflammatory protein associated with cardiovascular disorders, whose functions and underlying mechanisms in cardiac remodelling are still under investigation. We herein study the role of sPLA2-IIA in cardiac fibroblast (CFs)-to-myofibroblast differentiation and fibrosis, two major features involved in cardiac remodelling, and also explore potential mechanisms involved. In a mice model of dilated cardiomyopathy (DCM) after autoimmune myocarditis, serum and cardiac sPLA2-IIA protein expression were found to be increased, together with elevated cardiac levels of the cross-linking enzyme lysyl oxidase (LOX) and reactive oxygen species (ROS) accumulation. Exogenous sPLA2-IIA treatment induced proliferation and differentiation of adult rat CFs. Molecular studies demonstrated that sPLA2-IIA promoted Src phosphorylation, shedding of the membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) ectodomain and EGFR phosphorylation, which triggered phosphorylation of ERK, P70S6K and rS6. This was also accompanied by an up-regulated expression of the bone morphogenic protein (BMP)-1, LOX and collagen I. ROS accumulation were also found to be increased in sPLA2-IIA-treated CFs. The presence of inhibitors of the Src/ADAMs-dependent HB-EGF shedding/EGFR pathway abolished the CF phenotype induced by sPLA2-IIA. In conclusion, sPLA2-IIA may promote myofibroblast differentiation through its ability to modulate EGFR transactivation and signalling as key mechanisms that underlie its biological and pro-fibrotic effects.
Collapse
|
23
|
Neuregulin-1 triggers GLUT4 translocation and enhances glucose uptake independently of insulin receptor substrate and ErbB3 in neonatal rat cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118562. [PMID: 31669265 DOI: 10.1016/j.bbamcr.2019.118562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/15/2019] [Accepted: 10/16/2019] [Indexed: 12/28/2022]
Abstract
During stress conditions such as pressure overload and acute ischemia, the myocardial endothelium releases neuregulin-1β (NRG-1), which acts as a cardioprotective factor and supports recovery of the heart. Recently, we demonstrated that recombinant human (rh)NRG-1 enhances glucose uptake in neonatal rat ventricular myocytes via the ErbB2/ErbB4 heterodimer and PI3Kα. The present study aimed to further elucidate the mechanism whereby rhNRG-1 activates glucose uptake in comparison to the well-established insulin and to extend the findings to adult models. Combinations of rhNRG-1 with increasing doses of insulin did not yield any additive effect on glucose uptake measured as 3H-deoxy-d-glucose incorporation, indicating that the mechanisms of the two stimuli are similar. In c-Myc-GLUT4-mCherry-transfected neonatal rat cardiomyocytes, rhNRG-1 increased sarcolemmal GLUT4 by 16-fold, similar to insulin. In contrast to insulin, rhNRG-1 did not phosphorylate IRS-1 at Tyr612, indicating that IRS-1 is not implicated in the signal transmission. Treatment of neonatal rats with rhNRG-1 induced a signaling response comparable with that observed in vitro, including increased ErbB4-pTyr1284, Akt-pThr308 and Erk1/2-pThr202/Tyr204. In contrast, in adult cardiomyocytes rhNRG-1 only increased the phosphorylation of Erk1/2 without having any significant effect on Akt and AS160 phosphorylation and glucose uptake, suggesting that rhNRG-1 function in neonatal cardiomyocytes differs from that in adult cardiomyocytes. In conclusion, our results show that similar to insulin, rhNRG-1 can induce glucose uptake by activating the PI3Kα-Akt-AS160 pathway and GLUT4 translocation. Unlike insulin, the rhNRG-1-induced effect is not mediated by IRS proteins and is observed in neonatal, but not in adult rat cardiomyocytes.
Collapse
|
24
|
Zuo GF, Ren XM, Ge Q, Luo J, Ye P, Wang F, Wu W, Chao YL, Gu Y, Gao XF, Ge Z, Gao HB, Hu ZY, Zhang JJ, Chen SL. Activation of the PP2A catalytic subunit by ivabradine attenuates the development of diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 130:170-183. [PMID: 30998977 DOI: 10.1016/j.yjmcc.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Hyperglycemia-induced apoptosis plays a critical role in the pathogenesis of diabetic cardiomyopathy (DCM). Our previous study demonstrated that ivabradine, a selective If current antagonist, significantly attenuated myocardial apoptosis in diabetic mice, but the underlying mechanisms remained unknown. This study investigated the underlying mechanisms by which ivabradine exerts anti-apoptotic effects in experimental DCM. Pretreatment with ivabradine, but not ZD7288 (an established If current blocker), profoundly inhibited high glucose-induced apoptosis via inactivation of nuclear factor (NF)-κB signaling in neonatal rat cardiomyocytes. The effect was abolished by transfection of an siRNA targeting protein phosphatase 2A catalytic subunit (PP2Ac). In streptozotocin-induced diabetic mice, ivabradine treatment significantly inhibited left ventricular hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) and HCN4 (major components of the If current), activated PP2Ac, and attenuated NF-κB signaling activation and apoptosis, in line with improved histological abnormalities, fibrosis, and cardiac dysfunction without affecting hyperglycemia. These effects were not observed in diabetic mice with virus-mediated knockdown of HCN2 or HCN4 after myocardial injection, but were alleviated by knockdown of PP2Acα. Molecular docking and phosphatase activity assay confirmed direct binding of ivabradine to, and activation of, PP2Ac. In conclusion, ivabradine may directly activate PP2Ac, leading to inhibition of NF-κB signaling activation, myocardial apoptosis, and fibrosis, and eventually improving cardiac function in experimental DCM. Taken together, the present findings suggest that ivabradine may be a promising drug for treatment of DCM.
Collapse
Affiliation(s)
- Guang-Feng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Min Ren
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue-Lin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Han-Bin Gao
- The First People's Hospital of Taicang, Soochow University, Suzhou, China
| | - Zuo-Ying Hu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Ma J, Jin G. Epidermal growth factor protects against myocardial ischaemia reperfusion injury through activating Nrf2 signalling pathway. Free Radic Res 2019; 53:313-323. [PMID: 30773943 DOI: 10.1080/10715762.2019.1584399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alleviating the oxidant stress associated with myocardial ischaemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischaemia reperfusion (I/R)-induced cardiac damage. It is reported that EGFR/erbB2 signalling is an important cardiac survival pathway in cardiac function and activation of EGFR has a cardiovascular effect in global ischaemia. Epidermal growth factor (EGF), a typical EGFR ligand, was considered to have a significant role in activating EGFR. However, no evidence has been published whether exogenous EGF has protective effects on myocardial ischaemia reperfusion. This study aims to investigate the effects of EGF in I/R-induced heart injury and to demonstrate its mechanisms. H9c2 cells challenged with H2O2 were used for in vitro biological activity and mechanistic studies. The malondialdehyde (MDA) and Superoxide Dismutase (SOD) levels in H9c2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse administrated with or without EGF were used for in vivo studies. Pretreatment of H9c2 cells with EGF activated Nrf2 signalling pathway, attenuated H2O2-increased MDA and H2O2-reduced SOD level, followed by the inhibition of H2O2-induced cell death. In in vivo animal models of myocardial I/R, administration of EGF reduced infarct size and myocardial apoptosis. These data support that EGF decreases oxidative stress and attenuates myocardial ischaemia reperfusion injury via activating Nrf2.
Collapse
Affiliation(s)
- Jun Ma
- a Department of Cardiology , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , P. R. China
| | - Ge Jin
- a Department of Cardiology , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , P. R. China
| |
Collapse
|
26
|
Wang Q, Sun Y, Li T, Liu L, Zhao Y, Li L, Zhang L, Meng Y. Function of BRD4 in the pathogenesis of high glucose‑induced cardiac hypertrophy. Mol Med Rep 2018; 19:499-507. [PMID: 30483785 PMCID: PMC6297744 DOI: 10.3892/mmr.2018.9681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Diabetic cardiomyopathy is one of the major complications of diabetes, and due to the increasing number of patients with diabetes it is a growing concern. Diabetes-induced cardiomyopathy has a complex pathogenesis and histone deacetylase-mediated epigenetic processes are of prominent importance. The olfactory bromodomain-containing protein 4 (BRD4) is a protein that recognizes and binds acetylated lysine. It has been reported that the high expression of BRD4 is involved in the process of cardiac hypertrophy. The aim of the present study was to investigate the function of BRD4 in the process of high glucose (HG)-induced cardiac hypertrophy, and to clarify whether epigenetic regulation involving BRD4 is an important mechanism. It was revealed that BRD4 expression levels were increased in H9C2 cells following 48 h of HG stimulation. This result was also observed in a diabetic rat model. Furthermore, HG stimulation resulted in the upregulation of the myocardial hypertrophy marker, atrial natriuretic peptide, the cytoskeletal protein α-actin and fibrosis-associated genes including transforming growth factor-β, SMAD family member 3, connective tissue growth factor and collagen, type 1, α1. However, administration of the specific BRD4 inhibitor JQ1 (250 nM) for 48 h reversed this phenomenon. Furthermore, protein kinase B (AKT) phosphorylation was activated by HG stimulation and suppressed by JQ1. In conclusion, BRD4 serves an important role in the pathogenesis of HG-induced cardiomyocyte hypertrophy through the AKT pathway.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuxin Sun
- Department of Otorhinolaryngology, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tianshu Li
- Department of Functional Science Experiment Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lianqin Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yunxia Zhao
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liyuan Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ling Zhang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Meng
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Shah S, Akhtar MS, Hassan M, Akhtar M, Paudel YN, Najmi AK. EGFR tyrosine kinase inhibition decreases cardiac remodeling and SERCA2a/NCX1 depletion in streptozotocin induced cardiomyopathy in C57/BL6 mice. Life Sci 2018; 210:29-39. [DOI: 10.1016/j.lfs.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/28/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
|
28
|
Ju X, Yang X, Yan T, Chen H, Song Z, Zhang Z, Wu W, Wang Y. EGFRinhibitor,AG1478, inhibits inflammatory infiltration and angiogenesis in mice with diabetic retinopathy. Clin Exp Pharmacol Physiol 2018; 46:75-85. [PMID: 30221384 DOI: 10.1111/1440-1681.13029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Xin Ju
- Chemical Biology Research Center School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
- The Eye Hospital of Wenzhou Medical University Wenzhou China
| | - Xi Yang
- Chemical Biology Research Center School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
- The Eye Hospital of Wenzhou Medical University Wenzhou China
| | - Tao Yan
- Chemical Biology Research Center School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
| | - Huaicheng Chen
- Chemical Biology Research Center School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
- The Eye Hospital of Wenzhou Medical University Wenzhou China
| | - Zongming Song
- The Eye Hospital of Wenzhou Medical University Wenzhou China
| | - Zongduan Zhang
- The Eye Hospital of Wenzhou Medical University Wenzhou China
| | - Wencan Wu
- The Eye Hospital of Wenzhou Medical University Wenzhou China
| | - Yi Wang
- Chemical Biology Research Center School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
| |
Collapse
|
29
|
Lim HW, Pak K, Ryan AF, Kurabi A. Screening Mammalian Cochlear Hair Cells to Identify Critical Processes in Aminoglycoside-Mediated Damage. Front Cell Neurosci 2018; 12:179. [PMID: 30013464 PMCID: PMC6036173 DOI: 10.3389/fncel.2018.00179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
There is considerable interest in discovering drugs with the potential to protect inner ear hair cells (HCs) from damage. One means of discovery is to screen compound libraries. Excellent screening protocols have been developed employing cell lines derived from the cochlea and zebrafish larvae. However, these do not address the differentiated mammalian hair cell. We have developed a screening method employing micro-explants of the mammalian organ of Corti (oC) to identify compounds with the ability to influence aminoglycoside-induced HC loss. The assay is based on short segments of the neonatal mouse oC, containing ~80 HCs which selectively express green fluorescent protein (GFP). This allows the screening of hundreds of potential protectants in an assay that includes both inner and outer HCs. This review article describes various screening methods, including the micro-explant assay. In addition, two micro-explant screening studies in which antioxidant and kinase inhibitor libraries were evaluated are reviewed. The results from these screens are related to current models of HC damage and protection.
Collapse
Affiliation(s)
- Hyun Woo Lim
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Kwang Pak
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,San Diego VA Healthcare System, La Jolla, CA, United States
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,San Diego VA Healthcare System, La Jolla, CA, United States.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
30
|
Xu Z, Zhao Y, Zhong P, Wang J, Weng Q, Qian Y, Han J, Zou C, Liang G. EGFR inhibition attenuates diabetic nephropathy through decreasing ROS and endoplasmic reticulum stress. Oncotarget 2018; 8:32655-32667. [PMID: 28427241 PMCID: PMC5464817 DOI: 10.18632/oncotarget.15948] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/23/2017] [Indexed: 01/14/2023] Open
Abstract
Diabetic nephropathy (DN) is a progressive kidney disease due to glomerular capillary damage in diabetic patients. Endoplasmic reticulum (ER) stress caused by reactive oxygen species (ROS) is associated with DN progression. Epidermal growth factor receptor (EGFR) mediates oxidative stress and damage of cardiomyocytes in diabetic mice. Here we demonstrated that AG1478, a specific inhibitor of EGFR, blocked EGFR and AKT phosphorylation in diabetic mice. Oxidative stress and ER stress markers were eliminated after AG1478 administration. AG1478 decreased pro-fibrotic genes TGF-β and collagen IV. Furthermore, we found that high glucose (HG) induced oxidative stress and ER stress, and subsequently increased ATF4 and CHOP. These changes were eliminated by either AG1478 or ROS scavenger N-acetyl-L-cysteine (NAC) administration. These results were confirmed by knock-down approaches in renal mesangial SV40 cells. However, AG1478, not NAC, reversed HG induced EGFR and AKT phosphorylation. These results suggest that EGFR/AKT/ROS/ER stress signaling plays an essential role in DN development and inhibiting EGFR may serve as a potential therapeutic strategy in diabetic kidney diseases.
Collapse
Affiliation(s)
- Zheng Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiaoyou Weng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Interventional Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
31
|
Shan X, Zhang Y, Chen H, Dong L, Wu B, Xu T, Hu J, Liu Z, Wang W, Wu L, Feng Z, Liang G. Inhibition of epidermal growth factor receptor attenuates LPS-induced inflammation and acute lung injury in rats. Oncotarget 2018; 8:26648-26661. [PMID: 28460454 PMCID: PMC5432286 DOI: 10.18632/oncotarget.15790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/15/2017] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) and its severe form acute respiratory distress syndrome remain the leading cause of morbidity and mortality in intensive care units. Inhibition of epidermal growth factor receptor (EGFR) has been found to be able to reduce inflammatory response. However, it is still unclear whether EGFR inhibition can prevent ALI. This study aimed to validate the EGFR's role in ALI and investigated the effects of EGFR inhibition on lipopolysaccharides (LPS)-induced ALI in rats. In vitro, both pharmacological inhibitors (AG1478 and 451) and si-RNA silencing of EGFR significantly inhibited LPS-induced EGFR signaling activation and inflammatory response in human lung epithelial cells or macrophages. Mechanistically, LPS induced EGFR activation via TLR4 and c-Src signaling. In vivo, rat model with ALI induced by intratracheal instillation of LPS was treated by oral administration of AG1478 and 451. It was observed that AG1478 and 451 blocked the activation of EGFR signaling in lung tissue and reduced the LPS-induced infiltration of inflammatory cells, inflammatory gene expression, and lung injuries. This study demonstrates that TLR4/c-Src-dependent EGFR signaling plays an important role in LPS-induced ALI, and that EGFR may be a potential target in treating ALI.
Collapse
Affiliation(s)
- Xiaoou Shan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yali Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjin Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lili Dong
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Children's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Beibei Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Tingting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jie Hu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Liqin Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zhiguo Feng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
32
|
Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget 2018; 7:83951-83963. [PMID: 27924062 PMCID: PMC5356637 DOI: 10.18632/oncotarget.13796] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/22/2016] [Indexed: 12/20/2022] Open
Abstract
Accumulation of hydrophobic bile acids in the liver contributes to cholestatic liver injury. Inflammation induced by excessive bile acids is believed to play a crucial role, however, the mechanisms of bile acids triggered inflammatory response remain unclear. Recent studies have highlighted the effect of NLRP3 inflammasome in mediating liver inflammation and fibrosis. In this study, we for the first time showed that chenodeoxycholic acid (CDCA), the major hydrophobic primary bile acid involved in cholestatic liver injury, could dose-dependently induce NLRP3 inflammasome activation and secretion of pro-inflammatory cytokine-IL-1β in macrophages by promoting ROS production and K+ efflux. Mechanistically, CDCA triggered ROS formation in part through TGR5/EGFR downstream signaling, including protein kinase B, extracellular regulated protein kinases and c-Jun N-terminal kinase pathways. Meanwhile, CDCA also induced ATP release from macrophages which subsequently causes K+ efflux via P2X7 receptor. Furthermore, in vivo inhibition of NLRP3 inflammasome with caspase-1 inhibitor dramatically decreased mature IL-1β level of liver tissue and ameliorated liver fibrosis in bile duct ligation (BDL) mouse model. In conclusion, excessive CDCA may represent an endogenous danger signal to activate NLRP3 inflammasome and initiate liver inflammation during cholestasis. Our finding offers a mechanistic basis to ameliorate cholestatic liver fibrosis by targeting inflammasome activation.
Collapse
|
33
|
Fang WJ, Wang CJ, He Y, Zhou YL, Peng XD, Liu SK. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin 2018; 39:59-73. [PMID: 28770830 DOI: 10.1038/aps.2017.50] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Recent evidence shows that resveratrol (RSV) may ameliorate high-glucose-induced cardiac oxidative stress, mitochondrial dysfunction and myocardial fibrosis in diabetes. However, the mechanisms by which RSV regulates mitochondrial function in diabetic cardiomyopathy have not been fully elucidated. Mitochondrial dysfunction contributes to cardiac dysfunction in diabetic patients, which is associated with dysregulation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). In this study we examined whether resveratrol alleviated cardiac dysfunction in diabetes by improving mitochondrial function via SIRT1-mediated PGC-1α deacetylation. T2DM was induced in rats by a high-fat diet combined with STZ injection. Diabetic rats were orally administered RSV (50 mg·kg-1·d-1) for 16 weeks. RSV administration significantly attenuated diabetes-induced cardiac dysfunction and hypertrophy evidenced by increasing ejection fraction (EF%), fraction shortening (FS%), ratio of early diastolic peak velocity (E velocity) and late diastolic peak velocity (A velocity) of the LV inflow (E/A ratio) and reducing expression levels of pro-hypertrophic markers ANP, BNP and β-MHC. Furthermore, manganese superoxide dismutase (SOD) activity, ATP content, mitochondrial DNA copy number, mitochondrial membrane potential and the expression of nuclear respiration factor (NRF) were all significantly increased in diabetic hearts by RSV administration, whereas the levels of malondialdehvde (MDA) and uncoupling protein 2 (UCP2) were significantly decreased. Moreover, RSV administration significantly activated SIRT1 expression and increased PGC-1α deacetylation. H9c2 cells cultured in a high glucose (HG, 30 mmol/L) condition were used for further analyzing the role of SIRT1/PGC-1α pathway in RSV regulation of mitochondrial function. RSV (20 μmol/L) caused similar beneficial effects in HG-treated H9c2 cells in vitro as in diabetic rats, but these protective effects were abolished by addition of a SIRT1 inhibitor sirtinol (25 μmol/L) or by SIRT1 siRNA transfection. In H9c2 cells, RSV-induced PGC-1α deacetylation was dependent on SIRT1, which was also abolished by a SIRT1 inhibitor and SIRT1 siRNA transfection. Our results demonstrate that resveratrol attenuates cardiac injury in diabetic rats through regulation of mitochondrial function, which is mediated partly through SIRT1 activation and increased PGC-1α deacetylation.
Collapse
|
34
|
Mali V, Haddox S, Hornersmith C, Matrougui K, Belmadani S. Essential role for EGFR tyrosine kinase and ER stress in myocardial infarction in type 2 diabetes. Pflugers Arch 2017; 470:471-480. [PMID: 29288332 DOI: 10.1007/s00424-017-2097-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/05/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
We previously reported that EGFR tyrosine kinase (EGFRtk) activity and endoplasmic reticulum (ER) stress are enhanced in type 2 diabetic (T2D) mice and cause vascular dysfunction. In the present study, we determined the in vivo contribution of EGFRtk and ER stress in acute myocardial infarction induced by acute ischemia (40 min)-reperfusion (24 h) (I/R) injury in T2D (db-/db-) mice. We treated db-/db- mice with EGFRtk inhibitor (AG1478, 10 mg/kg/day) for 2 weeks. Mice were then subjected to myocardial I/R injury. The db-/db- mice developed a significant infarct after I/R injury. The inhibition of EGFRtk significantly reduced the infarct size and ER stress induction. We also determined that the inhibition of ER stress (tauroursodeoxycholic acid, TUDCA, 150 mg/kg per day) in db-/db- significantly decrease the infarct size indicating that ER stress is a downstream mechanism to EGFRtk. Moreover, AG1478 and TUDCA reduced myocardium p38 and ERK1/2 MAP-kinases activity, and increased the activity of the pro-survival signaling cascade Akt. Additionally, the inhibition of EGFRtk and ER stress reduced cell apoptosis and the inflammation as indicated by the reduction in macrophages and neutrophil infiltration. We determined for the first time that the inhibition of EGFRtk protects T2D heart against I/R injury through ER stress-dependent mechanism. The cardioprotective effect of EGFRtk and ER stress inhibition involves the activation of survival pathway, and inhibition of apoptosis, and inflammation. Thus, targeting EGFRtk and ER stress has the potential for therapy to overcome myocardial infarction in T2D.
Collapse
Affiliation(s)
- Vishal Mali
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | - Samuel Haddox
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | | | - Khalid Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | - Souad Belmadani
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA.
| |
Collapse
|
35
|
Fang Q, Zou C, Zhong P, Lin F, Li W, Wang L, Zhang Y, Zheng C, Wang Y, Li X, Liang G. EGFR mediates hyperlipidemia-induced renal injury via regulating inflammation and oxidative stress: the detrimental role and mechanism of EGFR activation. Oncotarget 2017; 7:24361-73. [PMID: 27014908 PMCID: PMC5029707 DOI: 10.18632/oncotarget.8222] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022] Open
Abstract
Previous studies have implicated inflammation, oxidative stress, and fibrosis as key factors in the development of obesity-induced kidney diseases. Epidermal growth factor receptor (EGFR) plays an important role in cancer development. Recently, the EGFR pathway has been increasingly implicated in chronic cardiovascular diseases via regulating inflammation and oxidative stress. However, it is unclear if EGFR is involved in obesity-related kidney injury. Using ApoE-/- and C57BL/6 mice models and two specific EGFR inhibitors, we investigated the potential effects of EGFR inhibition in the treatment of obesity-related nephropathy and found that EGFR inhibition alleviates renal inflammation, oxidative stress and fibrosis. In NRK-52E cells, we also elucidated the mechanism behind hyperlipidemia-induced EGFR activation. We observed that c-Src and EGFR forms a complex, and following PA stimulation, it is the successive phosphorylation, not formation, of the c-Src/EGFR complex that results in the subsequent cascade activation. Second, we found that TLR4 regulates the activation EGFR pathway mainly through the phosphorylation of the c-Src/EGFR complex. These results demonstrate the detrimental role of EGFR in the pathogenesis of obesity-related nephropathy, provide a new understanding of the mechanism behind hyperlipidemia/FFA-induced EGFR activation, and support the use of EGFR inhibitors in the treatment of obesity-induced kidney diseases.
Collapse
Affiliation(s)
- Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Lin
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Zheng
- Department of Endocrinology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
36
|
Gutiérrez-Tenorio J, Marín-Royo G, Martínez-Martínez E, Martín R, Miana M, López-Andrés N, Jurado-López R, Gallardo I, Luaces M, San Román JA, González-Amor M, Salaices M, Nieto ML, Cachofeiro V. The role of oxidative stress in the crosstalk between leptin and mineralocorticoid receptor in the cardiac fibrosis associated with obesity. Sci Rep 2017; 7:16802. [PMID: 29196758 PMCID: PMC5711898 DOI: 10.1038/s41598-017-17103-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
We have investigated whether mineralocorticoid receptor activation can participate in the profibrotic effects of leptin in cardiac myofibroblasts, as well as the potential mechanisms involved. The presence of eplerenone reduced the leptin-induced increase in protein levels of collagen I, transforming growth factor β, connective tissue growth factor and galectin-3 and the levels of both total and mitochondrial of superoxide anion (O2.−) in cardiac myofibroblasts. Likewise, the MEK/ERK inhibitor, PD98059, and the PI3/Akt inhibitor, LY294002, showed a similar pattern. Mitochondrial reactive oxygen species (ROS) scavenger (MitoTempo) attenuated the increase in body weight observed in rats fed a high fat diet (HFD). No differences were found in cardiac function or blood pressure among any group. However, the cardiac fibrosis and enhanced O2.-levels observed in HFD rats were attenuated by MitoTempo, which also prevented the increased circulating leptin and aldosterone levels in HFD fed animals. This study supports a role of mineralocorticoid receptor in the cardiac fibrosis induced by leptin in the context of obesity and highlights the role of the mitochondrial ROS in this process.
Collapse
Affiliation(s)
- Josué Gutiérrez-Tenorio
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Gema Marín-Royo
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Rubén Martín
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - María Miana
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Facultad de Enfermería y Fisioterapia, Salus Infirmorum. Universidad Pontificia de Salamanca, Madrid, Spain
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Raquel Jurado-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Isabel Gallardo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - José Alberto San Román
- Instituto de Ciencias del Corazón (ICICOR), Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV). Instituto de Salud Carlos III, Madrid, Spain
| | - María González-Amor
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid and Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid and Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV). Instituto de Salud Carlos III, Madrid, Spain
| | - María Luisa Nieto
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV). Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain. .,Ciber de Enfermedades Cardiovasculares (CIBERCV). Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
37
|
Molecular mechanisms of cardiac pathology in diabetes - Experimental insights. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1949-1959. [PMID: 29109032 DOI: 10.1016/j.bbadis.2017.10.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy is a distinct pathology independent of co-morbidities such as coronary artery disease and hypertension. Diminished glucose uptake due to impaired insulin signaling and decreased expression of glucose transporters is associated with a shift towards increased reliance on fatty acid oxidation and reduced cardiac efficiency in diabetic hearts. The cardiac metabolic profile in diabetes is influenced by disturbances in circulating glucose, insulin and fatty acids, and alterations in cardiomyocyte signaling. In this review, we focus on recent preclinical advances in understanding the molecular mechanisms of diabetic cardiomyopathy. Genetic manipulation of cardiomyocyte insulin signaling intermediates has demonstrated that partial cardiac functional rescue can be achieved by upregulation of the insulin signaling pathway in diabetic hearts. Inconsistent findings have been reported relating to the role of cardiac AMPK and β-adrenergic signaling in diabetes, and systemic administration of agents targeting these pathways appear to elicit some cardiac benefit, but whether these effects are related to direct cardiac actions is uncertain. Overload of cardiomyocyte fuel storage is evident in the diabetic heart, with accumulation of glycogen and lipid droplets. Cardiac metabolic dysregulation in diabetes has been linked with oxidative stress and autophagy disturbance, which may lead to cell death induction, fibrotic 'backfill' and cardiac dysfunction. This review examines the weight of evidence relating to the molecular mechanisms of diabetic cardiomyopathy, with a particular focus on metabolic and signaling pathways. Areas of uncertainty in the field are highlighted and important knowledge gaps for further investigation are identified. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
|
38
|
Zou C, Li W, Pan Y, Khan ZA, Li J, Wu X, Wang Y, Deng L, Liang G, Zhao Y. 11β-HSD1 inhibition ameliorates diabetes-induced cardiomyocyte hypertrophy and cardiac fibrosis through modulation of EGFR activity. Oncotarget 2017; 8:96263-96275. [PMID: 29221204 PMCID: PMC5707098 DOI: 10.18632/oncotarget.22015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
11β-HSD1 has been recognized as a potential therapeutic target for type 2 diabetes. Recent studies have shown that hyperglycemia leads to activation of 11β-HSD1, increasing the intracellular glucocorticoid levels. Excess glucocorticoids may lead to the clinical manifestations of cardiac injury. Therefore, the aim of this study is to investigate whether 11β-HSD1 activation contributes to the development of diabetic cardiomyopathy. To investigate the role of 11β-HSD1, we administered a selective 11β-HSD1 inhibitor in type 1 and type 2 murine models of diabetes and in cultured cardiomyocytes. Our results show that diabetes increases cortisone levels in heart tissues. 11β-HSD1 inhibitor decreased cortisone levels and ameliorated all structural and functional features of diabetic cardiomyopathy including fibrosis and hypertrophy. We also show that high levels of glucose caused cardiomyocyte hypertrophy and increased matrix protein deposition in culture. Importantly, inhibition of 11β-HSD1 attenuated these changes. Moreover, we show that 11β-HSD1 activation mediates these changes through modulating EGFR phosphorylation and activity. Our findings demonstrate that 11β-HSD1 contributes to the development of diabetic cardiomyopathy through activation of glucocorticoid and EGFR signaling pathway. These results suggest that inhibition of 11β-HSD1 might be a therapeutic strategy for diabetic cardiomyopathy, which is independent of its effects on glucose homeostasis.
Collapse
Affiliation(s)
- Chunpeng Zou
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Ultrasonography, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yong Pan
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zia A Khan
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xixi Wu
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liancheng Deng
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
39
|
JAK2/STAT3 pathway is involved in the protective effects of epidermal growth factor receptor activation against cerebral ischemia/reperfusion injury in rats. Neurosci Lett 2017; 662:219-226. [PMID: 29061394 DOI: 10.1016/j.neulet.2017.10.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Cerebral ischemia and reperfusion is a common pathophysiologic process, which is involved in stroke and brain trauma. Recent studies revealed that activating epidermal growth factor receptor (EGFR) ameliorates cerebral ischemia/reperfusion (I/R) injury, however, the precise mechanisms remain to be illuminated. In this study, the neurological behavior was evaluated by Longa score. The infarct volume was performed by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the expression of p-EGFR, p-STAT3, connexin (Cx43), Bax and Bcl-2 were detected by Western blot. The neurological behavior and infarct volume were increased in rats with cerebral I/R injury. Epidermal growth factor (EGF) pretreatment significantly decreased neurological deficit and infarct volume. However, the antagonist of EGFR, AG1478 attenuated the EGF-induced reduction of neurological deficit and infarct volume. Moreover, the inhibitor of JAK2/STAT3, AG490 undermined the protective effects stimulated by activating EGFR in rats with I/R injury. In addition, EGF pretreatment increased the expression of Bcl-2 and reduced the expression of Bax and Cx43, and the effects were abolished after using AG1478 and AG490. These findings implicate that JAK2/STAT3 pathway plays the vital role in I/R injury protection from activating EGFR. And the neuroprotective effects may associate with inhibiting the Cx43 expression and the inhibition of apoptosis.
Collapse
|
40
|
Ryals M, Pak K, Jalota R, Kurabi A, Ryan AF. A kinase inhibitor library screen identifies novel enzymes involved in ototoxic damage to the murine organ of Corti. PLoS One 2017; 12:e0186001. [PMID: 29049311 PMCID: PMC5648133 DOI: 10.1371/journal.pone.0186001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
Ototoxicity is a significant side effect of a number of drugs, including the aminoglycoside antibiotics and platinum-based chemotherapeutic agents that are used to treat life-threatening illnesses. Although much progress has been made, the mechanisms that lead to ototoxic loss of inner ear sensory hair cells (HCs) remains incompletely understood. Given the critical role of protein phosphorylation in intracellular processes, including both damage and survival signaling, we screened a library of kinase inhibitors targeting members of all the major families in the kinome. Micro-explants from the organ of Corti of mice in which only the sensory cells express GFP were exposed to 200 μM of the ototoxic aminoglycoside gentamicin with or without three dosages of each kinase inhibitor. The loss of sensory cells was compared to that seen with gentamicin alone, or without treatment. Of the 160 inhibitors, 15 exhibited a statistically significant protective effect, while 3 significantly enhanced HC loss. The results confirm some previous studies of kinase involvement in HC damage and survival, and also highlight several novel potential kinase pathway contributions to ototoxicity.
Collapse
Affiliation(s)
- Matthew Ryals
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Rahul Jalota
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
- Research Service, Veterans Administration Medical Center, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Liang D, Chen H, Zhao L, Zhang W, Hu J, Liu Z, Zhong P, Wang W, Wang J, Liang G. Inhibition of EGFR attenuates fibrosis and stellate cell activation in diet-induced model of nonalcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:133-142. [PMID: 29038049 DOI: 10.1016/j.bbadis.2017.10.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy.
Collapse
Affiliation(s)
- Dandan Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Leping Zhao
- Department of Pharmacy, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jie Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Wang
- School of Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
42
|
Guo Y, Zhuang X, Huang Z, Zou J, Yang D, Hu X, Du Z, Wang L, Liao X. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis 2017; 1864:238-251. [PMID: 28982613 DOI: 10.1016/j.bbadis.2017.09.029] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/10/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Cardiac inflammation and oxidative stress play a key role in the pathogenesis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho has been found to protect cells from inflammation and oxidative stress. The current study aimed to explore the cardioprotective effects of Klotho on DCM and the underlying mechanisms. H9c2 cells and neonatal cardiomyocytes were incubated with 33mM glucose in the presence or absence of Klotho. Klotho pretreatment effectively inhibited high glucose-induced inflammation, ROS generation, apoptosis, mitochondrial dysfunction, fibrosis and hypertrophy in both H9c2 cells and neonatal cardiomyocytes. In STZ-induced type 1 diabetic mice, intraperitoneal injection of Klotho at 0.01mg/kg per 48h for 3months completely suppressed cardiac inflammatory cytokines and oxidative stress and prevented cardiac cell death and remodeling, which subsequently improved cardiac dysfunction without affecting hyperglycemia. This study revealed that Klotho may exert its protective effects by augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression and inactivating nuclear factor κB (NF-κB) activation both in vitro and in vivo. Thus, this work demonstrated for the first time that the anti-aging protein Klotho may be a potential therapeutic agent to treat DCM by inhibiting oxidative stress and inflammation. We also demonstrated the critical roles of the Nrf2 and NF-κB pathways in diabetes-stimulated cardiac injuries and indicated that they may be key therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Yue Guo
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zena Huang
- Department of Critical Care Medicine and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Jing Zou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, PR China
| | - Daya Yang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Xun Hu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhimin Du
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Lichun Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.
| | - Xinxue Liao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
43
|
Fang Q, Wang J, Zhang Y, Wang L, Li W, Han J, Huang W, Liang G, Wang Y. Inhibition of myeloid differentiation factor-2 attenuates obesity-induced cardiomyopathy and fibrosis. Biochim Biophys Acta Mol Basis Dis 2017; 1864:252-262. [PMID: 28965884 DOI: 10.1016/j.bbadis.2017.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Abstract
Obesity causes cardiovascular diseases, including cardiac hypertrophy and remodeling, via chronic tissue inflammation. Myeloid differentiation factor-2 (MD2), a binding protein of lipopolysaccharide, is functionally essential for the activation of proinflammatory pathways in endotoxin-induced acute inflammatory diseases. Here we tested the hypothesis that MD2 plays a central role in obesity-induced cardiomyopathy. Wildtype or MD2 knockout mice were fed with a high fat diet (HFD) or normal diet (Control) for total 16weeks, and MD2 inhibitor L6H21 (20mg/kg) or vehicle (1% CMC-Na) were administered from the beginning of the 9th week. HFD induced significant weight gain and cardiac hypertrophy, with increased cardiac fibrosis and inflammation. L6H21 administration or MD2 knockout attenuated HFD-induced obesity, inflammation and cardiac remodeling. In vitro exposure of H9C2 cells to high lipids induced cell hypertrophy with activated JNK/ERK and NF-κB pathways, which was abolished by pretreatment of MD2 inhibitor L6H21. Our results demonstrate that MD2 is essential to obesity-related cardiac hypertrophy through activating JNK/ERK and NF-κB-dependent cardiac inflammatory pathways. Targeting MD2 would be a therapeutic approach to prevent obesity-induced cardiac injury and remodeling.
Collapse
Affiliation(s)
- Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
44
|
Fang S, Ma X, Guo S, Lu J. MicroRNA-126 inhibits cell viability and invasion in a diabetic retinopathy model via targeting IRS-1. Oncol Lett 2017; 14:4311-4318. [PMID: 28943945 DOI: 10.3892/ol.2017.6695] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/28/2017] [Indexed: 12/28/2022] Open
Abstract
Diabetic retinopathy (DR) is a sight-threatening complication of diabetes. IRS-1 was predicted to be the target gene of microRNA-126 (miR-126). The present study was designed to illustrate the involvement of miR-126 in the regulation of DR via targeting IRS-1. The present study revealed that the expression of miR-126 was significantly decreased while IRS-1 expression was increased in endothelial cells (ECs) and retinal pericytes (RPs) from a DR mouse model compared with healthy controls. Furthermore, a luciferase reporter assay confirmed the interaction between miR-126 and IRS-1. Following transfection with anmiR-126 mimic or miR-126 inhibitor, overexpression of miR-126 was demonstrated to suppress the invasion and viability of ECs and RPs and to inhibit the IRS-1 and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway protein expression levels, with inhibition of miR-126 leading to reverse results. Furthermore, transfection with small interfering RNA targeting IRS-1 altered the miR-126-induced effects observed in ECs, indicating that miR-126 may suppress angiogenesis in DR via inhibition of IRS-1 expression. Taken together, the results of the present study suggested that miR-126 affected the expression of IRS-1, resulting in downregulated expression of PI3K/Akt pathway proteins, and also suppressed cell invasion and viability. These results may provide a potential therapeutic strategy for DR.
Collapse
Affiliation(s)
- Shifeng Fang
- Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiang Ma
- Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Suping Guo
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jianmin Lu
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
45
|
Cortex Mori Radicis extract attenuates myocardial damages in diabetic rats by regulating ERS. Biomed Pharmacother 2017; 90:777-785. [DOI: 10.1016/j.biopha.2017.03.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022] Open
|
46
|
Wang L, Huang Z, Huang W, Chen X, Shan P, Zhong P, Khan Z, Wang J, Fang Q, Liang G, Wang Y. Inhibition of epidermal growth factor receptor attenuates atherosclerosis via decreasing inflammation and oxidative stress. Sci Rep 2017; 8:45917. [PMID: 28374780 PMCID: PMC5379239 DOI: 10.1038/srep45917] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a progressive disease leading to loss of vascular homeostasis and entails fibrosis, macrophage foam cell formation, and smooth muscle cell proliferation. Recent studies have reported that epidermal growth factor receptor (EGFR) is involved vascular pathophysiology and in the regulation of oxidative stress in macrophages. Although, oxidative stress and inflammation play a critical role in the development of atherosclerosis, the underlying mechanisms are complex and not completely understood. In the present study, we have elucidated the role of EGFR in high-fat diet-induced atherosclerosis in apolipoprotein E null mice. We show increased EGFR phosphorylation and activity in atherosclerotic lesion development. EGFR inhibition prevented oxidative stress, macrophage infiltration, induction of pro-inflammatory cytokines, and SMC proliferation within the lesions. We further show that EGFR is activated through toll-like receptor 4. Disruption of toll-like receptor 4 or the EGFR pathway led to reduced inflammatory activity and foam cell formation. These studies provide evidence that EGFR plays a key role on the pathogenesis of atherosclerosis, and suggests that EGFR may be a potential therapeutic target in the prevention of atherosclerosis development.
Collapse
Affiliation(s)
- Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhouqing Huang
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuemei Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peiren Shan
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zia Khan
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A5C1, Canada
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
47
|
Transactivation of the epidermal growth factor receptor in responses to myocardial stress and cardioprotection. Int J Biochem Cell Biol 2017; 83:97-110. [PMID: 28049018 DOI: 10.1016/j.biocel.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/25/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022]
|
48
|
Onwuli DO, Rigau-Roca L, Cawthorne C, Beltran-Alvarez P. Mapping arginine methylation in the human body and cardiac disease. Proteomics Clin Appl 2016; 11. [PMID: 27600370 DOI: 10.1002/prca.201600106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/20/2016] [Accepted: 09/02/2016] [Indexed: 01/11/2023]
Abstract
PURPOSE Arginine methylation (ArgMe) is one of the most ubiquitous PTMs, and hundreds of proteins undergo ArgMe in, for example, brain. However, the scope of ArgMe in many tissues, including the heart, is currently underexplored. Here, we aimed to (i) identify proteins undergoing ArgMe in human organs, and (ii) expose the relevance of ArgMe in cardiac disease. EXPERIMENTAL DESIGN The publicly available proteomic data is used to search for ArgMe in 13 human tissues. To induce H9c2 cardiac-like cell hypertrophy glucose is used. RESULTS The results show that ArgMe is mainly tissue-specific; nevertheless, the authors suggest an embryonic origin of core ArgMe events. In the heart, 103 mostly novel ArgMe sites in 58 nonhistone proteins are found. The authors provide compelling evidence that cardiac protein ArgMe is relevant to cardiomyocyte ontology, and important for proper cardiac function. This is highlighted by the fact that genetic mutations affecting methylated arginine positions are often associated with cardiac disease, including hypertrophic cardiomyopathy. The pilot experimental data suggesting significant changes in ArgMe profiles of H9c2 cells upon induction of cell hypertrophy using glucose is provided. CONCLUSIONS AND CLINICAL RELEVANCE The work calls for in-depth investigation of ArgMe in normal and diseased tissues using methods including clinical proteomics.
Collapse
|
49
|
Zhang Y, Mei H, Shan W, Shi L, Chang X, Zhu Y, Chen F, Han X. Lentinan protects pancreatic β cells from STZ-induced damage. J Cell Mol Med 2016; 20:1803-12. [PMID: 27444655 PMCID: PMC5020630 DOI: 10.1111/jcmm.12865] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
Pancreatic β‐cell death or dysfunction mediated by oxidative stress underlies the development and progression of diabetes mellitus (DM). In this study, we evaluated the effect of lentinan (LNT), an active ingredient purified from the bodies of Lentinus edodes, on pancreatic β‐cell apoptosis and dysfunction caused by streptozotocin (STZ) and the possible mechanisms implicated. The rat insulinoma cell line INS‐1 were pre‐treated with the indicated concentration of LNT for 30 min. and then incubated for 24 hrs with or without 0.5 mM STZ. We found that STZ treatment causes apoptosis of INS‐1 cells by enhancement of intracellular reactive oxygen species (ROS) accumulation, inducible nitric oxide synthase (iNOS) expression and nitric oxide release and activation of the c‐jun N‐terminal kinase (JNK) and p38 mitogen‐activated protein kinase (MAPK) signalling pathways. However, LNT significantly increased cell viability and effectively attenuated STZ‐induced ROS production, iNOS expression and nitric oxide release and the activation of JNK and p38 MAPK in a dose‐dependent manner in vitro. Moreover, LNT dose‐dependently prevented STZ‐induced inhibition of insulin synthesis by blocking the activation of nuclear factor kappa beta and increasing the level of Pdx‐1 in INS‐1 cells. Together these findings suggest that LNT could protect against pancreatic β‐cell apoptosis and dysfunction caused by STZ and therefore may be a potential pharmacological agent for preventing pancreatic β‐cell damage caused by oxidative stress associated with diabetes.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongliang Mei
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pharmacology, College of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Shan
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Shi
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.,The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xiaoai Chang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunxia Zhu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fang Chen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiao Han
- Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
50
|
Khan S, Zhang D, Zhang Y, Li M, Wang C. Wogonin attenuates diabetic cardiomyopathy through its anti-inflammatory and anti-oxidative properties. Mol Cell Endocrinol 2016; 428:101-8. [PMID: 27013352 DOI: 10.1016/j.mce.2016.03.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/19/2016] [Indexed: 02/07/2023]
Abstract
Among diabetic cardiovascular complications cardiomyopathy is major event which if not well controlled culminates in cardiac failure. Wogonin from the root of Scutellaria baicalensis Georgi has shown specific anti-diabetes bioactivity. However, its effect on diabetic complications remains unclear. The main purpose of this study is to investigate the potential effects of wogonin on diabetic cardiomyopathy and to figure out its underlying mechanism. We found that wogonin administration suppressed hyperglycemia, improved cardiac function, and mitigated cardiac fibrosis in STZ-induced diabetic mice. Wogonin supplementation also attenuated diabetic-induced cardiomyocyte apoptosis and necrosis. In addition, wogonin treatment exhibited the properties of anti-oxidative stress and anti-inflammation in STZ diabetic mice, evidenced by improved activities of anti-oxidases including SOD1/2 and CAT, decreased ROS and MDA production, suppressed expression of inflammation factors such as IL-1β, IL-6, TNFα, and PAI-1, and inhibited NF-κB signaling. These results suggested that wogonin potentially mitigate hyperglycemia-related cardiomyocyte impairment through inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Shahzad Khan
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Deling Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yemin Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Mingxin Li
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|