1
|
Li H, Hu Q, Zhu D, Wu D. The Role of NAD + Metabolism in Cardiovascular Diseases: Mechanisms and Prospects. Am J Cardiovasc Drugs 2025; 25:307-327. [PMID: 39707143 DOI: 10.1007/s40256-024-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a promising anti-aging molecule that plays a role in cellular energy metabolism and maintains redox homeostasis. Additionally, NAD+ is involved in regulating deacetylases, DNA repair enzymes, inflammation, and epigenetics, making it indispensable in maintaining the basic functions of cells. Research on NAD+ has become a hotspot, particularly regarding its potential in cardiovascular disease (CVD). Many studies have demonstrated that NAD+ plays a crucial role in the occurrence and development of CVD. This review summarizes the biosynthesis and consumption of NAD+, along with its precursors and their effects on raising NAD+ levels. We also discuss new mechanisms of NAD+ regulation in cardiovascular risk factors and its effects of NAD+ on atherosclerosis, aortic aneurysm, heart failure, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, and dilated cardiomyopathy, elucidating different mechanisms and potential treatments. NAD+-centered therapy holds promising advantages and prospects in the field of CVD.
Collapse
Affiliation(s)
- Huimin Li
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
2
|
Mou H, Zhang X, Ren F, Deng Y, Chi A, Zhan G, Li D, Sun Q, You W, Ge Y, Zhang M, Ju Z. Nicotinamide mononucleotide supplementation ameliorates testicular damage induced by ischemia-reperfusion through reshaping macrophage and neutrophil inflammatory properties. Int Immunopharmacol 2025; 152:114407. [PMID: 40073809 DOI: 10.1016/j.intimp.2025.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is the main pathophysiology of testicular torsion-detorsion (T/D). However, there is no safe and effective treatment for testicular I/R injury. METHODS The levels of NAD+ related genes were measured in the sham group, I/R + saline-treated group, and I/R + NMN-treated group by quantitative reverse transcription PCR (qRT-PCR). Testicular NAD+, Malondialdehyde (MDA), and superoxide dismutase (SOD) were evaluated. The markers of testicular function, including sperm quality, testosterone secretion, and the number of germ cells, were compared between groups. The reactive oxygen species (ROS), apoptosis, and immune cells were analyzed by flow cytometry. The expression of inflammatory genes, germ cell markers, and the phosphorylation of p65 and STAT3 were assessed by qRT-PCR, immunofluorescence, and western blot, respectively. RESULTS In this study, we analyzed the therapeutic potentials of NMN supplementation in testicular injury induced by torsion-detorsion in mice. NMN supplementation could increase testicular NAD+ content, increase serum testosterone levels, prevent Leydig cell and germ cell injury, and improve sperm quantity. Mechanistically, NMN supplementation relieved the sharply hostile immune microenvironment. Specifically, NMN supplementation could mitigate the oxidative stress and cell apoptosis in the I/R injured testes, downregulate the protein expression of p-p65 and p-STAT3 in inflammatory pathways, limit the excessive activation of inflammatory responses in testicular tissues, and reshape the inflammatory properties of macrophages and neutrophils. CONCLUSIONS The beneficial effects of NMN supplementation indicated that boosting NAD+ may be a promising and safe strategy to improve clinical outcomes in I/R-induced testicular damage.
Collapse
Affiliation(s)
- Hanchuan Mou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Fan Ren
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuanyao Deng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ani Chi
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Dan Li
- Xiamen Kingdomway Group Company, Xiamen, China
| | - Qingyuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wanling You
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuanlong Ge
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Min Zhang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Zhang MY, Zhang H, Yao YM, Yang DW. Krüppel-like factors in mitochondrial quality control. Front Physiol 2025; 16:1554877. [PMID: 40265156 PMCID: PMC12011804 DOI: 10.3389/fphys.2025.1554877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Krüppel-like factors (KLFs) are a group of transcription factors characterized by conserved zinc finger domains in the C-terminus, which are critically involved in basic cellular processes, including growth, differentiation, apoptosis, and angiogenesis, and play important roles in many pathophysiological responses. Mitochondrial homeostasis relies on a coordinated mitochondrial quality control system, which maintains the number and morphological stability and coordinates mitochondrial physiological functions through renewal and self-clearance. In this paper, we review the current advances of KLFs in mitochondrial quality control (MQC), including the potential roles and regulatory mechanisms in mitochondrial biogenesis, mitochondrial fusion/fission, mitophagy and mitochondrial unfolded protein response. We also introduce the specific pharmacological modulation of KLFs, expecting to transforming basic research achievements and providing the possibility of targeted therapy for KLFs.
Collapse
Affiliation(s)
- M. Y. Zhang
- Department of Nephrology, Tianjin Hospital of Tianjin University, Tianjin, China
| | - H. Zhang
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Y. M. Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - D. W. Yang
- Department of Nephrology, Tianjin Hospital of Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Wang Z, Sun W, Zhang K, Ke X, Wang Z. New insights into the relationship of mitochondrial metabolism and atherosclerosis. Cell Signal 2025; 127:111580. [PMID: 39732307 DOI: 10.1016/j.cellsig.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Zexun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| | - Wangqing Sun
- Department of Radiology, Yixing Tumor Hospital, Yixing 214200, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Xianjin Ke
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
5
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2025; 480:799-823. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
7
|
Salis Torres A, Lee JE, Caporali A, Semple RK, Horrocks MH, MacRae VE. Mitochondrial Dysfunction as a Potential Mechanism Mediating Cardiac Comorbidities in Parkinson's Disease. Int J Mol Sci 2024; 25:10973. [PMID: 39456761 PMCID: PMC11507255 DOI: 10.3390/ijms252010973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Individuals diagnosed with Parkinson's disease (PD) often exhibit heightened susceptibility to cardiac dysfunction, reflecting a complex interaction between these conditions. The involvement of mitochondrial dysfunction in the development and progression of cardiac dysfunction and PD suggests a plausible commonality in some aspects of their molecular pathogenesis, potentially contributing to the prevalence of cardiac issues in PD. Mitochondria, crucial organelles responsible for energy production and cellular regulation, play important roles in tissues with high energetic demands, such as neurons and cardiac cells. Mitochondrial dysfunction can occur in different and non-mutually exclusive ways; however, some mechanisms include alterations in mitochondrial dynamics, compromised bioenergetics, biogenesis deficits, oxidative stress, impaired mitophagy, and disrupted calcium balance. It is plausible that these factors contribute to the increased prevalence of cardiac dysfunction in PD, suggesting mitochondrial health as a potential target for therapeutic intervention. This review provides an overview of the physiological mechanisms underlying mitochondrial quality control systems. It summarises the diverse roles of mitochondria in brain and heart function, highlighting shared pathways potentially exhibiting dysfunction and driving cardiac comorbidities in PD. By highlighting strategies to mitigate dysfunction associated with mitochondrial impairment in cardiac and neural tissues, our review aims to provide new perspectives on therapeutic approaches.
Collapse
Affiliation(s)
- Agustina Salis Torres
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Ji-Eun Lee
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queen’s Medical Research Institute (QMRI), The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (A.C.); (R.K.S.)
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Vicky E. MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RH, UK; (A.S.T.); (J.-E.L.)
| |
Collapse
|
8
|
Walker MA, Tian R. NAD metabolism and heart failure: Mechanisms and therapeutic potentials. J Mol Cell Cardiol 2024; 195:45-54. [PMID: 39096536 PMCID: PMC11390314 DOI: 10.1016/j.yjmcc.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Nicotinamide adenine dinucleotide provides the critical redox pair, NAD+ and NADH, for cellular energy metabolism. In addition, NAD+ is the precursor for de novo NADP+ synthesis as well as the co-substrates for CD38, poly(ADP-ribose) polymerase and sirtuins, thus, playing a central role in the regulation of oxidative stress and cell signaling. Declines of the NAD+ level and altered NAD+/NADH redox states have been observed in cardiometabolic diseases of various etiologies. NAD based therapies have emerged as a promising strategy to treat cardiovascular disease. Strategies that reduce NAD+ consumption or promote NAD+ production have repleted intracellular NAD+ or normalized NAD+/NADH redox in preclinical studies. These interventions have shown cardioprotective effects in multiple models suggesting a great promise of the NAD+ elevating therapy. Mechanisms for the benefit of boosting NAD+ level, however, remain incompletely understood. Moreover, despite the robust pre-clinical studies there are still challenges to translate the therapy to clinic. Here, we review the most up to date literature on mechanisms underlying the NAD+ elevating interventions and discuss the progress of human studies. We also aim to provide a better understanding of how NAD metabolism is changed in failing hearts with a particular emphasis on types of strategies employed and methods to target these pathways. Finally, we conclude with a comprehensive assessment of the challenges in developing NAD-based therapies for heart diseases, and to provide a perspective on the future of the targeting strategies.
Collapse
Affiliation(s)
- Matthew A Walker
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
9
|
Wang M, Cao Y, Li Y, Wang L, Liu Y, Deng Z, Zhu L, Kang H. Research advances in the function and anti-aging effects of nicotinamide mononucleotide. J Zhejiang Univ Sci B 2024; 25:723-735. [PMID: 39308064 PMCID: PMC11422796 DOI: 10.1631/jzus.b2300886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/10/2024] [Indexed: 09/27/2024]
Abstract
Aging and age-related ailments have emerged as critical challenges and great burdens within the global contemporary society. Addressing these concerns is an imperative task, with the aims of postponing the aging process and finding effective treatments for age-related degenerative diseases. Recent investigations have highlighted the significant roles of nicotinamide adenine dinucleotide (NAD+) in the realm of anti-aging. It has been empirically evidenced that supplementation with nicotinamide mononucleotide (NMN) can elevate NAD+ levels in the body, thereby ameliorating certain age-related degenerative diseases. The principal anti-aging mechanisms of NMN essentially lie in its impact on cellular energy metabolism, inhibition of cell apoptosis, modulation of immune function, and preservation of genomic stability, which collectively contribute to the deferral of the aging process. This paper critically reviews and evaluates existing research on the anti-aging mechanisms of NMN, elucidates the inherent limitations of current research, and proposes novel avenues for anti-aging investigations.
Collapse
Affiliation(s)
- Min Wang
- Chinese PLA Medical School, Beijing 100853, China
- Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuan Cao
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang 050004, China
| | - Yun Li
- Chinese PLA Medical School, Beijing 100853, China
- Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Lu Wang
- Chinese PLA Medical School, Beijing 100853, China
- Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuyan Liu
- Chinese PLA Medical School, Beijing 100853, China
- Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Zihui Deng
- Department of Biochemistry, Chinese PLA Medical School, Beijing 100853, China
| | - Lianrong Zhu
- Department of Clinical Nutrition, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongjun Kang
- Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China.
- Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Department of Nephrology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
10
|
Deng H, Ding D, Ma Y, Zhang H, Wang N, Zhang C, Yang G. Nicotinamide Mononucleotide: Research Process in Cardiovascular Diseases. Int J Mol Sci 2024; 25:9526. [PMID: 39273473 PMCID: PMC11394709 DOI: 10.3390/ijms25179526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite that plays a crucial role in diverse biological processes, including energy metabolism, gene expression, DNA repair, and mitochondrial function. An aberrant NAD+ level mediates the development of cardiovascular dysfunction and diseases. Both in vivo and in vitro studies have demonstrated that nicotinamide mononucleotide (NMN), as a NAD+ precursor, alleviates the development of cardiovascular diseases such as heart failure, atherosclerosis, and myocardial ischemia/reperfusion injury. Importantly, NMN has suggested pharmacological activities mostly through its involvement in NAD+ biosynthesis. Several clinical studies have been conducted to investigate the efficacy and safety of NMN supplementation, indicating its potential role in cardiovascular protection without significant adverse effects. In this review, we systematically summarize the impact of NMN as a nutraceutical and potential therapeutic drug on cardiovascular diseases and emphasize the correlation between NMN supplementation and cardiovascular protection.
Collapse
Affiliation(s)
- Haoyuan Deng
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ding Ding
- School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yu Ma
- Department of Health Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Hao Zhang
- School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ningning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
11
|
Liao G, Xie Y, Peng H, Li T, Zou X, Yue F, Guo J, Rong L. Advancements in NMN biotherapy and research updates in the field of digestive system diseases. J Transl Med 2024; 22:805. [PMID: 39215316 PMCID: PMC11363601 DOI: 10.1186/s12967-024-05614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), a crucial intermediate in NAD + synthesis, can rapidly transform into NAD + within the body after ingestion. NMN plays a pivotal role in several important biological processes, including energy metabolism, cellular aging, circadian rhythm regulation, DNA repair, chromatin remodeling, immunity, and inflammation. NMN has emerged as a key focus of research in the fields of biomedicine, health care, and food science. Recent years have witnessed extensive preclinical studies on NMN, offering valuable insights into the pathogenesis of age- and aging-related diseases. Given the sustained global research interest in NMN and the substantial market expectations for the future, here, we comprehensively review the milestones in research on NMN biotherapy over the past 10 years. Additionally, we highlight the current research on NMN in the field of digestive system diseases, identifying existing problems and challenges in the field of NMN research. The overarching aim of this review is to provide references and insights for the further exploration of NMN within the spectrum of digestive system diseases.
Collapse
Affiliation(s)
- Guanyi Liao
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Yuchen Xie
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Tianke Li
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Xinsen Zou
- Department of Intensive Unit Care, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China.
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China.
| |
Collapse
|
12
|
Perry CE, Halawani SM, Mukherjee S, Ngaba LV, Lieu M, Lee WD, Davis JG, Adzika GK, Bebenek AN, Bazianos DD, Chen B, Mercado-Ayon E, Flatley LP, Suryawanshi AP, Ho I, Rabinowitz JD, Serai SD, Biko DM, Tamaroff J, DeDio A, Wade K, Lin KY, Livingston DJ, McCormack SE, Lynch DR, Baur JA. NAD+ precursors prolong survival and improve cardiac phenotypes in a mouse model of Friedreich's Ataxia. JCI Insight 2024; 9:e177152. [PMID: 39171530 PMCID: PMC11343603 DOI: 10.1172/jci.insight.177152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive disorder caused by insufficient expression of frataxin, which plays a critical role in assembly of iron-sulfur centers in mitochondria. Individuals are cognitively normal but display a loss of motor coordination and cardiac abnormalities. Many ultimately develop heart failure. Administration of nicotinamide adenine dinucleotide-positive (NAD+) precursors has shown promise in human mitochondrial myopathy and rodent models of heart failure, including mice lacking frataxin in cardiomyocytes. We studied mice with systemic knockdown of frataxin (shFxn), which display motor deficits and early mortality with cardiac hypertrophy. Hearts in these mice do not "fail" per se but become hyperdynamic with small chamber sizes. Data from an ongoing natural history study indicate that hyperdynamic hearts are observed in young individuals with FRDA, suggesting that the mouse model could reflect early pathology. Administering nicotinamide mononucleotide or riboside to shFxn mice increases survival, modestly improves cardiac hypertrophy, and limits increases in ejection fraction. Mechanistically, most of the transcriptional and metabolic changes induced by frataxin knockdown are insensitive to NAD+ precursor administration, but glutathione levels are increased, suggesting improved antioxidant capacity. Overall, our findings indicate that NAD+ precursors are modestly cardioprotective in this model of FRDA and warrant further investigation.
Collapse
Affiliation(s)
- Caroline E. Perry
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah M. Halawani
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarmistha Mukherjee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lucie V. Ngaba
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Melissa Lieu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won Dong Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - James G. Davis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabriel K. Adzika
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa N. Bebenek
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel D. Bazianos
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beishan Chen
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Mercado-Ayon
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liam P. Flatley
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arjun P. Suryawanshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isabelle Ho
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Suraj D. Serai
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology and
| | - David M. Biko
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology and
| | - Jaclyn Tamaroff
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna DeDio
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kristin Wade
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kimberly Y. Lin
- Division of Pediatric Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Shana E. McCormack
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A. Baur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Iqbal T, Nakagawa T. The therapeutic perspective of NAD + precursors in age-related diseases. Biochem Biophys Res Commun 2024; 702:149590. [PMID: 38340651 DOI: 10.1016/j.bbrc.2024.149590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is the fundamental molecule that performs numerous biological reactions and is crucial for maintaining cellular homeostasis. Studies have found that NAD+ decreases with age in certain tissues, and age-related NAD+ depletion affects physiological functions and contributes to various aging-related diseases. Supplementation of NAD+ precursor significantly elevates NAD+ levels in murine tissues, effectively mitigates metabolic syndrome, enhances cardiovascular health, protects against neurodegeneration, and boosts muscular strength. Despite the versatile therapeutic functions of NAD+ in animal studies, the efficacy of NAD+ precursors in clinical studies have been limited compared with that in the pre-clinical study. Clinical studies have demonstrated that NAD+ precursor treatment efficiently increases NAD+ levels in various tissues, though their clinical proficiency is insufficient to ameliorate the diseases. However, the latest studies regarding NAD+ precursors and their metabolism highlight the significant role of gut microbiota. The studies found that orally administered NAD+ intermediates interact with the gut microbiome. These findings provide compelling evidence for future trials to further explore the involvement of gut microbiota in NAD+ metabolism. Also, the reduced form of NAD+ precursor shows their potential to raise NAD+, though preclinical studies have yet to discover their efficacy. This review sheds light on NAD+ therapeutic efficiency in preclinical and clinical studies and the effect of the gut microbiota on NAD+ metabolism.
Collapse
Affiliation(s)
- Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan; Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan.
| |
Collapse
|
14
|
Rahman SU, Qadeer A, Wu Z. Role and Potential Mechanisms of Nicotinamide Mononucleotide in Aging. Aging Dis 2024; 15:565-583. [PMID: 37548938 PMCID: PMC10917541 DOI: 10.14336/ad.2023.0519-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 08/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) has recently attracted much attention due to its role in aging and lifespan extension. NAD+ directly and indirectly affects many cellular processes, including metabolic pathways, DNA repair, and immune cell activities. These mechanisms are critical for maintaining cellular homeostasis. However, the decline in NAD+ levels with aging impairs tissue function, which has been associated with several age-related diseases. In fact, the aging population has been steadily increasing worldwide, and it is important to restore NAD+ levels and reverse or delay these age-related disorders. Therefore, there is an increasing demand for healthy products that can mitigate aging, extend lifespan, and halt age-related consequences. In this case, several studies in humans and animals have targeted NAD+ metabolism with NAD+ intermediates. Among them, nicotinamide mononucleotide (NMN), a precursor in the biosynthesis of NAD+, has recently received much attention from the scientific community for its anti-aging properties. In model organisms, ingestion of NMN has been shown to improve age-related diseases and probably delay death. Here, we review aspects of NMN biosynthesis and the mechanism of its absorption, as well as potential anti-aging mechanisms of NMN, including recent preclinical and clinical tests, adverse effects, limitations, and perceived challenges.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Abdul Qadeer
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Ziyun Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Norambuena-Soto I, Deng Y, Brenner C, Lavandero S, Wang ZV. NAD in pathological cardiac remodeling: Metabolic regulation and beyond. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167038. [PMID: 38281710 PMCID: PMC10922927 DOI: 10.1016/j.bbadis.2024.167038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) coenzymes are carriers of high energy electrons in metabolism and also play critical roles in numerous signaling pathways. NAD metabolism is decreased in various cardiovascular diseases. Importantly, stimulation of NAD biosynthesis protects against heart disease under different pathological conditions. In this review, we describe pathways for both generation and catabolism of NAD coenzymes and the respective changes of these pathways in the heart under cardiac diseases, including pressure overload, myocardial infarction, cardiometabolic disease, cancer treatment cardiotoxicity, and heart failure. We next provide an update on the strategies and treatments to increase NAD levels, such as supplementation of NAD precursors, in the heart that prevent or reverse cardiomyopathy. We also introduce the approaches to manipulate NAD consumption enzymes to ameliorate cardiac disease. Finally, we discuss the mechanisms associated with improvements in cardiac function by NAD coenzymes, differentiating between mitochondria-dependent effects and those independent of mitochondrial metabolism.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago 8380494, Chile
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago 8380494, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| | - Zhao V Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
16
|
Wu Y, Pei Z, Qu P. NAD +-A Hub of Energy Metabolism in Heart Failure. Int J Med Sci 2024; 21:369-375. [PMID: 38169534 PMCID: PMC10758143 DOI: 10.7150/ijms.89370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Heart failure is a condition where reduced levels of adenosine triphosphate (ATP) affect energy supply in myocardial cells. Nicotinamide adenine dinucleotide (NAD+) plays a crucial role as a coenzyme for electron transfer in energy metabolism. Decreased NAD+ levels in myocardial cells lead to inadequate ATP production and increased susceptibility to heart failure. Researchers are exploring ways to increase NAD+ levels to alleviate heart failure. Targets such as sirtuin2 (sirt2), sirtuin3 (sirt3), Poly (ADP-ribose) polymerase (PARP), and diastolic regulatory proteins are being investigated. NAD+ supplementation has shown promise, even in heart failure with preserved ejection fraction (HFpEF). By focusing on NAD+ as a central component of energy metabolism, it is possible to improve myocardial activity, heart function, and address energy deficiency in heart failure.
Collapse
Affiliation(s)
- Yaoxin Wu
- Faculty of Medicine, Dalian University of Technology, 116024, Dalian, China
| | - Zuowei Pei
- Faculty of Medicine, Dalian University of Technology, 116024, Dalian, China
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, 116033, China
| | - Peng Qu
- Faculty of Medicine, Dalian University of Technology, 116024, Dalian, China
| |
Collapse
|
17
|
Marzoog BA. Nicotinamide Mononucleotide in the Context of Myocardiocyte Longevity. Curr Aging Sci 2024; 17:103-108. [PMID: 38151845 DOI: 10.2174/0118746098266041231212105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/27/2023] [Accepted: 11/07/2023] [Indexed: 12/29/2023]
Abstract
Cellular and subcellular metabolic activities are crucial processes involved in the regulation of intracellular homeostasis, including cellular and subcellular signaling pathways. Dysregulation of intracellular regulation mechanisms is catastrophic and cumulates into cell death. To overcome the issue of dysregulation of intracellular regulation mechanisms, the preservation of subcellular and extracellular components is essential to maintain healthy cells with increased longevity. Several physiopathological changes occur during cell ageing, one of which is the dysregulation of intracellular physiology of the oxidative phosphorylation process. Nicotinamide mononucleotide (NMN) remains in the debut of anti-aging therapeutic effect. Aged myocardiocyte characterized by disrupted NMN and or its precursors or signaling pathways. Simultaneously, several other pathophysiological occur that collectively impair intracellular homeostasis. The NMN role in the antiaging effect remains unclear and several hypotheses have been introduced into describing the mechanism and the potential outcomes from NMN exogenous supply. Correction of the impaired intracellular homeostasis includes correction to the NMN metabolism. Additionally, autophagy correction, which is the key element in the regulation of intracellular intoxication, including oxidative stress, unfolding protein response, and other degradation of intracellular metabolites. Several signaling pathways are involved in the regulation mechanism of NMN effects on myocardiocyte health and further longevity. NMN protects myocardiocytes from ischemic injury by reducing anabolism and, increasing catabolism and further passing the myocardiocytes into dormant status. NMN applications include ischemic heart, disease, and failed heart, as well as dilated cardiomyopathies. Cytosolic and mitochondrial NADPH are independently functioning and regulating. Each of these plays a role in the determination of the longevity of the myocardiocytes. NMN has a cornerstone in the functionality of Sirtuins, which are an essential anti-senescent intrinsic molecule. The study aims to assess the role of NMN in the longevity and antisenescent of myocardiocytes.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
18
|
Song Q, Zhou X, Xu K, Liu S, Zhu X, Yang J. The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update. Adv Nutr 2023; 14:1416-1435. [PMID: 37619764 PMCID: PMC10721522 DOI: 10.1016/j.advnut.2023.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The importance of nicotinamide adenine dinucleotide (NAD+) in human physiology is well recognized. As the NAD+ concentration in human skin, blood, liver, muscle, and brain are thought to decrease with age, finding ways to increase NAD+ status could possibly influence the aging process and associated metabolic sequelae. Nicotinamide mononucleotide (NMN) is a precursor for NAD+ biosynthesis, and in vitro/in vivo studies have demonstrated that NMN supplementation increases NAD+ concentration and could mitigate aging-related disorders such as oxidative stress, DNA damage, neurodegeneration, and inflammatory responses. The promotion of NMN as an antiaging health supplement has gained popularity due to such findings; however, since most studies evaluating the effects of NMN have been conducted in cell or animal models, a concern remains regarding the safety and physiological effects of NMN supplementation in the human population. Nonetheless, a dozen human clinical trials with NMN supplementation are currently underway. This review summarizes the current progress of these trials and NMN/NAD+ biology to clarify the potential effects of NMN supplementation and to shed light on future study directions.
Collapse
Affiliation(s)
- Qin Song
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Xiaofeng Zhou
- Department of Radiotherapy, The 2(nd) Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Xu
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Sishi Liu
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Xinqiang Zhu
- Core Facility, The 4(th) Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
| | - Jun Yang
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Alegre GFS, Pastore GM. NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to Health. Curr Nutr Rep 2023; 12:445-464. [PMID: 37273100 PMCID: PMC10240123 DOI: 10.1007/s13668-023-00475-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF REVIEW NAD+ is a vital molecule that takes part as a redox cofactor in several metabolic reactions besides being used as a substrate in important cellular signaling in regulation pathways for energetic, genotoxic, and infectious stress. In stress conditions, NAD+ biosynthesis and levels decrease as well as the activity of consuming enzymes rises. Dietary precursors can promote NAD+ biosynthesis and increase intracellular levels, being a potential strategy for reversing physiological decline and preventing diseases. In this review, we will show the biochemistry and metabolism of NAD+ precursors NR (nicotinamide riboside) and NMN (nicotinamide mononucleotide), the latest findings on their beneficial physiological effects, their interplay with gut microbiota, and the future perspectives for research in nutrition and food science fields. RECENT FINDINGS NMN and NR demonstrated protect against diabetes, Alzheimer disease, endothelial dysfunction, and inflammation. They also reverse gut dysbiosis and promote beneficial effects at intestinal and extraintestinal levels. NR and NMN have been found in vegetables, meat, and milk, and microorganisms in fermented beverages can also produce them. NMN and NR can be obtained through the diet either in their free form or as metabolites derivate from the digestion of NAD+. The prospection of NR and NMN to find potential food sources and their dietary contribution in increasing NAD+ levels are still an unexplored field of research. Moreover, it could enable the development of new functional foods and processing strategies to maintain and enhance their physiological benefits, besides the studies of new raw materials for extraction and biotechnological development.
Collapse
Affiliation(s)
- Gabriela Fabiana Soares Alegre
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil.
- Laboratory of Bioflavours and Bioactive Compounds-Rua Monteiro Lobato, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 80-CEP 13083-862, Campinas, SP, Brazil.
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil
- Laboratory of Bioflavours and Bioactive Compounds-Rua Monteiro Lobato, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 80-CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
20
|
Jia G, Wu W, Chen L, Yu Y, Tang Q, Liu H, Jiang Q, Han B. HSF1 is a novel prognostic biomarker in high-risk prostate cancer that correlates with ferroptosis. Discov Oncol 2023; 14:107. [PMID: 37351671 DOI: 10.1007/s12672-023-00715-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Prostate cancer (PC) is the most common cancer in older men in Europe and the United States and has the second highest death rate among male cancers. The transcription of heat shock proteins by Heat shock factor 1 (HSF1) is known to regulate cell growth and stress. Nevertheless, the impact of HSF1 on ferroptosis in PC through heat shock protein 10 (HSPE1) remains unexplored. METHODS This study employed a range of analytical techniques, including proteomics sequencing, LC-MS/MS, CHIP-qPCR, Western blotting, immunohisto -chemistry, JC-1, CKK-8, MDA, and ROS assays. Bioinformatics analysis was performed using the UALCAN,GEPIA, PCaDB and Metascape platforms. RESULTS Compared with levels observed in tumor-adjacent tissue, the levels of proteins associated with fatty acids, amino acids and the oxidative phosphorylation metabolic pathway were significantly upregulated in high-risk PC tissue (Gleason score ≥ 8). HSF1 mRNA and protein levels in high-risk PC tissues were significantly higher than those observed in medium-risk PC (Gleason score = 7) and low-risk PC (Gleason score ≤ 6) tissues. ssGSEA showed that HSF1 was involved in the proliferation and anti-apoptotic processes of PC. Further bioinformatics analysis showed that HSF1 potentially affects the mitochondrial oxidative phosphorylation (OXPHOS) system by targeting HSPE1. In addition, HSF1 alleviates ROS and MDA levels to enhance the resistance of prostate cancer cells to ferroptosis by regulating HSPE1 in vitro, and HSF1 knockout promotes the susceptibility of PC to RSL3 treatment by increasing ferroptosis in vivo. CONCLUSION Collectively, our findings suggest that HSF1 exerts a significant influence on PC. HSF1 may represent a promising biomarker for identifying high-risk PC, and the elimination of HSF1 could potentially enhance the therapeutic effectiveness of RSL3.
Collapse
Affiliation(s)
- GaoZhen Jia
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - WenBo Wu
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - Yang Yu
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - QiLin Tang
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - HaiTao Liu
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China
| | - Qi Jiang
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China.
| | - BangMin Han
- Department of Urology, Shanghai General Hospital (Shanghai Peoples Hospital 1), Shanghai JiaoTong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
21
|
Feuz MB, Meyer-Ficca ML, Meyer RG. Beyond Pellagra-Research Models and Strategies Addressing the Enduring Clinical Relevance of NAD Deficiency in Aging and Disease. Cells 2023; 12:500. [PMID: 36766842 PMCID: PMC9913999 DOI: 10.3390/cells12030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Research into the functions of nicotinamide adenine dinucleotide (NAD) has intensified in recent years due to the insight that abnormally low levels of NAD are involved in many human pathologies including metabolic disorders, neurodegeneration, reproductive dysfunction, cancer, and aging. Consequently, the development and validation of novel NAD-boosting strategies has been of central interest, along with the development of models that accurately represent the complexity of human NAD dynamics and deficiency levels. In this review, we discuss pioneering research and show how modern researchers have long since moved past believing that pellagra is the overt and most dramatic clinical presentation of NAD deficiency. The current research is centered on common human health conditions associated with moderate, but clinically relevant, NAD deficiency. In vitro and in vivo research models that have been developed specifically to study NAD deficiency are reviewed here, along with emerging strategies to increase the intracellular NAD concentrations.
Collapse
Affiliation(s)
- Morgan B. Feuz
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- College of Veterinary Medicine, Utah State University, Logan, UT 84322, USA
| | - Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- College of Veterinary Medicine, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
22
|
Nicotinamide Mononucleotide Administration Prevents Doxorubicin-Induced Cardiotoxicity and Loss in Physical Activity in Mice. Cells 2022; 12:cells12010108. [PMID: 36611902 PMCID: PMC9818647 DOI: 10.3390/cells12010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (Doxo) is a widely used antineoplastic drug with limited clinical application due to its deleterious dose-related side effects. We investigated whether nicotinamide mononucleotide (NMN) could protect against Doxo-induced cardiotoxicity and physical dysfunction in vivo. To assess the short- and long-term toxicity, two Doxo regimens were tested, acute and chronic. In the acute study, C57BL6/J (B6) mice were injected intraperitoneally (i.p.) once with Doxo (20 mg/kg) and NMN (180 mg/kg/day, i.p.) was administered daily for five days before and after the Doxo injection. In the chronic study, B6 mice received a cumulative dose of 20 mg/kg Doxo administered in fractionated doses for five days. NMN (500 mg/kg/day) was supplied in the mice's drinking water beginning five days before the first injection of Doxo and continuing for 60 days after. We found that NMN significantly increased tissue levels of NAD+ and its metabolites and improved survival and bodyweight loss in both experimental models. In addition, NMN protected against Doxo-induced cardiotoxicity and loss of physical function in acute and chronic studies, respectively. In the heart, NMN prevented Doxo-induced transcriptomic changes related to mitochondrial function, apoptosis, oxidative stress, inflammation and p53, and promyelocytic leukemia nuclear body pathways. Overall, our results suggest that NMN could prevent Doxo-induced toxicity in heart and skeletal muscle.
Collapse
|
23
|
Jiao L, Gong M, Yang X, Li M, Shao Y, Wang Y, Li H, Yu Q, Sun L, Xuan L, Huang J, Wang Y, Liu D, Qu Y, Lan X, Zhang Y, Zhang X, Sun H, Zhang Y, Zhang Y, Yang B. NAD + attenuates cardiac injury after myocardial infarction in diabetic mice through regulating alternative splicing of VEGF in macrophages. Vascul Pharmacol 2022; 147:107126. [PMID: 36351515 DOI: 10.1016/j.vph.2022.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/16/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
Diabetic mellitus (DM) complicated with myocardial infarction (MI) is a serious clinical issue that remained poorly comprehended. The aim of the present study was to investigate the role of NAD+ in attenuating cardiac damage following MI in diabetic mice. The cardiac dysfunction in DM mice with MI was more severe compared with the non-diabetic mice and NAD+ administration could significantly improve the cardiac function in both non-diabetic and diabetic mice after MI for both 7 days and 28 days. Moreover, application of NAD+ could markedly reduce the cardiac injury area of DM complicated MI mice. Notably, the level of NAD+ was robustly decreased in the cardiac tissue of MI mice, which was further reduced in the DM complicated mice and NAD+ administration could significantly restore the NAD+ level. Furthermore, NAD+ was verified to facilitate the angiogenesis in the MI area of both diabetic mice and non-diabetic mice by microfil perfusion assay and immunofluorescence. Additionally, we demonstrated that NAD+ promoted cardiac angiogenesis after myocardial infarction in diabetic mice by promoting the M2 polarization of macrophages. At the molecular level, NAD+ promoted the secretion of VEGF in macrophages and therefore facilitating migration and tube formation of endothelial cells. Mechanistically, NAD+ was found to promote the generation of pro-angionesis VEGF165 and inhibit the generation of anti-angionesis VEGF165b via regulating the alternative splicing factors of VEGF (SRSF1 and SRSF6) in macrophages. The effects of NAD+ were readily reversible on deficiency of it. Collectively, our data showed that NAD+ could attenuate myocardial injury via regulating the alternative splicing of VEGF and promoting angiogenesis in diabetic mice after myocardial infarction. NAD+ administration may therefore be considered a potential new approach for the treatment of diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Lei Jiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Manyu Gong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xuewen Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Mengmeng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yingchun Shao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yaqi Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Haodong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Qi Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Lihua Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, PR China
| | - Yanying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Dongping Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yunmeng Qu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xiuwen Lan
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, PR China
| | - Yanwei Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xiyang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Han Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, PR China.
| |
Collapse
|
24
|
Barker FJ, Hart A, Sayer AA, Witham MD. Effects of nicotinamide adenine dinucleotide precursors on measures of physical performance and physical frailty: A systematic review. JCSM CLINICAL REPORTS 2022. [DOI: 10.1002/crt2.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Fred J. Barker
- AGE Research Group, Translational and Clinical Research Institute and Biomedical Research Centre Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Ashley Hart
- AGE Research Group, Translational and Clinical Research Institute and Biomedical Research Centre Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute and Biomedical Research Centre Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Miles D. Witham
- AGE Research Group, Translational and Clinical Research Institute and Biomedical Research Centre Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| |
Collapse
|
25
|
Fan S, Hu Y, You Y, Xue W, Chai R, Zhang X, Shou X, Shi J. Role of resveratrol in inhibiting pathological cardiac remodeling. Front Pharmacol 2022; 13:924473. [PMID: 36120366 PMCID: PMC9475218 DOI: 10.3389/fphar.2022.924473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiovascular disease is a group of diseases with high mortality in clinic, including hypertension, coronary heart disease, cardiomyopathy, heart valve disease, heart failure, to name a few. In the development of cardiovascular diseases, pathological cardiac remodeling is the most common cardiac pathological change, which often becomes a domino to accelerate the deterioration of the disease. Therefore, inhibiting pathological cardiac remodeling may delay the occurrence and development of cardiovascular diseases and provide patients with greater long-term benefits. Resveratrol is a non-flavonoid polyphenol compound. It mainly exists in grapes, berries, peanuts and red wine, and has cardiovascular protective effects, such as anti-oxidation, inhibiting inflammatory reaction, antithrombotic, dilating blood vessels, inhibiting apoptosis and delaying atherosclerosis. At present, the research of resveratrol has made rich progress. This review aims to summarize the possible mechanism of resveratrol against pathological cardiac remodeling, in order to provide some help for the in-depth exploration of the mechanism of inhibiting pathological cardiac remodeling and the development and research of drug targets.
Collapse
Affiliation(s)
- Shaowei Fan
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- *Correspondence: Yuanhui Hu,
| | - Yaping You
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenjing Xue
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Ruoning Chai
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xuesong Zhang
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xintian Shou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
26
|
Li M, Jiao L, Shao Y, Li H, Sun L, Yu Q, Gong M, Liu D, Wang Y, Xuan L, Yang X, Qu Y, Wang Y, Jiang L, Han J, Zhang Y, Zhang Y. LncRNA-ZFAS1 Promotes Myocardial Ischemia-Reperfusion Injury Through DNA Methylation-Mediated Notch1 Down-Regulation in Mice. JACC Basic Transl Sci 2022; 7:880-895. [PMID: 36317130 PMCID: PMC9617129 DOI: 10.1016/j.jacbts.2022.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
The increase of ZFAS1 expression in MIRI is an important cause of cardiomyocyte apoptosis and ROS production. ZFAS1 can directly interact with the promoter region of Notch1, recruit DNMT3b to promote DNA methylation in the promoter region of Notch1, and trigger cardiomyocyte apoptosis and ROS production after MIRI. Nicotinamide mononucleotide has the potential to attenuate the apoptosis of cardiomyocytes after MIRI by competitively binding to DNMT3b and inhibiting the DNA methylation of Notch1.
The most devastating and catastrophic deterioration of myocardial ischemia-reperfusion injury (MIRI) is cardiomyocyte death. Here we aimed to evaluate the role of lncRNA-ZFAS1 in MIRI and delineate its mechanism of action. The level of lncRNA-ZFAS1 was elevated in MIRI hearts, and artificial knockdown of lncRNA-ZFAS1 in mice improved cardiac function. Notch1 is a potential target of lncRNA-ZFAS1, and lncRNA-ZFAS1 could bind to the promoter region of Notch1 and recruit DNMT3b to induce Notch1 methylation. Nicotinamide mononucleotide could promote the expression of Notch1 by competitively inhibiting the expression of DNMT3b and improving the apoptosis of cardiomyocytes and cardiac function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ying Zhang
- Address for correspondence: Dr Yong Zhang or Dr Ying Zhang, Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China.
| | - Yong Zhang
- Address for correspondence: Dr Yong Zhang or Dr Ying Zhang, Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
27
|
Combination of nicotinamide mononucleotide and troxerutin induces full protection against doxorubicin-induced cardiotoxicity by modulating mitochondrial biogenesis and inflammatory response. Mol Biol Rep 2022; 49:8209-8218. [DOI: 10.1007/s11033-022-07390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 12/06/2022]
|
28
|
Du SH, Shi J, Yu TY, Hu XX, He SM, Cao YY, Xie ZL, Liu SS, Li YT, Li N, Yu JB. Nicotinamide mononucleotide ameliorates acute lung injury by inducing mitonuclear protein imbalance and activating the UPR mt. Exp Biol Med (Maywood) 2022; 247:1264-1276. [PMID: 35538652 PMCID: PMC9379602 DOI: 10.1177/15353702221094235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mitochondria need to interact with the nucleus under homeostasis and stress to maintain cellular demands and nuclear transcriptional programs. Disrupted mitonuclear interaction is involved in many disease processes. However, the role of mitonuclear signaling regulators in endotoxin-induced acute lung injury (ALI) remains unknown. Nicotinamide adenine dinucleotide (NAD+) is closely related to mitonuclear interaction with its central role in mitochondrial metabolism. In the current study, C57BL/6J mice were administrated with lipopolysaccharide 15 mg/kg to induce endotoxin-induced ALI and investigated whether the NAD+ precursor nicotinamide mononucleotide (NMN) could preserve mitonuclear interaction and alleviate ALI. After pretreatment with NMN for 7 days, NAD+ levels in the mitochondrial, nucleus, and total intracellular were significantly increased in endotoxemia mice. Moreover, supplementation of NMN alleviated lung pathologic injury, reduced ROS levels, increased MnSOD activities, mitigated mitochondrial dysfunction, ameliorated the defects in the nucleus morphology, and these cytoprotective effects were accompanied by preserving mitonuclear interaction (including mitonuclear protein imbalance and the mitochondrial unfolded protein response, UPRmt). Furthermore, NAD+-mediated mitonuclear protein imbalance and UPRmt are probably regulated by deacetylase Sirtuin1 (SIRT1). Taken together, our results indicated that NMN pretreatment ameliorated ALI by inducing mitonuclear protein imbalance and activating the UPRmt in an SIRT1-dependent manner.
Collapse
Affiliation(s)
- Shi-Han Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Tian-Yu Yu
- Tianjin Medical University, Tianjin 300070, China
| | - Xin-Xin Hu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Si-Meng He
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, NanKai University, Tianjin 300071, China
| | - Ying-Ya Cao
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Zi-Lei Xie
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Sha-Sha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Yu-Ting Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Na Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Jian-Bo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China,Jian-Bo Yu.
| |
Collapse
|
29
|
Chakraborty A, Minor KE, Nizami HL, Chiao YA, Lee CF. Harnessing NAD + Metabolism as Therapy for Cardiometabolic Diseases. Curr Heart Fail Rep 2022; 19:157-169. [PMID: 35556214 PMCID: PMC9339518 DOI: 10.1007/s11897-022-00550-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes current understanding on the roles of nicotinamide adenine dinucleotide (NAD+) metabolism in the pathogeneses and treatment development of metabolic and cardiac diseases. RECENT FINDINGS NAD+ was identified as a redox cofactor in metabolism and a co-substrate for a wide range of NAD+-dependent enzymes. NAD+ redox imbalance and depletion are associated with many pathologies where metabolism plays a key role, for example cardiometabolic diseases. This review is to delineate the current knowledge about harnessing NAD+ metabolism as potential therapy for cardiometabolic diseases. The review has summarized how NAD+ redox imbalance and depletion contribute to the pathogeneses of cardiometabolic diseases. Therapeutic evidence involving activation of NAD+ synthesis in pre-clinical and clinical studies was discussed. While activation of NAD+ synthesis shows great promise for therapy, the field of NAD+ metabolism is rapidly evolving. Therefore, it is expected that new mechanisms will be discovered as therapeutic targets for cardiometabolic diseases.
Collapse
Affiliation(s)
- Akash Chakraborty
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Keaton E Minor
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hina Lateef Nizami
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, MS 45, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
30
|
Caturano A, Vetrano E, Galiero R, Salvatore T, Docimo G, Epifani R, Alfano M, Sardu C, Marfella R, Rinaldi L, Sasso FC. Cardiac Hypertrophy: From Pathophysiological Mechanisms to Heart Failure Development. Rev Cardiovasc Med 2022; 23:165. [PMID: 39077592 PMCID: PMC11273913 DOI: 10.31083/j.rcm2305165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 07/31/2024] Open
Abstract
Cardiac hypertrophy develops in response to increased workload to reduce ventricular wall stress and maintain function and efficiency. Pathological hypertrophy can be adaptive at the beginning. However, if the stimulus persists, it may progress to ventricular chamber dilatation, contractile dysfunction, and heart failure, resulting in poorer outcome and increased social burden. The main pathophysiological mechanisms of pathological hypertrophy are cell death, fibrosis, mitochondrial dysfunction, dysregulation of Ca 2 + -handling proteins, metabolic changes, fetal gene expression reactivation, impaired protein and mitochondrial quality control, altered sarcomere structure, and inadequate angiogenesis. Diabetic cardiomyopathy is a condition in which cardiac pathological hypertrophy mainly develop due to insulin resistance and subsequent hyperglycaemia, associated with altered fatty acid metabolism, altered calcium homeostasis and inflammation. In this review, we summarize the underlying molecular mechanisms of pathological hypertrophy development and progression, which can be applied in the development of future novel therapeutic strategies in both reversal and prevention.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| |
Collapse
|
31
|
Yuan Y, Liang B, Liu XL, Liu WJ, Huang BH, Yang SB, Gao YZ, Meng JS, Li MJ, Ye T, Wang CZ, Hu XK, Xing DM. Targeting NAD+: is it a common strategy to delay heart aging? Cell Death Dis 2022; 8:230. [PMID: 35474295 PMCID: PMC9042931 DOI: 10.1038/s41420-022-01031-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022]
Abstract
Heart aging is the main susceptible factor to coronary heart disease and significantly increases the risk of heart failure, especially when the aging heart is suffering from ischemia-reperfusion injury. Numerous studies with NAD+ supplementations have suggested its use in anti-aging treatment. However, systematic reviews regarding the overall role of NAD+ in cardiac aging are scarce. The relationship between NAD+ signaling and heart aging has yet to be clarified. This review comprehensively summarizes the current studies on the role of NAD+ signaling in delaying heart aging from the following aspects: the influence of NAD+ supplementations on the aging heart; the relationship and cross-talks between NAD+ signaling and other cardiac aging-related signaling pathways; Importantly, the therapeutic potential of targeting NAD+ in delaying heart aging will be discussed. In brief, NAD+ plays a vital role in delaying heart aging. However, the abnormalities such as altered glucose and lipid metabolism, oxidative stress, and calcium overload could also interfere with NAD+ function in the heart. Therefore, the specific physiopathology of the aging heart should be considered before applying NAD+ supplementations. We believe that this article will help augment our understanding of heart aging mechanisms. In the meantime, it provides invaluable insights into possible therapeutic strategies for preventing age-related heart diseases in clinical settings.
Collapse
Affiliation(s)
- Yang Yuan
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xin-Lin Liu
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Wen-Jing Liu
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Bing-Huan Huang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Shan-Bo Yang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Yuan-Zhen Gao
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Jing-Sen Meng
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Meng-Jiao Li
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Ting Ye
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Chuan-Zhi Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xiao-Kun Hu
- Interventional Medicine Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dong-Ming Xing
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China. .,School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
32
|
Soma M, Lalam SK. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Mol Biol Rep 2022; 49:9737-9748. [PMID: 35441939 DOI: 10.1007/s11033-022-07459-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022]
Abstract
Biosynthesis and regulation of nicotinamide adenine dinucleotide (NAD+) has recently gained a lot of attention. A systemic decline in NAD+ across many tissues is associated with all the hallmarks of aging. NAD+ can affect a variety of cellular processes, including metabolic pathways, DNA repair, and immune cell activity, both directly and indirectly. These cellular processes play a vital role in maintaining homeostasis, but as people get older, their tissue and cellular NAD+ levels decrease, and this drop in NAD+ levels has been connected to a number of age-related disorders. By restoring NAD+ levels, several of these age-related disorders can be delayed or even reversed. Some of the new studies conducted in mice and humans have targeted the NAD+ metabolism with NAD+ intermediates. Of these, nicotinamide mononucleotide (NMN) has been shown to offer great therapeutic potential with promising results in age-related chronic conditions such as diabetes, cardiovascular issues, cognitive impairment, and many others. Further, human interventions are required to study the long-term effects of supplementing NMN with varying doses. The paper focuses on reviewing the importance of NAD+ on human aging and survival, biosynthesis of NAD+ from its precursors, key clinical trial findings, and the role of NMN on various health conditions.
Collapse
|
33
|
Yamaura K, Mifune Y, Inui A, Nishimoto H, Kurosawa T, Mukohara S, Hoshino Y, Niikura T, Kuroda R. Antioxidant effect of nicotinamide mononucleotide in tendinopathy. BMC Musculoskelet Disord 2022; 23:249. [PMID: 35287653 PMCID: PMC8922828 DOI: 10.1186/s12891-022-05205-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Background A link between tendinopathy and oxidative stress has been recently reported. Nicotinamide mononucleotide (NMN) is a precursor of nicotinamide adenine dinucleotide, which plays an important role in cell redox homeostasis. The aim of this study was to evaluate the antioxidant effect of NMN on tendinopathy in vitro and in vivo. Methods Tenocytes from healthy Sprague-Dawley rats were cultured in regular glucose (RG) and high-glucose (HG) conditions with or without NMN, and were divided into four groups: RG NMN(−), RG NMN(+), HG NMN(−), and HG NMN(+). Cell viability, reactive oxygen species (ROS) accumulation, apoptotic rate, and mRNA expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX)1, NOX4, interleukin (IL)6, sirtuin (SIRT)1, and SIRT6 were investigated. In addition, rats with collagenase-induced tendinopathy were treated with or without NMN. Immunostaining of NOX1 and NOX4; mRNA expression of SIRT1, SIRT6, and IL6; and superoxide dismutase (SOD) activity measurements in the Achilles tendon were performed. Results NMN increased the expression of SIRT1 and SIRT6 in rat tenocytes, but decreased the levels of NOX1, NOX4, IL6, ROS, and apoptosis. In Achilles tendons with collagenase-induced tendinopathy, NMN increased the mRNA expression of SIRT1 and SIRT6, as well as SOD activity; while suppressing protein expression of NOX1 and NOX4, and mRNA expression of IL6. Conclusion The in vitro and in vivo results of this study show that NMN exerts an antioxidant effect on tendinopathy by promoting the expression of SIRT while inhibiting that of NOX.
Collapse
Affiliation(s)
- Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takashi Kurosawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
34
|
Rotllan N, Camacho M, Tondo M, Diarte-Añazco EMG, Canyelles M, Méndez-Lara KA, Benitez S, Alonso N, Mauricio D, Escolà-Gil JC, Blanco-Vaca F, Julve J. Therapeutic Potential of Emerging NAD+-Increasing Strategies for Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:1939. [PMID: 34943043 PMCID: PMC8750485 DOI: 10.3390/antiox10121939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Aging and/or metabolic stress directly impact the cardiovascular system. Over the last few years, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism to aging and other pathological conditions closely related to cardiovascular diseases have been intensively investigated. NAD+ bioavailability decreases with age and cardiometabolic conditions in several mammalian tissues. Compelling data suggest that declining tissue NAD+ is commonly related to mitochondrial dysfunction and might be considered as a therapeutic target. Thus, NAD+ replenishment by either genetic or natural dietary NAD+-increasing strategies has been recently demonstrated to be effective for improving the pathophysiology of cardiac and vascular health in different experimental models, as well as human health, to a lesser extent. Here, we review and discuss recent experimental evidence illustrating that increasing NAD+ bioavailability, particularly by the use of natural NAD+ precursors, may offer hope for new therapeutic strategies to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Noemi Rotllan
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Mercedes Camacho
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Mireia Tondo
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Elena M. G. Diarte-Añazco
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Marina Canyelles
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Karen Alejandra Méndez-Lara
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Sonia Benitez
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain
| | - Didac Mauricio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Francisco Blanco-Vaca
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Josep Julve
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| |
Collapse
|
35
|
Wan Y, He B, Zhu D, Wang L, Huang R, Zhu J, Wang C, Gao F. Nicotinamide mononucleotide attenuates doxorubicin-induced cardiotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Arch Biochem Biophys 2021; 712:109050. [PMID: 34610336 DOI: 10.1016/j.abb.2021.109050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
Doxorubicin (DOX) is an effective and widely used antineoplastic drug. However, its clinical application is limited due to its dose-dependent cardiotoxicity. Great efforts have been made to explore the pathological mechanism of DOX-induced cardiotoxicity (DIC), but new drugs and strategies to alleviate cardiac damage are still needed. Here, we aimed to investigate the effect of nicotinamide mononucleotide (NMN) on DIC in rats. The results of the present study showed that DOX treatment significantly induced cardiac dysfunction and cardiac injury, whereas NMN alleviated these changes. In addition, NMN inhibited Dox-induced activation of nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome-mediated inflammation, as evidenced by decreased caspase 1 and IL-1β activity. Moreover, NMN treatment increased glutathione (GSH) levels and superoxide dismutase (SOD) activity and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in DOX-treated rats. Furthermore, NMN treatment mitigated DOX-induced cardiomyocyte apoptosis and cardiac fibrosis. In conclusion, the results indicated that NMN protects against DIC in rats by inhibiting NLRP3 inflammasome activation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruijue Huang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Jing Zhu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chunhua Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Wei Z, Chai H, Chen Y, Cheng Y, Liu X. Nicotinamide mononucleotide: An emerging nutraceutical against cardiac aging? Curr Opin Pharmacol 2021; 60:291-297. [PMID: 34507029 DOI: 10.1016/j.coph.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is essential for cellular physiological processes, directly or indirectly affecting metabolism and gene expression. The decline of NAD+ levels in the heart is accompanied by aging, causing cardiac pathological remodeling and dysfunction. Niacinamide mononucleotide (NMN) has emerged as a precursor to alleviate age-related cardiac pathophysiological changes by improving cardiac NAD+ homeostasis. Preclinical trials on the efficacy and safety of intaking NMN have shown encouraging results, revealing a cardioprotective effect without significant side effects. Strategies for improving the effectiveness of NMN are also evolving. The present review aimed to summarize the potentials of NMN as a nutraceutical against cardiac aging and highlight the relationship between NMN supplementation and cardiac protection.
Collapse
Affiliation(s)
- Zisong Wei
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Chai
- Department of Academic Affairs, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Cheng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
The Role of Mitochondrial Dysfunction in Atrial Fibrillation: Translation to Druggable Target and Biomarker Discovery. Int J Mol Sci 2021; 22:ijms22168463. [PMID: 34445167 PMCID: PMC8395135 DOI: 10.3390/ijms22168463] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent and progressive cardiac arrhythmia worldwide and is associated with serious complications such as heart failure and ischemic stroke. Current treatment modalities attenuate AF symptoms and are only moderately effective in halting the arrhythmia. Therefore, there is an urgent need to dissect molecular mechanisms that drive AF. As AF is characterized by a rapid atrial activation rate, which requires a high energy metabolism, a role of mitochondrial dysfunction in AF pathophysiology is plausible. It is well known that mitochondria play a central role in cardiomyocyte function, as they produce energy to support the mechanical and electrical function of the heart. Details on the molecular mechanisms underlying mitochondrial dysfunction are increasingly being uncovered as a contributing factor in the loss of cardiomyocyte function and AF. Considering the high prevalence of AF, investigating the role of mitochondrial impairment in AF may guide the path towards new therapeutic and diagnostic targets. In this review, the latest evidence on the role of mitochondria dysfunction in AF is presented. We highlight the key modulators of mitochondrial dysfunction that drive AF and discuss whether they represent potential targets for therapeutic interventions and diagnostics in clinical AF.
Collapse
|
38
|
Pillai VB, Samant S, Hund S, Gupta M, Gupta MP. The nuclear sirtuin SIRT6 protects the heart from developing aging-associated myocyte senescence and cardiac hypertrophy. Aging (Albany NY) 2021; 13:12334-12358. [PMID: 33934090 PMCID: PMC8148452 DOI: 10.18632/aging.203027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022]
Abstract
Sirtuins have been shown to regulate the aging process. We have previously demonstrated that Sirt6 blocks the pressure overload-induced cardiac hypertrophy in mice. Here, we show that Sirt6 can also mitigate aging-induced cardiomyocyte senescence and cardiac hypertrophy. We found that aging is associated with altered Sirt6 activity along with development of cardiac hypertrophy and fibrosis. Compared to young mice (4-months), the hearts of aged mice (24-months) showed increased levels of mitochondrial DNA damage, shortened telomere length, and increased accumulation of 8-oxo-dG adducts, which are hallmarks of aging. The aged hearts also showed reduced levels of NAD+ and altered levels of mitochondrial fusion-fission proteins. Similar characteristics were observed in the hearts of Sirt6 deficient mice. Additionally, we found that doxorubicin (Dox) induced cardiomyocyte senescence, as measured by expression of p16INK4a, p53, and β-galactosidase, was associated with loss of Sirt6. However, Sirt6 overexpression protected cardiomyocytes from developing Dox-induced senescence. Further, compared to wild-type mice, the hearts of Sirt6.Tg mice showed reduced expression of aging markers, and the development of aging-associated cardiac hypertrophy and fibrosis. Our data suggest that Sirt6 is a critical anti-aging molecule that regulates various cellular processes associated with aging and protects the heart from developing aging-induced cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sadhana Samant
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Samantha Hund
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madhu Gupta
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Mahesh P Gupta
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
39
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
40
|
Murthy VL, Reis JP, Pico AR, Kitchen R, Lima JAC, Lloyd-Jones D, Allen NB, Carnethon M, Lewis GD, Nayor M, Vasan RS, Freedman JE, Clish CB, Shah RV. Comprehensive Metabolic Phenotyping Refines Cardiovascular Risk in Young Adults. Circulation 2020; 142:2110-2127. [PMID: 33073606 PMCID: PMC7880553 DOI: 10.1161/circulationaha.120.047689] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/17/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Whereas cardiovascular disease (CVD) metrics define risk in individuals >40 years of age, the earliest lesions of CVD appear well before this age. Despite the role of metabolism in CVD antecedents, studies in younger, biracial populations to define precise metabolic risk phenotypes are lacking. METHODS We studied 2330 White and Black young adults (mean age, 32 years; 45% Black) in the CARDIA study (Coronary Artery Risk Development in Young Adults) to identify metabolite profiles associated with an adverse CVD phenome (myocardial structure/function, fitness, vascular calcification), mechanisms, and outcomes over 2 decades. Statistical learning methods (elastic nets/principal components analysis) and Cox regression generated parsimonious, metabolite-based risk scores validated in >1800 individuals in the Framingham Heart Study. RESULTS In the CARDIA study, metabolite profiles quantified in early adulthood were associated with subclinical CVD development over 20 years, specifying known and novel pathways of CVD (eg, transcriptional regulation, brain-derived neurotrophic factor, nitric oxide, renin-angiotensin). We found 2 multiparametric, metabolite-based scores linked independently to vascular and myocardial health, with metabolites included in each score specifying microbial metabolism, hepatic steatosis, oxidative stress, nitric oxide modulation, and collagen metabolism. The metabolite-based vascular scores were lower in men, and myocardial scores were lower in Black participants. Over a nearly 25-year median follow-up in CARDIA, the metabolite-based vascular score (hazard ratio, 0.68 per SD [95% CI, 0.50-0.92]; P=0.01) and myocardial score (hazard ratio, 0.60 per SD [95% CI, 0.45-0.80]; P=0.0005) in the third and fourth decades of life were associated with clinical CVD with a synergistic association with outcome (Pinteraction=0.009). We replicated these findings in 1898 individuals in the Framingham Heart Study over 2 decades, with a similar association with outcome (including interaction), reclassification, and discrimination. In the Framingham Heart Study, the metabolite scores exhibited an age interaction (P=0.0004 for a combined myocardial-vascular score with incident CVD), such that young adults with poorer metabolite-based health scores had highest hazard of future CVD. CONCLUSIONS Metabolic signatures of myocardial and vascular health in young adulthood specify known/novel pathways of metabolic dysfunction relevant to CVD, associated with outcome in 2 independent cohorts. Efforts to include precision measures of metabolic health in risk stratification to interrupt CVD at its earliest stage are warranted.
Collapse
Affiliation(s)
| | - Jared P. Reis
- National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Alexander R. Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, University of California at San Francisco, San Francisco, CA
| | - Robert Kitchen
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Joao A. C. Lima
- Cardiology Division, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD
| | | | | | | | - Gregory D. Lewis
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Matthew Nayor
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Ramachandran S. Vasan
- Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, and Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, and the Framingham Heart Study, Framingham, MA
| | - Jane E. Freedman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | | | - Ravi V. Shah
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
41
|
Moreno Fernández-Ayala DJ, Navas P, López-Lluch G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp Gerontol 2020; 142:111147. [PMID: 33171276 PMCID: PMC7648491 DOI: 10.1016/j.exger.2020.111147] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 causes a severe pneumonia (COVID-19) that affects essentially elderly people. In COVID-19, macrophage infiltration into the lung causes a rapid and intense cytokine storm leading finally to a multi-organ failure and death. Comorbidities such as metabolic syndrome, obesity, type 2 diabetes, lung and cardiovascular diseases, all of them age-associated diseases, increase the severity and lethality of COVID-19. Mitochondrial dysfunction is one of the hallmarks of aging and COVID-19 risk factors. Dysfunctional mitochondria is associated with defective immunological response to viral infections and chronic inflammation. This review discuss how mitochondrial dysfunction is associated with defective immune response in aging and different age-related diseases, and with many of the comorbidities associated with poor prognosis in the progression of COVID-19. We suggest here that chronic inflammation caused by mitochondrial dysfunction is responsible of the explosive release of inflammatory cytokines causing severe pneumonia, multi-organ failure and finally death in COVID-19 patients. Preventive treatments based on therapies improving mitochondrial turnover, dynamics and activity would be essential to protect against COVID-19 severity.
Collapse
Affiliation(s)
- Daniel J Moreno Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| |
Collapse
|
42
|
Recent Discoveries on the Involvement of Krüppel-Like Factor 4 in the Most Common Cancer Types. Int J Mol Sci 2020; 21:ijms21228843. [PMID: 33266506 PMCID: PMC7700188 DOI: 10.3390/ijms21228843] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor highly conserved in evolution. It is particularly well known for its role in inducing pluripotent stem cells. In addition, KLF4 plays many roles in cancer. The results of most studies suggest that KLF4 is a tumor suppressor. However, the functioning of KLF4 is regulated at many levels. These include regulation of transcription, alternative splicing, miRNA, post-translational modifications, subcellular localization, protein stability and interactions with other molecules. Simple experiments aimed at assaying transcript levels or protein levels fail to address this complexity and thus may deliver misleading results. Tumor subtypes are also important; for example, in prostate cancer KLF4 is highly expressed in indolent tumors where it impedes tumor progression, while it is absent from aggressive prostate tumors. KLF4 is important in regulating response to many known drugs, and it also plays a role in tumor microenvironment. More and more information is available about upstream regulators, downstream targets and signaling pathways associated with the involvement of KLF4 in cancer. Furthermore, KLF4 performs critical function in the overall regulation of tissue homeostasis, cellular integrity, and progression towards malignancy. Here we summarize and analyze the latest findings concerning this fascinating transcription factor.
Collapse
|
43
|
Berezin AE, Berezin AA, Lichtenauer M. Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Front Cardiovasc Med 2020; 7:583175. [PMID: 33240938 PMCID: PMC7667132 DOI: 10.3389/fcvm.2020.583175] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue dysfunction is a predictor for cardiovascular (CV) events and heart failure (HF) in patient population with obesity, metabolic syndrome, and known type 2 diabetes mellitus. Previous preclinical and clinical studies have yielded controversial findings regarding the role of accumulation of adipose tissue various types in CV risk and HF-related clinical outcomes in obese patients. There is evidence for direct impact of infiltration of epicardial adipocytes into the underlying myocardium to induce adverse cardiac remodeling and mediate HF development and atrial fibrillation. Additionally, perivascular adipocytes accumulation is responsible for release of proinflammatory adipocytokines (adiponectin, leptin, resistin), stimulation of oxidative stress, macrophage phenotype switching, and worsening vascular reparation, which all lead to microvascular inflammation, endothelial dysfunction, atherosclerosis acceleration, and finally to increase in CV mortality. However, systemic effects of white and brown adipose tissue can be different, and adipogenesis including browning of adipose tissue and deficiency of anti-inflammatory adipocytokines (visfatin, omentin, zinc-α2-glycoprotein, glypican-4) was frequently associated with adipose triglyceride lipase augmentation, altered glucose homeostasis, resistance to insulin of skeletal muscles, increased cardiomyocyte apoptosis, lowered survival, and weak function of progenitor endothelial cells, which could significantly influence on HF development, as well as end-organ fibrosis and multiple comorbidities. The exact underlying mechanisms for these effects are not fully understood, while they are essential to help develop improved treatment strategies. The aim of the review is to summarize the evidence showing that adipocyte dysfunction may induce the onset of HF and support advance of HF through different biological mechanisms involving inflammation, pericardial, and perivascular adipose tissue accumulation, adverse and electrical cardiac remodeling, and skeletal muscle dysfunction. The unbalancing effects of natriuretic peptides, neprilysin, and components of renin-angiotensin system, as exacerbating cause of altered adipocytokine signaling on myocardium and vasculature, in obesity patients at high risk of HF are disputed. The profile of proinflammatory and anti-inflammatory adipocytokines as promising biomarker for HF risk stratification is discussed in the review.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
44
|
Sciarretta S, Forte M, Castoldi F, Frati G, Versaci F, Sadoshima J, Kroemer G, Maiuri MC. Caloric restriction mimetics for the treatment of cardiovascular diseases. Cardiovasc Res 2020; 117:1434-1449. [PMID: 33098415 DOI: 10.1093/cvr/cvaa297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
Caloric restriction mimetics (CRMs) are emerging as potential therapeutic agents for the treatment of cardiovascular diseases. CRMs include natural and synthetic compounds able to inhibit protein acetyltransferases, to interfere with acetyl coenzyme A biosynthesis, or to activate (de)acetyltransferase proteins. These modifications mimic the effects of caloric restriction, which is associated with the activation of autophagy. Previous evidence demonstrated the ability of CRMs to ameliorate cardiac function and reduce cardiac hypertrophy and maladaptive remodelling in animal models of ageing, mechanical overload, chronic myocardial ischaemia, and in genetic and metabolic cardiomyopathies. In addition, CRMs were found to reduce acute ischaemia-reperfusion injury. In many cases, these beneficial effects of CRMs appeared to be mediated by autophagy activation. In the present review, we discuss the relevant literature about the role of different CRMs in animal models of cardiac diseases, emphasizing the molecular mechanisms underlying the beneficial effects of these compounds and their potential future clinical application.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesca Castoldi
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Versaci
- Division of Cardiology, S. Maria Goretti Hospital, 04100 Latina, Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, G-609, Newark, NJ 07103, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou Jiangsu 215163, China.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| |
Collapse
|
45
|
Cardoso D, Muchir A. Need for NAD +: Focus on Striated Muscle Laminopathies. Cells 2020; 9:cells9102248. [PMID: 33036437 PMCID: PMC7599962 DOI: 10.3390/cells9102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
Laminopathies are a heterogeneous group of rare diseases caused by genetic mutations in the LMNA gene, encoding A-type lamins. A-type lamins are nuclear envelope proteins which associate with B-type lamins to form the nuclear lamina, a meshwork underlying the inner nuclear envelope of differentiated cells. The laminopathies include lipodystrophies, progeroid phenotypes and striated muscle diseases. Research on striated muscle laminopathies in the recent years has provided novel perspectives on the role of the nuclear lamina and has shed light on the pathological consequences of altered nuclear lamina. The role of altered nicotinamide adenine dinucleotide (NAD+) in the physiopathology of striated muscle laminopathies has been recently highlighted. Here, we have summarized these findings and reviewed the current knowledge about NAD+ alteration in striated muscle laminopathies, providing potential therapeutic approaches.
Collapse
|
46
|
Klimova N, Fearnow A, Kristian T. Role of NAD +-Modulated Mitochondrial Free Radical Generation in Mechanisms of Acute Brain Injury. Brain Sci 2020; 10:brainsci10070449. [PMID: 32674501 PMCID: PMC7408119 DOI: 10.3390/brainsci10070449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
It is commonly accepted that mitochondria represent a major source of free radicals following acute brain injury or during the progression of neurodegenerative diseases. The levels of reactive oxygen species (ROS) in cells are determined by two opposing mechanisms—the one that produces free radicals and the cellular antioxidant system that eliminates ROS. Thus, the balance between the rate of ROS production and the efficiency of the cellular detoxification process determines the levels of harmful reactive oxygen species. Consequently, increase in free radical levels can be a result of higher rates of ROS production or due to the inhibition of the enzymes that participate in the antioxidant mechanisms. The enzymes’ activity can be modulated by post-translational modifications that are commonly altered under pathologic conditions. In this review we will discuss the mechanisms of mitochondrial free radical production following ischemic insult, mechanisms that protect mitochondria against free radical damage, and the impact of post-ischemic nicotinamide adenine mononucleotide (NAD+) catabolism on mitochondrial protein acetylation that affects ROS generation and mitochondrial dynamics. We propose a mechanism of mitochondrial free radical generation due to a compromised mitochondrial antioxidant system caused by intra-mitochondrial NAD+ depletion. Finally, the interplay between different mechanisms of mitochondrial ROS generation and potential therapeutic approaches are reviewed.
Collapse
Affiliation(s)
- Nina Klimova
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA; (N.K.); (A.F.)
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam Fearnow
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA; (N.K.); (A.F.)
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA; (N.K.); (A.F.)
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
47
|
Hwang ES, Song SB. Possible Adverse Effects of High-Dose Nicotinamide: Mechanisms and Safety Assessment. Biomolecules 2020; 10:E687. [PMID: 32365524 PMCID: PMC7277745 DOI: 10.3390/biom10050687] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide (NAM) at doses far above those recommended for vitamins is suggested to be effective against a wide spectrum of diseases and conditions, including neurological dysfunctions, depression and other psychological disorders, and inflammatory diseases. Recent increases in public awareness on possible pro-longevity effects of nicotinamide adenine dinucleotide (NAD+) precursors have caused further growth of NAM consumption not only for clinical treatments, but also as a dietary supplement, raising concerns on the safety of its long-term use. However, possible adverse effects and their mechanisms are poorly understood. High-level NAM administration can exert negative effects through multiple routes. For example, NAM by itself inhibits poly(ADP-ribose) polymerases (PARPs), which protect genome integrity. Elevation of the NAD+ pool alters cellular energy metabolism. Meanwhile, high-level NAM alters cellular methyl metabolism and affects methylation of DNA and proteins, leading to changes in cellular transcriptome and proteome. Also, methyl metabolites of NAM, namely methylnicotinamide, are predicted to play roles in certain diseases and conditions. In this review, a collective literature search was performed to provide a comprehensive list of possible adverse effects of NAM and to provide understanding of their underlying mechanisms and assessment of the raised safety concerns. Our review assures safety in current usage level of NAM, but also finds potential risks for epigenetic alterations associated with chronic use of NAM at high doses. It also suggests directions of the future studies to ensure safer application of NAM.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemun-gu, Seoulsiripdae-ro 163, Seoul 02504, Korea
| | | |
Collapse
|
48
|
Hong W, Mo F, Zhang Z, Huang M, Wei X. Nicotinamide Mononucleotide: A Promising Molecule for Therapy of Diverse Diseases by Targeting NAD+ Metabolism. Front Cell Dev Biol 2020; 8:246. [PMID: 32411700 PMCID: PMC7198709 DOI: 10.3389/fcell.2020.00246] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
NAD+, a co-enzyme involved in a great deal of biochemical reactions, has been found to be a network node of diverse biological processes. In mammalian cells, NAD+ is synthetized, predominantly through NMN, to replenish the consumption by NADase participating in physiologic processes including DNA repair, metabolism, and cell death. Correspondingly, aberrant NAD+ metabolism is observed in many diseases. In this review, we discuss how the homeostasis of NAD+ is maintained in healthy condition and provide several age-related pathological examples related with NAD+ unbalance. The sirtuins family, whose functions are NAD-dependent, is also reviewed. Administration of NMN surprisingly demonstrated amelioration of the pathological conditions in some age-related disease mouse models. Further clinical trials have been launched to investigate the safety and benefits of NMN. The NAD+ production and consumption pathways including NMN are essential for more precise understanding and therapy of age-related pathological processes such as diabetes, ischemia–reperfusion injury, heart failure, Alzheimer’s disease, and retinal degeneration.
Collapse
Affiliation(s)
- Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Department of Biotherapy, Chengdu, China
| | - Ziqi Zhang
- West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Department of Biotherapy, Chengdu, China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Fan M, Chen Z, Huang Y, Xia Y, Chen A, Lu D, Wu Y, Zhang N, Zhang P, Li S, Chen J, Zhang Y, Sun A, Zou Y, Hu K, Qian J, Ge J. Overexpression of the histidine triad nucleotide-binding protein 2 protects cardiac function in the adult mice after acute myocardial infarction. Acta Physiol (Oxf) 2020; 228:e13439. [PMID: 31900976 DOI: 10.1111/apha.13439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 12/28/2022]
Abstract
AIM To explore the role of the histidine triad nucleotide-binding 2 (HINT2) protein in heart failure. METHODS Neonatal mouse ventricle myocytes (NMVMs) and myocardial infarction-induced heart failure mice were used for in vitro or in vivo experiments. Adenovirus (ADV) and adeno-associated virus serum type 9 (AAV9) vectors were used to regulate HINT2 expression. The expression of HINT2 was determined by quantifying the mRNA and protein levels. Cell survival was analysed using the CCK-8 kit and TUNEL staining. Mitochondrial function was determined by the mitochondrial membrane potential and oxygen consumption rates. AAV9-HINT2 was injected 24 h post-myocardial infarction following which transthoracic echocardiography and histological analyses were performed after 4 weeks. Positron emission tomography tomography-computed tomography (PET/CT) and targeted metabolomics analyses were used to explore the metabolic status in vivo. NAD levels were measured using a colorimetric kit. Computer-simulated rigid body molecular docking was performed using AUTODOCK4. Molecule binding kinetics assays were performed using biolayer interferometry. RESULTS HINT2 was down-regulated in NMVMs in hypoxia. ADV-HINT2-induced HINT2 overexpression improved NMVM survival after exposure to hypoxia. Mitochondrial function was preserved in the ADV-HINT2 group under hypoxic conditions. In vivo experiments showed that cardiac function and metabolic status was preserved by HINT2 overexpression. HINT2 overexpression restored mitochondrial NAD levels; this was dependent on nicotinamide mononucleotide (NMN). Using computer-simulated molecular docking analysis and biolayer interferometry, we observed that HINT2 potentially binds and associates with NMN. CONCLUSION HINT2 overexpression protects cardiac function in adult mice after myocardial infarction by maintaining mitochondrial NAD homeostasis.
Collapse
Affiliation(s)
- Mengkang Fan
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
- Department of Cardiovascular Affiliated Hospital of Nantong University Jiangsu China
| | - Zhangwei Chen
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Yin Huang
- Department of Geriatric Medicine Affiliated Hospital of Nantong University Jiangsu China
| | - Yan Xia
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Ao Chen
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Danbo Lu
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Yuan Wu
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Ning Zhang
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Peipei Zhang
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Su Li
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Jinxiang Chen
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Yingmei Zhang
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Aijun Sun
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Yunzeng Zou
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Kai Hu
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Juying Qian
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| | - Junbo Ge
- Department of Cardiology Zhongshan Hospital Fudan University Shanghai Institute of Cardiovascular Diseases Shanghai China
| |
Collapse
|
50
|
Yang Y, Zhang N, Zhang G, Sauve AA. NRH salvage and conversion to NAD + requires NRH kinase activity by adenosine kinase. Nat Metab 2020; 2:364-379. [PMID: 32694608 PMCID: PMC7384296 DOI: 10.1038/s42255-020-0194-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
Dihydronicotinamide riboside (NRH) has been suggested to act as a precursor for the synthesis of NAD+, but the biochemical pathway converting it has been unknown. Here, we show that NRH can be converted into NAD+ via a salvage pathway in which adenosine kinase (ADK, also known as AK) acts as an NRH kinase. Using isotope-labelling approaches, we demonstrate that NRH is fully incorporated into NAD+, with NMNH acting as an intermediate. We further show that AK is enriched in fractions from cell lysates with NRH kinase activity, and that AK can convert NRH into NAD+. In cultured cells and mouse liver, pharmacological or genetic inhibition of AK blocks formation of reduced nicotinamide mononucleotide (NMNH) and inhibits NRH-stimulated NAD+ biosynthesis. Finally, we confirm the presence of endogenous NRH in the liver with metabolomics. Our findings establish NRH as a natural precursor of NAD+ and reveal a new route for NAD+ biosynthesis via an NRH salvage pathway involving AK.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Ning Zhang
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Guoan Zhang
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|