1
|
Yan Q, Shao Z, Yang C, Zhao G. Continuous carbon source supply is essential for high rifamycin productivity of Amycolatopsis mediterranei in nitrate-stimulated fermentation revealed by a metabolomic study. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39849912 DOI: 10.3724/abbs.2024245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Amycolatopsis mediterranei U32 is an industrial strain capable of producing therapeutically useful rifamycin SV. In early days of fermentation studies, nitrate was found to increase the yield of rifamycin along with globally, affecting both carbon and nitrogen metabolism in favor of antibiotic biosynthesis; thus, the nitrate-stimulating effect (NSE) hypothesis was proposed. Although GlnR is likely the master regulator of the pleotropic effect of NSE, the global metabolism affected by NSE has never been systematically examined. In this study, we use mass spectrometry-based metabolomics to quantitatively monitor the metabolomic responses of A. mediterranei U32 to nitrate supplementation. The concentrations of many metabolites involved in central carbon metabolism, including glucose 6-phosphate, glucose 1-phosphate, UDP-glucose, and acetyl-coenzyme A, decrease significantly after the addition of 80 mM potassium nitrate to the medium. We find that the rifamycin SV production yield could be increased by the addition of glucose during the logarithmic growth phase. Moreover, at multiple time points during glucose supplementation in the mid- and late-exponential phases, the yield of rifamycin SV further increases, reaching 354.3%. Quantitative real-time PCR assays of the key genes corresponding to the synthesis of the rifamycin SV precursor combined with data from metabolomics analysis confirm that carbon source deficiency is compensated for after glucose supplementation and that the expression of genes involved in the pathway of 3-amino-5-hydroxybenzoic acid synthesis by UDP-glucose and glutamine is significantly increased. This preliminary exploration of dynamic metabolomic profiles has the potential to increase our understanding of the NSE.
Collapse
Affiliation(s)
- Qi Yan
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhihui Shao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Chen Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Pudhuvai B, Beneš K, Čurn V, Bohata A, Lencova J, Vrzalova R, Barta J, Matha V. The Daunomycin: Biosynthesis, Actions, and the Search for New Solutions to Enhance Production. Microorganisms 2024; 12:2639. [PMID: 39770841 PMCID: PMC11676270 DOI: 10.3390/microorganisms12122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/05/2025] Open
Abstract
Daunorubicin (DNR) is an anthracycline antibiotic originating from soil-dwelling actinobacteria extensively used to treat malignant tumors. Over the decades, extensive attempts were made to enhance the production of anthracyclines by introducing genetic modifications and mutations in combination with media optimization, but the target production levels remain comparatively low. Developing an appropriate culture medium to maximize the yield of DNR and preventing autotoxicity for the producing organism remains a challenge. Our prospective review sheds light on a method involving perturbation that enhances the precursors to regulate the type II PKS pathway, enhancing cells' capacity to increase secondary metabolite production. The suggested method also entails the preparation of culture media for the cultivation of Streptomyces sp. and enhanced yield of DNR, as well as making it inactive with iron or its reduced forms following efflux from the producer. The iron or iron-DNR complex is encapsulated by oleic acid or lipid micelle layers in the culture media, finally resulting in the generated inactive DNR and the DNR-iron-oil complex. This idea has the potential to protect the producer organism from autotoxicity and prevent the inhibition of metabolite production. The approach of substituting sugar with oil in culture media has a dual role wherein it promotes Streptomyces growth by utilizing lipids as an energy source and encapsulating the generated DNR-iron complex in the medium. In this review, we discussed aspects like anthracycline producers, biosynthesis pathways, and gene regulation; side effects of DNR; mechanisms for autotoxicity evasion; and culture media components for the enhancement of DNR production in Streptomyces sp. We anticipate that our work will help researchers working with secondary metabolites production and decipher a methodology that would enhance DNR yield and facilitate the extraction of the resulting DNR by lowering costs in large-scale fermentation.
Collapse
Affiliation(s)
- Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Karel Beneš
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (V.M.)
| | - Vladislav Čurn
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Andrea Bohata
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.L.); (R.V.); (J.B.)
| | - Jana Lencova
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.L.); (R.V.); (J.B.)
| | - Radka Vrzalova
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.L.); (R.V.); (J.B.)
| | - Jan Barta
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.L.); (R.V.); (J.B.)
| | - Vladimir Matha
- VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic; (K.B.); (V.M.)
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (J.L.); (R.V.); (J.B.)
| |
Collapse
|
3
|
Wissner JL, Almeida JR, Grilo IR, Oliveira JF, Brízida C, Escobedo-Hinojosa W, Pissaridou P, Vasquez MI, Cunha I, Sobral RG, Vasconcelos V, Gaudêncio SP. Novel metabolite madeirone and neomarinone extracted from Streptomyces aculeoletus as marine antibiofilm and antifouling agents. Front Chem 2024; 12:1425953. [PMID: 39119516 PMCID: PMC11306024 DOI: 10.3389/fchem.2024.1425953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Biofouling poses a significant economic threat to various marine industries, leading to financial losses that can reach billions of euros annually. This study highlights the urgent need for effective alternatives to traditional antifouling agents, particularly following the global ban on organotin compounds. Material and methods: Streptomyces aculeolatus PTM-346 was isolated from sediment samples on the shores of the Madeira Archipelago, Portugal. The crude extract was fractionated using silica flash chromatography and preparative HPLC, resulting in two isolated marinone compounds: madeirone (1), a novel marinone derivative discovered in this study, and neomarinone (2). The antifouling activities of these compounds were tested against five marine bacterial species and the larvae of the mussel Mytilus galloprovincialis. Additionally, in silico and in vivo environmental toxicity evaluations of madeirone (1) and neomarinone (2) were conducted. Results: Madeirone (1) demonstrated significant antibiofilm efficacy, inhibiting Phaeobacter inhibens by up to 66%, Marinobacter hydrocarbonoclasticus by up to 60%, and Cobetia marina by up to 40%. Neomarinone (2) also exhibited substantial antibiofilm activity, with inhibition rates of up to 41% against P. inhibens, 40% against Pseudo-oceanicola batsensis, 56% against M. hydrocarbonoclasticus, 46% against C. marina, and 40% against Micrococcus luteus. The growth inhibition activity at the same concentrations of these compounds remained below 20% for the respective bacteria, highlighting their effectiveness as potent antibiofilm agents without significantly affecting bacterial viability. Additionally, both compounds showed potent effects against the settlement of Mytilus galloprovincialis larvae, with EC50 values of 1.76 µg/mL and 0.12 µg/mL for compounds (1) and (2), respectively, without impairing the viability of the targeted macrofouling species. In silico toxicity predictions and in vivo toxicity assays both support their potential for further development as antifouling agents. Conclusion: The newly discovered metabolite madeirone (1) and neomarinone (2) effectively inhibit both micro- and macrofouling. This distinct capability sets them apart from existing commercial antifouling agents and positions them as promising candidates for biofouling prevention. Consequently, these compounds represent a viable and environmentally friendly alternative for incorporation into paints, primers, varnishes, and sealants, offering significant advantages over traditional copper-based compounds.
Collapse
Affiliation(s)
- Julian L. Wissner
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Joana R. Almeida
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Inês R. Grilo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Jhenifer F. Oliveira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Carolina Brízida
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wendy Escobedo-Hinojosa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Panayiota Pissaridou
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Marlen I. Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Isabel Cunha
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Biology Department, Faculty of Sciences, Porto University, Porto, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
4
|
Charkhian H, Soleimannezhadbari E, Bodaqlouei A, Lotfollahi L, Lotfi H, Yousefi N, Shojadel E, Gholinejad Z. Assessment of bacteriocin production by clinical Pseudomonas aeruginosa isolates and their potential as therapeutic agents. Microb Cell Fact 2024; 23:175. [PMID: 38872163 PMCID: PMC11170890 DOI: 10.1186/s12934-024-02450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Bacterial infections and the rising antimicrobial resistance pose a significant threat to public health. Pseudomonas aeruginosa produces bacteriocins like pyocins, especially S-type pyocins, which are promising for biological applications. This research focuses on clinical P. aeruginosa isolates to assess their bacteriocin production, inhibitory spectrum, chemical structure, antibacterial agents, and preservative potential. METHODS The identification of P. aeruginosa was conducted through both phenotypic and molecular approaches. The inhibitory spectrum and antibacterial potential of the isolates were assessed. The kinetics of antibacterial peptide production were investigated, and the activity of bacteriocin was quantified in arbitrary units (AU ml-1). Physico-chemical characterization of the antibacterial peptides was performed. Molecular weight estimation was carried out using SDS-PAGE. qRT-PCR analysis was employed to validate the expression of the selected candidate gene. RESULT The antibacterial activity of P. aeruginosa was attributed to the secretion of bacteriocin compounds, which belong to the S-type pyocin family. The use of mitomycin C led to a significant 65.74% increase in pyocin production by these isolates. These S-type pyocins exhibited the ability to inhibit the growth of both Gram-negative (P. mirabilis and P. vulgaris) and Gram-positive (S. aureus, S. epidermidis, E. hirae, S. pyogenes, and S. mutans) bacteria. The molecular weight of S-type pyocin was 66 kDa, and its gene expression was confirmed through qRT-PCR. CONCLUSION These findings suggest that S-type pyocin hold significant potential as therapeutic agents against pathogenic strains. The Physico-chemical resistance of S-type pyocin underscores its potential for broad applications in the pharmaceutical, hygiene, and food industries.
Collapse
Affiliation(s)
- Hamed Charkhian
- Young Researchers Club, Urmia Branch, Islamic Azad University, Urmia, Iran
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Soleimannezhadbari
- Young Researchers Club, Urmia Branch, Islamic Azad University, Urmia, Iran
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Bodaqlouei
- Department of Pharmaceutical and Biomolecular Science, Faculty of Pharmaceutical Science, University of Milan, Milan, Italy
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Lida Lotfollahi
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nesa Yousefi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Shojadel
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zafar Gholinejad
- Department of Medical Laboratory Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
5
|
Lu L, Liu N, Fan Z, Liu M, Zhang X, Tian J, Yu Y, Lin H, Huang Y, Kong Z. A novel PGPR strain, Streptomyces lasalocidi JCM 3373 T, alleviates salt stress and shapes root architecture in soybean by secreting indole-3-carboxaldehyde. PLANT, CELL & ENVIRONMENT 2024; 47:1941-1956. [PMID: 38369767 DOI: 10.1111/pce.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.
Collapse
Affiliation(s)
- Liang Lu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zihui Fan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hou-Ji Laboratory in Shanxi province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
6
|
Duan Y, Fang F, Mu X, Wang H, Shen Z, Deng Z, Liu T, Wang Z, Liu R. Exploration of Streptomyces fradiae J1-021 as a Potential Host for the Heterologous Production of Spinosad. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597928 DOI: 10.1021/acs.jafc.3c08884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Spinosad is a potent insecticide produced by Saccharopolyspora spinosa. However, it harbors certain limitations of a low growing rate and unfeasible genetic manipulation that can be overcome by adopting a superior platform, such as Streptomyces. Herein, we exploited the industrial tylosin-producing Streptomyces fradiae J1-021 for the heterologous production of spinosad. An engineered strain (HW01) with deletion of the tylosin biosynthetic gene cluster (BGC) was constructed and then transformed with the natural spinosad BGC. The distribution and expression levels of the tylosin BGC operons were assessed to construct a natural promoter library. The rate-limiting steps of spinosad biosynthesis were identified by analyzing the transcriptional expression of the spinosad biosynthetic genes. The stepwise engineering work involved the overexpression of the biosynthetic genes participating in rate-limiting pathways using strong promoters, affording an increase in spinosad production to 112.4 μg/L. These results demonstrate that strain HW01 has the potential to be used as a chassis for the heterologous production of polyketides.
Collapse
Affiliation(s)
- Yuhua Duan
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Fang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Mu
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiyong Shen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiangang Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhangqian Wang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ran Liu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Sword TT, Barker JW, Spradley M, Chen Y, Petzold CJ, Bailey CB. Expression of blue pigment synthetase a from Streptomyces lavenduale reveals insights on the effects of refactoring biosynthetic megasynthases for heterologous expression in Escherichia coli. Protein Expr Purif 2023; 210:106317. [PMID: 37286066 PMCID: PMC10330848 DOI: 10.1016/j.pep.2023.106317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
High GC bacteria from the genus Streptomyces harbor expansive secondary metabolism. The expression of biosynthetic proteins and the characterization and identification of biological "parts" for synthetic biology purposes from such pathways are of interest. However, the high GC content of proteins from actinomycetes in addition to the large size and multi-domain architecture of many biosynthetic proteins (such as non-ribosomal peptide synthetases; NRPSs, and polyketide synthases; PKSs often called "megasynthases") often presents issues with full-length translation and folding. Here we evaluate a non-ribosomal peptide synthetase (NRPS) from Streptomyces lavenduale, a multidomain "megasynthase" gene that comes from a high GC (72.5%) genome. While a preliminary step in revealing differences, to our knowledge this presents the first head-to-head comparison of codon-optimized sequences versus a native sequence of proteins of streptomycete origin heterologously expressed in E. coli. We found that any disruption in co-translational folding from codon mismatch that reduces the titer of indigoidine is explainable via the formation of more inclusion bodies as opposed to compromising folding or posttranslational modification in the soluble fraction. This result supports that one could apply any refactoring strategies that improve soluble expression in E. coli without concern that the protein that reaches the soluble fraction is differentially folded.
Collapse
Affiliation(s)
- Tien T Sword
- Department of Chemistry University of Tennessee-Knoxville, Knoxville, TN, USA
| | - J William Barker
- Department of Chemistry University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Madeline Spradley
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Yan Chen
- Biological and Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA
| | - Christopher J Petzold
- Biological and Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA
| | - Constance B Bailey
- Department of Chemistry University of Tennessee-Knoxville, Knoxville, TN, USA.
| |
Collapse
|
8
|
Schlimpert S, Elliot MA. The Best of Both Worlds-Streptomyces coelicolor and Streptomyces venezuelae as Model Species for Studying Antibiotic Production and Bacterial Multicellular Development. J Bacteriol 2023; 205:e0015323. [PMID: 37347176 PMCID: PMC10367585 DOI: 10.1128/jb.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Marie A. Elliot
- Department of Biology and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
González Plaza JJ, Hradecký J. The tropical cookbook: Termite diet and phylogenetics—Over geographical origin—Drive the microbiome and functional genetic structure of nests. Front Microbiol 2023; 14:1089525. [PMID: 36998409 PMCID: PMC10043212 DOI: 10.3389/fmicb.2023.1089525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023] Open
Abstract
Termites are key decomposers of dead plant material involved in the organic matter recycling process in warm terrestrial ecosystems. Due to their prominent role as urban pests of timber, research efforts have been directed toward biocontrol strategies aimed to use pathogens in their nest. However, one of the most fascinating aspects of termites is their defense strategies that prevent the growth of detrimental microbiological strains in their nests. One of the controlling factors is the nest allied microbiome. Understanding how allied microbial strains protect termites from pathogen load could provide us with an enhanced repertoire for fighting antimicrobial-resistant strains or mining for genes for bioremediation purposes. However, a necessary first step is to characterize these microbial communities. To gain a deeper understanding of the termite nest microbiome, we used a multi-omics approach for dissecting the nest microbiome in a wide range of termite species. These cover several feeding habits and three geographical locations on two tropical sides of the Atlantic Ocean known to host hyper-diverse communities. Our experimental approach included untargeted volatile metabolomics, targeted evaluation of volatile naphthalene, a taxonomical profile for bacteria and fungi through amplicon sequencing, and further diving into the genetic repertoire through a metagenomic sequencing approach. Naphthalene was present in species belonging to the genera Nasutitermes and Cubitermes. We investigated the apparent differences in terms of bacterial community structure and discovered that feeding habits and phylogenetic relatedness had a greater influence than geographical location. The phylogenetic relatedness among nests' hosts influences primarily bacterial communities, while diet influences fungi. Finally, our metagenomic analysis revealed that the gene content provided both soil-feeding genera with similar functional profiles, while the wood-feeding genus showed a different one. Our results indicate that the nest functional profile is largely influenced by diet and phylogenetic relatedness, irrespective of geographical location.
Collapse
|
10
|
Horizontal Transfer of Bacteriocin Biosynthesis Genes Requires Metabolic Adaptation To Improve Compound Production and Cellular Fitness. Microbiol Spectr 2023; 11:e0317622. [PMID: 36472430 PMCID: PMC9927498 DOI: 10.1128/spectrum.03176-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biosynthetic gene clusters (BGCs) encoding the production of bacteriocins are widespread among bacterial isolates and are important genetic determinants of competitive fitness within a given habitat. Staphylococci produce a tremendous diversity of compounds, and the corresponding BGCs are frequently associated with mobile genetic elements, suggesting gain and loss of biosynthetic capacity. Pharmaceutical biology has shown that compound production in heterologous hosts is often challenging, and many BGC recipients initially produce small amounts of compound or show reduced growth rates. To assess whether transfer of BGCs between closely related Staphylococcus aureus strains can be instantly effective or requires elaborate metabolic adaptation, we investigated the intraspecies transfer of a BGC encoding the ribosomally synthesized and posttranslationally modified peptide (RiPP) micrococcin P1 (MP1). We found that acquisition of the BGC by S. aureus RN4220 enabled immediate MP1 production but also imposed a metabolic burden, which was relieved after prolonged cultivation by adaptive mutation. We used a multiomics approach to study this phenomenon and found adaptive evolution to select for strains with increased activity of the tricarboxylic acid cycle (TCA), which enhanced metabolic fitness and levels of compound production. Metabolome analysis revealed increases of central metabolites, including citrate and α-ketoglutarate in the adapted strain, suggesting metabolic adaptation to overcome the BGC-associated growth defects. Our results indicate that BGC acquisition requires genetic and metabolic predispositions, allowing the integration of bacteriocin production into the cellular metabolism. Inappropriate metabolic characteristics of recipients can entail physiological burdens, negatively impacting the competitive fitness of recipients within natural bacterial communities. IMPORTANCE Human microbiomes are critically associated with human health and disease. Importantly, pathogenic bacteria can hide in human-associated communities and can cause disease when the composition of the community becomes unbalanced. Bacteriocin-producing commensals are able to displace pathogens from microbial communities, suggesting that their targeted introduction into human microbiomes might prevent pathogen colonization and infection. However, to develop probiotic approaches, strains are needed that produce high levels of bioactive compounds and retain cellular fitness within mixed bacterial communities. Our work offers insights into the metabolic burdens associated with the production of the bacteriocin micrococcin P1 and highlights evolutionary strategies that increase cellular fitness in the context of production. Metabolic adaptations are most likely broadly relevant for bacteriocin producers and need to be considered for the future development of effective microbiome editing strategies.
Collapse
|
11
|
Yang R, Shi Q, Huang T, Yan Y, Li S, Fang Y, Li Y, Liu L, Liu L, Wang X, Peng Y, Fan J, Zou L, Lin S, Chen G. The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens. Nat Commun 2023; 14:734. [PMID: 36759518 PMCID: PMC9911603 DOI: 10.1038/s41467-023-36433-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Natural products largely produced by Pseudomonads-like soil-dwelling microorganisms are a consistent source of antimicrobial metabolites and pesticides. Herein we report the isolation of Pseudomonas mosselii strain 923 from rice rhizosphere soils of paddy fields, which specifically inhibit the growth of plant bacterial pathogens Xanthomonas species and the fungal pathogen Magnaporthe oryzae. The antimicrobial compound is purified and identified as pseudoiodinine using high-resolution mass spectra, nuclear magnetic resonance and single-crystal X-ray diffraction. Genome-wide random mutagenesis, transcriptome analysis and biochemical assays define the pseudoiodinine biosynthetic cluster as psdABCDEFG. Pseudoiodinine biosynthesis is proposed to initiate from guanosine triphosphate and 1,6-didesmethyltoxoflavin is a biosynthetic intermediate. Transposon mutagenesis indicate that GacA is the global regulator. Furthermore, two noncoding small RNAs, rsmY and rsmZ, positively regulate pseudoiodinine transcription, and the carbon storage regulators CsrA2 and CsrA3, which negatively regulate the expression of psdA. A 22.4-fold increase in pseudoiodinine production is achieved by optimizing the media used for fermentation, overexpressing the biosynthetic operon, and removing the CsrA binding sites. Both of the strain 923 and purified pseudoiodinine in planta inhibit the pathogens without affecting the rice host, suggesting that pseudoiodinine can be used to control plant diseases.
Collapse
Affiliation(s)
- Ruihuan Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Shi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yichao Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengzhang Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Fang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linlin Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Longyu Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongzheng Peng
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiangbo Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Liswadiratanakul S, Yamamoto K, Matsutani M, Wattanadatsaree V, Kihara S, Shiwa Y, Shiwachi H. Replacement of water yam ( Dioscorea alata L.) indigenous root endophytes and rhizosphere bacterial communities via inoculation with a synthetic bacterial community of dominant nitrogen-fixing bacteria. Front Microbiol 2023; 14:1060239. [PMID: 36814567 PMCID: PMC9939703 DOI: 10.3389/fmicb.2023.1060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
Biofertilizers containing high-density plant growth-promoting bacteria are gaining interest as a sustainable solution to environmental problems caused by eutrophication. However, owing to the limitations of current investigative techniques, the selected microorganisms are not always preferred by the host plant, preventing recruitment into the native microbiota or failing to induce plant growth-promoting effects. To address this, five nitrogen-fixing bacteria previously isolated from water yam (Dioscorea alata L.) plants and showing dominant abundance of 1% or more in the water yam microbiota were selected for analysis of their plant growth-promoting activities when used as a synthetic bacterial inoculant. Water yam cv. A-19 plants were inoculated twice at 10 and 12 weeks after planting under greenhouse conditions. Bacterial communities in root, rhizosphere, and bulk soil samples were characterized using high-throughput 16S rRNA amplicon sequencing. Compared with non-inoculated plants, all bacterial communities were significantly altered by inoculation, mainly at the genus level. The inoculation effects were apparently found in the root communities at 16 weeks after planting, with all inoculated genera showing dominance (in the top 35 genera) compared with the control samples. However, no significant differences in any of the growth parameters or nitrogen contents were observed between treatments. At 20 weeks after planting, the dominance of Stenotrophomonas in the inoculated roots decreased, indicating a decline in the inoculation effects. Interestingly, only the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade was dominant (>1% relative abundance) across all samples, suggesting that bacteria related to this clade are essential core bacteria for water yam growth. This is the first report on addition of a synthetic nitrogen-fixing bacterial community in water yam plants showing that native bacterial communities can be replaced by a synthetic bacterial community, with declining in the effects of Stenotrophomonas on the modified communities several weeks after inoculation.
Collapse
Affiliation(s)
- Sumetee Liswadiratanakul
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan,*Correspondence: Kosuke Yamamoto,
| | | | - Vatanee Wattanadatsaree
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Shunta Kihara
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan,NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Hironobu Shiwachi
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
13
|
Wei J, Chen B, Dong J, Wang X, Li Y, Liu Y, Guan W. Salinomycin biosynthesis reversely regulates the β-oxidation pathway in Streptomyces albus by carrying a 3-hydroxyacyl-CoA dehydrogenase gene in its biosynthetic gene cluster. Microb Biotechnol 2022; 15:2890-2904. [PMID: 36099515 PMCID: PMC9733648 DOI: 10.1111/1751-7915.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
Streptomyces is well known for synthesis of many biologically active secondary metabolites, such as polyketides and non-ribosomal peptides. Understanding the coupling mechanisms of primary and secondary metabolism can help develop strategies to improve secondary metabolite production in Streptomyces. In this work, Streptomyces albus ZD11, an oil-preferring industrial Streptomyces strain, was proved to have a remarkable capability to generate abundant acyl-CoA precursors for salinomycin biosynthesis with the aid of its enhanced β-oxidation pathway. It was found that the salinomycin biosynthetic gene cluster contains a predicted 3-hydroxyacyl-CoA dehydrogenase (FadB3), which is the third enzyme of β-oxidation cycle. Deletion of fadB3 significantly reduced the production of salinomycin. A variety of experimental evidences showed that FadB3 was mainly involved in the β-oxidation pathway rather than ethylmalonyl-CoA biosynthesis and played a very important role in regulating the rate of β-oxidation in S. albus ZD11. Our findings elucidate an interesting coupling mechanism by which a PKS biosynthetic gene cluster could regulate the β-oxidation pathway by carrying β-oxidation genes, enabling Streptomyces to efficiently synthesize target polyketides and economically utilize environmental nutrients.
Collapse
Affiliation(s)
- Jiaxiu Wei
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Binbin Chen
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhouChina
| | - Jianxin Dong
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Xueyu Wang
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Yongquan Li
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Yingchun Liu
- Department of ChemistryZhejiang UniversityHangzhouChina
| | - Wenjun Guan
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| |
Collapse
|
14
|
Nazari MT, Machado BS, Marchezi G, Crestani L, Ferrari V, Colla LM, Piccin JS. Use of soil actinomycetes for pharmaceutical, food, agricultural, and environmental purposes. 3 Biotech 2022; 12:232. [PMID: 35996673 PMCID: PMC9391553 DOI: 10.1007/s13205-022-03307-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
In this article, we reviewed the international scientific production of the last years on actinomycetes isolated from soil aiming to report recent advances in using these microorganisms for different applications. The most promising genera, isolation conditions and procedures, pH, temperature, and NaCl tolerance of these bacteria were reported. Based on the content analysis of the articles, most studies have focused on the isolation and taxonomic description of new species of actinomycetes. Regarding the applications, the antimicrobial potential (antibacterial and antifungal) prevailed among the articles, followed by the production of enzymes (cellulases and chitinases, etc.), agricultural uses (plant growth promotion and phytopathogen control), bioremediation (organic and inorganic contaminants), among others. Furthermore, a wide range of growth capacity was verified, including temperatures from 4 to 60 °C (optimum: 28 °C), pH from 3 to 13 (optimum: 7), and NaCl tolerance up to 32% (optimum: 0-1%), which evidence a great tolerance for actinomycetes cultivation. Streptomyces was the genus with the highest incidence among the soil actinomycetes and the most exploited for different uses. Besides, the interest in isolating actinomycetes from soils in extreme environments (Antarctica and deserts, for example) is growing to explore the adaptive capacities of new strains and the secondary metabolites produced by these microorganisms for different industrial interests, especially for pharmaceutical, food, agricultural, and environmental purposes.
Collapse
Affiliation(s)
- Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Bruna Strieder Machado
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Giovana Marchezi
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Larissa Crestani
- Graduate Program Chemical Engineering (PPGEQ), Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| |
Collapse
|
15
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
16
|
Liu Y, Wang K, Pan L, Chen X. Improved Production of ε-Poly-L-Lysine in Streptomyces albulus Using Genome Shuffling and Its High-Yield Mechanism Analysis. Front Microbiol 2022; 13:923526. [PMID: 35711770 PMCID: PMC9195005 DOI: 10.3389/fmicb.2022.923526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
ε-Poly-L-lysine (ε-PL), a natural food preservative, has recently gained interest and mainly produced by Streptomyces albulus. Lacking of efficient breeding methods limit ε-PL production improving, knockout byproducts and increase of main product flux strategies as a logical solution to increase yield. However, removing byproduct formation and improving main product synthesis has seen limited success due to the genetic background of ε-PL producing organism is not clear. To overcome this limitation, random mutagenesis continues to be the best way towards improving strains for ε-PL production. Recent advances in Illumina sequencing opened new avenues to understand improved strains. In this work, we used genome shuffling on strains obtained by ribosome engineering to generate a better ε-PL producing strain. The mutant strain SG-86 produced 144.7% more ε-PL than the parent strain M-Z18. Except that SG-86 displayed obvious differences in morphology and ATP compared to parent strain M-Z18. Using Illumina sequencing, we mapped the genomic changes leading to the improved phenotype. Sequencing two strains showed that the genome of the mutant strain was about 2.1 M less than that of the parent strain, including a large number of metabolic pathways, secondary metabolic gene clusters, and gene deletions. In addition, there are many SNPs (single nucleotide polymorphisms) and InDels (insertions and deletions) in the mutant strain. Based on the results of data analysis, a mechanism of ε-PL overproduction in S. albulus SG-86 was preliminarily proposed. This study is of great significance for improving the fermentation performance and providing theoretical guidance for the metabolic engineering construction of ε-PL producing strains.
Collapse
Affiliation(s)
- Yongjuan Liu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Shandong Energy Institute, Qingdao, China.,Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Kaifang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Long Pan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Xusheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Ye L, Zhang Y, Li S, He H, Ai G, Wang X, Xiang W. Transcriptome-guided identification of a four-component system, SbrH1-R, that modulates milbemycin biosynthesis by influencing gene cluster expression, precursor supply, and antibiotic efflux. Synth Syst Biotechnol 2022; 7:705-717. [PMID: 35261928 PMCID: PMC8866680 DOI: 10.1016/j.synbio.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
|
18
|
León-Buitimea A, Balderas-Cisneros FDJ, Garza-Cárdenas CR, Garza-Cervantes JA, Morones-Ramírez JR. Synthetic Biology Tools for Engineering Microbial Cells to Fight Superbugs. Front Bioeng Biotechnol 2022; 10:869206. [PMID: 35600895 PMCID: PMC9114757 DOI: 10.3389/fbioe.2022.869206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
With the increase in clinical cases of bacterial infections with multiple antibiotic resistance, the world has entered a health crisis. Overuse, inappropriate prescribing, and lack of innovation of antibiotics have contributed to the surge of microorganisms that can overcome traditional antimicrobial treatments. In 2017, the World Health Organization published a list of pathogenic bacteria, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli (ESKAPE). These bacteria can adapt to multiple antibiotics and transfer their resistance to other organisms; therefore, studies to find new therapeutic strategies are needed. One of these strategies is synthetic biology geared toward developing new antimicrobial therapies. Synthetic biology is founded on a solid and well-established theoretical framework that provides tools for conceptualizing, designing, and constructing synthetic biological systems. Recent developments in synthetic biology provide tools for engineering synthetic control systems in microbial cells. Applying protein engineering, DNA synthesis, and in silico design allows building metabolic pathways and biological circuits to control cellular behavior. Thus, synthetic biology advances have permitted the construction of communication systems between microorganisms where exogenous molecules can control specific population behaviors, induce intracellular signaling, and establish co-dependent networks of microorganisms.
Collapse
Affiliation(s)
- Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Francisco de Jesús Balderas-Cisneros
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - César Rodolfo Garza-Cárdenas
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Javier Alberto Garza-Cervantes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
- *Correspondence: José Rubén Morones-Ramírez,
| |
Collapse
|
19
|
Improvement of Rimocidin Biosynthesis by Increasing Supply of Precursor Malonyl-CoA via Over-expression of Acetyl-CoA Carboxylase in Streptomyces rimosus M527. Curr Microbiol 2022; 79:174. [PMID: 35488939 DOI: 10.1007/s00284-022-02867-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/07/2022] [Indexed: 11/03/2022]
Abstract
Precursor engineering is an effective strategy for the overproduction of secondary metabolites. The polyene macrolide rimocidin, which is produced by Streptomyces rimosus M527, exhibits a potent activity against a broad range of phytopathogenic fungi. It has been predicted that malonyl-CoA is used as extender units for rimocidin biosynthesis. Based on a systematic analysis of three sets of time-series transcriptome microarray data of S. rimosus M527 fermented in different conditions, the differentially expressed accsr gene that encodes acetyl-CoA carboxylase (ACC) was found. To understand how the formation of rimocidin is being influenced by the expression of the accsr gene and by the concentration of malonyl-CoA, the accsr gene was cloned and over-expressed in the wild-type strain S. rimosus M527 in this study. The recombinant strain S. rimosus M527-ACC harboring the over-expressed accsr gene exhibited better performances based on the enzymatic activity of ACC, intracellular malonyl-CoA concentrations, and rimocidin production compared to S. rimosus M527 throughout the fermentation process. The enzymatic activity of ACC and intracellular concentration of malonyl-CoA of S. rimosus M527-ACC were 1.0- and 1.5-fold higher than those of S. rimosus M527, respectively. Finally, the yield of rimocidin produced by S. rimosus M527-ACC reached 320.7 mg/L, which was 34.0% higher than that of S. rimosus M527. These results confirmed that malonyl-CoA is an important precursor for rimocidin biosynthesis and suggested that an adequate supply of malonyl-CoA caused by accsr gene over-expression led to the improvement in rimocidin production.
Collapse
|
20
|
Sarrels B, Morrar W, Lucero CG. The first total synthesis of lorneic acid J and an alternative synthesis to lorneic acid A. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
A Glossary for Chemical Approaches towards Unlocking the Trove of Metabolic Treasures in Actinomycetes. Molecules 2021; 27:molecules27010142. [PMID: 35011373 PMCID: PMC8746466 DOI: 10.3390/molecules27010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Actinobacterial natural products showed a critical basis for the discovery of new antibiotics as well as other lead secondary metabolites. Varied environmental and physiological signals touch the antibiotic machinery that faced a serious decline in the last decades. The reason was exposed by genomic sequencing data, which revealed that Actinomycetes harbor a large portion of silent biosynthetic gene clusters in their genomes that encrypt for secondary metabolites. These gene clusters are linked with a great reservoir of yet unknown molecules, and arranging them is considered a major challenge for biotechnology approaches. In the present paper, we discuss the recent strategies that have been taken to augment the yield of secondary metabolites via awakening these cryptic genes in Actinomycetes with emphasis on chemical signaling molecules used to induce the antibiotics biosynthesis. The rationale, types, applications and mechanisms are discussed in detail, to reveal the productive path for the unearthing of new metabolites, covering the literature until the end of 2020.
Collapse
|
22
|
Zhang X, Wu Q, Zhang X, Lv Z, Mo X, Li Y, Chen XA. Elevation of FK506 production by regulatory pathway engineering and medium optimization in Streptomyces tsukubaensis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Tang J, He H, Li Y, Liu Z, Xia Z, Cao L, Zhu Z, Shuai L, Liu Y, Wan Q, Luo Y, Zhang Y, Rang J, Xia L. Comparative Proteomics Reveals the Effect of the Transcriptional Regulator Sp13016 on Butenyl-Spinosyn Biosynthesis in Saccharopolyspora pogona. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12554-12565. [PMID: 34657420 DOI: 10.1021/acs.jafc.1c03654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Butenyl-spinosyn is a highly effective and broad-spectrum biopesticide produced by Saccharopolyspora pogona. However, the yield of this compound is difficult to increase because the regulatory mechanism of secondary metabolism is still unknown. Here, the transcriptional regulator Sp13016 was discovered to be highly associated with butenyl-spinosyn synthesis and bacterial growth. Overexpression of sp13016 improved butenyl-spinosyn production to a level that was 2.84-fold that of the original strain, while deletion of sp13016 resulted in a significant decrease in yield and growth inhibition. Comparative proteomics revealed that these phenotypic changes were attributed to the influence of Sp13016 on the central carbon metabolism pathway to regulate the supply of precursors. Our research helps to reveal the regulatory mechanism of butenyl-spinosyn biosynthesis and provides a reference for increasing the yield of natural products of Actinomycetes.
Collapse
Affiliation(s)
- Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Yunlong Li
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Qianqian Wan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Yuewen Luo
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Youming Zhang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Lushan Road 36, Changsha 410081, China
| |
Collapse
|
24
|
Li H, Gao W, Cui Y, Pan Y, Liu G. Remarkable enhancement of bleomycin production through precise amplification of its biosynthetic gene cluster in Streptomyces verticillus. SCIENCE CHINA. LIFE SCIENCES 2021; 65:1248-1256. [PMID: 34668129 DOI: 10.1007/s11427-021-1998-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Amplification of biosynthetic gene clusters is important to increase secondary metabolite production. However, the copy number of amplified gene clusters is difficult to control precisely. In this study, the tandem amplification of a 70 kb bleomycin biosynthetic gene cluster was precisely regulated through the combined strategy of a ZouA-dependent DNA amplification system and double-reporter-guided recombinant selection in Streptomyces verticillus ATCC15003. The production of bleomycin in the recombinant strain containing six copies of the bleomycin gene cluster was 9.59-fold higher than that in the wild-type strain. The combined strategy used in this study is powerful and applicable for precisely regulating the amplification of gene clusters and improving the corresponding secondary metabolite production.
Collapse
Affiliation(s)
- Hong Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yifan Cui
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100864, China.
| |
Collapse
|
25
|
Li X, Li M, Guo J, Liu X, Liao X, Shi B. Collagen peptide provides Streptomyces coelicolor CGMCC 4.7172 with abundant precursors for enhancing undecylprodigiosin production. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Effective and ecofriendly converting biomass to chemicals is important for sustainable engineering based on the foreseeable shortage of fossil resources. Undecylprodigiosin (UP) is a promising antibiotic, but the direct feeding of pure precursor amino acids makes it costly for large-scale production. Here, collagen peptide (CP), a renewable animal-derived biomass contains abundant precursor amino acids of UP. CP can act as carbon and nitrogen source for the growth of Streptomyces coelicolor CGMCC 4.7172. The plant biomasses including soybean meal, wheat bran, and malt extract were unsuitable for UP prodution. However, 365.40 µg/L UP was detected after 24 h in the media containing CP, and its highest concentration reached 1198.01 µg/L. UP was also detected in the media containing meat hydrolysates of domestic animals, but its initial production time was delayed, and final concentration was lower than that in the medium containing CP only. Compared the fermentation performances of CP and other proteins, CP has a special superiority for UP production. These results revealed that UP biosynthesis may be dependent on amino acid availability of substrates and CP is beneficial for UP production because of its specific amino acid composition.
Graphical abstract
Collapse
|
26
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
27
|
Li YP, Bu QT, Li JF, Xie H, Su YT, Du YL, Li YQ. Genome-based rational engineering of Actinoplanes deccanensis for improving fidaxomicin production and genetic stability. BIORESOURCE TECHNOLOGY 2021; 330:124982. [PMID: 33743279 DOI: 10.1016/j.biortech.2021.124982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Microbial fermentation is currently still the major way to produce structural complicated clinical drugs. Yet, the low productivity and genetic instability of producing strains remain the bottlenecks in microbial pharmaceutical industry. Fidaxomicin is a microbial drug against the Clostridium difficile infection. Here, a genome-based combinatorial engineering strategy was established to improve both fidaxomicin production and the genetic stability of Actinoplanes deccanensis YP-1. Guided by genomic analysis, several genetic instability-associated elements were cumulatively deleted, generating a more genetically stable mutant. Further rational engineering approaches including elimination of a pigment pathway, duplication of the fidaxomicin gene cluster, overexpression of a positive regulator and optimization of the fermentation medium, led to an overall 27-folds improvement in fidaxomicin production. Taken together, the genome-based rational combinatorial engineering strategy was efficient to enhance the fidaxomicin production and ameliorate the genetic stability of YP-1, it can also be widely used in other industrial actinomycetes for strain improvement.
Collapse
Affiliation(s)
- Yue-Ping Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Ji-Feng Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Huang Xie
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yi-Ting Su
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yi-Ling Du
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
| |
Collapse
|
28
|
Chen G, Wang M, Ni X, Xia H. Optimization of tetramycin production in Streptomyces ahygroscopicus S91. J Biol Eng 2021; 15:16. [PMID: 34022922 PMCID: PMC8141235 DOI: 10.1186/s13036-021-00267-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetramycin is a 26-member tetraene antibiotic used in agriculture. It has two components, tetramycin A and tetramycin B. Tetramycin B is obtained by the hydroxylation of tetramycin A on C4. This reaction is catalyzed by the cytochrome P450 monooxygenase TtmD. The two components of tetramycin have different antifungal activities against different pathogenic fungi. Therefore, the respective construction of high-yield strains of tetramycin A and tetramycin B is conducive to more targeted action on pathomycete and has a certain practical value. RESULTS Streptomyces ahygroscopicus S91 was used as the original strain to construct tetramycin A high-yield strains by blocking the precursor competitive biosynthetic gene cluster, disrupting tetramycin B biosynthesis, and overexpressing the tetramycin pathway regulator. Eventually, the yield of tetramycin A in the final strain was up to 1090.49 ± 136.65 mg·L- 1. Subsequently, TtmD, which catalyzes the conversion from tetramycin A to tetramycin B, was overexpressed. Strains with 2, 3, and 4 copies of ttmD were constructed. The three strains had different drops in tetramycin A yield, with increases in tetramycin B. The strain with three copies of ttmD showed the most significant change in the ratio of the two components. CONCLUSIONS A tetramycin A single-component producing strain was obtained, and the production of tetramycin A increased 236.84% ± 38.96% compared with the original strain. In addition, the content of tetramycin B in a high-yield strain with three copies of ttmD increased from 26.64% ± 1.97 to 51.63% ± 2.06%.
Collapse
Affiliation(s)
- Guang Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Mengqiu Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Xianpu Ni
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China
| | - Huanzhang Xia
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang, Liaoning, China.
| |
Collapse
|
29
|
Liu Y, Wang H, Li S, Zhang Y, Cheng X, Xiang W, Wang X. Engineering of primary metabolic pathways for titer improvement of milbemycins in Streptomyces bingchenggensis. Appl Microbiol Biotechnol 2021; 105:1875-1887. [PMID: 33564920 DOI: 10.1007/s00253-021-11164-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Milbemycins are used commercially as insect repellents and acaricides; however, their high cost remains a significant challenge to commercial production. Hence, improving the titer of milbemycins for commercial application is an urgent priority. The present study aimed to effectively increase the titer of milbemycins using a combination of genome re-sequencing and metabolic engineering. First, 133 mutation sites were identified by genome re-sequencing in the mutagenized high-yielding strain BC04. Among them, three modifiable candidate genes (sbi_04868 encoding citrate synthase, sbi_06921 and sbi_06922 encoding alpha and beta subunits of acetyl-CoA carboxylase, and sbi_04683 encoding carbon uptake system gluconate transporter) related to primary metabolism were screened and identified. Next, the DNase-deactivated Cpf1-based integrative CRISPRi system was used in S. bingchenggensis to downregulate the transcription level of gene sbi_04868. Then, overexpression of the potential targets sbi_06921-06922 and sbi_04683 further facilitated milbemycin biosynthesis. Finally, those candidate genes were engineered to produce strains with combinatorial downregulation and overexpression, which resulted in the titer of milbemycin A3/A4 increased by 27.6% to 3164.5 mg/L. Our research not only identified three genes in S. bingchenggensis that are closely related to the production of milbemycins, but also offered an efficient engineering strategy to improve the titer of milbemycins using genome re-sequencing. KEY POINTS: • We compared the genomes of two strains with different titers of milbemycins. • We found three genes belonging to primary metabolism influence milbemycin production. • We improved titer of milbemycins by a combinatorial engineering of three targets.
Collapse
Affiliation(s)
- Yuqing Liu
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xu Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Xiangjing Wang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
30
|
Nitta K, Breitling R, Takano E, Putri SP, Fukusaki E. Investigation of the effects of actinorhodin biosynthetic gene cluster expression and a rpoB point mutation on the metabolome of Streptomyces coelicolor M1146. J Biosci Bioeng 2021; 131:525-536. [PMID: 33549493 DOI: 10.1016/j.jbiosc.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
The previously reported Streptomyces coelicolor M1146 is commonly used as a host strain for engineering of secondary metabolite production. In this study, absolute quantification of intracellular and extracellular metabolites of M1146 was performed in mid-log phase and stationary phase to observe major metabolites and the changes that occurred during growth. Decreased levels of central carbon metabolites (glycolysis, TCA cycle, and pentose phosphate pathway) and increased levels of amino acids were observed in stationary phase compared to mid-log phase. Furthermore, comparative metabolome analyses of M1146 upon expression of the actinorhodin biosynthetic gene cluster (M1146+ACT), a point mutation on the rpoB gene encoding RNA polymerase beta-subunit (M1152), and both expression of actinorhodin biosynthetic gene cluster and a rpoB point mutation (M1152+ACT) were performed. M1146+ACT showed higher levels of important cofactors, such as ATP, NADPH, and FMN while M1152 led to higher levels of intracellular S-adenosyl-methionine, acyl-CoAs, and extracellular nucleosides compared to M1146. M1152+ACT exhibited the highest levels of actinorhodin with elevated bases, nucleosides, and nucleotides, such as intracellular PRPP (phosphoribosyl phosphate), ATP, along with extracellular inosine, uridine, and guanine compared to the other three strains, which were considered to be combined effects of actinorhodin gene cluster expression and a rpoB point mutation. Metabolites analysis by means of absolute quantification demonstrated changes in precursors of secondary metabolites before and after phosphate depletion in M1146. Comparative metabolome analysis provided further insights into the effects of actinorhodin gene cluster expression along with a rpoB point mutation on the metabolome of S. coelicolor.
Collapse
Affiliation(s)
- Katsuaki Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Eriko Takano
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Sastia P Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
31
|
Rang J, Zhu Z, Li Y, Cao L, He H, Tang J, Hu J, Chen J, Hu S, Huang W, Yu Z, Ding X, Sun Y, Xie Q, Xia L. Identification of a TetR family regulator and a polyketide synthase gene cluster involved in growth development and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. Appl Microbiol Biotechnol 2021; 105:1519-1533. [PMID: 33484320 DOI: 10.1007/s00253-021-11105-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and broad pesticidal spectrum. However, its synthetic level was low in the wild-type strain. At present, important functional genes involved in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently editing its genome to improve the butenyl-spinosyn yield. To accelerate the genetic modification of S. pogona, we conducted comparative proteomics analysis to screen differentially expressed proteins related to butenyl-spinosyn biosynthesis. A TetR family regulatory protein was selected from the 289 differentially expressed proteins, and its encoding gene (SP_1288) was successfully deleted by CRISPR/Cas9 system. We further deleted a 32-kb polyketide synthase gene cluster (cluster 28) to reduce the competition for precursors. Phenotypic analysis revealed that the deletion of the SP_1288 and cluster 28 resulted in a 3.10-fold increase and a 35.4% decrease in the butenyl-spinosyn levels compared with the wild-type strain, respectively. The deletion of cluster 28 affected the cell growth, glucose consumption, mycelium morphology, and sporulation by controlling the expression of ptsH, ptsI, amfC, and other genes related to sporulation, whereas SP_1288 did not. These findings confirmed not only that the CRISPR/Cas9 system can be applied to the S. pogona genome editing but also that SP_1288 and cluster 28 are closely related to the butenyl-spinosyn biosynthesis and growth development of S. pogona. The strategy reported here will be useful to reveal the regulatory mechanism of butenyl-spinosyn and improve antibiotic production in other actinomycetes. KEY POINTS: • SP_1288 deletion can significantly promote the butenyl-spinosyn biosynthesis. • Cluster 28 deletion showed pleiotropic effects on S. pogona. • SP_1288 and cluster 28 were deleted by CRISPR/Cas9 system in S. pogona.
Collapse
Affiliation(s)
- Jie Rang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Zirong Zhu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunlong Li
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Li Cao
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Haocheng He
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianli Tang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jinjuan Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianming Chen
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shengbiao Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weitao Huang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ziquan Yu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xuezhi Ding
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunjun Sun
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Liqiu Xia
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
32
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
33
|
Caruso G, Floris R, Serangeli C, Di Paola L. Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Mar Drugs 2020; 18:md18120622. [PMID: 33297310 PMCID: PMC7762275 DOI: 10.3390/md18120622] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The search for new biological sources of commercial value is a major goal for the sustainable management of natural resources. The huge amount of fishery by-catch or processing by-products continuously produced needs to be managed to avoid environmental problems and keep resource sustainability. Fishery by-products can represent an interesting source of high added value bioactive compounds, such as proteins, carbohydrates, collagen, polyunsaturated fatty acids, chitin, polyphenolic constituents, carotenoids, vitamins, alkaloids, tocopherols, tocotrienols, toxins; nevertheless, their biotechnological potential is still largely underutilized. Depending on their structural and functional characteristics, marine-derived biomolecules can find several applications in food industry, agriculture, biotechnological (chemical, industrial or environmental) fields. Fish internal organs are a rich and underexplored source of bioactive compounds; the fish gut microbiota biosynthesizes essential or short-chain fatty acids, vitamins, minerals or enzymes and is also a source of probiotic candidates, in turn producing bioactive compounds with antibiotic and biosurfactant/bioemulsifier activities. Chemical, enzymatic and/or microbial processing of fishery by-catch or processing by-products allows the production of different valuable bioactive compounds; to date, however, the lack of cost-effective extraction strategies so far has prevented their exploitation on a large scale. Standardization and optimization of extraction procedures are urgently required, as processing conditions can affect the qualitative and quantitative properties of these biomolecules. Valorization routes for such raw materials can provide a great additional value for companies involved in the field of bioprospecting. The present review aims at collecting current knowledge on fishery by-catch or by-products, exploring the valorization of their active biomolecules, in application of the circular economy paradigm applied to the fishery field. It will address specific issues from a biorefinery perspective: (i) fish tissues and organs as potential sources of metabolites, antibiotics and probiotics; (ii) screening for bioactive compounds; (iii) extraction processes and innovative technologies for purification and chemical characterization; (iv) energy production technologies for the exhausted biomass. We provide a general perspective on the techno-economic feasibility and the environmental footprint of the production process, as well as on the definition of legal constraints for the new products production and commercial use.
Collapse
Affiliation(s)
- Gabriella Caruso
- Institute of Polar Sciences, National Research Council, 98122 Messina, Italy
- Correspondence: ; Tel.: +39-090-6015-423
| | - Rosanna Floris
- AGRIS-Sardegna, Servizio Ricerca Prodotti Ittici, Bonassai, 07100 Sassari, Italy;
| | | | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| |
Collapse
|
34
|
Mohammadipanah F, Kermani F, Salimi F. Awakening the Secondary Metabolite Pathways of Promicromonospora kermanensis Using Physicochemical and Biological Elicitors. Appl Biochem Biotechnol 2020; 192:1224-1237. [PMID: 32715413 DOI: 10.1007/s12010-020-03361-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
The drug discovery rate is dramatically decreasing due to the rediscovery of known compounds. Genome mining approaches have revealed that a large portion of the actinobacterial genome that encodes bioactive metabolites is cryptic and not expressed under standard lab conditions. In the present study, we aimed to induce antibiotic encoding biosynthetic genes in a member of Micrococcales as a new species of Promicromonospora, Promicromonospora kermanensis, by chemical and biological elicitors as it was considered to produce numerous valuable bioactive metabolites based on the whole genome results. Induction has been done via chemical (antibiotics, histone deacetylase inhibitors (HDAIs), rare earth elements (REEs), fatty acid synthesis inhibitors, and extreme pH changes) and biological elicitors (live and dead Gram-positive and negative bacteria). The results showed that valproic acid (as HDAIs), DMSO, lanthanum chloride (as REE), triclosan (as fatty acid synthesis inhibitors), alkaline pH, and supernatant of Pseudomonas aeruginosa UTMC 1404 culture could act as stimuli to provoke antibacterial synthetic pathways in Promicromonospora kermanensis DSM 45485. Moreover, it was revealed that eliciting agents in cell filtrated of P. aeruginosa culture is resistant to detergent, acidic, and basic condition and have amphipathic nature. The inducing effect of alkaline pH on metabolite induction of Actinobacteria was first reported in this study. In the follow-up studies, the induced antibacterial producing clusters can be subjected to the characterization, and the implemented approach in this study can be used for metabolites induction in other selected species.
Collapse
Affiliation(s)
- Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| | - Fatemeh Kermani
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
35
|
Almalki MA. In-Vitro Screening and Biosynthesis of Secondary Metabolites from a New Streptomyces sp. SA1 from a Marine Environment. Curr Pharm Biotechnol 2020; 21:1333-1341. [PMID: 32568017 DOI: 10.2174/1389201021666200622120850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/01/2019] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Streptomyces sp. produces various antibiotic agents and the number of lead molecules from the genus Streptomyces increased rapidly in recent years. Drug resistance against various commercially available antibiotics is one of the important problems throughout the world. Streptomyces spp. produce various antimicrobials with potent activity against drug-resistant bacteria. METHODS Streptomyces sp. SA1 was isolated from the marine environment for the biosynthesis of antibiotics. The important variables influencing secondary metabolite biosynthesis were optimized to increase the biosynthesis of antimicrobial agents using the traditional method and statistical approach. RESULTS Streptomyces sp. SA1 produced novel antibiotics and the process variables were optimized by the traditional method (One-variable-at-a-time approach). Maltose showed maximum antimicrobial activity (220 U/mL). Analysis of the nitrogen, the effect of nitrogen sources revealed that beef extract incorporated culture medium showed rich antibacterial activity (188/mL). Among the ionic sources, KCl significantly influenced antibiotic production. Maltose, beef extract and KCl were considered as the most influencing medium components. Antimicrobial agent biosynthesis was achieved with maltose 1.22 g/L, beef extract 0.93 g/L and KCl 0.27 g/L in response surface methodology. CONCLUSION Actinomycetes, especially Streptomyces, play an important role as a source for bioactive compounds that are used to treat infections, and many other diseases. The isolated Streptomyces sp. was a good producer of antibacterial agent, which required various nutritional supplements in the culture medium. The optimized medium components investigated in this study will be useful for future studies with the mass production of secondary metabolites.
Collapse
Affiliation(s)
- Mohammed A Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Hofuf, Saudi Arabia
| |
Collapse
|
36
|
Misaki Y, Yamamoto S, Suzuki T, Iwakuni M, Sasaki H, Takahashi Y, Inada K, Kinashi H, Arakawa K. SrrB, a Pseudo-Receptor Protein, Acts as a Negative Regulator for Lankacidin and Lankamycin Production in Streptomyces rochei. Front Microbiol 2020; 11:1089. [PMID: 32582072 PMCID: PMC7296167 DOI: 10.3389/fmicb.2020.01089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 11/15/2022] Open
Abstract
Streptomyces rochei 7434AN4, a producer of lankacidin (LC) and lankamycin (LM), carries many regulatory genes including a biosynthesis gene for signaling molecules SRBs (srrX), an SRB receptor gene (srrA), and a SARP (Streptomyces antibiotic regulatory protein) family activator gene (srrY). Our previous study revealed that the main regulatory cascade goes from srrX through srrA to srrY, leading to LC production, whereas srrY further regulates a second SARP gene srrZ to synthesize LM. In this study we extensively investigated the function of srrB, a pseudo-receptor gene, by analyzing antibiotic production and transcription. Metabolite analysis showed that the srrB mutation increased both LC and LM production over four-folds. Transcription, gel shift, and DNase I footprinting experiments revealed that srrB and srrY are expressed under the SRB/SrrA regulatory system, and at the later stage, SrrB represses srrY expression by binding to the promoter region of srrY. These findings confirmed that SrrB acts as a negative regulator of the activator gene srrY to control LC and LM production at the later stage of fermentation in S. rochei.
Collapse
Affiliation(s)
- Yuya Misaki
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shouji Yamamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Toshihiro Suzuki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyuki Iwakuni
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroaki Sasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuzuru Takahashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kuninobu Inada
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kenji Arakawa
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
37
|
Zabala D, Song L, Dashti Y, Challis GL, Salas JA, Méndez C. Heterologous reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, the aglycon of antitumor polyketide mithramycin. Microb Cell Fact 2020; 19:111. [PMID: 32448325 PMCID: PMC7247220 DOI: 10.1186/s12934-020-01368-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mithramycin is an anti-tumor compound of the aureolic acid family produced by Streptomyces argillaceus. Its biosynthesis gene cluster has been cloned and characterized, and several new analogs with improved pharmacological properties have been generated through combinatorial biosynthesis. To further study these compounds as potential new anticancer drugs requires their production yields to be improved significantly. The biosynthesis of mithramycin proceeds through the formation of the key intermediate 4-demethyl-premithramycinone. Extensive studies have characterized the biosynthesis pathway from this intermediate to mithramycin. However, the biosynthesis pathway for 4-demethyl-premithramycinone remains unclear. RESULTS Expression of cosmid cosAR7, containing a set of mithramycin biosynthesis genes, in Streptomyces albus resulted in the production of 4-demethyl-premithramycinone, delimiting genes required for its biosynthesis. Inactivation of mtmL, encoding an ATP-dependent acyl-CoA ligase, led to the accumulation of the tricyclic intermediate 2-hydroxy-nogalonic acid, proving its essential role in the formation of the fourth ring of 4-demethyl-premithramycinone. Expression of different sets of mithramycin biosynthesis genes as cassettes in S. albus and analysis of the resulting metabolites, allowed the reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, assigning gene functions and establishing the order of biosynthetic steps. CONCLUSIONS We established the biosynthesis pathway for 4-demethyl-premithramycinone, and identified the minimal set of genes required for its assembly. We propose that the biosynthesis starts with the formation of a linear decaketide by the minimal polyketide synthase MtmPKS. Then, the cyclase/aromatase MtmQ catalyzes the cyclization of the first ring (C7-C12), followed by formation of the second and third rings (C5-C14; C3-C16) catalyzed by the cyclase MtmY. Formation of the fourth ring (C1-C18) requires MtmL and MtmX. Finally, further oxygenation and reduction is catalyzed by MtmOII and MtmTI/MtmTII respectively, to generate the final stable tetracyclic intermediate 4-demethyl-premithramycinone. Understanding the biosynthesis of this compound affords enhanced possibilities to generate new mithramycin analogs and improve their production titers for bioactivity investigation.
Collapse
Affiliation(s)
- Daniel Zabala
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Yousef Dashti
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain.
- Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
38
|
Enhanced production of lipstatin from mutant of Streptomyces toxytricini and fed-batch strategies under submerged fermentation. 3 Biotech 2020; 10:151. [PMID: 32181113 DOI: 10.1007/s13205-020-2147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/16/2020] [Indexed: 10/24/2022] Open
Abstract
Streptomyces toxytricini produces bioactive metabolite recognized as lipstatin and its intermediate orlistat. The main focus of this study is to enhance lipstatin production by strain improvement and precursor feeding. In this study, strain improvement to enhance the production of lipstatin was carried out by different doses (50, 100, 150, 200, and 250 Gy) of gamma radiation and precursors (Linoleic acid, Oleic acid, and l-Leucine). Screening showed that the highest yield of lipstatin (4.58 mg/g) was produced by mutant designated as SRN 7. The production of lipstatin (5.011 mg/g) increased significantly when the medium was supplemented with ratio 1:1.5 (linoleic acid + oleic acid). The addition of 1.5% l-Leucine leads to further increment in the production of lipstatin (5.765 mg/g). The addition of 10% soy flour in the culture medium resulted in the maximum production of lipstatin to 5.886 mg/g.
Collapse
|
39
|
Enhancing A82846B production by artificial attB-assisted overexpression of orf10-orf11 genes in Kibdelosporangium aridum SIPI-3927. AMB Express 2020; 10:52. [PMID: 32180039 PMCID: PMC7076107 DOI: 10.1186/s13568-020-00992-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 11/10/2022] Open
Abstract
A82846B, producing by Kibdelosporangium aridum, is an important precursor of the semi-synthetic glycopeptide antibiotic Oritavancin. K. aridum produces three components A82846A, B and C, so it is essential to increase A82846B titer and reduce A82846A and C titers by overexpressing halogenase and glycosyltransferase genes. Firstly, we constructed the genetically engineered strain SIPI-3927-attB harboring artificial attB site via homologous recombination. Secondly, two strains SIPI-3927-C1 and C2 were also constructed by integrating halogenase genes vcm8 and orf10 into artificial attB sites of SIPI-3927-attB, respectively. Meantime, three strains SIPI-3927-C3, C4 and C5 containing overexpressing glycosyltransferase A, B and C genes were obtained, respectively. Through fermentation analyses, the results showed that SIPI-3927-C1 and C2 could increase A82846B ratios, in which SIPI-3927-C1 showed a better performance. Moreover, the titer of SIPI-3927-C3 was highest in those of three strains. Finally, the strain SIPI-3927-C6 was constructed by integrating both orf10-encoded halogenase and orf11-encoded glycosyltransferase A, of which the yield and ratio of A82846B in shake-flask fermentation reached 1200 mg/L and 73.6%, respectively. Besides, the yield and ratio of A82846B in SIPI-3927-C6 grew up to 2520 mg/L and 86.5% in the 5-L fermenter culture, respectively. In conclusion, overexpressing orf10 gene can increase A82846B ratio,while overexpressing orf11 gene can increase A82846B titer as well. The artificial attB site is effective for inserting new genes.
Collapse
|
40
|
Kim H, Ji CH, Je HW, Kim JP, Kang HS. mpCRISTAR: Multiple Plasmid Approach for CRISPR/Cas9 and TAR-Mediated Multiplexed Refactoring of Natural Product Biosynthetic Gene Clusters. ACS Synth Biol 2020; 9:175-180. [PMID: 31800222 DOI: 10.1021/acssynbio.9b00382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multiplexed refactoring provides a tool for rapid transcriptional optimization of biosynthetic gene clusters (BGCs) through simultaneous replacement of multiple native promoters with synthetic counterparts. Here, we present the mpCRISTAR, a multiple plasmid-based CRISPR/Cas9 and TAR (transformation-associated recombination), that enables a rapid and highly efficient, multiplexed refactoring of natural product BGCs in yeast. A series of CRISPR plasmids with different auxotrophic markers that could be stably maintained in yeast cells were constructed to express multiple gRNAs simultaneously. We demonstrated the multiplexing capacity of mpCRISTAR using the actinorhodin biosynthetic gene cluster as a model cluster. mpCRISTAR1, in which each CRISPR plasmid expresses one gRNA, allows for simultaneous replacement of up to four promoter sites with nearly 100% efficiency. By expressing two gRNAs from one CRISPR plasmid, termed mpCRISTAR2, we simultaneously replaced a total of six and eight promoter sites with 68% and 32% efficiency, respectively. The mpCRISTAR could be performed iteratively using two different auxotrophic markers, allowing for refactoring of any type of BGC regardless of their operon complexities. The mpCRISTAR platform we report here would become a useful tool for the discovery of new natural products from transcriptionally silent biosynthetic gene clusters present in microbial genomes.
Collapse
Affiliation(s)
- Hiyoung Kim
- Department of Biomedical Science and Engineering , Konkuk University , Seoul 05029 , Korea
| | - Chang-Hun Ji
- Department of Biomedical Science and Engineering , Konkuk University , Seoul 05029 , Korea
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering , Konkuk University , Seoul 05029 , Korea
| | - Jong-Pyung Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Cheongju , Chungbuk 28116 , Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering , Konkuk University , Seoul 05029 , Korea
| |
Collapse
|
41
|
Yu P, Wang X, Ren Q, Huang X, Yan T. Genome shuffling for improving the activity of alkaline pectinase in Bacillus subtilis FS105 and its molecular mechanism. World J Microbiol Biotechnol 2019; 35:165. [PMID: 31641866 DOI: 10.1007/s11274-019-2749-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
Genome shuffling for improving the activity of alkaline pectinase in Bacillus subtilis FS105 and its molecular mechanism were investigated. The fused strain B. subtilis FS105 with the highest activity of alkaline pectinase was obtained after two rounds of genome shuffling. The activity of alkaline pectinase in B. subtilis FS105 was 499 U/ml, which was improved by 1.6 times compared to that in original strain. To elucidate its molecular mechanism, rpsL gene sequences from original and fused strains were cloned and aligned, and the space structure of their coding proteins were also analyzed and compared. The alignment of the rpsL gene sequences indicated that three bases G, G and C were respectively replaced by A, A and G in the positions 52, 408 and 409 after genome shuffling. This resulted in the substitution of two amino acid residues in ribosomal protein S12: D18N and P137A, and therefore improving the biosynthesis of alkaline pectinase. This study lays a foundation for improving the activity of alkaline pectinase by genome shuffling and understanding its molecular mechanism.
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China.
| | - Xinxin Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| | - Qian Ren
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| | - Xingxing Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| | - Tingting Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| |
Collapse
|
42
|
Chen YW, Liu XC, Lv FX, Li P. Characterization of three regulatory genes involved in enduracidin biosynthesis and improvement of enduracidin production in Streptomyces fungicidicus. J Appl Microbiol 2019; 127:1698-1705. [PMID: 31424146 DOI: 10.1111/jam.14417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022]
Abstract
AIMS To increase enduracidin production in Streptomyces fungicidicus ATCC 31731 by overexpressing positive regulators in enduracidin biosynthesis. METHODS AND RESULTS Genes orf22 and orf42 were knocked out by in-frame deletion based on CRISPR/Cas9 strategy, while the orf41 gene was inactivated by replacing it with the apramycin resistance gene cassette aac(3)IV using a fast screening blue/white system. The integrative plasmid pSET152ermE was used for the overexpression of orf22, orf41 and orf42 individually. The constructed plasmids were transformed into wild-type strain Streptomyces fungicidicus ATCC 31731. Three gene inactivation mutants Δorf22, Δorf41 and Δorf42 and three recombinant strains overexpressing orf22, orf41 and orf42 were all fermented and the enduracidin production of each strain was detected and compared by HPLC analysis. Two resulting engineered strains were generated through overexpression of gene orf22 and orf42 in Streptomyces fungicidicus, respectively, and in these strains the enduracidins titres were increased by approximately 4·0-fold and 2·3-fold higher than that of the wild-type strain. CONCLUSIONS The functions of three regulatory genes orf22, orf41 and orf42 in the enduracidin gene cluster in Streptomyces fungicidicus ATCC 31731 were examined. The orf22 gene, encoding a SARP family protein, was proposed to act in a positive manner. The proteins encoded by genes orf41 and orf42 were proposed to compose a two-component regulation system, in which the response protein Orf41 was characterized as a repressor, and the kinase Orf42 was shown to be an activator. The production of enduracidins was improved considerably by overexpression of the two positive regulatory genes orf22 and orf42 respectively. SIGNIFICANCE AND IMPACT OF THE STUDY The production of enduracidins was successfully improved by manipulating the regulatory genes involving in enduracidin biosynthesis, providing an efficient approach to improve enduracidin production further for fermentation industry and synthetic biological research.
Collapse
Affiliation(s)
- Y-W Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Hebei Shuangge Food Co. Ltd, Shijiazhuang, China
| | - X-C Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - F-X Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - P Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Dhakal D, Sohng JK, Pandey RP. Engineering actinomycetes for biosynthesis of macrolactone polyketides. Microb Cell Fact 2019; 18:137. [PMID: 31409353 PMCID: PMC6693128 DOI: 10.1186/s12934-019-1184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters (BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes are responsible for allocating the structural diversity and functional characteristics for their biological activities. Macrolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the application of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale or generation of their novel derivatives with more effective biological properties. In this review, we have discussed versatile approaches for generating a wide range of macrolide structures by engineering the PKS and post-PKS cascades at either enzyme or cellular level in actinobacteria species, either the native or heterologous producer strains.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| |
Collapse
|
44
|
Bauman KD, Li J, Murata K, Mantovani SM, Dahesh S, Nizet V, Luhavaya H, Moore BS. Refactoring the Cryptic Streptophenazine Biosynthetic Gene Cluster Unites Phenazine, Polyketide, and Nonribosomal Peptide Biochemistry. Cell Chem Biol 2019; 26:724-736.e7. [PMID: 30853419 PMCID: PMC6525064 DOI: 10.1016/j.chembiol.2019.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/02/2019] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
Abstract
The disconnect between the genomic prediction of secondary metabolite biosynthetic potential and the observed laboratory production profile of microorganisms is well documented. While heterologous expression of biosynthetic gene clusters (BGCs) is often seen as a potential solution to bridge this gap, it is not immune to many challenges including impaired regulation, the inability to recruit essential building blocks, and transcriptional and/or translational silence of the biosynthetic genes. Here we report the discovery, cloning, refactoring, and heterologous expression of a cryptic hybrid phenazine-type BGC (spz) from the marine actinomycete Streptomyces sp. CNB-091. Overexpression of the engineered spz pathway resulted in increased production and chemical diversity of phenazine natural products belonging to the streptophenazine family, including bioactive members containing an unprecedented N-formylglycine attachment. An atypical discrete adenylation enzyme in the spz cluster is required to introduce the formylglycine moiety and represents a phylogenetically distinct class of adenylation proteins.
Collapse
Affiliation(s)
- Katherine D Bauman
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Jie Li
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Kazuya Murata
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Simone M Mantovani
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Samira Dahesh
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego, La Jolla, CA, USA; Collaborative to Halt Antibiotic Resistant Microbes, University of California at San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Hanna Luhavaya
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA.
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
45
|
Li L, Gong L, He H, Liu Z, Rang J, Tang J, Peng S, Yuan S, Ding X, Yu Z, Xia L, Sun Y. AfsR is an important regulatory factor for growth and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01473-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
46
|
Kan E, Katsuyama Y, Maruyama JI, Tamano K, Koyama Y, Ohnishi Y. Production of the plant polyketide curcumin in Aspergillus oryzae: strengthening malonyl-CoA supply for yield improvement. Biosci Biotechnol Biochem 2019; 83:1372-1381. [PMID: 31023165 DOI: 10.1080/09168451.2019.1606699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The filamentous fungus Aspergillus oryzae was recently used as a heterologous host for fungal secondary metabolite production. Here, we aimed to produce the plant polyketide curcumin in A. oryzae. Curcumin is synthesized from feruloyl-coenzyme A (CoA) and malonyl-CoA by curcuminoid synthase (CUS). A. oryzae expressing CUS produced curcumin (64 μg/plate) on an agar medium containing feruloyl-N-acetylcysteamine (a feruloyl-CoA analog). To increase curcumin yield, we attempted to strengthen the supply of malonyl-CoA using two approaches: enhancement of the reaction catalyzed by acetyl-CoA carboxylase (ACC), which produces malonyl-CoA from acetyl-CoA, and inactivation of the acetyl-CoA-consuming sterol biosynthesis pathway. Finally, we succeeded in increasing curcumin yield sixfold by the double disruption of snfA and SCAP; SnfA is a homolog of SNF1, which inhibits ACC activity by phosphorylation in Saccharomyces cerevisiae and SCAP is positively related to sterol biosynthesis in Aspergillus terreus. This study provided useful information for heterologous polyketide production in A. oryzae.
Collapse
Affiliation(s)
- Eiichiro Kan
- a Department of Biotechnology, Graduate School of Agriculture and Life Sciences , The University of Tokyo , Bunkyo-ku , Japan.,b Noda Institute for Scientific Research , Noda City , Japan
| | - Yohei Katsuyama
- a Department of Biotechnology, Graduate School of Agriculture and Life Sciences , The University of Tokyo , Bunkyo-ku , Japan.,c Collaborative Research Institute for Innovative Microbiology , The University of Tokyo , Bunkyo-ku , Japan
| | - Jun-Ichi Maruyama
- a Department of Biotechnology, Graduate School of Agriculture and Life Sciences , The University of Tokyo , Bunkyo-ku , Japan.,c Collaborative Research Institute for Innovative Microbiology , The University of Tokyo , Bunkyo-ku , Japan
| | - Koichi Tamano
- d Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Toyohira-ku, Sapporo , Japan
| | - Yasuji Koyama
- b Noda Institute for Scientific Research , Noda City , Japan
| | - Yasuo Ohnishi
- a Department of Biotechnology, Graduate School of Agriculture and Life Sciences , The University of Tokyo , Bunkyo-ku , Japan.,c Collaborative Research Institute for Innovative Microbiology , The University of Tokyo , Bunkyo-ku , Japan
| |
Collapse
|
47
|
Li L, Liu X, Wei K, Lu Y, Jiang W. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnol Adv 2019; 37:730-745. [PMID: 30951810 DOI: 10.1016/j.biotechadv.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Industrial biotechnology is reliant on native pathway engineering or foreign pathway introduction for efficient biosynthesis of target products. Chromosomal integration, with intrinsic genetic stability, is an indispensable step for reliable expression of homologous or heterologous genes and pathways in large-scale and long-term fermentation. With advances in synthetic biology and CRISPR-based genome editing approaches, a wide variety of novel enabling technologies have been developed for single-step, markerless, multi-locus genomic integration of large biochemical pathways, which significantly facilitate microbial overproduction of chemicals, pharmaceuticals and other value-added biomolecules. Notably, the newly discovered homology-mediated end joining strategy could be widely applicable for high-efficiency genomic integration in a number of homologous recombination-deficient microbes. In this review, we explore the fundamental principles and characteristics of genomic integration, and highlight the development and applications of targeted integration approaches in the three representative industrial microbial systems, including Escherichia coli, actinomycetes and yeasts.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Wei
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 200232, China.
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
48
|
Palazzotto E, Tong Y, Lee SY, Weber T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 2019; 37:107366. [PMID: 30853630 DOI: 10.1016/j.biotechadv.2019.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.
Collapse
Affiliation(s)
- Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea.
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
49
|
Discovery of 16-Demethylrifamycins by Removing the Predominant Polyketide Biosynthesis Pathway in Micromonospora sp. Strain TP-A0468. Appl Environ Microbiol 2019; 85:AEM.02597-18. [PMID: 30530711 DOI: 10.1128/aem.02597-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
A number of strategies have been developed to mine novel natural products based on biosynthetic gene clusters and there have been dozens of successful cases facilitated by the development of genomic sequencing. During our study on biosynthesis of the antitumor polyketide kosinostatin (KST), we found that the genome of Micromonospora sp. strain TP-A0468, the producer of KST, contains other potential polyketide gene clusters, with no encoded products detected. Deletion of kst cluster led to abolishment of KST and the enrichment of several new compounds, which were isolated and characterized as 16-demethylrifamycins (referred to here as compounds 3 to 6). Transcriptional analysis demonstrated that the expression of the essential genes related to the biosynthesis of compounds 3 to 6 was comparable to the level in the wild-type and in the kst cluster deletion strain. This indicates that the accumulation of these compounds was due to the redirection of metabolic flux rather than transcriptional activation. Genetic disruption, chemical complementation, and bioinformatic analysis revealed that the production of compounds 3 to 6 was accomplished by cross talk between the two distantly placed polyketide gene clusters pks3 and M-rif This finding not only enriches the analogue pool and the biosynthetic diversity of rifamycins but also provides an auxiliary strategy for natural product discovery through genome mining in polyketide-producing microorganisms.IMPORTANCE Natural products are essential in the development of novel clinically used drugs. Discovering new natural products and modifying known compounds are still the two main ways to generate new candidates. Here, we have discovered several rifamycins with varied skeleton structures by redirecting the metabolic flux from the predominant polyketide biosynthetic pathway to the rifamycin pathway in the marine actinomycetes species Micromonospora sp. strain TP-A0468. Rifamycins are indispensable chemotherapeutics in the treatment of various diseases such as tuberculosis, leprosy, and AIDS-related mycobacterial infections. This study exemplifies a useful method for the discovery of cryptic natural products in genome-sequenced microbes. Moreover, the 16-demethylrifamycins and their genetically manipulable producer provide a new opportunity in the construction of novel rifamycin derivates to aid in the defense against the ever-growing drug resistance of Mycobacterium tuberculosis.
Collapse
|
50
|
Barreiro C, Martínez-Castro M. Regulation of the phosphate metabolism in Streptomyces genus: impact on the secondary metabolites. Appl Microbiol Biotechnol 2019; 103:1643-1658. [DOI: 10.1007/s00253-018-09600-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
|