1
|
Hong Y, Lertphadungkit P, Lv Y, Xu P. Recent advances in microbial synthesis of polyphenols. Curr Opin Biotechnol 2025; 93:103308. [PMID: 40328180 DOI: 10.1016/j.copbio.2025.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025]
Abstract
Polyphenols are plant-derived secondary metabolites known for their antioxidants, anti-inflammatory, and antimicrobial properties, with flavonoids being the most structurally diverse and medically relevant subclass. Traditional plant extraction is limited by low abundance and difficulty in separating from analogs. Microbial synthesis has emerged as an alternative method to complement plant extraction. This review summarizes recent advancements in microbe-sourced polyphenols, especially flavonoids and related derivatives. Key strategies, including modular design, CRISPR-based optimization, co-culture, and dynamic regulatory systems, have been employed to enhance microbial factory production efficiency. Emerging artificial intelligence-driven computational modeling and pathway optimization hold significant promise for enhancing polyphenol biosynthesis. Taken together, microbial synthesis offers a scalable and sustainable alternative to plant extraction. The cost-effective production of polyphenols will expand their applications in pharmaceuticals, nutraceuticals, and food industry.
Collapse
Affiliation(s)
- Yuxiang Hong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China; The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 320002, Israel
| | - Pornpatsorn Lertphadungkit
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China; Center for Lipid Engineering, Muyuan Laboratory, Zhengzhou, Henan 450016, China
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China; Center for Lipid Engineering, Muyuan Laboratory, Zhengzhou, Henan 450016, China.
| |
Collapse
|
2
|
Nair AR, Kaniyala H, Vardhan MH, Pillai P. Differentially Expressed Genes (DEGs) in Umbelliferone (UMB) Producing Endophytic Fusarium oxysporum (ZzEF8) Following Epigenetic Modification. J Basic Microbiol 2025; 65:e2400582. [PMID: 39686548 DOI: 10.1002/jobm.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/11/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
Despite several studies documenting secondary metabolite (SM) production by endophytes, their commercial use is often limited owing to the research lacunae in the underlying biosynthetic pathway and the corresponding metabolic flux. Combining epigenetic modulation with RNA-Seq analysis constitutes a promising approach for inducing regulatory gene(s) and thereby identifying their role in SM biosynthesis. Our earlier studies had identified the hypomethylating effects of prednisone in umbelliferone (UMB) (7-hydroxyl coumarin) producing endophytic Fusarium oxysporum isolate, ZzEF8 isolated from Zingiber zerumbet rhizomes. Hypomethylating effect of prednisone (300 μM) in ZzEF8 was validated in present experiments revealing decrease in 5-mC content (0.09 ± 0.01%) in prednisone treated ZzEF8 (PrZzEF8) compared to untreated control (UtZzEF8) (0.36 ± 0.01%). Subsequent RNA-Seq analysis detected transcriptional alterations in PrZzEF8 compared to UtZzEF8. Transcripts with significant differential expression (-2 ≥ fold change (FC) ≥ 2; q-value < 0.05) were detected for 64 transcripts, with 60 upregulated and four downregulated in PrZzEF8. Upregulated differentially expressed genes (DEGs) were annotated as transmembrane transporters, non-ribosomal peptide synthetase (NRPS), Type I and III polyketide synthase (PKS), phytoene dehydrogenase, bifunctional lycopene cyclase/phytoene synthase, geranylgeranyl pyrophosphate synthase and various genes involved in nutrient assimilation, transcription factors and transporters regulating metabolite export. Expression analysis of the selected DEGs were validated by qRT-PCR. Present study proposes UMB biosynthesis through acetate-malonate pathway from acetate units via a pentaketide intermediate in ZzEF8 instead of the phenylpropanoid pathway reported in plants. Study is of relevance as the insights gained into the UMB biosynthetic pathway in ZzEF8 will help in strategizing scale-up of UMB production.
Collapse
Affiliation(s)
- Aswati Ravindrananthan Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala (CUK), Kasaragod, Kerala, India
| | - Harshitha Kaniyala
- Department of Biochemistry and Molecular Biology, Central University of Kerala (CUK), Kasaragod, Kerala, India
| | - Mudumbi Harsha Vardhan
- Department of Biochemistry and Molecular Biology, Central University of Kerala (CUK), Kasaragod, Kerala, India
| | - Padmesh Pillai
- Department of Genomic Science, Central University of Kerala (CUK), Kasaragod, Kerala, India
| |
Collapse
|
3
|
Jia Y, Zhou X, Liu Y, Liu X, Ren F, Liu H. Novel Insights Into Naringenin: A Multifaceted Exploration of Production, Synthesis, Health Effects, Nanodelivery Systems, and Molecular Simulation. Mol Nutr Food Res 2025:e70066. [PMID: 40223444 DOI: 10.1002/mnfr.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Naringenin, a flavonoid widely present in citrus fruits, has garnered considerable attention due to its diverse biological activities and health-promoting benefits. As research on naringenin advances, the application scope of naringenin has significantly expanded. This paper provides a systematic overview of the production and synthesis methods of naringenin, focusing especially on the application of green extraction techniques and the strategies for constructing microbial metabolic engineering. Naringenin not only achieves its diverse biological activities including antioxidant, antiinflammatory, and glucolipid metabolism regulation through multiple mechanisms but also modulates the balance of gut microbiota, thereby mediating synergistic health effects via the host-microbial metabolic axis. Given the low oral bioavailability of naringenin, various nanodelivery systems have been developed to improve its bioavailability. Meanwhile, molecular simulation techniques elucidate the binding conformation characteristics with receptors at the molecular level, providing novel insights into its mechanisms of action. In conclusion, this review seeks to offer a theoretical basis and future directions for further research and application of naringenin.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xinjing Zhou
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | | | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Hongzhi Liu
- Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
You Z, Yu H, Zhang B, Liu Q, Xiong B, Li C, Qiao C, Dai L, Li J, Li W, Xin G, Liu Z, Li F, Song H. Engineering Exopolysaccharide Biosynthesis of Shewanella oneidensis to Promote Electroactive Biofilm Formation for Liquor Wastewater Treatment. ACS Synth Biol 2025; 14:373-383. [PMID: 39556104 DOI: 10.1021/acssynbio.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Microbial electrochemical systems (MESs), as a green and sustainable technology, can decompose organics in wastewater to recover bioelectricity. Electroactive biofilms, a microbial community structure encased in a self-produced matrix, play a decisive role in determining the efficiency of MESs. However, as an essential component of the biofilm matrix, the role of exopolysaccharides in electroactive biofilm formation and their influence on extracellular electron transfer (EET) have been rarely studied. Herein, to explore the effects of exopolysaccharides on biofilm formation and EET rate, we first inhibited the key genes responsible for exopolysaccharide biosynthesis (namely, so_3171, so_3172, so_3177, and so_3178) by using antisense RNA in Shewanella oneidensis MR-1. Then, to explore the underlying mechanisms why inhibition of exopolysaccharide synthesis could enhance biofilm formation and promote the EET rate, we characterized cell physiology and electrophysiology. The results showed inhibition of exopolysaccharide biosynthesis not only altered cell surface hydrophobicity and promoted intercellular adhesion and aggregation, but also increased biosynthesis of c-type cytochromes and decreased interfacial resistance, thus promoting electroactive biofilm formation and improving the EET rate of S. oneidensis. Lastly, to evaluate and intensify the capability of exopolysaccharide-reduced strains in harvesting electrical energy from actual liquor wastewater, engineered strain Δ3171-as3177 was further constructed to treat an actual thin stillage. The results showed that the output power density reached 380.98 mW m-2, 11.1-fold higher than that of WT strain, which exhibited excellent capability of harvesting electricity from actual liquor wastewater. This study sheds light on the underlying mechanism of how inhibition of exopolysaccharides impacts electroactive biofilm formation and EET rate, which suggested that regulating exopolysaccharide biosynthesis is a promising avenue for increasing the EET rate.
Collapse
Affiliation(s)
- Zixuan You
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Huan Yu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Baocai Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qijing Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bo Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chao Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chunxiao Qiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenwei Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Guosheng Xin
- School of Life and Sciences, Ningxia University, Yinchuan, 750021, China
| | - Zhanying Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner Mongolia, Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, and School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia, Hohhot 010051, China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
5
|
Cao L, Liu X, Yang D, Xia Z, Dai Z, Sun L, Fang J, Zhu Z, Jin D, Rang J, Hu S, Xia L. Combinatorial metabolic engineering strategy of precursor pools for the yield improvement of spinosad in Saccharopolyspora spinosa. J Biotechnol 2024; 396:127-139. [PMID: 39491726 DOI: 10.1016/j.jbiotec.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Spinosad is an insecticide produced by Saccharopolyspora spinosa, and its larvicidal activity is considered a promising approach to combat crop pests. The aim of this study was to enhance the synthesis of spinosad through increasing the supply of acyl-CoAs precursor by the following steps. (i) Engineering the β-oxidation pathway by overexpressing key genes within the pathway to promote the synthesis of spinosad. The results showed that the overexpression of fadD, fadE, and fadA1 genes, as well as the co-expression of fadA1 and fadE genes, increased the yield of spinosad by 0.36-fold, 0.89-fold, 0.75-fold and 1.25-fold respectively. (ii) Employing combinatorial engineering of the β-oxidation pathway and ACC/PCC pathway to promote the synthesis of spinosad. The results showed that the co-expression of fadE and pccA, as well as accC and fadE, resulted in a 1.77-fold and 1.43-fold increase in spinosad production respectively. (iii) When exogenous triacylglycerol was added to the fermentation medium, the solely engineering of the β-oxidation pathway increased the yield of spinosad by 7.13-fold, reaching 427.23 mg/L. While the combinatorial engineering of both the β-oxidation pathway and ACC/PCC pathway increased the yield of spinosad by 9.61-fold, reaching 625.17 mg/L, and further optimization of the culture medium resulted in an even higher yield of spinosad, reaching 1293.43 mg/L. The results of this study indicate that the above combination strategy can promote the efficient biosynthesis of spinosad.
Collapse
Affiliation(s)
- Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xirong Liu
- Hunan Norchem Pharmaceutical Co., Ltd., Changsha, Hunan 410205, China
| | - Danlu Yang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zirui Dai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Lin Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jing Fang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Duo Jin
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
6
|
Costa CE, Romaní A, Domingues L. Overview of resveratrol properties, applications, and advances in microbial precision fermentation. Crit Rev Biotechnol 2024:1-17. [PMID: 39582165 DOI: 10.1080/07388551.2024.2424362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 07/13/2024] [Indexed: 11/26/2024]
Abstract
Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While Saccharomyces cerevisiae has been the most used host, non-conventional yeasts like Yarrowia lipolytica and bacteria like Escherichia coli have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.
Collapse
Affiliation(s)
- Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Zheng W, Wang Y, Cui J, Guo G, Li Y, Hou J, Tu Q, Yin Y, Stewart AF, Zhang Y, Bian X, Wang X. ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism. Nat Commun 2024; 15:9790. [PMID: 39532871 PMCID: PMC11557832 DOI: 10.1038/s41467-024-54191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (Recombineering and Linear CRISPR/Cas9 assisted Multiplex Genome Engineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into E. coli, Schlegelella brevitalea and Pseudomonas putida genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt S. brevitalea to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.
Collapse
Affiliation(s)
- Wentao Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
- Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Guangdong, P. R. China
| | - Yuxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jie Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Guangyao Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yufeng Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | | | - A Francis Stewart
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, Dresden, Germany.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| |
Collapse
|
8
|
Favoino G, Krink N, Schwanemann T, Wierckx N, Nikel PI. Enhanced biosynthesis of poly(3-hydroxybutyrate) in engineered strains of Pseudomonas putida via increased malonyl-CoA availability. Microb Biotechnol 2024; 17:e70044. [PMID: 39503721 PMCID: PMC11539682 DOI: 10.1111/1751-7915.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
Malonyl-coenzyme A (CoA) is a key precursor for the biosynthesis of multiple value-added compounds by microbial cell factories, including polyketides, carboxylic acids, biofuels, and polyhydroxyalkanoates. Owing to its role as a metabolic hub, malonyl-CoA availability is limited by competition in several essential metabolic pathways. To address this limitation, we modified a genome-reduced Pseudomonas putida strain to increase acetyl-CoA carboxylation while limiting malonyl-CoA utilization. Genes involved in sugar catabolism and its regulation, the tricarboxylic acid (TCA) cycle, and fatty acid biosynthesis were knocked-out in specific combinations towards increasing the malonyl-CoA pool. An enzyme-coupled biosensor, based on the rppA gene, was employed to monitor malonyl-CoA levels in vivo. RppA is a type III polyketide synthase that converts malonyl-CoA into flaviolin, a red-colored polyketide. We isolated strains displaying enhanced malonyl-CoA availability via a colorimetric screening method based on the RppA-dependent red pigmentation; direct flaviolin quantification identified four engineered strains had a significant increase in malonyl-CoA levels. We further modified these strains by adding a non-canonical pathway that uses malonyl-CoA as precursor for poly(3-hydroxybutyrate) biosynthesis. These manipulations led to increased polymer accumulation in the fully engineered strains, validating our general strategy to boost the output of malonyl-CoA-dependent pathways in P. putida.
Collapse
Affiliation(s)
- Giusi Favoino
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Nicolas Krink
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Tobias Schwanemann
- Institute of Bio‐ and GeosciencesIBG‐1: Biotechnology, Forschungszentrum Jülich GmbHJülichGermany
| | - Nick Wierckx
- Institute of Bio‐ and GeosciencesIBG‐1: Biotechnology, Forschungszentrum Jülich GmbHJülichGermany
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
9
|
Li F, Yu H, Zhang B, Hu C, Lan F, Wang Y, You Z, Liu Q, Tang R, Zhang J, Li C, Shi L, Li W, Nealson KH, Liu Z, Song H. Engineered Cell Elongation Promotes Extracellular Electron Transfer of Shewanella Oneidensis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403067. [PMID: 39234800 PMCID: PMC11538702 DOI: 10.1002/advs.202403067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
To investigate how cell elongation impacts extracellular electron transfer (EET) of electroactive microorganisms (EAMs), the division of model EAM Shewanella oneidensis (S. oneidensis) MR-1 is engineered by reducing the formation of cell divisome. Specially, by blocking the translation of division proteins via anti-sense RNAs or expressing division inhibitors, the cellular length and output power density are all increased. Electrophysiological and transcriptomic results synergistically reveal that the programmed cell elongation reinforces EET by enhancing NADH oxidation, inner-membrane quinone pool, and abundance of c-type cytochromes. Moreover, cell elongation enhances hydrophobicity due to decreased cell-surface polysaccharide, thus facilitates the initial surface adhesion stage during biofilm formation. The output current and power density all increase in positive correction with cellular length. However, inhibition of cell division reduces cell growth, which is then restored by quorum sensing-based dynamic regulation of cell growth and elongation phases. The QS-regulated elongated strain thus enables a cell length of 143.6 ± 40.3 µm (72.6-fold of that of S. oneidensis MR-1), which results in an output power density of 248.0 ± 10.6 mW m-2 (3.41-fold of that of S. oneidensis MR-1) and exhibits superior potential for pollutant treatment. Engineering cellular length paves an innovate avenue for enhancing the EET of EAMs.
Collapse
Affiliation(s)
- Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Baocai Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chaoning Hu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Fei Lan
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chao Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Liang Shi
- Department of Biological Sciences and TechnologySchool of Environmental StudiesChina University of Geoscience in WuhanWuhanHubei430074China
| | - Wen‐Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant ConversionDepartment of Environmental Science and EngineeringUniversity of Science & Technology of ChinaHefei230026China
| | - Kenneth H. Nealson
- Departments of Earth Science & Biological SciencesUniversity of Southern California4953 Harriman Ave.South PasadenaCA91030USA
| | - ZhanYing Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner MongoliaEngineering Research Center of Inner Mongolia for Green Manufacturing in Bio‐fermentation Industryand School of Chemical EngineeringInner Mongolia University of TechnologyInner MongoliaHohhot010051China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
10
|
Zhou S, Zhang Q, Yuan M, Yang H, Deng Y. Static and Dynamic Regulation of Precursor Supply Pathways to Enhance Raspberry Ketone Synthesis from Glucose in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23411-23421. [PMID: 39378372 DOI: 10.1021/acs.jafc.4c07423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Raspberry ketone (RK), a natural product derived from raspberry fruit, is commonly utilized as a flavoring agent in foods and as an active component for weight loss. Metabolic engineering has enabled microorganisms to produce RK more efficiently and cost-effectively. However, the biosynthesis of RK is hindered by an unbalanced synthetic pathway and a deficiency of precursors, including tyrosine and malonyl-CoA. In this study, we constructed and optimized the RK synthetic pathway in Escherichia coli using a static metabolic engineering strategy to enhance the biosynthesis of tyrosine from glucose, thereby achieving the de novo production of RK. Additionally, the synthetic and consumption pathways of malonyl-CoA were dynamically regulated by p-coumaric acid-responsive biosensor to balance the metabolic flux distribution between cell growth and RK biosynthesis. Following pathway optimization, the medium components and fermentation conditions were further refined, resulting in a significant increase in the RK titer to 415.56 mg/L. The optimized strain demonstrated a 32.4-fold increase in the RK titer while maintaining a comparable final OD600 to the initial strain. Overall, the implemented static and dynamic regulatory strategies provide a novel approach for the efficient production of RK, taking into account cell viability and growth.
Collapse
Affiliation(s)
- Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiyue Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Manwen Yuan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haining Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Chen S, Rao M, Jin W, Hu M, Chen D, Ge M, Mao W, Qian X. Metabolomic analysis in Amycolatopsis keratiniphila disrupted the competing ECO0501 pathway for enhancing the accumulation of vancomycin. World J Microbiol Biotechnol 2024; 40:297. [PMID: 39126539 DOI: 10.1007/s11274-024-04105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Vancomycin is a clinically important glycopeptide antibiotic against Gram-positive pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus. In the mutant strain of Amycolatopsis keratiniphila HCCB10007 Δeco-cds4-27, the production of ECO-0501 was disrupted, but enhanced vancomycin yield by 55% was observed compared with the original strain of A. keratiniphila HCCB10007. To gain insights into the mechanism of the enhanced production of vancomycin in the mutant strain, comparative metabolomics analyses were performed between the mutant strain and the original strain, A. keratiniphila HCCB10007 via GC-TOF-MS and UPLC-HRMS. The results of PCA and OPLS-DA revealed a significant distinction of the intracellular metabolites between the two strains during the fermentation process. 64 intracellular metabolites, which involved in amino acids, fatty acids and central carbon metabolism, were identified as differential metabolites. The high-yield mutant strain maintained high levels of glucose-1-phosphate and glucose-6-phosphate and they declined with the increases of vancomycin production. Particularly, a strong association of fatty acids accumulation as well as 3,5-dihydroxyphenylacetic acid and non-proteinogenic amino acid 3,5-dihydroxyphenylglycine (Dpg) with enhancement of vancomycin production was observed in the high-yield mutant strain, indicating that the consumption of fatty acid pools might be beneficial for giving rise to 3,5-dihydroxyphenylacetic acid and Dpg which further lead to improve vancomycin production. In addition, the lower levels of glyoxylic acid and lactic acid and the higher levels of sulfur amino acids might be beneficial for improving vancomycin production. These findings proposed more advanced elucidation of metabolomic characteristics in the high-yield strain for vancomycin production and could provide potential strategies to enhance the vancomycin production.
Collapse
Affiliation(s)
- Shuo Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Min Rao
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
- Zhejiang Pharmaceutical Co., Ltd, Shaoxing, China
| | - Wenxiang Jin
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Mengyi Hu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
- Zhejiang Pharmaceutical Co., Ltd, Shaoxing, China
| | - Wenwei Mao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Guo Q, Zheng LJ, Zheng SH, Zheng HD, Lin XC, Fan LH. Enhanced Biosynthesis of d-Allulose from a d-Xylose-Methanol Mixture and Its Self-Inductive Detoxification by Using Antisense RNAs in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14821-14829. [PMID: 38897918 DOI: 10.1021/acs.jafc.4c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
d-Allulose, a C-3 epimer of d-fructose, has great market potential in food, healthcare, and medicine due to its excellent biochemical and physiological properties. Microbial fermentation for d-allulose production is being developed, which contributes to cost savings and environmental protection. A novel metabolic pathway for the biosynthesis of d-allulose from a d-xylose-methanol mixture has shown potential for industrial application. In this study, an artificial antisense RNA (asRNA) was introduced into engineered Escherichia coli to diminish the flow of pentose phosphate (PP) pathway, while the UDP-glucose-4-epimerase (GalE) was knocked out to prevent the synthesis of byproducts. As a result, the d-allulose yield on d-xylose was increased by 35.1%. Then, we designed a d-xylose-sensitive translation control system to regulate the expression of the formaldehyde detoxification operon (FrmRAB), achieving self-inductive detoxification by cells. Finally, fed-batch fermentation was carried out to improve the productivity of the cell factory. The d-allulose titer reached 98.6 mM, with a yield of 0.615 mM/mM on d-xylose and a productivity of 0.969 mM/h.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| | - Shang-He Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| | - Xiao-Cheng Lin
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| |
Collapse
|
13
|
Kim G, Kim HJ, Kim K, Kim HJ, Yang J, Seo SW. Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria. Nat Commun 2024; 15:5319. [PMID: 38909033 PMCID: PMC11193725 DOI: 10.1038/s41467-024-49642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Although CRISPR-dCas13, the RNA-guided RNA-binding protein, was recently exploited as a translation-level gene expression modulator, it has still been difficult to precisely control the level due to the lack of detailed characterization. Here, we develop a synthetic tunable translation-level CRISPR interference (Tl-CRISPRi) system based on the engineered guide RNAs that enable precise and predictable down-regulation of mRNA translation. First, we optimize the Tl-CRISPRi system for specific and multiplexed repression of genes at the translation level. We also show that the Tl-CRISPRi system is more suitable for independently regulating each gene in a polycistronic operon than the transcription-level CRISPRi (Tx-CRISPRi) system. We further engineer the handle structure of guide RNA for tunable and predictable repression of various genes in Escherichia coli and Vibrio natriegens. This tunable Tl-CRISPRi system is applied to increase the production of 3-hydroxypropionic acid (3-HP) by 14.2-fold via redirecting the metabolic flux, indicating the usefulness of this system for the flux optimization in the microbial cell factories based on the RNA-targeting machinery.
Collapse
Affiliation(s)
- Giho Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ho Joon Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Keonwoo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyeon Jin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, Jeju-si, South Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea.
- Institute of Chemical Processes, Seoul National University, Seoul, South Korea.
- Bio-MAX Institute, Seoul National University, Seoul, South Korea.
- Institute of Bio Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
14
|
Jang Y, Lee YJ, Gong G, Lee SM, Um Y, Kim KH, Ko JK. Carbon dioxide valorization into resveratrol via lithoautotrophic fermentation using engineered Cupriavidus necator H16. Microb Cell Fact 2024; 23:122. [PMID: 38678199 PMCID: PMC11055273 DOI: 10.1186/s12934-024-02398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Industrial biomanufacturing of value-added products using CO2 as a carbon source is considered more sustainable, cost-effective and resource-efficient than using common carbohydrate feedstocks. Cupriavidus necator H16 is a representative H2-oxidizing lithoautotrophic bacterium that can be utilized to valorize CO2 into valuable chemicals and has recently gained much attention as a promising platform host for versatile C1-based biomanufacturing. Since this microbial platform is genetically tractable and has a high-flux carbon storage pathway, it has been engineered to produce a variety of valuable compounds from renewable carbon sources. In this study, the bacterium was engineered to produce resveratrol autotrophically using an artificial phenylpropanoid pathway. RESULTS The heterologous genes involved in the resveratrol biosynthetic pathway-tyrosine ammonia lyase (TAL), 4-coumaroyl CoA ligase (4CL), and stilbene synthase (STS) -were implemented in C. necator H16. The overexpression of acetyl-CoA carboxylase (ACC), disruption of the PHB synthetic pathway, and an increase in the copy number of STS genes enhanced resveratrol production. In particular, the increased copies of VvSTS derived from Vitis vinifera resulted a 2-fold improvement in resveratrol synthesis from fructose. The final engineered CR-5 strain produced 1.9 mg/L of resveratrol from CO2 and tyrosine via lithoautotrophic fermentation. CONCLUSIONS To the best of our knowledge, this study is the first to describe the valorization of CO2 into polyphenolic compounds by engineering a phenylpropanoid pathway using the lithoautotrophic bacterium C. necator H16, demonstrating the potential of this strain a platform for sustainable chemical production.
Collapse
Affiliation(s)
- Yongjae Jang
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeon Ji Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
15
|
Kim YR, Han JY, Choi YE. A Pinus strobus transcription factor PsbHLH1 activates the production of pinosylvin stilbenoids in transgenic Pinus koraiensis calli and tobacco leaves. FRONTIERS IN PLANT SCIENCE 2024; 15:1342626. [PMID: 38304739 PMCID: PMC10830828 DOI: 10.3389/fpls.2024.1342626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
Transcription factors (TFs) play an important role in regulating the biosynthesis of secondary metabolites. In Pinus strobus, the level of methylated derivatives of pinosylvin is significantly increased upon pine wood nematode (PWN) infection, and these compounds are highly toxic to PWNs. In a previous study, we found that the expression of a basic helix-loop-helix TF gene, PsbHLH1, strongly increased in P. strobus plants after infection with PWNs. In this study, we elucidated the regulatory role of the PsbHLH1 gene in the production of methylated derivatives of pinosylvin such as pinosylvin monomethyl ether (PME) and dihydropinoylvin monomethyl ether (DPME). When PsbHLH1 was overexpressed in Pinus koraiensis calli, the production of PME and DPME was significantly increased. Overexpression of the stilbene synthase (PsSTS) and pinosylvin methyl transferase (PsPMT) genes, known as key enzymes for the biosynthesis of methylated pinosylvins, did not change PME or DPME production. Moreover, PME and DPME were not produced in tobacco leaves when the PsSTS and PsPMT genes were transiently coexpressed. However, the transient expression of three genes, PsSTS, PsPMT, and PsbHLH1, resulted in the production of PME and DPME in tobacco leaves. These results prove that PsbHLH1 is an important TF for the pinosylvin stilbene biosynthesis in pine plants and plays a regulatory role in the engineered production of PME and DPME in tobacco plants.
Collapse
Affiliation(s)
| | | | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
16
|
Yan Z, Pan Y, Huang M, Liu JZ. De Novo Pterostilbene Production from Glucose Using Modular Coculture Engineering in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:516-528. [PMID: 38130104 DOI: 10.1021/acs.jafc.3c06629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Pterostilbene, a derivative of resveratrol, is of increasing interest due to its increased bioavailability and potential health benefits. Sustainable production of pterostilbene is important, especially given the challenges of traditional plant extraction and chemical synthesis methods. While engineered microbial cell factories provide a potential alternative for pterostilbene production, most approaches necessitate feeding intermediate compounds. To address these limitations, we adopted a modular coculture engineering strategy, dividing the pterostilbene biosynthetic pathway between two engineered E. coli strains. Using a combination of gene knockout, atmospheric and room-temperature plasma mutagenesis, and error-prone PCR-based whole genome shuffling to engineer strains for the coculture system, we achieved a pterostilbene production titer of 134.84 ± 9.28 mg/L from glucose using a 1:3 inoculation ratio and 0.1% dimethyl sulfoxide supplementation. This represents the highest reported de novo production titer. Our results underscore the potential of coculture systems and metabolic balance in microbial biosynthesis.
Collapse
Affiliation(s)
- Zhibo Yan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jian-Zhong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
17
|
Jiang T, Teng Y, Li C, Gan Q, Zhang J, Zou Y, Desai BK, Yan Y. Establishing Tunable Genetic Logic Gates with Versatile Dynamic Performance by Varying Regulatory Parameters. ACS Synth Biol 2023; 12:3730-3742. [PMID: 38033235 PMCID: PMC10729296 DOI: 10.1021/acssynbio.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Genetic logic gates can be employed in metabolic engineering and synthetic biology to regulate gene expression based on diverse inputs. Design of tunable genetic logic gates with versatile dynamic performance is essential for expanding the usability of these toolsets. Here, using the p-coumaric acid biosensor system as a proof-of-concept, we initially investigated the parameters influencing the buffer (BUF) genetic logic gates. Subsequently, integrating binding sequences from the p-coumaric acid biosensor system and tetR or lacI regulation systems into a constitutive promoter yielded AND genetic logic gates. Additionally, characterized antisense RNAs (asRNAs) or single guide RNAs (sgRNAs) with various repression efficiencies were combined with BUF gates to construct a suite of p-coumaric acid-triggered NOT genetic logic gates. Finally, the designed BUF and NOT gates were combined to construct bifunctional genetic circuits that were subjected to orthogonality evaluation. The genetic logic gates established in this study can serve as valuable tools in future applications of metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Tian Jiang
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yuxi Teng
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Chenyi Li
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Qi Gan
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Jianli Zhang
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yusong Zou
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Bhaven Kalpesh Desai
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
19
|
Beganovic S, Rückert-Reed C, Sucipto H, Shu W, Gläser L, Patschkowski T, Struck B, Kalinowski J, Luzhetskyy A, Wittmann C. Systems biology of industrial oxytetracycline production in Streptomyces rimosus: the secrets of a mutagenized hyperproducer. Microb Cell Fact 2023; 22:222. [PMID: 37898787 PMCID: PMC10612213 DOI: 10.1186/s12934-023-02215-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Oxytetracycline which is derived from Streptomyces rimosus, inhibits a wide range of bacteria and is industrially important. The underlying biosynthetic processes are complex and hinder rational engineering, so industrial manufacturing currently relies on classical mutants for production. While the biochemistry underlying oxytetracycline synthesis is known to involve polyketide synthase, hyperproducing strains of S. rimosus have not been extensively studied, limiting our knowledge on fundamental mechanisms that drive production. RESULTS In this study, a multiomics analysis of S. rimosus is performed and wild-type and hyperproducing strains are compared. Insights into the metabolic and regulatory networks driving oxytetracycline formation were obtained. The overproducer exhibited increased acetyl-CoA and malonyl CoA supply, upregulated oxytetracycline biosynthesis, reduced competing byproduct formation, and streamlined morphology. These features were used to synthesize bhimamycin, an antibiotic, and a novel microbial chassis strain was created. A cluster deletion derivative showed enhanced bhimamycin production. CONCLUSIONS This study suggests that the precursor supply should be globally increased to further increase the expression of the oxytetracycline cluster while maintaining the natural cluster sequence. The mutagenized hyperproducer S. rimosus HP126 exhibited numerous mutations, including large genomic rearrangements, due to natural genetic instability, and single nucleotide changes. More complex mutations were found than those typically observed in mutagenized bacteria, impacting gene expression, and complicating rational engineering. Overall, the approach revealed key traits influencing oxytetracycline production in S. rimosus, suggesting that similar studies for other antibiotics could uncover general mechanisms to improve production.
Collapse
Affiliation(s)
- Selma Beganovic
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | | | - Hilda Sucipto
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | | | - Ben Struck
- Centre for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Centre for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany. *
| |
Collapse
|
20
|
Jiang T, Li C, Teng Y, Zhang J, Logan DA, Yan Y. Dynamic Metabolic Control: From the Perspective of Regulation Logic. SYNTHETIC BIOLOGY AND ENGINEERING 2023; 1:10012. [PMID: 38572077 PMCID: PMC10986841 DOI: 10.35534/sbe.2023.10012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Establishing microbial cell factories has become a sustainable and increasingly promising approach for the synthesis of valuable chemicals. However, introducing heterologous pathways into these cell factories can disrupt the endogenous cellular metabolism, leading to suboptimal production performance. To address this challenge, dynamic pathway regulation has been developed and proven effective in improving microbial biosynthesis. In this review, we summarized typical dynamic regulation strategies based on their control logic. The applicable scenarios for each control logic were highlighted and perspectives for future research direction in this area were discussed.
Collapse
Affiliation(s)
- Tian Jiang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yuxi Teng
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Diana Alexis Logan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
21
|
Li C, Zhou Y, Zou Y, Jiang T, Gong X, Yan Y. Identifying, Characterizing, and Engineering a Phenolic Acid-Responsive Transcriptional Factor from Bacillus amyloliquefaciens. ACS Synth Biol 2023; 12:2382-2392. [PMID: 37499217 PMCID: PMC10443031 DOI: 10.1021/acssynbio.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Indexed: 07/29/2023]
Abstract
Transcriptional factors-based biosensors are commonly used in metabolic engineering for inducible control of gene expression and related applications such as high-throughput screening and dynamic pathway regulations. Mining for novel transcriptional factors is essential for expanding the usability of these toolsets. Here, we report the identification, characterization, and engineering of a phenolic acid responsive regulator PadR from Bacillus amyloliquefaciens (BaPadR). This BaPadR-based biosensor system showed a unique ligand preference and exhibited a high output strength comparable to that of commonly used inducible expression systems. Through engineering the DNA binding region of BaPadR, we further enhanced the dynamic range of the biosensor system. The DNA sequences that are responsible for BaPadR recognition were located by promoter truncation and hybrid promoter building. To further explore the tunability of the sensor system, base substitutions were performed on the BaPadR binding region of the phenolic acid decarboxylase promoter (PpadC) and the hybrid promoter. This novel biosensor system can serve as a valuable tool in future synthetic biology applications.
Collapse
Affiliation(s)
- Chenyi Li
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yuyang Zhou
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yusong Zou
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Tian Jiang
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Xinyu Gong
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Madhavan A, Arun KB, Alex D, Anoopkumar AN, Emmanual S, Chaturvedi P, Varjani S, Tiwari A, Kumar V, Reshmy R, Awasthi MK, Binod P, Aneesh EM, Sindhu R. Microbial production of nutraceuticals: Metabolic engineering interventions in phenolic compounds, poly unsaturated fatty acids and carotenoids synthesis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2092-2104. [PMID: 37273565 PMCID: PMC10232702 DOI: 10.1007/s13197-022-05482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/06/2023]
Abstract
Nutraceuticals have attained substantial attention due to their health-boosting or disease-prevention characteristics. Growing awareness about the potential of nutraceuticals for the prevention and management of diseases affecting human has led to an increase in the market value of nutraceuticals in several billion dollars. Nevertheless, limitations in supply and isolation complications from plants, animals or fungi, limit the large-scale production of nutraceuticals. Microbial engineering at metabolic level has been proved as an environment friendly substitute for the chemical synthesis of nutraceuticals. Extensively used microbial systems such as E. coli and S. cerevisiae have been modified as versatile cell factories for the synthesis of diverse nutraceuticals. This review describes current interventions in metabolic engineering for synthesising some of the therapeutically important nutraceuticals (phenolic compounds, polyunsaturated fatty acids and carotenoids). We focus on the interventions in enhancing product yield through engineering at gene level or pathway level.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - K. B. Arun
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - Deepthy Alex
- Department of Biotechnology, Mar Ivanios College, Trivandrum, Kerala 695015 India
| | - A. N. Anoopkumar
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph’s College, Thrissur, Kerala 680121 India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226001 India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10 A, Gandhinagar, Gujarat 382010 India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, 201301 India
| | - Vinod Kumar
- Fermentation Technology Division, CSIR- Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, J & K 180001 India
| | - R. Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur, Kerala 689122 India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019 India
| | - Embalil Mathachan Aneesh
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691505 India
| |
Collapse
|
23
|
Tanniche I, Nazem-Bokaee H, Scherr DM, Schlemmer S, Senger RS. A novel synthetic sRNA promoting protein overexpression in cell-free systems. Biotechnol Prog 2023; 39:e3324. [PMID: 36651906 DOI: 10.1002/btpr.3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/31/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Bacterial small RNAs (sRNAs) that regulate gene expression have been engineered for uses in synthetic biology and metabolic engineering. Here, we designed a novel non-Hfq-dependent sRNA scaffold that uses a modifiable 20 nucleotide antisense binding region to target mRNAs selectively and influence protein expression. The system was developed for regulation of a fluorescent reporter in vivo using Escherichia coli, but the system was found to be more responsive and produced statistically significant results when applied to protein synthesis using in vitro cell-free systems (CFS). Antisense binding sequences were designed to target not only translation initiation regions but various secondary structures in the reporter mRNA. Targeting a high-energy stem loop structure and the 3' end of mRNA yielded protein expression knock-downs that approached 70%. Notably, targeting a low-energy stem structure near a potential RNase E binding site led to a statistically significant 65% increase in protein expression (p < 0.05). These results were not obtainable in vivo, and the underlying mechanism was translated from the reporter system to achieve better than 75% increase in recombinant diaphorase expression in a CFS. It is possible the designs developed here can be applied to improve/regulate expression of other proteins in a CFS.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
- School of Plant & Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Hadi Nazem-Bokaee
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
- CSIRO, Black Mountain Science & Innovation Park, Canberra, Australia
| | - David M Scherr
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Sara Schlemmer
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Ryan S Senger
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
24
|
Production of 3-Hydroxypropionic Acid from Renewable Substrates by Metabolically Engineered Microorganisms: A Review. Molecules 2023; 28:molecules28041888. [PMID: 36838875 PMCID: PMC9960984 DOI: 10.3390/molecules28041888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
3-Hydroxypropionic acid (3-HP) is a platform chemical with a wide range of existing and potential applications, including the production of poly(3-hydroxypropionate) (P-3HP), a biodegradable plastic. The microbial synthesis of 3-HP has attracted significant attention in recent years due to its green and sustainable properties. In this paper, we provide an overview of the microbial synthesis of 3-HP from four major aspects, including the main 3-HP biosynthesis pathways and chassis strains used for the construction of microbial cell factories, the major carbon sources used for 3-HP production, and fermentation processes. Recent advances in the biosynthesis of 3-HP and related metabolic engineering strategies are also summarized. Finally, this article provides insights into the future direction of 3-HP biosynthesis.
Collapse
|
25
|
Bouzroud S, El Maaiden E, Sobeh M, Merghoub N, Boukcim H, Kouisni L, El Kharrassi Y. Biotechnological Approaches to Producing Natural Antioxidants: Anti-Ageing and Skin Longevity Prospects. Int J Mol Sci 2023; 24:ijms24021397. [PMID: 36674916 PMCID: PMC9867058 DOI: 10.3390/ijms24021397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Plants are the main source of bioactive compounds that can be used for the formulation of cosmetic products. Plant extracts have numerous proven health benefits, among which are anti-ageing and skin-care properties. However, with the increased demand for plant-derived cosmetic products, there is a crucial prerequisite for establishing alternative approaches to conventional methods to ensure sufficient biomass for sustainable production. Plant tissue culture techniques, such as in vitro root cultures, micropropagation, or callogenesis, offer the possibility to produce considerable amounts of bioactive compounds independent of external factors that may influence their production. This production can also be significantly increased with the implementation of other biotechnological approaches such as elicitation, metabolic engineering, precursor and/or nutrient feeding, immobilization, and permeabilization. This work aimed to evaluate the potential of biotechnological tools for producing bioactive compounds, with a focus on bioactive compounds with anti-ageing properties, which can be used for the development of green-label cosmeceutical products. In addition, some examples demonstrating the use of plant tissue culture techniques to produce high-value bioactive ingredients for cosmeceutical applications are also addressed, showing the importance of these tools and approaches for the sustainable production of plant-derived cosmetic products.
Collapse
Affiliation(s)
- Sarah Bouzroud
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Ezzouhra El Maaiden
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Mansour Sobeh
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
| | - Nawal Merghoub
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco
| | - Hassan Boukcim
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Youssef El Kharrassi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
- Correspondence:
| |
Collapse
|
26
|
Wang J, Li C, Jiang T, Yan Y. Biosensor-assisted titratable CRISPRi high-throughput (BATCH) screening for over-production phenotypes. Metab Eng 2023; 75:58-67. [PMID: 36375746 PMCID: PMC9845192 DOI: 10.1016/j.ymben.2022.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
With rapid advances in the development of metabolic pathways and synthetic biology toolkits, a persisting challenge in microbial bioproduction is how to optimally rewire metabolic fluxes and accelerate the concomitant high-throughput phenotype screening. Here we developed a biosensor-assisted titratable CRISPRi high-throughput (BATCH) screening approach that combines a titratable mismatch CRISPR interference and a biosensor mediated screening for high-production phenotypes in Escherichia coli. We first developed a programmable mismatch CRISPRi that could afford multiple levels of interference efficacy with a one-pot sgRNA pool (a total of 16 variants for each target gene) harboring two consecutive random mismatches in the seed region of sgRNA spacers. The mismatch CRISPRi was demonstrated to enable almost a full range of gene knockdown when targeting different positions on genes. As a proof-of-principle demonstration of the BATCH screening system, we designed doubly mismatched sgRNA pools targeting 20 relevant genes in E. coli and optimized a PadR-based p-coumaric acid biosensor with broad dynamic range for the eGFP fluorescence guided high-production screening. Using sgRNA variants for the combinatorial knockdown of pfkA and ptsI, the p-coumaric acid titer was increased by 40.6% to o 1308.6 mg/l from glycerol in shake flasks. To further demonstrate the general applicability of the BATCH screening system, we recruited a HpdR-based butyrate biosensor that facilitated the screening of E. coli strains achieving 19.0% and 25.2% increase of butyrate titer in shake flasks with sgRNA variants targeting sucA and ldhA, respectively. This work reported the establishment of a plug-and-play approach that enables multilevel modulation of metabolic fluxes and high-throughput screening of high-production phenotypes.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
27
|
Hwang HG, Milito A, Yang JS, Jang S, Jung GY. Riboswitch-guided chalcone synthase engineering and metabolic flux optimization for enhanced production of flavonoids. Metab Eng 2023; 75:143-152. [PMID: 36549411 DOI: 10.1016/j.ymben.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Flavonoids are a group of secondary metabolites from plants that have received attention as high value-added pharmacological substances. Recently, a robust and efficient bioprocess using recombinant microbes has emerged as a promising approach to supply flavonoids. In the flavonoid biosynthetic pathway, the rate of chalcone synthesis, the first committed step, is a major bottleneck. However, chalcone synthase (CHS) engineering was difficult because of high-level conservation and the absence of effective screening tools, which are limited to overexpression or homolog-based combinatorial strategies. Furthermore, it is necessary to precisely regulate the metabolic flux for the optimum availability of malonyl-CoA, a substrate of chalcone synthesis. In this study, we engineered CHS and optimized malonyl-CoA availability to establish a platform strain for naringenin production, a key molecular scaffold for various flavonoids. First, we engineered CHS through synthetic riboswitch-based high-throughput screening of rationally designed mutant libraries. Consequently, the catalytic efficiency (kcat/Km) of the optimized CHS enzyme was 62% higher than that of the wild-type enzyme. In addition to CHS engineering, we designed genetic circuits using transcriptional repressors to fine-tune the malonyl-CoA availability. The best mutant with synergistic effects of the engineered CHS and the optimized genetic circuit produced 98.71 mg/L naringenin (12.57 mg naringenin/g glycerol), which is the highest naringenin concentration and yield from glycerol in similar culture conditions reported to date, a 2.5-fold increase compared to the parental strain. Overall, this study provides an effective strategy for efficient production of flavonoids.
Collapse
Affiliation(s)
- Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea; Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea.
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
28
|
Kim GY, Kim J, Park G, Kim HJ, Yang J, Seo SW. Synthetic biology tools for engineering Corynebacterium glutamicum. Comput Struct Biotechnol J 2023; 21:1955-1965. [PMID: 36942105 PMCID: PMC10024154 DOI: 10.1016/j.csbj.2023.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Corynebacterium glutamicum is a promising organism for the industrial production of amino acids, fuels, and various value-added chemicals. From the whole genome sequence release, C. glutamicum has been valuable in the field of industrial microbiology and biotechnology. Continuous discovery of genetic manipulations and regulation mechanisms has developed C. glutamicum as a synthetic biology platform chassis. This review summarized diverse genomic manipulation technologies and gene expression tools for static, dynamic, and multiplex control at transcription and translation levels. Moreover, we discussed the current challenges and applicable tools to C. glutamicum for future advancements.
Collapse
Affiliation(s)
- Gi Yeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinyoung Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Geunyung Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyeon Jin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
- Corresponding author.
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Bio-MAX Institute, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Engineering Research Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Corresponding author at: School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
29
|
Hu Y, Zhang C, Zou L, Zheng Z, Ouyang J. Efficient biosynthesis of pinosylvin from lignin-derived cinnamic acid by metabolic engineering of Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:136. [PMID: 36503554 PMCID: PMC9743564 DOI: 10.1186/s13068-022-02236-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The conversion of lignin-derived aromatic monomers into valuable chemicals has promising potential to improve the economic competitiveness of biomass biorefineries. Pinosylvin is an attractive pharmaceutical with multiple promising biological activities. RESULTS Herein, Escherichia coli was engineered to convert the lignin-derived standard model monomer cinnamic acid into pinosylvin by introducing two novel enzymes from the wood plant: stilbene synthase from Pinus pinea (PpSTS) and 4-Coumarate-CoA ligase from Populus trichocarpa (Ptr4CL4). The expression of Ptr4CL4 drastically improved the production of pinosylvin (42.5 ± 1.1 mg/L), achieving values 15.7-fold higher than that of Ptr4CL5 (another 4-Coumarate-CoA ligase from Populus trichocarpa) in the absence of cerulenin. By adjusting the expression strategy, the optimized engineered strain produced pinosylvin at 153.7 ± 2.2 mg/L with an extremely high yield of 1.20 ± 0.02 mg/mg cinnamic acid in the presence of cerulenin, which is 83.9% ± 1.17 of the theoretical yield. This is the highest reported pinosylvin yield directly from cinnamic acid to date. CONCLUSION Our work highlights the feasibility of microbial production of pinosylvin from cinnamic acid and paves the way for converting lignin-related aromatics to valuable chemicals.
Collapse
Affiliation(s)
- Yueli Hu
- grid.410625.40000 0001 2293 4910Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China ,grid.410625.40000 0001 2293 4910College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Chen Zhang
- grid.410625.40000 0001 2293 4910College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Lihua Zou
- grid.410625.40000 0001 2293 4910Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China ,grid.410625.40000 0001 2293 4910College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Zhaojuan Zheng
- grid.410625.40000 0001 2293 4910Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China ,grid.410625.40000 0001 2293 4910College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jia Ouyang
- grid.410625.40000 0001 2293 4910Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China ,grid.410625.40000 0001 2293 4910College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
30
|
Construction and Optimization of Malonyl-CoA Sensors in Saccharomyces cerevisiae by Combining Promoter Engineering Strategies. Processes (Basel) 2022. [DOI: 10.3390/pr10122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biosensors can be used for high-throughput screening, real-time monitoring of metabolites, and dynamic regulation of metabolic processes, which have been a popular research direction in recent years. Here, five promoters from Saccharomyces cerevisiae were selected to construct Malonyl-CoA sensors with the fapO/fapR system derived from Bacillus subtilis, and pCCW12 was finally selected for further optimization. Based on pCCW12, a series of sensors with different response sensitivities were obtained by selecting different fapO insertion sites and combining the best two or three of them. Then, through a combination of promoter hybrid, intron insertion, and transcription factor modification strategies, we obtained sensors with different effects, one of which, the H-pCCW12(TFBS)-Cti6~fapR sensor, had the lowest background noise, doubled response range and higher response sensitivity compared to the original sensor. Sensors with different characteristics constructed in this study, can be applied to Malonyl-CoA related high-throughput screening and finer regulation of metabolism. It also proves that the combined application of different promoter engineering strategies is a feasible idea for the precise construction and regulation of biosensors.
Collapse
|
31
|
Jiang T, Li C, Zou Y, Zhang J, Gan Q, Yan Y. Establishing an Autonomous Cascaded Artificial Dynamic (AutoCAD) regulation system for improved pathway performance. Metab Eng 2022; 74:1-10. [PMID: 36041638 PMCID: PMC10947494 DOI: 10.1016/j.ymben.2022.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Endogenous metabolic pathways in microbial cells are usually precisely controlled by sophisticated regulation networks. However, the lack of such regulations when introducing heterologous pathways in microbial hosts often causes unbalanced enzyme expression and carbon flux distribution, hindering the construction of highly efficient microbial biosynthesis systems. Here, using naringenin as the target compound, we developed an Autonomous Cascaded Artificial Dynamic (AutoCAD) regulation system to automatically coordinate the pathway expression and redirect carbon fluxes for enhanced naringenin production. The AutoCAD regulation system, consisting of both intermediate-based feedforward and product-based feedback control genetic circuits, resulted in a 16.5-fold increase in naringenin titer compared with the static control. Fed-batch fermentation using the strain with AutoCAD regulation further enhanced the naringenin titer to 277.2 mg/L. The AutoCAD regulation system, with intermediate-based feedforward control and product-triggered feedback control, provides a new paradigm of developing complicated cascade dynamic control to engineer heterologous pathways.
Collapse
Affiliation(s)
- Tian Jiang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yusong Zou
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
32
|
Li H, Lyv Y, Zhou S, Yu S, Zhou J. Microbial cell factories for the production of flavonoids-barriers and opportunities. BIORESOURCE TECHNOLOGY 2022; 360:127538. [PMID: 35777639 DOI: 10.1016/j.biortech.2022.127538] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Flavonoids are natural plant products with important nutritional value, health-promoting benefits, and therapeutic potential. The use of microbial cell factories to generate flavonoids is an appealing option. The microbial biosynthesis of flavonoids is compared to the classic plant extract approach in this review, and the pharmaceutical applications were presented. This paper summarize approaches for effective flavonoid biosynthesis from microorganisms, and discuss the challenges and prospects of microbial flavonoid biosynthesis. Finally, the barriers and strategies for industrial bio-production of flavonoids are highlighted. This review offers guidance on how to create robust microbial cell factories for producing flavonoids and other relevant chemicals.
Collapse
Affiliation(s)
- Hongbiao Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyv
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
33
|
Isogai S, Tominaga M, Kondo A, Ishii J. Plant Flavonoid Production in Bacteria and Yeasts. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.880694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids, a major group of secondary metabolites in plants, are promising for use as pharmaceuticals and food supplements due to their health-promoting biological activities. Industrial flavonoid production primarily depends on isolation from plants or organic synthesis, but neither is a cost-effective or sustainable process. In contrast, recombinant microorganisms have significant potential for the cost-effective, sustainable, environmentally friendly, and selective industrial production of flavonoids, making this an attractive alternative to plant-based production or chemical synthesis. Structurally and functionally diverse flavonoids are derived from flavanones such as naringenin, pinocembrin and eriodictyol, the major basic skeletons for flavonoids, by various modifications. The establishment of flavanone-producing microorganisms can therefore be used as a platform for producing various flavonoids. This review summarizes metabolic engineering and synthetic biology strategies for the microbial production of flavanones. In addition, we describe directed evolution strategies based on recently-developed high-throughput screening technologies for the further improvement of flavanone production. We also describe recent progress in the microbial production of structurally and functionally complicated flavonoids via the flavanone modifications. Strategies based on synthetic biology will aid more sophisticated and controlled microbial production of various flavonoids.
Collapse
|
34
|
Liang B, Sun G, Zhang X, Nie Q, Zhao Y, Yang J. Recent Advances, Challenges and Metabolic Engineering Strategies in the Biosynthesis of 3-Hydroxypropionic Acid. Biotechnol Bioeng 2022; 119:2639-2668. [PMID: 35781640 DOI: 10.1002/bit.28170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
Abstract
As an attractive and valuable platform chemical, 3-hydroxypropionic acid (3-HP) can be used to produce a variety of industrially important commodity chemicals and biodegradable polymers. Moreover, the biosynthesis of 3-HP has drawn much attention in recent years due to its sustainability and environmental friendliness. Here, we focus on recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3-HP. While glucose and glycerol are major carbon sources for its production of 3-HP via microbial fermentation, other carbon sources have also been explored. To increase yield and titer, synthetic biology and metabolic engineering strategies have been explored, including modifying pathway enzymes, eliminating flux blockages due to byproduct synthesis, eliminating toxic byproducts, and optimizing via genome-scale models. This review also provides insights on future directions for 3-HP biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guannan Sun
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingjuan Nie
- Foreign Languages School, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
35
|
Li J, Qiu Z, Zhao GR. Modular engineering of E. coli coculture for efficient production of resveratrol from glucose and arabinose mixture. Synth Syst Biotechnol 2022; 7:718-729. [PMID: 35330959 PMCID: PMC8927788 DOI: 10.1016/j.synbio.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Resveratrol, a valuable plant-derived polyphenolic compound with various bioactivities, has been widely used in nutraceutical industries. Microbial production of resveratrol suffers from metabolic burden and low malonyl-CoA availability, which is a big challenge for synthetic biology. Herein, we took advantage of coculture engineering and divided the biosynthetic pathway of resveratrol into the upstream and downstream strains. By enhancing the supply of malonyl-CoA via CRISPRi system and fine-tuning the expression intensity of the synthetic pathway genes, we significantly improved the resveratrol productivity of the downstream strain. Furthermore, we developed a resveratrol addiction circuit that coupled the growth of the upstream strain and the resveratrol production of the downstream strain. The bidirectional interaction stabilized the coculture system and increased the production of resveratrol by 74%. Moreover, co-utilization of glucose and arabinose by the coculture system maintained the growth advantage of the downstream strain for production of resveratrol throughout the fermentation process. Under optimized conditions, the engineered E. coli coculture system produced 204.80 mg/L of resveratrol, 12.8-fold improvement over monoculture system. This study demonstrates the promising potential of coculture engineering for efficient production of natural products from biomass.
Collapse
|
36
|
Zeng X, Zheng J, Lu F, Pan L, Wang B. Heterologous Synthesis of Monacolin J by Reconstructing Its Biosynthetic Gene Cluster in Aspergillus niger. J Fungi (Basel) 2022; 8:jof8040407. [PMID: 35448638 PMCID: PMC9032219 DOI: 10.3390/jof8040407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Monacolin J (MJ), a key precursor of Lovastatin, could synthesize important statin drug simvastatin by hydrolyzing lovastatin and adding different side chains. In this study, to reduce the cumbersome hydrolysis of lovastatin to produce MJ in the native strain Aspergillus terreus, the MJ biosynthetic pathway genes (lovB, lovC, lovG, and lovA) were heterologously integrated into the genome of Aspergillus. niger CBS513.88 with strong promoters and suitable integration sites, via yeast 2μ homologous recombination to construct expression cassettes of long-length genes and CRISPR/Cas9 homology-directed recombination (CRISPR-HDR) to integrate MJ genes in the genome of A. niger. RT-PCR results proved that pathway synthesis-related genes could be heterologously expressed in A. niger. Finally, we constructed an engineered strain that could produce monacolin J, detected by LC-HR-ESIMS (MJ, 339.22 [M-H]+). The yield of MJ reached 92.90 mg/L after 7-day cultivation. By optimizing the cultivation conditions and adding precursor, the final titer of MJ was 142.61 mg/L on the fourth day of fed-batch cultivation, which was increased by 53.5% compared to the original growth conditions. Due to the wide application of A. niger in industrial fermentation for food and medicine, the following work will be dedicated to optimizing the metabolic network to improve the MJ production in the engineered strain.
Collapse
Affiliation(s)
- Xu Zeng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu Town, Guangzhou 510006, China; (X.Z.); (J.Z.); (F.L.)
| | - Junwei Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu Town, Guangzhou 510006, China; (X.Z.); (J.Z.); (F.L.)
| | - Feifei Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu Town, Guangzhou 510006, China; (X.Z.); (J.Z.); (F.L.)
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu Town, Guangzhou 510006, China; (X.Z.); (J.Z.); (F.L.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou 510006, China
- Correspondence: (L.P.); (B.W.)
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu Town, Guangzhou 510006, China; (X.Z.); (J.Z.); (F.L.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou 510006, China
- Correspondence: (L.P.); (B.W.)
| |
Collapse
|
37
|
Singh S, Sharma A, Monga V, Bhatia R. Compendium of naringenin: potential sources, analytical aspects, chemistry, nutraceutical potentials and pharmacological profile. Crit Rev Food Sci Nutr 2022; 63:8868-8899. [PMID: 35357240 DOI: 10.1080/10408398.2022.2056726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Naringenin is flavorless, water insoluble active principle belonging to flavanone subclass. It exhibits a diverse pharmacological profile as well as divine nutraceutical values. Although several researchers have explored this phytoconstituent to evaluate its promising properties, still it has not gained recognition at therapeutic levels and more clinical investigations are still required. Also the neutraceutical potential has limited marketed formulations. This compilation includes the description of reported therapeutic potentials of naringenin in variety of pathological conditions alongwith the underlying mechanisms. Details of various analytical investigations carried on this molecule have been provided along with brief description of chemistry and structural activity relationship. In the end, various patents filed and clinical trial data has been provided. Naringenin has revealed promising pharmacological activities including cardiovascular diseases, neuroprotection, anti-diabetic, anticancer, antimicrobial, antiviral, antioxidant, anti-inflammatory and anti-platelet activity. It has been marketed in the form of nanoformulations, co-crystals, solid dispersions, tablets, capsules and inclusion complexes. It is also available in various herbal formulations as nutraceutical supplement. There are some pharmacokinetic issue with naringenin like poor absorption and low dissolution rate. Although these issues have been sorted out upto certain extent still further research to investigate the bioavailability of naringenin from herbal supplements and its clinical efficacy is essential.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Alok Sharma
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy, Moga, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
38
|
Boada Y, Santos-Navarro FN, Picó J, Vignoni A. Modeling and Optimization of a Molecular Biocontroller for the Regulation of Complex Metabolic Pathways. Front Mol Biosci 2022; 9:801032. [PMID: 35425808 PMCID: PMC9001882 DOI: 10.3389/fmolb.2022.801032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Achieving optimal production in microbial cell factories, robustness against changing intracellular and environmental perturbations requires the dynamic feedback regulation of the pathway of interest. Here, we consider a merging metabolic pathway motif, which appears in a wide range of metabolic engineering applications, including the production of phenylpropanoids among others. We present an approach to use a realistic model that accounts for in vivo implementation and then propose a methodology based on multiobjective optimization for the optimal tuning of the gene circuit parts composing the biomolecular controller and biosensor devices for a dynamic regulation strategy. We show how this approach can deal with the trade-offs between the performance of the regulated pathway, robustness to perturbations, and stability of the feedback loop. Using realistic models, our results suggest that the strategies for fine-tuning the trade-offs among performance, robustness, and stability in dynamic pathway regulation are complex. It is not always possible to infer them by simple inspection. This renders the use of the multiobjective optimization methodology valuable and necessary.
Collapse
|
39
|
Biotechnological production of specialty aromatic and aromatic-derivative compounds. World J Microbiol Biotechnol 2022; 38:80. [PMID: 35338395 DOI: 10.1007/s11274-022-03263-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
Aromatic compounds are an important class of chemicals with different industrial applications. They are usually produced by chemical synthesis from petroleum-derived feedstocks, such as toluene, xylene and benzene. However, we are now facing threats from the excessive use of fossil fuels causing environmental problems such as global warming. Furthermore, fossil resources are not infinite, and will ultimately be depleted. To cope with these problems, the sustainable production of aromatic chemicals from renewable non-food biomass is urgent. With this in mind, the search for alternative methodologies to produce aromatic compounds using low-cost and environmentally friendly processes is becoming more and more important. Microorganisms are able to produce aromatic and aromatic-derivative compounds from sugar-based carbon sources. Metabolic engineering strategies as well as bioprocess optimization enable the development of microbial cell factories capable of efficiently producing aromatic compounds. This review presents current breakthroughs in microbial production of specialty aromatic and aromatic-derivative products, providing an overview on the general strategies and methodologies applied to build microbial cell factories for the production of these compounds. We present and describe some of the current challenges and gaps that must be overcome in order to render the biotechnological production of specialty aromatic and aromatic-derivative attractive and economically feasible at industrial scale.
Collapse
|
40
|
Harnessing plasmid replication mechanism to enable dynamic control of gene copy in bacteria. Metab Eng 2022; 70:67-78. [PMID: 35033655 PMCID: PMC8844098 DOI: 10.1016/j.ymben.2022.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 01/09/2022] [Indexed: 01/03/2023]
Abstract
Dynamic regulation has been proved efficient in controlling gene expression at transcriptional, translational, and post-translational level. However, the dynamic regulation at gene replication level has been rarely explored so far. In this study, we established dynamic regulation at gene copy level through engineering controllable plasmid replication to dynamically control the gene expression. Prototypic genetic circuits with different control logic were applied to enable diversified dynamic behaviors of gene copy. To explore the applicability of this strategy, the dynamic gene copy control was employed in regulating the biosynthesis of p-coumaric acid, which resulted in an up to 78% increase in p-coumaric acid titer to 1.69 g/L in shake flasks. These results indicated the great potential of applying dynamic gene copy control for engineering biosynthesis of valuable compounds in metabolic engineering.
Collapse
|
41
|
Gomes D, Rodrigues LR, Rodrigues JL. Perspectives on the design of microbial cell factories to produce prenylflavonoids. Int J Food Microbiol 2022; 367:109588. [DOI: 10.1016/j.ijfoodmicro.2022.109588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
|
42
|
Feng C, Chen J, Ye W, Liao K, Wang Z, Song X, Qiao M. Synthetic Biology-Driven Microbial Production of Resveratrol: Advances and Perspectives. Front Bioeng Biotechnol 2022; 10:833920. [PMID: 35127664 PMCID: PMC8811299 DOI: 10.3389/fbioe.2022.833920] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
Resveratrol, a bioactive natural product found in many plants, is a secondary metabolite and has attracted much attention in the medicine and health care products fields due to its remarkable biological activities including anti-cancer, anti-oxidation, anti-aging, anti-inflammation, neuroprotection and anti-glycation. However, traditional chemical synthesis and plant extraction methods are impractical for industrial resveratrol production because of low yield, toxic chemical solvents and environmental pollution during the production process. Recently, the biosynthesis of resveratrol by constructing microbial cell factories has attracted much attention, because it provides a safe and efficient route for the resveratrol production. This review discusses the physiological functions and market applications of resveratrol. In addition, recent significant biotechnology advances in resveratrol biosynthesis are systematically summarized. Furthermore, we discuss the current challenges and future prospects for strain development for large-scale resveratrol production at an industrial level.
Collapse
Affiliation(s)
- Chao Feng
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jing Chen
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Kaisen Liao
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhanshi Wang
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaofei Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- The Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Xiaofei Song, ; Mingqiang Qiao,
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- College of Life Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Xiaofei Song, ; Mingqiang Qiao,
| |
Collapse
|
43
|
Li C, Jiang T, Li M, Zou Y, Yan Y. Fine-tuning gene expression for improved biosynthesis of natural products: From transcriptional to post-translational regulation. Biotechnol Adv 2022; 54:107853. [PMID: 34637919 PMCID: PMC8724446 DOI: 10.1016/j.biotechadv.2021.107853] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023]
Abstract
Microbial production of natural compounds has attracted extensive attention due to their high value in pharmaceutical, cosmetic, and food industries. Constructing efficient microbial cell factories for biosynthesis of natural products requires the fine-tuning of gene expressions to minimize the accumulation of toxic metabolites, reduce the competition between cell growth and product generation, as well as achieve the balance of redox or co-factors. In this review, we focus on recent advances in fine-tuning gene expression at the DNA, RNA, and protein levels to improve the microbial biosynthesis of natural products. Commonly used regulatory toolsets in each level are discussed, and perspectives for future direction in this area are provided.
Collapse
Affiliation(s)
- Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Michelle Li
- North Oconee High School, Bogart, GA 30622, USA
| | - Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
44
|
Mu Q, Shi Y, Li R, Ma C, Tao Y, Yu B. Production of Propionate by a Sequential Fermentation-Biotransformation Process via l-Threonine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13895-13903. [PMID: 34757739 DOI: 10.1021/acs.jafc.1c05248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bio-based propionate is widely welcome in the food additive industry. The current anaerobic process by Propionibacteria endures low titers and a long fermentation time. In this study, a new route for propionate production from l-threonine was designed. 2-Ketobutyrate, deaminated from l-threonine, is cleaved into propionaldehyde and CO2 and then be oxidized into propionic acid, which is neutralized by ammonia released from the first deamination step. This CoA-independent pathway with only CO2 as a byproduct boosts propionate production from l-threonine with high productivity and purity. The key enzyme for 2-ketobutyrate decarboxylation was selected, and its expression was optimized. The engineered Pseudomonas putida strain, harboring 2-ketoisovalerate decarboxylase from Lactococcus lactis could produce 580 mM (43 g/L) pure propionic acid from 600 mM l-threonine in 24 h in the batch biotransformation process. Furthermore, a high titer of 62 g/L propionic acid with a productivity of 1.07 g/L/h and a molar yield of >0.98 was achieved in the fed-batch pattern. Finally, an efficient sequential fermentation-biotransformation process was demonstrated to produce propionate directly from the fermentation broth containing l-threonine, which further reduces the costs since no l-threonine purification step is required.
Collapse
Affiliation(s)
- Qingxuan Mu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya'nan Shi
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongshan Li
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Ma
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
45
|
Enhancement of β-Alanine Biosynthesis in Escherichia coli Based on Multivariate Modular Metabolic Engineering. BIOLOGY 2021; 10:biology10101017. [PMID: 34681116 PMCID: PMC8533518 DOI: 10.3390/biology10101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
β-alanine is widely used as an intermediate in industrial production. However, the low production of microbial cell factories limits its further application. Here, to improve the biosynthesis production of β-alanine in Escherichia coli, multivariate modular metabolic engineering was recruited to manipulate the β-alanine biosynthesis pathway through keeping the balance of metabolic flux among the whole metabolic network. The β-alanine biosynthesis pathway was separated into three modules: the β-alanine biosynthesis module, TCA module, and glycolysis module. Global regulation was performed throughout the entire β-alanine biosynthesis pathway rationally and systematically by optimizing metabolic flux, overcoming metabolic bottlenecks and weakening branch pathways. As a result, metabolic flux was channeled in the direction of β-alanine biosynthesis without huge metabolic burden, and 37.9 g/L β-alanine was generated by engineered Escherichia coli strain B0016-07 in fed-batch fermentation. This study was meaningful to the synthetic biology of β-alanine industrial production.
Collapse
|
46
|
Lins MRDCR, Amorim LADS, Corrêa GG, Picão BW, Mack M, Cerri MO, Pedrolli DB. Targeting riboswitches with synthetic small RNAs for metabolic engineering. Metab Eng 2021; 68:59-67. [PMID: 34517126 DOI: 10.1016/j.ymben.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Our growing knowledge of the diversity of non-coding RNAs in natural systems and our deepening knowledge of RNA folding and function have fomented the rational design of RNA regulators. Based on that knowledge, we designed and implemented a small RNA tool to target bacterial riboswitches and activate gene expression (rtRNA). The synthetic rtRNA is suitable for regulation of gene expression both in cell-free and in cellular systems. It targets riboswitches to promote the antitermination folding regardless the cognate metabolite concentration. Therefore, it prevents transcription termination increasing gene expression up to 103-fold. We successfully used small RNA arrays for multiplex targeting of riboswitches. Finally, we used the synthetic rtRNAs to engineer an improved riboflavin producer strain. The easiness to design and construct, and the fact that the rtRNA works as a single genome copy, make it an attractive tool for engineering industrial metabolite-producing strains.
Collapse
Affiliation(s)
- Milca Rachel da Costa Ribeiro Lins
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Laura Araujo da Silva Amorim
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Graciely Gomes Corrêa
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Bruno Willian Picão
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Matthias Mack
- Mannheim University of Applied Sciences, Institute for Technical Microbiology, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Marcel Otávio Cerri
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil
| | - Danielle Biscaro Pedrolli
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau Km1, 14800-903, Araraquara, Brazil.
| |
Collapse
|
47
|
Multi-level rebalancing of the naringenin pathway using riboswitch-guided high-throughput screening. Metab Eng 2021; 67:417-427. [PMID: 34416365 DOI: 10.1016/j.ymben.2021.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022]
Abstract
Recombinant microbes have emerged as promising alternatives to natural sources of naringenin-a key molecular scaffold for flavonoids. In recombinant strains, expression levels of the pathway genes should be optimized at both transcription and the translation stages to precisely allocate cellular resources and maximize metabolite production. However, the optimization of the expression levels of naringenin generally relies on evaluating a small number of variants from libraries constructed by varying transcription efficiency only. In this study, we introduce a systematic strategy for the multi-level optimization of biosynthetic pathways. We constructed a multi-level combinatorial library covering both transcription and translation stages using synthetic T7 promoter variants and computationally designed 5'-untranslated regions. Furthermore, we identified improved strains through high-throughput screening based on a synthetic naringenin riboswitch. The most-optimized strain obtained using this approach exhibited a 3-fold increase in naringenin production, compared with the parental strain in which only the transcription efficiency was modulated. Furthermore, in a fed-batch bioreactor, the optimized strain produced 260.2 mg/L naringenin, which is the highest concentration reported to date using glycerol and p-coumaric acid as substrates. Collectively, this work provides an efficient strategy for the expression optimization of the biosynthetic pathways.
Collapse
|
48
|
Zou Y, Li C, Zhang R, Jiang T, Liu N, Wang J, Wang X, Yan Y. Exploring the Tunability and Dynamic Properties of MarR-PmarO Sensor System in Escherichia coli. ACS Synth Biol 2021; 10:2076-2086. [PMID: 34319697 DOI: 10.1021/acssynbio.1c00245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcriptional factor-based biosensors (TFBs) have been widely used in dynamic pathway control or high-throughput screening. Here, we systematically explored the tunability of a salicylic acid responsive regulator MarR from Escherichia coli aiming to explore its engineering potential. The effect of endogenous MarR in E. coli on the MarR-PmarO biosensor system was investigated. Furthermore, to investigate the function of marO binding boxes in this biosensor system, a series of hybrid promoters were constructed by placing the marO binding boxes in the strong constitutive pL promoter. The engineered hybrid promoters became responsive to MarR and salicylic acid. To further study the influence of each nucleotide in the marO box on MarR binding, we employed dynamic modeling to simulate the interaction and binding energy between each nucleotide in the marO boxes with the corresponding residues on MarR. Guided by the results of the simulation, we introduced mutations to key positions on the hybrid promoters and investigated corresponding dynamic performance. Two promoter variants I12AII4T and I12AII14T that exhibited improved responsive strengths and shifted dynamic ranges were obtained, which can be beneficial for future metabolic engineering research.
Collapse
Affiliation(s)
- Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Ruihua Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Ning Liu
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
49
|
The Role of Metabolic Engineering Technologies for the Production of Fatty Acids in Yeast. BIOLOGY 2021; 10:biology10070632. [PMID: 34356487 PMCID: PMC8301174 DOI: 10.3390/biology10070632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Metabolic engineering involves the sustainable production of high-value products. E. coli and yeast, in particular, are used for such processes. Using metabolic engineering, the biosynthetic pathways of these cells are altered to obtain a high production of desired products. Fatty acids (FAs) and their derivatives are products produced using metabolic engineering. However, classical methods used for engineering yeast metabolic pathways for the production of fatty acids and their derivatives face problems such as the low supply of key precursors and product tolerance. This review introduces the different ways FAs are being produced in E. coli and yeast and the genetic manipulations for enhanced production of FAs. The review also summarizes the latest techniques (i.e., CRISPR–Cas and synthetic biology) for developing FA-producing yeast cell factories. Abstract Metabolic engineering is a cutting-edge field that aims to produce simple, readily available, and inexpensive biomolecules by applying different genetic engineering and molecular biology techniques. Fatty acids (FAs) play an important role in determining the physicochemical properties of membrane lipids and are precursors of biofuels. Microbial production of FAs and FA-derived biofuels has several advantages in terms of sustainability and cost. Conventional yeast Saccharomyces cerevisiae is one of the models used for FA synthesis. Several genetic manipulations have been performed to enhance the citrate accumulation and its conversation into acetyl-CoA, a precursor for FA synthesis. Success has been achieved in producing different chemicals, including FAs and their derivatives, through metabolic engineering. However, several hurdles such as slow growth rate, low oleaginicity, and cytotoxicity are still need to be resolved. More robust research needs to be conducted on developing microbes capable of resisting diverse environments, chemicals, and cost-effective feed requirements. Redesigning microbes to produce FAs with cutting-edge synthetic biology and CRISPR techniques can solve these problems. Here, we reviewed the technological progression of metabolic engineering techniques and genetic studies conducted on S. cerevisiae, making it suitable as a model organism and a great candidate for the production of biomolecules, especially FAs.
Collapse
|
50
|
Zhao P, Tian P. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria. World J Microbiol Biotechnol 2021; 37:117. [PMID: 34128152 DOI: 10.1007/s11274-021-03091-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/08/2021] [Indexed: 12/01/2022]
Abstract
3-Hydroxypropionic acid (3-HP) represents an economically important platform compound from which a panel of bulk chemicals can be derived. Compared with petroleum-dependent chemical synthesis, bioproduction of 3-HP has attracted more attention due to utilization of renewable biomass. This review outlines bacterial production of 3-HP, covering aspects of host strains (e.g., Escherichia coli and Klebsiella pneumoniae), metabolic pathways, key enzymes, and hurdles hindering high-level production. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, we come up with protocols to overcome the hurdles constraining 3-HP production. The protocols range from rewiring of metabolic networks, alleviation of metabolite toxicity, to dynamic control of cell size and density. Especially, this review highlights the substantial contribution of microbial growth to 3-HP production, as we recognize the synchronization between cell growth and 3-HP formation. Accordingly, we summarize the following growth-promoting strategies: (i) optimization of fermentation conditions; (ii) construction of gene circuits to alleviate feedback inhibition; (iii) recruitment of RNA polymerases to overexpress key enzymes which in turn boost cell growth and 3-HP production. Lastly, we propose metabolic engineering approaches to simplify downstream separation and purification. Overall, this review aims to portray a picture of bacterial production of 3-HP.
Collapse
Affiliation(s)
- Peng Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|