1
|
Kutraite I, Augustiniene E, Malys N. Hydroxybenzoic acids: Microbial metabolism, pathway engineering and products. Biotechnol Adv 2025; 81:108571. [PMID: 40154763 DOI: 10.1016/j.biotechadv.2025.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Hydroxybenzoic acids (HBAs) are plant secondary metabolites exhibiting antioxidant, antiviral, anticancer and antibacterial activities. A high and constantly increasing demand for these compounds underlines the need for novel and efficient production methods, as commonly applied plant extraction and chemical synthesis approaches are susceptible to low yields and are environmentally hazardous. Switching to biotechnology and replacing petroleum-based chemicals has potential to improve eco-efficiency in sustainable bioeconomy. With the increased focus on the production of materials using renewable resources and bio-based feedstocks, microbial fermentation and engineering drives the development and optimization of sustainable bioproduction. This systematic review summarizes current knowledge of microbial HBAs metabolism and biosynthesis. Here, the existing challenges are highlighted and the potential strategies for improved microbial production of HBAs are identified. Key aspects of HBAs metabolism and complexity of the factors related to bacterial strain selection, titer, and bioprocess strategy are examined. The opportunities of HBAs bioproduction using engineered microbial cell factories are discussed in detail and insights for synthesis improvement are presented.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania
| | - Ernesta Augustiniene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania; Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania.
| |
Collapse
|
2
|
Lee S, Jeon BW, Seong JY, Lee I, Song HM, Ryu MH, Pandey A, Kim GH, Seo SO, Sung BH, Park SJ, Ryu J, Joo JC. Efficient biological funneling of lignin into 2-pyrone-4,6-dicarboxylic acid via electrocatalytic depolymerization and genetically engineered Pseudomonas putida KT2440. Int J Biol Macromol 2025; 306:141657. [PMID: 40032124 DOI: 10.1016/j.ijbiomac.2025.141657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Lignin has been an abundant biomass resource with remarkable potential to produce value-added chemicals. The comprehensive process from lignin degradation to the biological conversion of its monomers remains a challenge for demonstrating the industrial applicability of lignin refinery. Herein, Pseudomonas putida KT-PDCV overexpressing homologous vanillate-O-methylase (VanAB) could efficiently produce 2-pyrone-4,6-dicarboxylic acid (PDC) from lignin-derived compounds (LDC), including S-unit monomers (e.g., syringate and syringaldehyde). The engineered strain efficiently consumed syringate with other types of LDCs, such as p-coumarate and ferulate, and produced PDC up to 67.2 mM from mixed model lignin with a molar yield of 98 %. The efficient electrolyzer degraded practical lignin into the S-unit-dominant mixture of LDCs with remarkable performance. In addition, P. putida KT-PDCV directly utilized the mixture of LDCs without significant susceptibility to impurities, yielding a PDC of 0.91 mM with a molar yield of 62.3 %.
Collapse
Affiliation(s)
- Siseon Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Byoung Wook Jeon
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Jeong Yeon Seong
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Inhui Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Mi Hee Ryu
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ashutosh Pandey
- Institute for Water and Wastewater Technology, Durban University of Technology, Steve Biko Campus, Durban 4001, South Africa; Bioenergy Research Laboratory, Department of Biotechnology, AKS University, Satna, Madhya Pradesh 485001, India.
| | - Geun-Hyung Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Seung-Oh Seo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
3
|
Wolf ME, Eltis LD. Recent advances in enzymes active on lignin-derived aromatic compounds. Trends Biochem Sci 2025; 50:322-331. [PMID: 39952881 DOI: 10.1016/j.tibs.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Lignin is an attractive alternative to fossil fuels as a feedstock for the sustainable manufacture of chemicals. Emergent strategies for lignin valorization include tandem processes whereby thermochemical fractionation of the biomass yields a mixture of lignin-derived aromatic compounds (LDACs), which are then transformed into target compounds by a microbial cell factory. Identifying LDAC-degrading pathways is critical to optimize carbon yield from diverse depolymerization mixtures. Characterizing enzymes - especially those that catalyze the rate-limiting steps of O-demethylation, hydroxylation, and decarboxylation - informs and enables biocatalyst design. Rational, structure-based engineering of key enzymes, as well as untargeted, evolution-based approaches, further optimize biocatalysis. In this review we outline recent advances in these fields which are critical in developing biocatalysts to efficiently synthesize lignin-based bioproducts.
Collapse
Affiliation(s)
- Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Harlington AC, Das T, Shearwin KE, Bell SG, Whelan F. Structural insights into S-lignin O-demethylation via a rare class of heme peroxygenase enzymes. Nat Commun 2025; 16:1815. [PMID: 39979323 PMCID: PMC11842817 DOI: 10.1038/s41467-025-57129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The O-demethylation of lignin aromatics is a rate-limiting step in their bioconversion to higher-value compounds. A recently discovered cytochrome P450, SyoA, demethylates the S-lignin aromatic syringol. In this work, we solve high-resolution X-ray crystal structures of substrate-free and substrate-bound SyoA and evaluate demethylation of para-substituted S-lignin aromatics via monooxygenase and peroxide shunt pathways. We find that SyoA demethylates S-lignin aromatics exclusively using the peroxide shunt pathway. The atomic-resolution structures reveal the position of non-canonical residues in the I-helix (Gln252, Glu253). Mutagenesis of this amide-acid pair in SyoA shows they are critical for catalytic activity. This work expands the enzymatic toolkit for improving the capacity to funnel lignin derived aromatics towards higher value compounds and defines the chemistry within the active site of the enzyme that enables peroxygenase activity. These insights provide a framework for engineering peroxygenase activity in other heme enzymes to generate easier to use biocatalysts.
Collapse
Affiliation(s)
- Alix C Harlington
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Tuhin Das
- Department of Chemistry, University of Adelaide, Adelaide, SA, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, Australia.
| | - Fiona Whelan
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia.
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Kuatsjah E, Schwartz A, Zahn M, Tornesakis K, Kellermyer ZA, Ingraham MA, Woodworth SP, Ramirez KJ, Cox PA, Pickford AR, Salvachúa D. Biochemical and structural characterization of enzymes in the 4-hydroxybenzoate catabolic pathway of lignin-degrading white-rot fungi. Cell Rep 2024; 43:115002. [PMID: 39589922 DOI: 10.1016/j.celrep.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/15/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
White-rot fungi (WRF) are the most efficient lignin-degrading organisms in nature. However, their capacity to use lignin-related aromatic compounds, such as 4-hydroxybenzoate, as carbon sources has only been described recently. Previously, the hydroxyquinol pathway was proposed for the bioconversion of these compounds in fungi, but gene- and structure-function relationships of the full enzymatic pathway remain uncharacterized in any single fungal species. Here, we characterize seven enzymes from two WRF, Trametes versicolor and Gelatoporia subvermispora, which constitute a four-enzyme cascade from 4-hydroxybenzoate to β-ketoadipate via the hydroxyquinol pathway. Furthermore, we solve the crystal structure of four of these enzymes and identify mechanistic differences with the closest bacterial and fungal structural homologs. Overall, this research expands our understanding of aromatic catabolism by WRF and establishes an alternative strategy for the conversion of lignin-related compounds to the valuable molecule β-ketoadipate, contributing to the development of biological processes for lignin valorization.
Collapse
Affiliation(s)
- Eugene Kuatsjah
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Alexa Schwartz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA; Advanced Energy Systems Graduate Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Michael Zahn
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Konstantinos Tornesakis
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Paul A Cox
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Andrew R Pickford
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, PO1 2DT Portsmouth, UK
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
6
|
de O G Silva C, Sun P, Barrett K, Sanders MG, van Berkel WJH, Kabel MA, Meyer AS, Agger JW. Polyphenol Oxidase Activity on Guaiacyl and Syringyl Lignin Units. Angew Chem Int Ed Engl 2024; 63:e202409324. [PMID: 39285758 DOI: 10.1002/anie.202409324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 11/01/2024]
Abstract
The natural heterogeneity of guaiacyl (G) and syringyl (S) compounds resulting from lignin processing hampers their direct use as plant-based chemicals and materials. Herein, we explore six short polyphenol oxidases (PPOs) from lignocellulose-degrading ascomycetes for their capacity to react with G-type and S-type phenolic compounds. All six PPOs catalyze the ortho-hydroxylation of G-type compounds (guaiacol, vanillic acid, and ferulic acid), forming the corresponding methoxy-ortho-diphenols. Remarkably, a subset of these PPOs is also active towards S-compounds (syringol, syringic acid, and sinapic acid) resulting in identical methoxy-ortho-diphenols. Assays with 18O2 demonstrate that these PPOs in particular catalyze ortho-hydroxylation and ortho-demethoxylation of S-compounds and generate methanol as a co-product. Oxidative (ortho-) demethoxylation of S-compounds is a novel reaction for PPOs, which we propose occurs by a distinct reaction mechanism as compared to aryl-O-demethylases. We further show that addition of a reducing agent can steer the PPO reaction to form methoxy-ortho-diphenols from both G- and S-type substrates rather than reactive quinones that lead to unfavorable polymerization. Application of PPOs opens for new routes to reduce the heterogeneity and methoxylation degree of mixtures of G and S lignin-derived compounds.
Collapse
Affiliation(s)
- Caio de O G Silva
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs., Lyngby, 2800, Denmark
| | - Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The, Netherlands
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs., Lyngby, 2800, Denmark
| | - Mark G Sanders
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The, Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The, Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The, Netherlands
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs., Lyngby, 2800, Denmark
| | - Jane W Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs., Lyngby, 2800, Denmark
| |
Collapse
|
7
|
Kamada M, Yasuta C, Higuchi Y, Yoshida A, Kurnia I, Sakamoto C, Takeuchi A, Osaka Y, Muraki K, Kamimura N, Masai E, Sonoki T. Engineering a vanillate-producing strain of Pseudomonas sp. NGC7 corresponding to aromatic compounds derived from the continuous catalytic alkaline oxidation of sulfite lignin. Microb Cell Fact 2024; 23:313. [PMID: 39563320 PMCID: PMC11575180 DOI: 10.1186/s12934-024-02590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Lignin is a promising resource for obtaining aromatic materials, however, its heterogeneous structure poses a challenge for effective utilization. One approach to produce homogeneous aromatic materials from lignin involves the application of microbial catabolism, which is gaining attention. This current study focused on constructing a catabolic pathway in Pseudomonas sp. NGC7 to produce vanillate (VA) from aromatic compounds derived from the chemical depolymerization of sulfite lignin. RESULTS Alkaline oxidation of sulfite lignin was performed using a hydroxide nanorod copper foam [Cu(OH)2/CF]-equipped flow reactor. The flow reactor operated continuously for 50 h without clogging and it yielded a sulfite lignin stream containing acetovanillone (AV), vanillin (VN), and VA as the major aromatic monomers. The catabolic pathway of Pseudomonas sp. NGC7 was optimized to maximize VA production from aromatic monomers in the sulfite lignin stream derived from this oxidation process. Pseudomonas sp. NGC7 possesses four gene sets for vanillate O-demethylase, comprising the oxygenase component (vanA) and its oxidoreductase component (vanB). Among these, the vanA4B4 gene set was identified as the key contributor to VA catabolism. To facilitate the conversion of AV to VA, AV-converting enzyme genes from Sphingobium lignivorans SYK-6 were introduced. The ΔvanA4B4 strain, harboring these AV-converting genes, produced VA from the sulfite lignin stream with 91 mol%. Further disruption of vanA1B1, vanA2B2, vanA3B3, and a vanillin reductase gene, in addition to vanA4B4, and introduction of a 5-carboxyvanillate decarboxylase gene from S. lignivorans SYK-6 to utilize 5-carboxyvanillin and 5-carboxyvanillate from the sulfite lignin stream for VA production achieved a VA yield of 103 mol%. CONCLUSION Developing methods to overcome lignin heterogeneity is essential for its use as a raw material. Consolidating continuous alkaline oxidation of lignin in a Cu(OH)2/CF-packed flow reactor and biological funneling using an engineered catabolic pathway of Pseudomonas sp. NGC7 is a promising approach to produce VA for aromatic materials synthesis. NGC7 possesses a higher adaptability to various aromatic compounds generated from the alkaline oxidation of lignin and its natural ability to grow on p-hydroxyphenyl, guaiacyl, and syringyl compounds underscores its potential as a bacterial chassis for VA production from a wide range of lignin-derived aromatic compounds.
Collapse
Affiliation(s)
- Mami Kamada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Chieko Yasuta
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Yudai Higuchi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Akihiro Yoshida
- Institute of Regional Innovation, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Irwan Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21 Jatinangor, Sumedang, 45363, Indonesia
| | - Chiho Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Aya Takeuchi
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Yuta Osaka
- Institute of Regional Innovation, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Kanami Muraki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
8
|
Yoshida A, Kurnia I, Higuchi Y, Osaka Y, Yasuta C, Sakamoto C, Tamura M, Takamatsu T, Kamimura N, Masai E, Sonoki T. Direct catalytic oxidation of rice husk lignin with hydroxide nanorod-modified copper foam and muconate production by engineered Pseudomonas sp. NGC7. J Biosci Bioeng 2024; 138:431-438. [PMID: 39191570 DOI: 10.1016/j.jbiosc.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
For the direct alkaline oxidation of rice husk lignin, we developed a copper foam-based heterogeneous catalyst that offers advantages in its recovery after the reaction mixture. The depolymerized products were utilized for muconate production by an engineered Pseudomonas sp. NGC7-based strain. A hydroxide nanorod-modified copper foam was prepared by the surface oxidation of copper foam, followed by alkaline oxidation of rice husk lignin over the catalyst. The catalyst was easily separated from the cellulosic residues in the reaction mixture, and the residues were then recovered by filtration. The resulting lignin stream was composed of a variety of aromatic monomers containing p-hydroxyphenyl, guaiacyl, and syringyl compounds. The catabolic activity of Pseudomonas sp. NGC7 was demonstrated to be more suitable for muconate production from a mixture comprising 4-hydroxybenzoate (a typical p-hydroxyphenyl compound), vanillate (a guaiacyl compound), and syringate (a syringyl compound), owing to its natural ability to grow on syringate. Thus, it was applied to produce muconate from a rice husk lignin stream prepared through hydroxide nanorod-modified copper foam-catalyzed alkaline oxidation by conferring the genes responsible for converting the acetophenone derivatives to their corresponding aromatic acids and protocatechuate decarboxylase to an NGC7-based strain deficient in protocatechuate 3,4-dioxygenase and muconate cycloisomerase. As a result, the engineered NGC7-based muconate-producing strain produced muconate selectively from the rice husk lignin stream at 93.7 mol% yield.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Institute of Regional Innovation (IRI), Hirosaki University, Hirosaki, Aomori 036-8561, Japan; Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Irwan Kurnia
- Institute of Regional Innovation (IRI), Hirosaki University, Hirosaki, Aomori 036-8561, Japan; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
| | - Yudai Higuchi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yuta Osaka
- Institute of Regional Innovation (IRI), Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Chieko Yasuta
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Chiho Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Mina Tamura
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Tsubasa Takamatsu
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
9
|
He Z, Jiang G, Gan L, He T, Tian Y. Bacterial valorization of lignin for the sustainable production of value-added bioproducts. Int J Biol Macromol 2024; 279:135171. [PMID: 39214219 DOI: 10.1016/j.ijbiomac.2024.135171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As the most abundant aromatic biopolymer in the biosphere, lignin represents a promising alternative feedstock for the industrial production of various value-added bioproducts with enhanced economical value. However, the large-scale implementation of lignin valorization remains challenging because of the heterogeneity and irregular structure of lignin. General fragmentation and depolymerization processes often yield various products, but these approaches necessitate tedious purification steps to isolate target products. Moreover, microbial biocatalytic processes, especially bacterial-based systems with high metabolic activity, can depolymerize and further utilize lignin in an eco-friendly way. Considering that wild bacterial strains have evolved several metabolic pathways and enzymatic systems for lignin degradation, substantial efforts have been made to exploit their potential for lignin valorization. This review summarizes recent advances in lignin valorization for the production of value-added bioproducts based on bacterial systems. Additionally, the remaining challenges and available strategies for lignin biodegradation processes and future trends of bacterial lignin valorization are discussed.
Collapse
Affiliation(s)
- Zhicheng He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Guangyang Jiang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China
| | - Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China.
| |
Collapse
|
10
|
Wolf ME, Hinchen DJ, McGeehan JE, Eltis LD. Characterization of a cytochrome P450 that catalyzes the O-demethylation of lignin-derived benzoates. J Biol Chem 2024; 300:107809. [PMID: 39307304 PMCID: PMC11530827 DOI: 10.1016/j.jbc.2024.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Cytochromes P450 (P450s) are a superfamily of heme-containing enzymes possessing a broad range of monooxygenase activities. One such activity is O-demethylation, an essential and rate-determining step in emerging strategies to valorize lignin that employ carbon-carbon bond cleavage. We recently identified PbdA, a P450 from Rhodococcus jostii RHA1, and PbdB, its cognate reductase, which catalyze the O-demethylation of para-methoxylated benzoates (p-MBAs) to initiate growth of RHA1 on these compounds. PbdA had the highest affinity (Kd = 3.8 ± 0.6 μM) and apparent specificity (kcat/KM = 20,000 ± 3000 M-1 s-1) for p-MBA. The enzyme also O-demethylated two related lignin-derived aromatic compounds with remarkable efficiency: veratrate and isovanillate. PbdA also catalyzed the hydroxylation and dehydrogenation of p-ethylbenzoate even though RHA1 did not grow on this compound. Atomic-resolution structures of PbdA in complex with p-MBA, p-ethylbenzoate, and veratrate revealed a cluster of three residues that form hydrogen bonds with the substrates' carboxylate: Ser87, Ser237, and Arg84. Substitution of these residues resulted in lower affinity and O-demethylation activity on p-MBA as well as increased affinity for the acetyl analog, p-methoxyacetophenone. The S87A and S237A variants of PbdA also catalyzed the O-demethylation of an aldehyde analog of p-MBA, p-methoxy-benzaldehyde, while the R84M variant did not, despite binding this compound with high affinity. These results suggest that Ser87, Ser237, and Arg84 are not only important determinants of specificity but also help to orientate that substrate correctly in the active site. This study facilitates the design of biocatalysts for lignin valorization.
Collapse
Affiliation(s)
- Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Daniel J Hinchen
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
11
|
Zhao Y, Xue L, Huang Z, Lei Z, Xie S, Cai Z, Rao X, Zheng Z, Xiao N, Zhang X, Ma F, Yu H, Xie S. Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system. Nat Commun 2024; 15:9288. [PMID: 39468081 PMCID: PMC11519575 DOI: 10.1038/s41467-024-53609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Exploring microorganisms with downstream synthetic advantages in lignin valorization is an effective strategy to increase target product diversity and yield. This study ingeniously engineers the non-lignin-degrading bacterium Ralstonia eutropha H16 (also known as Cupriavidus necator H16) to convert lignin, a typically underutilized by-product of biorefinery, into valuable bioplastic polyhydroxybutyrate (PHB). The aromatic metabolism capacities of R. eutropha H16 for different lignin-derived aromatics (LDAs) are systematically characterized and complemented by integrating robust functional modules including O-demethylation, aromatic aldehyde metabolism and the mitigation of by-product inhibition. A pivotal discovery is the regulatory element PcaQ, which is highly responsive to the aromatic hub metabolite protocatechuic acid during lignin degradation. Based on the computer-aided design of PcaQ, we develop a hub metabolite-based autoregulation (HMA) system. This system can control the functional genes expression in response to heterologous LDAs and enhance metabolism efficiency. Multi-module genome integration and directed evolution further fortify the strain's stability and lignin conversion capacities, leading to PHB production titer of 2.38 g/L using heterologous LDAs as sole carbon source. This work not only marks a leap in bioplastic production from lignin components but also provides a strategy to redesign the non-LDAs-degrading microbes for efficient lignin valorization.
Collapse
Affiliation(s)
- Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyi Huang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zixian Lei
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiyu Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhen Cai
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze Zheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Xiao
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
12
|
Rodrigues AV, Moriarty NW, Kakumanu R, DeGiovanni A, Pereira JH, Gin JW, Chen Y, Baidoo EEK, Petzold CJ, Adams PD. Characterization of lignin-degrading enzyme PmdC, which catalyzes a key step in the synthesis of polymer precursor 2-pyrone-4,6-dicarboxylic acid. J Biol Chem 2024; 300:107736. [PMID: 39222681 PMCID: PMC11489326 DOI: 10.1016/j.jbc.2024.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Pyrone-2,4-dicarboxylic acid (PDC) is a valuable polymer precursor that can be derived from the microbial degradation of lignin. The key enzyme in the microbial production of PDC is 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS) dehydrogenase, which acts on the substrate CHMS. We present the crystal structure of CHMS dehydrogenase (PmdC from Comamonas testosteroni) bound to the cofactor NADP, shedding light on its three-dimensional architecture, and revealing residues responsible for binding NADP. Using a combination of structural homology, molecular docking, and quantum chemistry calculations, we have predicted the binding site of CHMS. Key histidine residues in a conserved sequence are identified as crucial for binding the hydroxyl group of CHMS and facilitating dehydrogenation with NADP. Mutating these histidine residues results in a loss of enzyme activity, leading to a proposed model for the enzyme's mechanism. These findings are expected to help guide efforts in protein and metabolic engineering to enhance PDC yields in biological routes to polymer feedstock synthesis.
Collapse
Affiliation(s)
- Andria V Rodrigues
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States.
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Andy DeGiovanni
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Jose Henrique Pereira
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Jennifer W Gin
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Bioengineering, University of California Berkeley, Berkeley, California, United States.
| |
Collapse
|
13
|
Liu A, Ellis D, Mhatre A, Brahmankar S, Seto J, Nielsen DR, Varman AM. Biomanufacturing of value-added chemicals from lignin. Curr Opin Biotechnol 2024; 89:103178. [PMID: 39098292 DOI: 10.1016/j.copbio.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Lignin valorization faces persistent biomanufacturing challenges due to the heterogeneous and toxic carbon substrates derived from lignin depolymerization. To address the heterogeneous nature of aromatic feedstocks, plant cell wall engineering and 'lignin first' pretreatment methods have recently emerged. Next, to convert the resulting aromatic substrates into value-added chemicals, diverse microbial host systems also continue to be developed. This includes microbes that (1) lack aromatic metabolism, (2) metabolize aromatics but not sugars, and (3) co-metabolize both aromatics and sugars, each system presenting unique pros and cons. Considering the intrinsic complexity of lignin-derived substrate mixtures, emerging and non-model microbes with native metabolism for aromatics appear poised to provide the greatest impacts on lignin valorization via biomanufacturing.
Collapse
Affiliation(s)
- Arren Liu
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Dylan Ellis
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Sumant Brahmankar
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jong Seto
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - David R Nielsen
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Arul M Varman
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
14
|
He R, Zhang H, Zhu H, Shi D, Yang W, Feng S, Zhang X, Fu Z. Direct Access to 3,4,6-Trisubstituted 2-Pyrones via Carbene Catalysis. J Org Chem 2024; 89:12822-12826. [PMID: 39163408 DOI: 10.1021/acs.joc.4c01429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
An N-heterocyclic carbene-catalyzed [4 + 2] annulation of β,γ-unsaturated α-keto esters and phenylacetate esters was developed for the direct and efficient construction of 2-pyrones. This approach provides a practical synthesis pathway for various 3,4,6-trisubstituted 2-pyrones in moderate to good yields and features broad substrate scope and good functional group tolerance. Moreover, the products can also be readily transformed to naphthalene and acylamide.
Collapse
Affiliation(s)
- Ruolan He
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hailong Zhang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Haibin Zhu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Dongping Shi
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Weiqi Yang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Siru Feng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoxiang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenqian Fu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
15
|
Dixon RA, Puente-Urbina A, Beckham GT, Román-Leshkov Y. Enabling Lignin Valorization Through Integrated Advances in Plant Biology and Biorefining. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:239-263. [PMID: 39038247 DOI: 10.1146/annurev-arplant-062923-022602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA;
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Allen Puente-Urbina
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T Beckham
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Meriläinen E, Efimova E, Santala V, Santala S. Carbon-wise utilization of lignin-related compounds by synergistically employing anaerobic and aerobic bacteria. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:78. [PMID: 38851749 PMCID: PMC11161944 DOI: 10.1186/s13068-024-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Lignin is a highly abundant but strongly underutilized natural resource that could serve as a sustainable feedstock for producing chemicals by microbial cell factories. Because of the heterogeneous nature of the lignin feedstocks, the biological upgrading of lignin relying on the metabolic routes of aerobic bacteria is currently considered as the most promising approach. However, the limited substrate range and the inefficient catabolism of the production hosts hinder the upgrading of lignin-related aromatics. Particularly, the aerobic O-demethylation of the methoxyl groups in aromatic substrates is energy-limited, inhibits growth, and results in carbon loss in the form of CO2. RESULTS In this study, we present a novel approach for carbon-wise utilization of lignin-related aromatics by the integration of anaerobic and aerobic metabolisms. In practice, we employed an acetogenic bacterium Acetobacterium woodii for anaerobic O-demethylation of aromatic compounds, which distinctively differs from the aerobic O-demethylation; in the process, the carbon from the methoxyl groups is fixed together with CO2 to form acetate, while the aromatic ring remains unchanged. These accessible end-metabolites were then utilized by an aerobic bacterium Acinetobacter baylyi ADP1. By utilizing this cocultivation approach, we demonstrated an upgrading of guaiacol, an abundant but inaccessible substrate to most microbes, into a plastic precursor muconate, with a nearly equimolar yields (0.9 mol/mol in a small-scale cultivation and 1.0 mol/mol in a one-pot bioreactor cultivation). The process required only a minor genetic engineering, namely a single gene knock-out. Noticeably, by employing a metabolic integration of the two bacteria, it was possible to produce biomass and muconate by utilizing only CO2 and guaiacol as carbon sources. CONCLUSIONS By the novel approach, we were able to overcome the issues related to aerobic O-demethylation of methoxylated aromatic substrates and demonstrated carbon-wise conversion of lignin-related aromatics to products with yields unattainable by aerobic processes. This study highlights the power of synergistic integration of distinctive metabolic features of bacteria, thus unlocking new opportunities for harnessing microbial cocultures in upgrading challenging feedstocks.
Collapse
Affiliation(s)
- Ella Meriläinen
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland.
| |
Collapse
|
17
|
Brychcy M, Nguyen B, Tierney GA, Casula P, Kokodynski A, Godoy VG. The metabolite vanillic acid regulates Acinetobacter baumannii surface attachment. Mol Microbiol 2024; 121:833-849. [PMID: 38308563 DOI: 10.1111/mmi.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
The nosocomial bacterium Acinetobacter baumannii is protected from antibiotic treatment by acquiring antibiotic resistances and by forming biofilms. Cell attachment, one of the first steps in biofilm formation, is normally induced by environmental metabolites. We hypothesized that vanillic acid (VA), the oxidized form of vanillin and a widely available metabolite, may play a role in A. baumannii cell attachment. We first discovered that A. baumannii actively breaks down VA through the evolutionarily conserved vanABKP genes. These genes are under the control of the repressor VanR, which we show binds directly to VanR binding sites within the vanABKP genes bidirectional promoter. VA in turn counteracts VanR inhibition. We identified a VanR binding site and searched for it throughout the genome, especially in pili encoding promoter genes. We found a VanR binding site in the pilus encoding csu operon promoter and showed that VanR binds specifically to it. As expected, a strain lacking VanR overproduces Csu pili and makes robust biofilms. Our study uncovers the role that VA plays in facilitating the attachment of A. baumannii cells to surfaces, a crucial step in biofilm formation. These findings provide valuable insights into a previously obscure catabolic pathway with significant clinical implications.
Collapse
Affiliation(s)
- Merlin Brychcy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Brian Nguyen
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | - Pranav Casula
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Alexis Kokodynski
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Wolf ME, Lalande AT, Newman BL, Bleem AC, Palumbo CT, Beckham GT, Eltis LD. The catabolism of lignin-derived p-methoxylated aromatic compounds by Rhodococcus jostii RHA1. Appl Environ Microbiol 2024; 90:e0215523. [PMID: 38380926 PMCID: PMC10952524 DOI: 10.1128/aem.02155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Emergent strategies to valorize lignin, an abundant but underutilized aromatic biopolymer, include tandem processes that integrate chemical depolymerization and biological catalysis. To date, aromatic monomers from C-O bond cleavage of lignin have been converted to bioproducts, but the presence of recalcitrant C-C bonds in lignin limits the product yield. A promising chemocatalytic strategy that overcomes this limitation involves phenol methyl protection and autoxidation. Incorporating this into a tandem process requires microbial cell factories able to transform the p-methoxylated products in the resulting methylated lignin stream. In this study, we assessed the ability of Rhodococcus jostii RHA1 to catabolize the major aromatic products in a methylated lignin stream and elucidated the pathways responsible for this catabolism. RHA1 grew on a methylated pine lignin stream, catabolizing the major aromatic monomers: p-methoxybenzoate (p-MBA), veratrate, and veratraldehyde. Bioinformatic analyses suggested that a cytochrome P450, PbdA, and its cognate reductase, PbdB, are involved in p-MBA catabolism. Gene deletion studies established that both pbdA and pbdB are essential for growth on p-MBA and several derivatives. Furthermore, a deletion mutant of a candidate p-hydroxybenzoate (p-HBA) hydroxylase, ΔpobA, did not grow on p-HBA. Veratraldehyde and veratrate catabolism required both vanillin dehydrogenase (Vdh) and vanillate O-demethylase (VanAB), revealing previously unknown roles of these enzymes. Finally, a ΔpcaL strain grew on neither p-MBA nor veratrate, indicating they are catabolized through the β-ketoadipate pathway. This study expands our understanding of the bacterial catabolism of aromatic compounds and facilitates the development of biocatalysts for lignin valorization.IMPORTANCELignin, an abundant aromatic polymer found in plant biomass, is a promising renewable replacement for fossil fuels as a feedstock for the chemical industry. Strategies for upgrading lignin include processes that couple the catalytic fractionation of biomass and biocatalytic transformation of the resulting aromatic compounds with a microbial cell factory. Engineering microbial cell factories for this biocatalysis requires characterization of bacterial pathways involved in catabolizing lignin-derived aromatic compounds. This study identifies new pathways for lignin-derived aromatic degradation in Rhodococcus, a genus of bacteria well suited for biocatalysis. Additionally, we describe previously unknown activities of characterized enzymes on lignin-derived compounds, expanding their utility. This work advances the development of strategies to replace fossil fuel-based feedstocks with sustainable alternatives.
Collapse
Affiliation(s)
- Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anne T. Lalande
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Brianne L. Newman
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Alissa C. Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Chad T. Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
20
|
Amendola CR, Cordell WT, Kneucker CM, Szostkiewicz CJ, Ingraham MA, Monninger M, Wilton R, Pfleger BF, Salvachúa D, Johnson CW, Beckham GT. Comparison of wild-type KT2440 and genome-reduced EM42 Pseudomonas putida strains for muconate production from aromatic compounds and glucose. Metab Eng 2024; 81:88-99. [PMID: 38000549 DOI: 10.1016/j.ymben.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Pseudomonas putida KT2440 is a robust, aromatic catabolic bacterium that has been widely engineered to convert bio-based and waste-based feedstocks to target products. Towards industrial domestication of P. putida KT2440, rational genome reduction has been previously conducted, resulting in P. putida strain EM42, which exhibited characteristics that could be advantageous for production strains. Here, we compared P. putida KT2440- and EM42-derived strains for cis,cis-muconic acid production from an aromatic compound, p-coumarate, and in separate strains, from glucose. To our surprise, the EM42-derived strains did not outperform the KT2440-derived strains in muconate production from either substrate. In bioreactor cultivations, KT2440- and EM42-derived strains produced muconate from p-coumarate at titers of 45 g/L and 37 g/L, respectively, and from glucose at 20 g/L and 13 g/L, respectively. To provide additional insights about the differences in the parent strains, we analyzed growth profiles of KT2440 and EM42 on aromatic compounds as the sole carbon and energy sources. In general, the EM42 strain exhibited reduced growth rates but shorter growth lags than KT2440. We also observed that EM42-derived strains resulted in higher growth rates on glucose compared to KT2440-derived strains, but only at the lowest glucose concentrations tested. Transcriptomics revealed that genome reduction in EM42 had global effects on transcript levels and showed that the EM42-derived strains that produce muconate from glucose exhibit reduced modulation of gene expression in response to changes in glucose concentrations. Overall, our results highlight that additional studies are warranted to understand the effects of genome reduction on microbial metabolism and physiology, especially when intended for use in production strains.
Collapse
Affiliation(s)
- Caroline R Amendola
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - William T Cordell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin M Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Caralyn J Szostkiewicz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Michela Monninger
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Rosemarie Wilton
- Agile BioFoundry, Emeryville, CA, 94608, USA; Biosciences Division Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Agile BioFoundry, Emeryville, CA, 94608, USA.
| |
Collapse
|
21
|
Gu NX, Palumbo CT, Bleem AC, Sullivan KP, Haugen SJ, Woodworth SP, Ramirez KJ, Kenny JK, Stanley LD, Katahira R, Stahl SS, Beckham GT. Autoxidation Catalysis for Carbon-Carbon Bond Cleavage in Lignin. ACS CENTRAL SCIENCE 2023; 9:2277-2285. [PMID: 38161372 PMCID: PMC10755848 DOI: 10.1021/acscentsci.3c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Selective lignin depolymerization is a key step in lignin valorization to value-added products, and there are multiple catalytic methods to cleave labile aryl-ether bonds in lignin. However, the overall aromatic monomer yield is inherently limited by refractory carbon-carbon linkages, which are abundant in lignin and remain intact during most selective lignin deconstruction processes. In this work, we demonstrate that a Co/Mn/Br-based catalytic autoxidation method promotes carbon-carbon bond cleavage in acetylated lignin oligomers produced from reductive catalytic fractionation. The oxidation products include acetyl vanillic acid and acetyl vanillin, which are ideal substrates for bioconversion. Using an engineered strain of Pseudomonas putida, we demonstrate the conversion of these aromatic monomers to cis,cis-muconic acid. Overall, this study demonstrates that autoxidation enables higher yields of bioavailable aromatic monomers, exceeding the limits set by ether-bond cleavage alone.
Collapse
Affiliation(s)
- Nina X. Gu
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Chad T. Palumbo
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Alissa C. Bleem
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kevin P. Sullivan
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Stefan J. Haugen
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Sean P. Woodworth
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kelsey J. Ramirez
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jacob K. Kenny
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lisa D. Stanley
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Rui Katahira
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Shannon S. Stahl
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United
States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
22
|
Augustiniene E, Kutraite I, Valanciene E, Matulis P, Jonuskiene I, Malys N. Transcription factor-based biosensors for detection of naturally occurring phenolic acids. N Biotechnol 2023; 78:1-12. [PMID: 37714511 DOI: 10.1016/j.nbt.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Phenolic acids including hydroxybenzoic and hydroxycinnamic acids are secondary plant and fungal metabolites involved in many physiological processes offering health and dietary benefits. They are often utilised as precursors for production of value-added compounds. The limited availability of synthetic biology tools, such as whole-cell biosensors suitable for monitoring the dynamics of phenolic acids intracellularly and extracellularly, hinders the capabilities to develop high-throughput screens to study their metabolism and forward engineering. Here, by applying a multi-genome approach, we have identified phenolic acid-inducible gene expression systems composed of transcription factor-inducible promoter pairs responding to eleven different phenolic acids. Subsequently, they were used for the development of whole-cell biosensors based on model bacterial hosts, such as Escherichia coli, Cupriavidus necator and Pseudomonas putida. The dynamics and range of the biosensors were evaluated by establishing their response and sensitivity landscapes. The specificity and previously uncharacterised interactions between transcription factor and its effector(s) were identified by a screen of twenty major phenolic acids. To exemplify applicability, we utilise a protocatechuic acid-biosensor to identify enzymes with enhanced activity for conversion of p-hydroxybenzoate to protocatechuate. Transcription factor-based biosensors developed in this study will advance the analytics of phenolic acids and expedite research into their metabolism.
Collapse
Affiliation(s)
- Ernesta Augustiniene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Ingrida Kutraite
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Egle Valanciene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Paulius Matulis
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Ilona Jonuskiene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania; Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania.
| |
Collapse
|
23
|
Lee S, Kang M, Jung CD, Bae JH, Lee JY, Park YK, Joo JC, Kim H, Sohn JH, Sung BH. Development of novel recombinant peroxidase secretion system from Pseudomonas putida for lignin valorisation. BIORESOURCE TECHNOLOGY 2023; 388:129779. [PMID: 37739186 DOI: 10.1016/j.biortech.2023.129779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Pseudomonas putida is a promising strain for lignin valorisation. However, there is a dearth of stable and efficient systems for secreting enzymes to enhance the process. Therefore, a novel secretion system for recombinant lignin-depolymerising peroxidase was developed. By adopting a flagellar type III secretion system, P. putida KT-M2, a secretory host strain, was constructed and an optimal secretion signal fusion partner was identified. Application of the dye-decolourising peroxidase of P. putida to this system resulted in efficient oxidation activity of the cell-free supernatant against various chemicals, including lignin model compounds. This peroxidase-secreting strain was examined to confirm its lignin utilisation capability, resulting in the efficient assimilation of various lignin substrates with 2.6-fold higher growth than that of the wild-type strain after 72 h of cultivation. Finally, this novel system will lead efficient bacterial lignin breakdown and utilization through enzyme secretion, paving the way for sustainable lignin-consolidated bioprocessing.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Minsik Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Chan-Duck Jung
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jung-Hoon Bae
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hoyong Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
24
|
Xue L, Zhao Y, Li L, Rao X, Chen X, Ma F, Yu H, Xie S. A key O-demethylase in the degradation of guaiacol by Rhodococcus opacus PD630. Appl Environ Microbiol 2023; 89:e0052223. [PMID: 37800939 PMCID: PMC10617553 DOI: 10.1128/aem.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 10/07/2023] Open
Abstract
Rhodococcus opacus PD630 is a high oil-producing strain with the ability to convert lignin-derived aromatics to high values, but limited research has been done to elucidate its conversion pathway, especially the upper pathways. In this study, we focused on the upper pathways and demethylation mechanism of lignin-derived aromatics metabolism by R. opacus PD630. The results of the aromatic carbon resource utilization screening showed that R. opacus PD630 had a strong degradation capacity to the lignin-derived methoxy-containing aromatics, such as guaiacol, 3,4-veratric acid, anisic acid, isovanillic acid, and vanillic acid. The gene of gcoAR, which encodes cytochrome P450, showed significant up-regulation when R. opacus PD630 grew on diverse aromatics. Deletion mutants of gcoAR and its partner protein gcoBR resulted in the strain losing the ability to grow on guaiacol, but no significant difference to the other aromatics. Only co-complementation alone of gcoAR and gcoBR restored the strain's ability to utilize guaiacol, demonstrating that both genes were equally important in the utilization of guaiacol. In vitro assays further revealed that GcoAR could convert guaiacol and anisole to catechol and phenol, respectively, with the production of formaldehyde as a by-product. The study provided robust evidence to reveal the molecular mechanism of R. opacus PD630 on guaiacol metabolism and offered a promising study model for dissecting the demethylation process of lignin-derived aromatics in microbes.IMPORTANCEAryl-O-demethylation is believed to be the key rate-limiting step in the catabolism of heterogeneous lignin-derived aromatics in both native and engineered microbes. However, the mechanisms of O-demethylation in lignin-derived aromatic catabolism remain unclear. Notably, guaiacol, the primary component unit of lignin, lacks in situ demonstration and illustration of the molecular mechanism of guaiacol O-demethylation in lignin-degrading bacteria. This is the first study to illustrate the mechanism of guaiacol metabolism by R. opacus PD630 in situ as well as characterize the purified key O-demethylase in vitro. This study provided further insight into the lignin metabolic pathway of R. opacus PD630 and could guide the design of an efficient biocatalytic system for lignin valorization.
Collapse
Affiliation(s)
- Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinjie Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Tang H, Li YQ, Wang MJ, Wang Y, Luo CB. Valorization of lignin-derived compounds into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by engineered Halomonas sp. Y3. Int J Biol Macromol 2023; 249:126079. [PMID: 37536413 DOI: 10.1016/j.ijbiomac.2023.126079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biopolyester with great potential, but its high production cost via the propionate-dependent pathway has hindered its development. Herein, we engineer Halomonas sp. Y3 to achieve efficient conversion of various LDCs into PHBV without propionate supplement. Initially, we successfully achieve PHBV production without propionate supplement by overexpressing threonine synthesis. The resulting biopolyester exhibits a 3 HV proportion of up to 7.89 mol%, comparable to commercial PHBV (8 mol%) available from Sigma Aldrich (403105). To further enhance PHBV production, we rationally design the reconstruction of aromatic compound catabolism. The engineered strain Y3_18 efficiently assimilates all LDCs containing syringyl (S), guaiacyl (G), and p-hydroxyphenyl-type (H) units. From 1 g/L of S-, G-, and H-type LDCs, Y3_18 produces PHBV at levels of 449 mg/L, 488 mg/L, and 716 mg/L, respectively, with yields of 44.9 % (g/g), 48.8 % (g/g), and 71.6 % (g/g). Moreover, to improve PHBV yield from lignin, we integrate laccase-secretion and PHBV production modules. This integration leads to the accumulation of 425.84 mg/L of PHBV with a yield of 21.29 % (g/g) and a 3 HV proportion of 6.38 mol%. By harnessing the capabilities of Halomonas sp. Y3, we demonstrate an efficient and sustainable approach for PHBV production from a variety of LDCs.
Collapse
Affiliation(s)
- Hao Tang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Yuan-Qiu Li
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Ming-Jun Wang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Yan Wang
- College of Life Science, Leshan Normal University, Leshan 614000, China.
| | - Chao-Bing Luo
- College of Life Science, Leshan Normal University, Leshan 614000, China.
| |
Collapse
|
26
|
Werner AZ, Cordell WT, Lahive CW, Klein BC, Singer CA, Tan EC, Ingraham MA, Ramirez KJ, Kim DH, Pedersen JN, Johnson CW, Pfleger BF, Beckham GT, Salvachúa D. Lignin conversion to β-ketoadipic acid by Pseudomonas putida via metabolic engineering and bioprocess development. SCIENCE ADVANCES 2023; 9:eadj0053. [PMID: 37672573 PMCID: PMC10482344 DOI: 10.1126/sciadv.adj0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Bioconversion of a heterogeneous mixture of lignin-related aromatic compounds (LRCs) to a single product via microbial biocatalysts is a promising approach to valorize lignin. Here, Pseudomonas putida KT2440 was engineered to convert mixed p-coumaroyl- and coniferyl-type LRCs to β-ketoadipic acid, a precursor for performance-advantaged polymers. Expression of enzymes mediating aromatic O-demethylation, hydroxylation, and ring-opening steps was tuned, and a global regulator was deleted. β-ketoadipate titers of 44.5 and 25 grams per liter and productivities of 1.15 and 0.66 grams per liter per hour were achieved from model LRCs and corn stover-derived LRCs, respectively, the latter representing an overall yield of 0.10 grams per gram corn stover-derived lignin. Technoeconomic analysis of the bioprocess and downstream processing predicted a β-ketoadipate minimum selling price of $2.01 per kilogram, which is cost competitive with fossil carbon-derived adipic acid ($1.10 to 1.80 per kilogram). Overall, this work achieved bioproduction metrics with economic relevance for conversion of lignin-derived streams into a performance-advantaged bioproduct.
Collapse
Affiliation(s)
- Allison Z. Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - William T. Cordell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ciaran W. Lahive
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Bruno C. Klein
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Christine A. Singer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Eric C. D. Tan
- Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Morgan A. Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Kelsey J. Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Dong Hyun Kim
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jacob Nedergaard Pedersen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Christopher W. Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| |
Collapse
|
27
|
Bleem A, Kato R, Kellermyer ZA, Katahira R, Miyamoto M, Niinuma K, Kamimura N, Masai E, Beckham GT. Multiplexed fitness profiling by RB-TnSeq elucidates pathways for lignin-related aromatic catabolism in Sphingobium sp. SYK-6. Cell Rep 2023; 42:112847. [PMID: 37515767 DOI: 10.1016/j.celrep.2023.112847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/21/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023] Open
Abstract
Bioconversion of lignin-related aromatic compounds relies on robust catabolic pathways in microbes. Sphingobium sp. SYK-6 (SYK-6) is a well-characterized aromatic catabolic organism that has served as a model for microbial lignin conversion, and its utility as a biocatalyst could potentially be further improved by genome-wide metabolic analyses. To this end, we generate a randomly barcoded transposon insertion mutant (RB-TnSeq) library to study gene function in SYK-6. The library is enriched under dozens of enrichment conditions to quantify gene fitness. Several known aromatic catabolic pathways are confirmed, and RB-TnSeq affords additional detail on the genome-wide effects of each enrichment condition. Selected genes are further examined in SYK-6 or Pseudomonas putida KT2440, leading to the identification of new gene functions. The findings from this study further elucidate the metabolism of SYK-6, while also providing targets for future metabolic engineering in this organism or other hosts for the biological valorization of lignin.
Collapse
Affiliation(s)
- Alissa Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Ryo Kato
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Masahiro Miyamoto
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Koh Niinuma
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
28
|
Wu X, De Bruyn M, Barta K. Deriving high value products from depolymerized lignin oil, aided by (bio)catalytic funneling strategies. Chem Commun (Camb) 2023; 59:9929-9951. [PMID: 37526604 DOI: 10.1039/d3cc01555f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lignin holds tremendous and versatile possibilities to produce value-added chemicals and high performing polymeric materials. Over the years, different cutting-edge lignin depolymerization methodologies have been developed, mainly focusing on achieving excellent yields of mono-phenolic products, some even approaching the theoretical maximum. However, due to lignin's inherent heterogeneity and recalcitrance, its depolymerization leads to relatively complex product streams, also containing dimers, and higher molecular weight fragments in substantial quantities. The subsequent chemo-catalytic valorization of these higher molecular weight streams, containing difficult-to-break, mainly C-C covalent bonds, is tremendously challenging, and has consequently received much less attention. In this minireview, we present an overview of recent advances on the development of sustainable biorefinery strategies aimed at the production of well-defined chemicals and polymeric materials, the prime focus being on depolymerized lignin oils, containing high molecular weight fractions. The key central unit operation to achieve this is (bio)catalytic funneling, which holds great potential to overcome separation and purification challenges.
Collapse
Affiliation(s)
- Xianyuan Wu
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, Groningen, The Netherlands
| | - Mario De Bruyn
- University of Graz, Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstrasse 28/II, 8010 Graz, Austria.
| | - Katalin Barta
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, Groningen, The Netherlands
- University of Graz, Department of Chemistry, Organic and Bioorganic Chemistry, Heinrichstrasse 28/II, 8010 Graz, Austria.
| |
Collapse
|
29
|
Chen M, Li Y, Lu F, Luterbacher JS, Ralph J. Lignin Hydrogenolysis: Phenolic Monomers from Lignin and Associated Phenolates across Plant Clades. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:10001-10017. [PMID: 37448721 PMCID: PMC10337261 DOI: 10.1021/acssuschemeng.3c01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/13/2023] [Indexed: 07/15/2023]
Abstract
The chemical complexity of lignin remains a major challenge for lignin valorization into commodity and fine chemicals. A knowledge of the lignin features that favor its valorization and which plants produce such lignins can be used in plant selection or to engineer them to produce lignins that are more ideally suited for conversion. Sixteen biomass samples were compositionally surveyed by NMR and analytical degradative methods, and the yields of phenolic monomers following hydrogenolytic depolymerization were assessed to elucidate the key determinants controlling the depolymerization. Hardwoods, including those incorporating monolignol p-hydroxybenzoates into their syringyl/guaiacyl copolymeric lignins, produced high monomer yields by hydrogenolysis, whereas grasses incorporating monolignol p-coumarates and ferulates gave lower yields, on a lignin basis. Softwoods, with their more condensed guaiacyl lignins, gave the lowest yields. Lignins with a high syringyl unit content released elevated monomer levels, with a high-syringyl polar transgenic being particularly striking. Herein, we distinguish phenolic monomers resulting from the core lignin vs those from pendent phenolate esters associated with the biomass cell wall, acylating either polysaccharides or lignins. The basis for these observations is rationalized as a means to select or engineer biomass for optimal conversion to worthy phenolic monomers.
Collapse
Affiliation(s)
- Mingjie Chen
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Yanding Li
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Fachuang Lu
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
| | - Jeremy S. Luterbacher
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - John Ralph
- Department
of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department
of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
Higuchi Y, Ishimaru H, Yoshikawa T, Masuda T, Sakamoto C, Kamimura N, Masai E, Takeuchi D, Sonoki T. Successful selective production of vanillic acid from depolymerized sulfite lignin and its application to poly(ethylene vanillate) synthesis. BIORESOURCE TECHNOLOGY 2023:129450. [PMID: 37406831 DOI: 10.1016/j.biortech.2023.129450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Towards lignin upgrading, vanillic acid (VA), a lignin-derived guaiacyl compound, was produced from sulfite lignin for successfully synthesizing poly(ethylene vanillate), an aromatic polymer. The engineered Sphingobium sp. SYK-6-based strain in which the genes responsible for VA/3-O-methyl gallic acid O-demethylase and syringic acid O-demethylase were disrupted was able to produce vanillic acid (VA) from the mixture consisting of acetovanillone, vanillin, VA, and other low-molecular-weight aromatics obtained by Cu(OH)2-catalyzed alkaline depolymerization of sulfite lignin and membrane fractionation. From the bio-based VA, methyl-4-(2-hydroxyethoxy)-3-methoxybenzoate was synthesized via methylesterification, hydroxyethylation, and distillation, and then it was subjected to polymerization catalyzed by titanium tetraisopropoxide. The molecular weight of the obtained poly(ethylene vanillate) was evaluated to be Mw = 13,000 (Mw/Mn = 1.99) and its melting point was 261°C. The present work proved that poly(ethylene vanillate) is able to be synthesized using VA produced from lignin for the first time.
Collapse
Affiliation(s)
- Yudai Higuchi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Hiroya Ishimaru
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takuya Yoshikawa
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan; Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Takao Masuda
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Chiho Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Daisuke Takeuchi
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
31
|
Zhou D, Wu F, Peng Y, Qazi MA, Li R, Wang Y, Wang Q. Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid from glucose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:92. [PMID: 37264438 DOI: 10.1186/s13068-023-02350-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND 2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudoaromatic dicarboxylic acid, represents a promising building block for the manufacture of biodegradable polyesters. Microbial production of PDC has been extensively investigated, but low titers and yields have limited industrial applications. RESULTS In this study, a multi-step biosynthesis strategy for the microbial production of PDC was demonstrated using engineered Escherichia coli whole-cell biocatalysts. The PDC biosynthetic pathway was first divided into three synthetic modules, namely the 3-dehydroshikimic acid (DHS) module, the protocatechuic acid (PCA) module and the PDC module. Several effective enzymes, including 3-dehydroshikimate dehydratase for the PCA module as well as protocatechuate 4,5-dioxygenase and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase for the PDC module were isolated and characterized. Then, the highly efficient whole-cell bioconversion systems for producing PCA and PDC were constructed and optimized, respectively. Finally, the efficient multi-step biosynthesis of PDC from glucose was achieved by smoothly integrating the above three biosynthetic modules, resulting in a final titer of 49.18 g/L with an overall 27.2% molar yield, which represented the highest titer for PDC production from glucose reported to date. CONCLUSIONS This study lays the foundation for the microbial production of PDC, including one-step de novo biosynthesis from glucose as well as the microbial transformation of monoaromatics.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Fengli Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Yanfeng Peng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Muneer Ahmed Qazi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, 66020, Sindh, Pakistan
| | - Ruosong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yongzhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
32
|
Wilkes RA, Waldbauer J, Carroll A, Nieto-Domínguez M, Parker DJ, Zhang L, Guss AM, Aristilde L. Complex regulation in a Comamonas platform for diverse aromatic carbon metabolism. Nat Chem Biol 2023; 19:651-662. [PMID: 36747056 PMCID: PMC10154247 DOI: 10.1038/s41589-022-01237-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/29/2022] [Indexed: 02/08/2023]
Abstract
Critical to a sustainable energy future are microbial platforms that can process aromatic carbons from the largely untapped reservoir of lignin and plastic feedstocks. Comamonas species present promising bacterial candidates for such platforms because they can use a range of natural and xenobiotic aromatic compounds and often possess innate genetic constraints that avoid competition with sugars. However, the metabolic reactions of these species are underexplored, and the regulatory mechanisms are unknown. Here we identify multilevel regulation in the conversion of lignin-related natural aromatic compounds, 4-hydroxybenzoate and vanillate, and the plastics-related xenobiotic aromatic compound, terephthalate, in Comamonas testosteroni KF-1. Transcription-level regulation controls initial catabolism and cleavage, but metabolite-level thermodynamic regulation governs fluxes in central carbon metabolism. Quantitative 13C mapping of tricarboxylic acid cycle and cataplerotic reactions elucidates key carbon routing not evident from enzyme abundance changes. This scheme of transcriptional activation coupled with metabolic fine-tuning challenges outcome predictions during metabolic manipulations.
Collapse
Affiliation(s)
- Rebecca A Wilkes
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Austin Carroll
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Darren J Parker
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lichun Zhang
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA.
- Northwestern Center for Synthetic Biology, Evanston, IL, USA.
| |
Collapse
|
33
|
Recent progress in the synthesis of advanced biofuel and bioproducts. Curr Opin Biotechnol 2023; 80:102913. [PMID: 36854202 DOI: 10.1016/j.copbio.2023.102913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/27/2023]
Abstract
Energy is one of the most complex fields of study and an issue that influences nearly every aspect of modern life. Over the past century, combustion of fossil fuels, particularly in the transportation sector, has been the dominant form of energy release. Refining of petroleum and natural gas into liquid transportation fuels is also the centerpiece of the modern chemical industry used to produce materials, solvents, and other consumer goods. In the face of global climate change, the world is searching for alternative, sustainable means of producing energy carriers and chemical building blocks. The use of biofuels in engines predates modern refinery optimization and today represents a small but significant fraction of liquid transportation fuels burnt each year. Similarly, white biotechnology has been used to produce many natural products through fermentation. The evolution of recombinant DNA technology into modern synthetic biology has expanded the scope of biofuels and bioproducts that can be made by biocatalysts. This opinion examines the current trends in this research space, highlighting the substantial growth in computational tools and the growing influence of renewable electricity in the design of metabolic engineering strategies. In short, advanced biofuel and bioproduct synthesis remains a vibrant and critically important field of study whose focus is shifting away from the conversion of lignocellulosic biomass toward a broader consideration of how to reduce carbon dioxide to fuels and chemical products.
Collapse
|
34
|
Lignin Valorization: Production of High Value-Added Compounds by Engineered Microorganisms. Catalysts 2023. [DOI: 10.3390/catal13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Lignin is the second most abundant polymer in nature, which is also widely generated during biomass fractionation in lignocellulose biorefineries. At present, most of technical lignin is simply burnt for energy supply although it represents the richest natural source of aromatics, and thus it is a promising feedstock for generation of value-added compounds. Lignin is heterogeneous in composition and recalcitrant to degradation, with this substantially hampering its use. Notably, microbes have evolved particular enzymes and specialized metabolic pathways to degrade this polymer and metabolize its various aromatic components. In recent years, novel pathways have been designed allowing to establish engineered microbial cell factories able to efficiently funnel the lignin degradation products into few metabolic intermediates, representing suitable starting points for the synthesis of a variety of valuable molecules. This review focuses on recent success cases (at the laboratory/pilot scale) based on systems metabolic engineering studies aimed at generating value-added and specialty chemicals, with much emphasis on the production of cis,cis-muconic acid, a building block of recognized industrial value for the synthesis of plastic materials. The upgrade of this global waste stream promises a sustainable product portfolio, which will become an industrial reality when economic issues related to process scale up will be tackled.
Collapse
|
35
|
Identification of a Phylogenetically Divergent Vanillate O-Demethylase from Rhodococcus ruber R1 Supporting Growth on Meta-Methoxylated Aromatic Acids. Microorganisms 2022; 11:microorganisms11010078. [PMID: 36677370 PMCID: PMC9867520 DOI: 10.3390/microorganisms11010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Rieske-type two-component vanillate O-demethylases (VanODs) catalyze conversion of the lignin-derived monomer vanillate into protocatechuate in several bacterial species. Currently, VanODs have received attention because of the demand of effective lignin valorization technologies, since these enzymes own the potential to catalyze methoxy group demethylation of distinct lignin monomers. In this work, we identified a phylogenetically divergent VanOD from Rhodococcus ruber R1, only distantly related to previously described homologues and whose presence, along with a 3-hydroxybenzoate/gentisate pathway, correlated with the ability to grow on other meta-methoxylated aromatics, such as 3-methoxybenzoate and 5-methoxysalicylate. The complementation of catabolic abilities by heterologous expression in a host strain unable to grow on vanillate, and subsequent resting cell assays, suggest that the vanAB genes of R1 strain encode a proficient VanOD acting on different vanillate-like substrates; and also revealed that a methoxy group in the meta position and a carboxylic acid moiety in the aromatic ring are key for substrate recognition. Phylogenetic analysis of the oxygenase subunit of bacterial VanODs revealed three divergent groups constituted by homologues found in Proteobacteria (Type I), Actinobacteria (Type II), or Proteobacteria/Actinobacteria (Type III) in which the R1 VanOD is placed. These results suggest that VanOD from R1 strain, and its type III homologues, expand the range of methoxylated aromatics used as substrates by bacteria.
Collapse
|
36
|
Li F, Zhao Y, Xue L, Ma F, Dai SY, Xie S. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol 2022; 40:1469-1487. [PMID: 36307230 DOI: 10.1016/j.tibtech.2022.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Lignin is the most abundant source of renewable aromatic biopolymers and its valorization presents significant value for biorefinery sustainability, which promotes the utilization of renewable resources. However, it is challenging to fully convert the structurally complex, heterogeneous, and recalcitrant lignin into high-value products. The in-depth research on the lignin degradation mechanism, microbial metabolic pathways, and rational design of new systems using synthetic biology have significantly accelerated the development of lignin valorization. This review summarizes the key enzymes involved in lignin depolymerization, the mechanisms of microbial lignin conversion, and the lignin valorization application with integrated systems and synthetic biology. Current challenges and future strategies to further study lignin biodegradation and the trends of lignin valorization are also discussed.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiquan Zhao
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Le Xue
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Susie Y Dai
- Department of Plant Pathology and Microbiology, Texas A&M University, College station, TX 77843, USA.
| | - Shangxian Xie
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
37
|
Liu ZH, Li BZ, Yuan JS, Yuan YJ. Creative biological lignin conversion routes toward lignin valorization. Trends Biotechnol 2022; 40:1550-1566. [PMID: 36270902 DOI: 10.1016/j.tibtech.2022.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a 'biological funnel' offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, The McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
38
|
From degrader to producer: reversing the gallic acid metabolism of Pseudomonas putida KT2440. Int Microbiol 2022; 26:243-255. [PMID: 36357545 PMCID: PMC9649394 DOI: 10.1007/s10123-022-00282-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022]
Abstract
Gallic acid is a powerful antioxidant with multiple therapeutic applications, usually obtained from the acidic hydrolysis of tannins produced by many plants. As this process generates a considerable amount of toxic waste, the use of tannases or tannase-producing microorganisms has become a greener alternative over the last years. However, their high costs still impose some barriers for industrial scalability, requiring solutions that could be both greener and cost-effective. Since Pseudomonas putida KT2440 is a powerful degrader of gallic acid, its metabolism offers pathways that can be engineered to produce it from cheap and renewable carbon sources, such as the crude glycerol generated in biodiesel units. In this study, a synthetic operon with the heterologous genes aroG4, quiC and pobA* was developed and expressed in P. putida, based on an in silico analysis of possible metabolic routes, resulting in no production. Then, the sequences pcaHG and galTAPR were deleted from the genome of this strain to avoid the degradation of gallic acid and its main intermediate, the protocatechuic acid. This mutant was transformed with the vector containing the synthetic operon and was finally able to convert glycerol into gallic acid. Production assays in shaker showed a final concentration of 346.7 ± 0.004 mg L-1 gallic acid after 72 h.
Collapse
|
39
|
Vermaas JV, Crowley MF, Beckham GT. Molecular simulation of lignin-related aromatic compound permeation through gram-negative bacterial outer membranes. J Biol Chem 2022; 298:102627. [PMID: 36273587 PMCID: PMC9720347 DOI: 10.1016/j.jbc.2022.102627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/12/2022] Open
Abstract
Lignin, an abundant aromatic heteropolymer in secondary plant cell walls, is the single largest source of renewable aromatics in the biosphere. Leveraging this resource for renewable bioproducts through targeted microbial action depends on lignin fragment uptake by microbial hosts and subsequent enzymatic action to obtain the desired product. Recent computational work has emphasized that bacterial inner membranes are permeable to many aromatic compounds expected from lignin depolymerization processes. In this study, we expand on these findings through simulations for 42 lignin-related compounds across a gram-negative bacterial outer membrane model. Unbiased simulation trajectories indicate that spontaneous crossing for the full outer membrane is relatively rare at molecular simulation timescales, primarily due to preferential membrane partitioning and slow diffusion within the lipopolysaccharide layer within the outer membrane. Membrane partitioning and permeability coefficients were determined through replica exchange umbrella sampling simulations to overcome sampling limitations. We find that the glycosylated lipopolysaccharides found in the outer membrane increase the permeation barrier to many lignin-related compounds, particularly the most hydrophobic compounds. However, the effect is relatively modest; at industrially relevant concentrations, uncharged lignin-related compounds will readily diffuse across the outer membrane without the need for specific porins. Together, our results provide insight into the permeability of the bacterial outer membrane for assessing lignin fragment uptake and the future production of renewable bioproducts.
Collapse
Affiliation(s)
- Josh V. Vermaas
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA,National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA,For correspondence: Josh V. Vermaas; Michael F. Crowley; Gregg T. Beckham
| | - Michael F. Crowley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy, Laboratory, Golden, Colorado, USA,For correspondence: Josh V. Vermaas; Michael F. Crowley; Gregg T. Beckham
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy, Laboratory, Golden, Colorado, USA,For correspondence: Josh V. Vermaas; Michael F. Crowley; Gregg T. Beckham
| |
Collapse
|
40
|
Zou L, Jin X, Tao Y, Zheng Z, Ouyang J. Unraveling the mechanism of furfural tolerance in engineered Pseudomonas putida by genomics. Front Microbiol 2022; 13:1035263. [PMID: 36338095 PMCID: PMC9630843 DOI: 10.3389/fmicb.2022.1035263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 07/24/2023] Open
Abstract
As a dehydration product of pentoses in hemicellulose sugar streams derived from lignocellulosic biomass, furfural is a prevalent inhibitor in the efficient microbial conversion process. To solve this obstacle, exploiting a biorefinery strain with remarkable furfural tolerance capability is essential. Pseudomonas putida KT2440 (P. putida) has served as a valuable bacterial chassis for biomass biorefinery. Here, a high-concentration furfural-tolerant P. putida strain was developed via adaptive laboratory evolution (ALE). The ALE resulted in a previously engineered P. putida strain with substantially increased furfural tolerance as compared to wild-type. Whole-genome sequencing of the adapted strains and reverse engineering validation of key targets revealed for the first time that several genes and their mutations, especially for PP_RS19785 and PP_RS18130 [encoding ATP-binding cassette (ABC) transporters] as well as PP_RS20740 (encoding a hypothetical protein), play pivotal roles in the furfural tolerance and conversion of this bacterium. Finally, strains overexpressing these three striking mutations grew well in highly toxic lignocellulosic hydrolysate, with cell biomass around 9-, 3.6-, and two-fold improvement over the control strain, respectively. To our knowledge, this study first unravels the furan aldehydes tolerance mechanism of industrial workhorse P. putida, which provides a new foundation for engineering strains to enhance furfural tolerance and further facilitate the valorization of lignocellulosic biomass.
Collapse
|
41
|
Akutsu M, Abe N, Sakamoto C, Kurimoto Y, Sugita H, Tanaka M, Higuchi Y, Sakamoto K, Kamimura N, Kurihara H, Masai E, Sonoki T. Pseudomonas sp. NGC7 as a microbial chassis for glucose-free muconate production from a variety of lignin-derived aromatics and its application to the production from sugar cane bagasse alkaline extract. BIORESOURCE TECHNOLOGY 2022; 359:127479. [PMID: 35714780 DOI: 10.1016/j.biortech.2022.127479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
cis,cis-Muconate (ccMA) is a promising platform for use in synthesizing various polymers. A glucose-free ccMA production using Pseudomonas sp. NGC7 from hardwood lignin-derived aromatic compounds was previously reported. In that system, syringyl nucleus compounds were essential for growth. Here, it is shown that NGC7 is available for glucose-free ccMA production even from a mixture of lignin-derived aromatics that does not contain syringyl nucleus compounds. By introducing a gene set for the protocatechuate (PCA)-shunt consisting of PCA 3,4-dioxygenase and PCA decarboxylase into an NGC7-derived strain deficient in PCA 3,4-dioxygenase and ccMA cycloisomerase, it was succeeded in constructing a ccMA-producing strain that grows on a lignin-derived aromatics mixture containing no syringyl nucleus compounds. Finally, it is demonstrated that the engineered strain produced ccMA from sugar cane bagasse alkaline extract in 18.7 mol%. NGC7 is thus shown to be a promising microbial chassis for biochemicals production from lignin-derived aromatics.
Collapse
Affiliation(s)
- Miho Akutsu
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Nanase Abe
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Chiho Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yuki Kurimoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Haruka Sugita
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Makoto Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yudai Higuchi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Kimitoshi Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Hiroyuki Kurihara
- Toray Industries, Inc, New Frontiers Research Laboratories, Kamakura, Kanagawa 248-0036, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
42
|
Ling C, Peabody GL, Salvachúa D, Kim YM, Kneucker CM, Calvey CH, Monninger MA, Munoz NM, Poirier BC, Ramirez KJ, St John PC, Woodworth SP, Magnuson JK, Burnum-Johnson KE, Guss AM, Johnson CW, Beckham GT. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat Commun 2022; 13:4925. [PMID: 35995792 PMCID: PMC9395534 DOI: 10.1038/s41467-022-32296-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L−1 muconate at 0.18 g L−1 h−1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars. Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by engineered Pseudomonas putida strain using adaptive laboratory evolution, metabolic modeling, and rational strain engineering strategies.
Collapse
Affiliation(s)
- Chen Ling
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - George L Peabody
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Young-Mo Kim
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Colin M Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Christopher H Calvey
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Michela A Monninger
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Nathalie Munoz Munoz
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Brenton C Poirier
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Peter C St John
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Jon K Magnuson
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin E Burnum-Johnson
- Agile BioFoundry, Emeryville, CA, 94608, USA.,Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam M Guss
- Agile BioFoundry, Emeryville, CA, 94608, USA. .,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA. .,Agile BioFoundry, Emeryville, CA, 94608, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA. .,Agile BioFoundry, Emeryville, CA, 94608, USA.
| |
Collapse
|
43
|
Xu T, Zong QJ, Liu H, Wang L, Liu ZH, Li BZ, Yuan YJ. Identifying ligninolytic bacteria for lignin valorization to bioplastics. BIORESOURCE TECHNOLOGY 2022; 358:127383. [PMID: 35644455 DOI: 10.1016/j.biortech.2022.127383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Biological valorization of lignin to bioplastics is a promising route to improve biorefinery efficiency and address environmental challenges. A two-stage screening procedure had been designed to successfully identify four ligninolytic bacteria from soil samples. The isolated bacteria displayed substrate preference of guaiacyl- and hydroxyphenyl-based aromatics, but they effectively synthesized polyhydroxyalkanoates (PHAs). B. cepacia B1-2 and P. putida KT3-1 accumulated 27.3% and 20.9% PHA in cells and achieved a titer of 280.9 and 204.1 mg/L, respectively, from p-hydroxybenzoic acid. The isolated bacteria exhibited good ligninolytic performance indicated by the degradation of β-O-4 linkage and small molecules. B. cepacia B1-2 grew well on actual lignin substrate and yielded a PHA titer of 87.2 mg/L. With the design of fed-batch mode, B. cepacia B1-2 produced the highest PHA titer of 1420 mg/L from lignin-derived aromatics. Overall, isolated ligninolytic bacteria show good PHA accumulation capacity, which are the promising host strains for lignin valorization.
Collapse
Affiliation(s)
- Tao Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qiu-Jin Zong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - He Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
44
|
Liu H, Liu ZH, Zhang RK, Yuan JS, Li BZ, Yuan YJ. Bacterial conversion routes for lignin valorization. Biotechnol Adv 2022; 60:108000. [DOI: 10.1016/j.biotechadv.2022.108000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
|
45
|
Zong QJ, Xu T, Liu H, Xu L, Zhang RK, Li BZ, Liu ZH, Yuan YJ. Microbial Valorization of Lignin to Bioplastic by Genome-Reduced Pseudomonas putida. Front Microbiol 2022; 13:923664. [PMID: 35707171 PMCID: PMC9189415 DOI: 10.3389/fmicb.2022.923664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
As the most abundant natural aromatic resource, lignin valorization will contribute to a feasible biobased economy. Recently, biological lignin valorization has been advocated since ligninolytic microbes possess proficient funneling pathways of lignin to valuable products. In the present study, the potential to convert an actual lignin stream into polyhydroxyalkanoates (PHAs) had been evaluated using ligninolytic genome-reduced Pseudomonas putida. The results showed that the genome-reduced P. putida can grow well on an actual lignin stream to successfully yield a high PHA content and titer. The designed fermentation strategy almost eliminated the substrate effects of lignin on PHA accumulation. Employing a fed-batch strategy produced the comparable PHA contents and titers of 0.35 g/g dried cells and 1.4 g/L, respectively. The molecular mechanism analysis unveiled that P. putida consumed more small and hydrophilic lignin molecules to stimulate cell growth and PHA accumulation. Overall, the genome-reduced P. putida exhibited a superior capacity of lignin bioconversion and promote PHA accumulation, providing a promising route for sustainable lignin valorization.
Collapse
|
46
|
Li M, Miao H, Li Y, Wang F, Xu J. Protein Engineering of an Artificial P450BM3 Peroxygenase System Enables Highly Selective O-Demethylation of Lignin Monomers. Molecules 2022; 27:molecules27103120. [PMID: 35630597 PMCID: PMC9143554 DOI: 10.3390/molecules27103120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
The O-demethylation of lignin monomers, which has drawn substantial attention recently, is critical for the formation of phenols from aromatic ethers. The P450BM3 peroxygenase system was recently found to enable the O-demethylation of different aromatic ethers with the assistance of dual-functional small molecules (DFSM), but these prepared mutants only have either moderate O-demethylation activity or moderate selectivity, which hinders their further application. In this study, we improve the system by introducing different amino acids into the active site of P450BM3, and these amino acids with different side chains impacted the catalytic ability of enzymes due to their differences in size, polarity, and hydrophobicity. Among the prepared mutants, the combination of V78A/F87A/T268I/A264G and Im-C6-Phe efficiently catalyzed the O-demethylation of guaiacol (TON = 839) with 100% selectivity. Compared with NADPH-dependent systems, we offer an economical and practical bioconversion avenue.
Collapse
Affiliation(s)
- Maosheng Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Hengmin Miao
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Yanqing Li
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
- Correspondence: ; Tel.: +86-13869828530
| |
Collapse
|
47
|
Mueller J, Willett H, Feist AM, Niu W. Engineering Pseudomonas putida for Improved Utilization of Syringyl Aromatics. Biotechnol Bioeng 2022; 119:2541-2550. [PMID: 35524438 PMCID: PMC9378539 DOI: 10.1002/bit.28131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Lignin is a largely untapped source for the bioproduction of value‐added chemicals. Pseudomonas putida KT2440 has emerged as a strong candidate for bioprocessing of lignin feedstocks due to its resistance to several industrial solvents, broad metabolic capabilities, and genetic amenability. Here we demonstrate the engineering of P. putida for the ability to metabolize syringic acid, one of the major products that comes from the breakdown of the syringyl component of lignin. The rational design was first applied for the construction of strain Sy‐1 by overexpressing a native vanillate demethylase. Subsequent adaptive laboratory evolution (ALE) led to the generation of mutations that achieved robust growth on syringic acid as a sole carbon source. The best mutant showed a 30% increase in the growth rate over the original engineered strain. Genomic sequencing revealed multiple mutations repeated in separate evolved replicates. Reverse engineering of mutations identified in agmR, gbdR, fleQ, and the intergenic region of gstB and yadG into the parental strain recaptured the improved growth of the evolved strains to varied extent. These findings thus reveal the ability of P. putida to utilize lignin more fully as a feedstock and make it a more economically viable chassis for chemical production.
Collapse
Affiliation(s)
- Joshua Mueller
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Howard Willett
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.,The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
48
|
Lee S, Jung YJ, Park SJ, Ryu MH, Kim JE, Song HM, Kang KH, Song BK, Sung BH, Kim YH, Kim HT, Joo JC. Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester. BIORESOURCE TECHNOLOGY 2022; 352:127106. [PMID: 35378283 DOI: 10.1016/j.biortech.2022.127106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lignin valorization depends on microbial upcycling of various aromatic compounds in the form of a complex mixture, including p-coumaric acid and ferulic acid. In this study, an engineered Pseudomonas putida strain utilizing lignin-derived monomeric compounds via biological funneling was developed to produce 2-pyrone-4,6-dicarboxylic acid (PDC), which has been considered a promising building block for bioplastics. The biosynthetic pathway for PDC production was established by introducing the heterologous ligABC genes under the promoter Ptac in a strain lacking pcaGH genes to accumulate a precursor of PDC, i.e., protocatechuic acid. Based on the culture optimization, fed-batch fermentation of the final strain resulted in 22.7 g/L PDC with a molar yield of 1.0 mol/mol and productivity of 0.21 g/L/h. Subsequent purification of PDC at high purity was successfully implemented, which was consequently applied for the novel polyester.
Collapse
Affiliation(s)
- Siseon Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ye Jean Jung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Mi-Hee Ryu
- Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Joo Eon Kim
- Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyoung Hee Kang
- Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Bong Keun Song
- Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yong Hwan Kim
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
49
|
|
50
|
Gómez-Álvarez H, Iturbe P, Rivero-Buceta V, Mines P, Bugg TDH, Nogales J, Díaz E. Bioconversion of lignin-derived aromatics into the building block pyridine 2,4-dicarboxylic acid by engineering recombinant Pseudomonas putida strains. BIORESOURCE TECHNOLOGY 2022; 346:126638. [PMID: 34971782 DOI: 10.1016/j.biortech.2021.126638] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
2,4 pyridine dicarboxylic acid (2,4 PDCA) is an analogue of terephthalate, and hence a target chemical in the field of bio-based plastics. Here, Pseudomonas putida KT2440 strains were engineered to efficiently drive the metabolism of lignin-derived monoaromatics towards 2,4 PDCA in a resting cells-based bioprocess that alleviates growth-coupled limitations and allows biocatalysts recycling. Native β-ketoadipate pathway was blocked by replacing protocatechuate 3,4-dioxygenase by the exogenous LigAB extradiol dioxygenase. Overexpression of pcaK encoding a transporter increased 8-fold 2,4 PDCA productivity from protocatechuate, reaching the highest value reported so far (0.58 g L-1h-1). Overexpression of the 4-hydroxybenzoate monooxygenase (pobA) speed up drastically the production of 2,4 PDCA from 4-hydroxybenzoate (0.056 g L-1h-1) or p-coumarate (0.012 g L-1h-1) achieving values 15-fold higher than those reported with Rhodococcus jostii biocatalysts. 2,4 PDCA was also bioproduced by using soda lignin as feedstock, paving the way for future polymeric lignin valorization approaches.
Collapse
Affiliation(s)
- Helena Gómez-Álvarez
- Margarita Salas Center for Biological Research, Spanish National Research Council, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Iturbe
- Margarita Salas Center for Biological Research, Spanish National Research Council, Ramiro de Maeztu 9, 28040 Madrid, Spain; Navarrabiomed, University of Navarra, Irunlarrea 3, 31008 Pamplona, Spain
| | - Virginia Rivero-Buceta
- Margarita Salas Center for Biological Research, Spanish National Research Council, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Paul Mines
- Biome Bioplastics Ltd, North Road, Marchwood, Southampton SO40 4BL, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Juan Nogales
- National Centre for Biotechnology, Spanish National Research Council, Darwin 3, 28049 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Eduardo Díaz
- Margarita Salas Center for Biological Research, Spanish National Research Council, Ramiro de Maeztu 9, 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|