1
|
Liu X, Li F, Xiao C, Yu Y, Zheng L, Zhao M, Huang M. Rational Design and Model Predictions for Optimized Elastase Production in Saccharomyces cerevisiae. ACS Synth Biol 2025; 14:1719-1731. [PMID: 40327375 DOI: 10.1021/acssynbio.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Pseudomonas aeruginosa elastase is a metalloprotease with significant industrial potential but is challenging to produce due to its pathogenic origin and folding complexities. In this study, we applied rational design to engineer nonfunctional regions of elastase within Saccharomyces cerevisiae, specifically targeting propeptide and signal peptide cleavage sites, and N-glycosylation in the propeptide. This led to the development of several improved elastase variants. Integrating the yeast protein secretory model pcSecYeast with protease production characteristics, a total of 75 targets were identified and validated, comprising both model-predicted and production-feature-based targets. Notably, overexpression of POS5 enhanced protease activity to 2.43-fold that of the control, while knockout of TES1 or VPS10 further optimized production. This work demonstrates the potential of systems biology in creating yeast cell factories for protease production and highlights S. cerevisiae as a versatile host for biotechnological applications.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Feiran Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yixin Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
2
|
Xu L, Bai X, Joong Oh E. Strategic approaches for designing yeast strains as protein secretion and display platforms. Crit Rev Biotechnol 2025; 45:491-508. [PMID: 39138023 DOI: 10.1080/07388551.2024.2385996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Yeast has been established as a versatile platform for expressing functional molecules, owing to its well-characterized biology and extensive genetic modification tools. Compared to prokaryotic systems, yeast possesses advanced cellular mechanisms that ensure accurate protein folding and post-translational modifications. These capabilities are particularly advantageous for the expression of human-derived functional proteins. However, designing yeast strains as an expression platform for proteins requires the integration of molecular and cellular functions. By delving into the complexities of yeast-based expression systems, this review aims to empower researchers with the knowledge to fully exploit yeast as a functional platform to produce a diverse range of proteins. This review includes an exploration of the host strains, gene cassette structures, as well as considerations for maximizing the efficiency of the expression system. Through this in-depth analysis, the review anticipates stimulating further innovation in the field of yeast biotechnology and protein engineering.
Collapse
Affiliation(s)
- Luping Xu
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | | | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Nakayama E, Tang B, Stewart R, Cox AL, Yan K, Bishop CR, Dumenil T, Nguyen W, Slonchak A, Sng J, Khromykh AA, Lutzky VP, Rawle DJ, Suhrbier A. Evolution of Zika virus in Rag1-deficient mice selects for unique envelope glycosylation motif mutants that show enhanced replication fitness. Virus Evol 2025; 11:veaf021. [PMID: 40291117 PMCID: PMC12024116 DOI: 10.1093/ve/veaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
N-linked glycosylation of flavivirus envelope proteins is widely viewed as being required for optimal folding, processing and/or transit of envelope proteins, and the assembling virons, through the endoplasmic reticulum (ER) and the Golgi. Zika virus (ZIKV) has a single N-linked envelope glycan located adjacent to the fusion loop. Herein we show that independent serial passage of ZIKVNatal in Rag1 -/- mice for 223 or 386 days generated two unique envelope glycan-deficient mutants, ZIKV-V153D and ZIKV-N154D, respectively. Surprisingly, these mutants grew to titres ∼1 to 2.6 logs higher than the glycosylated parental ZIKVNatal in Vero E6 cells and human brain organoids. RNA-Seq of infected organoids suggested that this increased replication fitness was associated with upregulation of the unfolded protein response (UPR). Cell death, cellular viral RNA, and viral protein levels were not significantly affected, arguing that these glycan mutants enjoyed faster ER/Golgi folding, processing, assembly, transit, and virion egress, assisted by an upregulated UPR. Thus, ZIKV envelope N-linked glycosylation is not essential for promoting envelope folding, assembly, and transit through the ER/Golgi, since aspartic acid (D) substitutions in the glycosylation motif can achieve this with significantly greater efficiency. Instead, the evolution of glycan mutants in Rag1 -/- mice indicates that such envelope glycosylation can have a fitness cost in an environment devoid of virus-specific antibody responses. The V153D and N154D mutations, generated by natural selection in Rag1 -/- mice, have to date not been employed in orthoflavivirus envelope glycosylation studies. Instead, genetic engineering has been used to generate mutant viruses that, for instance, contain a N154A substitution. The latter may impart confounding unfavourable properties, such as envelope protein insolubility, that have a detrimental impact on virus replication. The V153D and N154D substitutions may avoid imparting unfavourable properties by preserving the surface negative charge provided by the glycan moiety in the parental ZIKVNatal envelope protein. In Ifnar1 -/- mice ZIKV-V153D and -N154D showed faster viremia onsets, but reduced viremic periods, than the parental ZIKVNatal, consistent with an established contention that such glycans have evolved to delay neutralizing antibody activity.
Collapse
Affiliation(s)
- Eri Nakayama
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku City, Tokyo 162-0052 Japan
| | - Bing Tang
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Romal Stewart
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Abigail L Cox
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kexin Yan
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Troy Dumenil
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Wilson Nguyen
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, QLD 4029 and 4072, Australia
| | - Julian Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, QLD 4029 and 4072, Australia
| | - Viviana P Lutzky
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Daniel J Rawle
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Andreas Suhrbier
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, QLD 4029 and 4072, Australia
| |
Collapse
|
4
|
Qin L, Pan Y, Xue S, Yan Z, Xiao C, Liu X, Yuan D, Hou J, Huang M. Multi-Omics Analysis Reveals Impacts of LincRNA Deletion on Yeast Protein Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406873. [PMID: 39951012 PMCID: PMC11967807 DOI: 10.1002/advs.202406873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/05/2025] [Indexed: 04/05/2025]
Abstract
Non-coding RNAs (ncRNAs) are widespread across various genomic regions and play a crucial role in modulating gene expression and cellular functions, thereby increasing biological complexity. However, the relationship between ncRNAs and the production of heterologous recombinant proteins (HRPs) remains elusive. Here, a yeast library is constructed by deleting long intergenic ncRNAs (lincRNAs), and 21 lincRNAs that affect α-amylase secretion are identified. Targeted deletions of SUT067, SUT433, and CUT782 are found to be particularly effective. Transcriptomic and metabolomic analyses of the top three strains indicate improvements in energy metabolism and cytoplasmic translation, which enhances ATP supply and protein synthesis. Moreover, a yeast strain, derived from the SUT433 deletion, that can secrete ≈4.1 g L⁻1 of α-amylase in fed-batch cultivation through the modification of multiple targets, is engineered. This study highlights the significant potential of lincRNAs in modulating cellular metabolism, providing deep insights and strategies for the development of more efficient protein-producing cell factories.
Collapse
Affiliation(s)
- Ling Qin
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Yuyang Pan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Songlyu Xue
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Zhibo Yan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Chufan Xiao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Xiufang Liu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Dan Yuan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Jin Hou
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Mingtao Huang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| |
Collapse
|
5
|
Ishiwata-Kimata Y, Monguchi M, Geronimo RAC, Sugimoto M, Kimata Y. Artificial induction of the UPR by Tet-off system-dependent expression of Hac1 and its application in Saccharomyces cerevisiae cells. Biosci Biotechnol Biochem 2025; 89:562-572. [PMID: 39953902 DOI: 10.1093/bbb/zbaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/12/2025] [Indexed: 02/17/2025]
Abstract
In response to endoplasmic reticulum (ER) stress, yeast Saccharomyces cerevisiae cells produce Hac1, which is a transcription factor responsible for the unfolded protein response (UPR). When Hac1 is unregulatedly expressed from a constitutive promoter, the ER is artificially enforced and enlarged, even without ER stress stimuli. However, such cells are unsuitable for applicative bioproduction because they grow quite slowly and quickly lose their high-UPR phenotype upon their long-term storage. To avoid this problem, we constructed S. cerevisiae plasmids for Hac1 expression under the control of the inducible Tet-off promoter. Yeast cells carrying these plasmids did not exhibit a considerable UPR and grew rapidly when the Tet-off promoter was repressed by doxycycline. In contrast, under the Tet-off inducing condition, these plasmids caused UPR induction, growth retardation, and ER expansion, depending on the copy number of the plasmid. Moreover, as expected, lipidic molecule production was increased under these conditions.
Collapse
Affiliation(s)
- Yuki Ishiwata-Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Masaki Monguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Ralph Allen Capistrano Geronimo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Maya Sugimoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
6
|
Chen X, Li F, Li X, Otto M, Chen Y, Siewers V. Model-assisted CRISPRi/a library screening reveals central carbon metabolic targets for enhanced recombinant protein production in yeast. Metab Eng 2025; 88:1-13. [PMID: 39615667 DOI: 10.1016/j.ymben.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Production of recombinant proteins is regarded as an important breakthrough in the field of biomedicine and industrial biotechnology. Due to the complexity of the protein secretory pathway and its tight interaction with cellular metabolism, the application of traditional metabolic engineering tools to improve recombinant protein production faces major challenges. A systematic approach is required to generate novel design principles for superior protein secretion cell factories. Here, we applied a proteome-constrained genome-scale protein secretory model of the yeast Saccharomyces cerevisiae (pcSecYeast) to simulate α-amylase production under limited secretory capacity and predict gene targets for downregulation and upregulation to improve α-amylase production. The predicted targets were evaluated using high-throughput screening of specifically designed CRISPR interference/activation (CRISPRi/a) libraries and droplet microfluidics screening. From each library, 200 and 190 sorted clones, respectively, were manually verified. Out of them, 50% of predicted downregulation targets and 34.6% predicted upregulation targets were confirmed to improve α-amylase production. By simultaneously fine-tuning the expression of three genes in central carbon metabolism, i.e. LPD1, MDH1, and ACS1, we were able to increase the carbon flux in the fermentative pathway and α-amylase production. This study exemplifies how model-based predictions can be rapidly validated via a high-throughput screening approach. Our findings highlight novel engineering targets for cell factories and furthermore shed light on the connectivity between recombinant protein production and central carbon metabolism.
Collapse
Affiliation(s)
- Xin Chen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Feiran Li
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Xiaowei Li
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Maximilian Otto
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Verena Siewers
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Fortuin J, Hoffmeester LJ, Minnaar LS, den Haan R. Advancing cellulose utilization and engineering consolidated bioprocessing yeasts: current state and perspectives. Appl Microbiol Biotechnol 2025; 109:43. [PMID: 39939397 PMCID: PMC11821801 DOI: 10.1007/s00253-025-13426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Despite the lack of implementation of consolidated bioprocessing (CBP) at an industrial scale, this bioconversion strategy still holds significant potential as an economically viable solution for converting lignocellulosic biomass (LCB) into biofuels and green chemicals, provided an appropriate organism can be isolated or engineered. The use of Saccharomyces cerevisiae for this purpose requires, among other things, the development of a cellulase expression system within the yeast. Over the past three decades, numerous studies have reported the expression of cellulase-encoding genes, both individually and in combination, in S. cerevisiae. Various strategies have emerged to produce a core set of cellulases, with differing degrees of success. While one-step conversion of cellulosic substrates to ethanol has been reported, the resulting titers and productivities fall well below industrial requirements. In this review, we examine the strategies employed for cellulase expression in yeast, highlighting the successes in developing basic cellulolytic CBP-enabled yeasts. We also summarize recent advancements in rational strain design and engineering, exploring how these approaches can be further enhanced through modern synthetic biology tools to optimize CBP-enabled yeast strains for potential industrial applications. KEY POINTS: • S. cerevisiae's lack of cellulolytic ability warrants its engineering for industry. • Advancements in the expression of core sets of cellulases have been reported. • Rational engineering is needed to enhance cellulase secretion and strain robustness. • Insights gained from omics strategies will direct the future development of CBP strains.
Collapse
Affiliation(s)
- Jordan Fortuin
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Lazzlo J Hoffmeester
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Letitia S Minnaar
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
8
|
Hao H, Yao M, Wang Y, Zhang C, Liu Z, Nielsen J, Shi S, Xiao W, Yuan Y. Extending the G1 phase improves the production of lipophilic compounds in yeast by boosting enzyme expression and increasing cell size. Proc Natl Acad Sci U S A 2024; 121:e2413486121. [PMID: 39536088 PMCID: PMC11588078 DOI: 10.1073/pnas.2413486121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Cell phase engineering can significantly impact protein synthesis and cell size, potentially enhancing the production of lipophilic products. This study investigated the impact of G1 phase extension on resource allocation, metabolic functions, and the unfolded protein response (UPR) in yeast, along with the potential for enhancing the production of lipophilic compounds. In brief, the regulation of the G1 phase was achieved by deleting CLN3 (G1 cyclin) in various yeast strains. This modification resulted in a 83% increase in cell volume, a 76.9% increase in dry cell weight, a 82% increase in total protein content, a 41% increase in carotenoid production, and a 159% increase in fatty alcohol production. Transcriptomic analysis revealed significant upregulation of multiple metabolic pathways involved in acetyl-CoA (acetyl coenzyme A) synthesis, ensuring an ample supply of precursors for the synthesis of lipophilic products. Furthermore, we observed improved protein synthesis, attributed to UPR activation during the prolonged G1 phase. These findings not only enhanced our understanding and application of yeast's capacity to synthesize lipophilic compounds in applied biotechnology but also offered unique insights into cellular behavior during the modified G1 phase, particularly regarding the UPR response, for basic research. This study demonstrates the potential of G1 phase intervention to increase the yield of hydrophobic compounds in yeast, providing a promising direction for further research.
Collapse
Affiliation(s)
- He Hao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
| | - Chenglong Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jens Nielsen
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Department of Life Sciences, Chalmers University of Technology, GothenburgSE41296, Sweden
- BioInnovation Institute, CopenhagenDK2200, Denmark
| | - Shuobo Shi
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen518071, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
| |
Collapse
|
9
|
Li G, Liang H, Gao R, Qin L, Xu P, Huang M, Zong MH, Cao Y, Lou WY. Yeast metabolism adaptation for efficient terpenoids synthesis via isopentenol utilization. Nat Commun 2024; 15:9844. [PMID: 39537637 PMCID: PMC11561230 DOI: 10.1038/s41467-024-54298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial biosynthesis has become the leading commercial approach for large-scale production of terpenoids, a valuable class of natural products. Enhancing terpenoid production, however, requires complex modifications on the host organism. Recently, a two-step isopentenol utilization (IU) pathway relying solely on ATP as the cofactor has been proposed as an alternative to the mevalonate (MVA) pathway, streamlining the synthesis of the common terpenoid precursors. Herein, we find that isopentenol inhibits energy metabolism, leading to reduced efficiency of the IU pathway in Saccharomyces cerevisiae. To overcome this, we engineer an IU pathway-dependent (IUPD) strain, designed for growth-coupled production. The IUPD strain is compelled to enhance the ATP supply, essential for the IU pathway, and incorporates a high-throughput screening method for enzyme evolution. The refined IU pathway surpasses the MVA pathway in synthesizing complex terpenoids. Our work offers valuable insights into developing growth-coupled strains adapted to efficient natural product synthesis.
Collapse
Affiliation(s)
- Guangjian Li
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Hui Liang
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Ruichen Gao
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Ling Qin
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Pei Xu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Mingtao Huang
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Yufei Cao
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Liu SC, Xu L, Sun Y, Yuan L, Xu H, Song X, Sun L. Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. BIODESIGN RESEARCH 2024; 6:0051. [PMID: 39534575 PMCID: PMC11555184 DOI: 10.34133/bdr.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Terpenes are natural secondary metabolites with isoprene as the basic structural unit; they are widely found in nature and have potential applications as advanced fuels, pharmaceutical ingredients, and agricultural chemicals. However, traditional methods are inefficient for obtaining terpenes because of complex processes, low yields, and environmental unfriendliness. The unconventional oleaginous yeast Yarrowia lipolytica, with a clear genetic background and complete gene editing tools, has attracted increasing attention for terpenoid synthesis. Here, we review the synthetic biology tools for Y. lipolytica, including promoters, terminators, selection markers, and autonomously replicating sequences. The progress and emerging trends in the metabolic engineering of Y. lipolytica for terpenoid synthesis are further summarized. Finally, potential future research directions are envisioned.
Collapse
Affiliation(s)
- Shun-Cheng Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Longxing Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yuejia Sun
- School of Nursing and Rehabilitation,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Lijie Yuan
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Hong Xu
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xiaoming Song
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- School of Life Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Liangdan Sun
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei, China
- School of Public Health,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| |
Collapse
|
11
|
Xue Y, Yan Q, Tian X, Han D, Jiang Z. High-level secretory expression and characterization of an acid protease in Komagataella phaffii and its application in soybean meal protein degradation. Int J Biol Macromol 2024; 282:137011. [PMID: 39481721 DOI: 10.1016/j.ijbiomac.2024.137011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Acid proteases play a crucial role in the industrial enzyme market, but low yield limits their widespread application. In this study, we focused on enhancing the secretory expression level of an acid protease (AopepA) from Aspergillus oryzae in Komagataella phaffii through stepwise genetic modification strategies. These included the co-expression of endoplasmic reticulum secretion-associated factors, overexpression of eukaryotic translation initiation factors, knockout of the β-1,3-glucanosyltransferase gene, disruption of the hypoxic heme-dependent repressor gene, and co-expression of the hemoglobin gene. After these modifications, protease activity increased by 4.2-fold, reaching 536.6 U/mL in a shaking flask. The engineered strain produced protease activity of up to 17,392.0 U/mL with a protein concentration of 44.6 g/L in a 5 L fermenter, representing the highest secretory expression level of acid proteases in K. phaffii ever reported. The optimal conditions of AopepA were pH 3.0 and 50 °C. AopepA demonstrated broad hydrolysis activity towards various protein substrates. It efficiently degraded soybean meal proteins into low molecular weight (Mw < 1 kDa, accounting for 82 %) oligopeptides to enhance protein utilization. This study provides valuable insights into improving the secretory expression of acid proteases in K. phaffii and identifies a suitable acid protease for enhancing soybean meal protein utilization.
Collapse
Affiliation(s)
- Yibin Xue
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xueting Tian
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Dong Han
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
12
|
Li H, Zhang S, Dong Z, Shan X, Zhou J, Zeng W. De Novo Biosynthesis of Dihydroquercetin in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19436-19446. [PMID: 39180741 DOI: 10.1021/acs.jafc.4c05546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Dihydroquercetin is a vital flavonoid compound with a wide range of physiological activities. However, factors, such as metabolic regulation, limit the heterologous synthesis of dihydroquercetin in microorganisms. In this study, flavanone 3-hydroxylase (F3H) and flavanone 3'-hydroxylase (F3'H) were screened from different plants, and their co-expression in Saccharomyces cerevisiae was optimized. Promoter engineering and redox partner engineering were used to optimize the corresponding expression of genes involved in the dihydroquercetin synthesis pathway. Dihydroquercetin production was further improved through multicopy integration pathway genes and systems metabolic engineering. By increasing NADPH and α-ketoglutarate supply, the catalytic efficiency of F3'H and F3H was improved, thereby effectively increasing dihydroquercetin production (235.1 mg/L). Finally, 873.1 mg/L dihydroquercetin titer was obtained by fed-batch fermentation in a 5-L bioreactor, which is the highest dihydroquercetin production achieved through de novo microbial synthesis. These results established a pivotal groundwork for flavonoids synthesis.
Collapse
Affiliation(s)
- Hongbiao Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuai Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zilong Dong
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Xie J, Xiao C, Pan Y, Xue S, Huang M. ER stress-induced transcriptional response reveals tolerance genes in yeast. Biotechnol J 2024; 19:e2400082. [PMID: 38896412 DOI: 10.1002/biot.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024]
Abstract
Saccharomyces cerevisiae is important for protein secretion studies, yet the complexities of protein synthesis and secretion under endoplasmic reticulum (ER) stress conditions remain not fully understood. ER stress, triggered by alterations in the ER protein folding environment, poses substantial challenges to cells, especially during heterologous protein production. In this study, we used RNA-seq to analyze the transcriptional responses of yeast strains to ER stress induced by reagents such as tunicamycin (Tm) or dithiothreitol (DTT). Our gene expression analysis revealed several crucial genes, such as HMO1 and BIO5, that are involved in ER-stress tolerance. Through metabolic engineering, the best engineered strain R23 with HMO1 overexpression and BIO5 deletion, showed enhanced ER stress tolerance and improved protein folding efficiency, leading to a 2.14-fold increase in α-amylase production under Tm treatment and a 2.04-fold increase in cell density under DTT treatment. Our findings contribute to the understanding of cellular responses to ER stress and provide a basis for further investigations into the mechanisms of ER stress at the cellular level.
Collapse
Affiliation(s)
- Jingrong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Songlyu Xue
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
15
|
Zhao M, Ma J, Zhang L, Qi H. Engineering strategies for enhanced heterologous protein production by Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:32. [PMID: 38247006 PMCID: PMC10801990 DOI: 10.1186/s12934-024-02299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Microbial proteins are promising substitutes for animal- and plant-based proteins. S. cerevisiae, a generally recognized as safe (GRAS) microorganism, has been frequently employed to generate heterologous proteins. However, constructing a universal yeast chassis for efficient protein production is still a challenge due to the varying properties of different proteins. With progress in synthetic biology, a multitude of molecular biology tools and metabolic engineering strategies have been employed to alleviate these issues. This review first analyses the advantages of protein production by S. cerevisiae. The most recent advances in improving heterologous protein yield are summarized and discussed in terms of protein hyperexpression systems, protein secretion engineering, glycosylation pathway engineering and systems metabolic engineering. Furthermore, the prospects for efficient and sustainable heterologous protein production by S. cerevisiae are also provided.
Collapse
Affiliation(s)
- Meirong Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Jianfan Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
16
|
Ekim Kocabey A, Schneiter R. Human lipocalins bind and export fatty acids through the secretory pathway of yeast cells. Front Microbiol 2024; 14:1309024. [PMID: 38328584 PMCID: PMC10849133 DOI: 10.3389/fmicb.2023.1309024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
The activation of fatty acids to their acyl-CoA derivatives is a crucial step for their integration into more complex lipids or their degradation via beta-oxidation. Yeast cells employ five distinct acyl-CoA synthases to facilitate this ATP-dependent activation of acyl chains. Notably, mutant cells that are deficient in two of these fatty acid-activating (FAA) enzymes, namely, Faa1 and Faa4, do not take up free fatty acids but rather export them out of the cell. This unique fatty acid export pathway depends on small, secreted pathogenesis-related yeast proteins (Pry). In this study, we investigate whether the expression of human fatty acid-binding proteins, including Albumin, fatty acid-binding protein 4 (Fabp4), and three distinct lipocalins (ApoD, Lcn1, and Obp2a), could promote fatty acid secretion in yeast. To optimize the expression and secretion of these proteins, we systematically examined various signal sequences in both low-copy and high-copy number plasmids. Our findings reveal that directing these fatty-acid binding proteins into the secretory pathway effectively promotes fatty acid secretion from a sensitized quadruple mutant model strain (faa1∆ faa4∆ pry1∆ pry3∆). Furthermore, the level of fatty acid secretion exhibited a positive correlation with the efficiency of protein secretion. Importantly, the expression of all human lipid-binding proteins rescued Pry-dependent fatty acid secretion, resulting in the secretion of both long-chain saturated and unsaturated fatty acids. These results not only affirm the in vitro binding capabilities of lipocalins to fatty acids but also present a novel avenue for enhancing the secretion of valuable lipidic compounds. Given the growing interest in utilizing yeast as a cellular factory for producing poorly soluble compounds and the potential of lipocalins as platforms for engineering substrate-binding specificity, our model is considered as a powerful tool for promoting the secretion of high-value lipid-based molecules.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
17
|
Xiao C, Pan Y, Huang M. Advances in the dynamic control of metabolic pathways in Saccharomyces cerevisiae. ENGINEERING MICROBIOLOGY 2023; 3:100103. [PMID: 39628908 PMCID: PMC11610979 DOI: 10.1016/j.engmic.2023.100103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 12/06/2024]
Abstract
The metabolic engineering of Saccharomyces cerevisiae has great potential for enhancing the production of high-value chemicals and recombinant proteins. Recent studies have demonstrated the effectiveness of dynamic regulation as a strategy for optimizing metabolic flux and improving production efficiency. In this review, we provide an overview of recent advancements in the dynamic regulation of S. cerevisiae metabolism. Here, we focused on the successful utilization of transcription factor (TF)-based biosensors within the dynamic regulatory network of S. cerevisiae. These biosensors are responsive to a wide range of endogenous and exogenous signals, including chemical inducers, light, temperature, cell density, intracellular metabolites, and stress. Additionally, we explored the potential of omics tools for the discovery of novel responsive promoters and their roles in fine-tuning metabolic networks. We also provide an outlook on the development trends in this field.
Collapse
Affiliation(s)
- Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
18
|
Li Y, Xiao C, Pan Y, Qin L, Zheng L, Zhao M, Huang M. Optimization of Protein Folding for Improved Secretion of Human Serum Albumin Fusion Proteins in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18414-18423. [PMID: 37966975 DOI: 10.1021/acs.jafc.3c05330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The successful expression and secretion of recombinant proteins in cell factories significantly depend on the correct folding of nascent peptides, primarily achieved through disulfide bond formation. Thus, optimizing cellular protein folding is crucial, especially for proteins with complex spatial structures. In this study, protein disulfide isomerases (PDIs) from various species were introduced into Saccharomyces cerevisiae to facilitate proper disulfide bond formation and enhance recombinant protein secretion. The impacts of these PDIs on recombinant protein production and yeast growth metabolism were evaluated by substituting the endogenous PDI1. Heterologous PDIs cannot fully compensate the endogenous PDI. Furthermore, protein folding mediators, PDI and ER oxidoreductase 1 (Ero1), from different species were used to increase the production of complex human serum albumin (HSA) fusion proteins. The validated folding mediators were then introduced into unfolded protein response (UPR)-optimized strains, resulting in a 7.8-fold increase in amylase-HSA and an 18.2-fold increase in albiglutide compared with the control strain. These findings provide valuable insights for optimizing protein folding and expressing HSA-based drugs.
Collapse
Affiliation(s)
- Yanling Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Ling Qin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
19
|
Ishiwata-Kimata Y, Kimata Y. Fundamental and Applicative Aspects of the Unfolded Protein Response in Yeasts. J Fungi (Basel) 2023; 9:989. [PMID: 37888245 PMCID: PMC10608004 DOI: 10.3390/jof9100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Upon the dysfunction or functional shortage of the endoplasmic reticulum (ER), namely, ER stress, eukaryotic cells commonly provoke a protective gene expression program called the unfolded protein response (UPR). The molecular mechanism of UPR has been uncovered through frontier genetic studies using Saccharomyces cerevisiae as a model organism. Ire1 is an ER-located transmembrane protein that directly senses ER stress and is activated as an RNase. During ER stress, Ire1 promotes the splicing of HAC1 mRNA, which is then translated into a transcription factor that induces the expression of various genes, including those encoding ER-located molecular chaperones and protein modification enzymes. While this mainstream intracellular UPR signaling pathway was elucidated in the 1990s, new intriguing insights have been gained up to now. For instance, various additional factors allow UPR evocation strictly in response to ER stress. The UPR machineries in other yeasts and fungi, including pathogenic species, are another important research topic. Moreover, industrially beneficial yeast strains carrying an enforced and enlarged ER have been produced through the artificial and constitutive induction of the UPR. In this article, we review canonical and up-to-date insights concerning the yeast UPR, mainly from the viewpoint of the functions and regulation of Ire1 and HAC1.
Collapse
Affiliation(s)
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
20
|
Xiao C, Xue S, Pan Y, Liu X, Huang M. Overexpression of genes by stress-responsive promoters increases protein secretion in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2023; 39:203. [PMID: 37209206 DOI: 10.1007/s11274-023-03646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Recombinant proteins produced by cell factories are now widely used in various fields. Many efforts have been made to improve the secretion capacity of cell factories to meet the increasing demand for recombinant proteins. Recombinant protein production usually causes cell stress in the endoplasmic reticulum (ER). The overexpression of key genes possibly removes limitations in protein secretion. However, inappropriate gene expression may have negative effects. There is a need for dynamic control of genes adapted to cellular status. In this study, we constructed and characterized synthetic promoters that were inducible under ER stress conditions in Saccharomyces cerevisiae. The unfolded protein response element UPRE2, responding to stress with a wide dynamic range, was assembled with various promoter core regions, resulting in UPR-responsive promoters. Synthetic responsive promoters regulated gene expression by responding to stress level, which reflected the cellular status. The engineered strain using synthetic responsive promoters P4UPRE2 - TDH3 and P4UPRE2 - TEF1 for co-expression of ERO1 and SLY1 had 95% higher α-amylase production compared with the strain using the native promoters PTDH3 and PTEF1. This work showed that UPR-responsive promoters were useful in the metabolic engineering of yeast strains for tuning genes to support efficient protein production.
Collapse
Affiliation(s)
- Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Songlyu Xue
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|