1
|
Li W, Wang X, Liu J, Liu B, Hao Y. Crosstalk Between Plk1 and PTEN in Mitosis Affects Chromosomal Stability. DNA Cell Biol 2025. [PMID: 40117175 DOI: 10.1089/dna.2024.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
The mitotic phase involves the distribution and regulation of genetic material. Defects in gene regulation can lead to serious errors in genetic transmission, such as increased instability of chromosomes, thereby increasing susceptibility to cancer and promoting its development. The maintenance of chromosome stability depends on several mechanisms, such as efficient DNA repair, proper sister chromatid separation, and timely cytokinesis. The serine/threonine kinase Plk1 is a key molecule in maintaining chromosome stability, participating in multiple stages of precise regulation during mitosis, including promoting entry into mitosis, facilitating centrosome maturation and bipolar spindle formation, promoting sister chromatid separation, and facilitating cytokinesis. Several proteins can regulate the kinase activity of Plk1 through protein-protein interactions, coordinating the genetic stability of the cell, including the kinases Aurora A, c-Abl, and Chk1 as well as the phosphatase phosphatase and tension homolog (PTEN). PTEN has been described as an essential regulator of Plk1 for dephosphorylation and chromosomal stability during cell division, and Plk1 may directly interact with and phosphorylate PTEN at centromeres. Here, we review the bidirectional interplay between Plk1 and PTEN and how it contributes to genomic stability during mitosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xianning Wang
- College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Jiannan Liu
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bing Liu
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yongjian Hao
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
2
|
Eberhardt W, Nasrullah U, Pfeilschifter J. TRIM25: A Global Player of Cell Death Pathways and Promising Target of Tumor-Sensitizing Therapies. Cells 2025; 14:65. [PMID: 39851496 PMCID: PMC11764315 DOI: 10.3390/cells14020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Therapy resistance still constitutes a common hurdle in the treatment of many human cancers and is a major reason for treatment failure and patient relapse, concomitantly with a dismal prognosis. In addition to "intrinsic resistance", e.g., acquired by random mutations, cancer cells typically escape from certain treatments ("acquired resistance") by a large variety of means, including suppression of apoptosis and other cell death pathways via upregulation of anti-apoptotic factors or through inhibition of tumor-suppressive proteins. Therefore, ideally, the tumor-cell-restricted induction of apoptosis is still considered a promising avenue for the development of novel, tumor (re)sensitizing therapies. A growing body of evidence has highlighted the multifaceted role of tripartite motif 25 (TRIM25) in controlling different aspects of tumorigenesis, including chemotherapeutic drug resistance. Accordingly, overexpression of TRIM25 is observed in many tumors and frequently correlates with a poor patient survival. In addition to its originally described function in antiviral innate immune response, TRIM25 can play critical yet context-dependent roles in apoptotic- and non-apoptotic-regulated cell death pathways, including pyroposis, necroptosis, ferroptosis, and autophagy. The review summarizes current knowledge of molecular mechanisms by which TRIM25 can interfere with different cell death modalities and thereby affect the success of currently used chemotherapeutics. A better understanding of the complex repertoire of cell death modulatory effects by TRIM25 is an essential prerequisite for validating TRIM25 as a potential target for future anticancer therapy to surmount the high failure rate of currently used chemotherapies.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, 60590 Frankfurt, Germany; (U.N.); (J.P.)
| | | | | |
Collapse
|
3
|
Lun Y, Sun J, Wei L, Liu B, Li Z, Dong W, Zhao W. SPINK13 acts as a tumor suppressor in hepatocellular carcinoma by inhibiting Akt phosphorylation. Cell Death Dis 2024; 15:822. [PMID: 39537605 PMCID: PMC11561306 DOI: 10.1038/s41419-024-07214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The PI3K/Akt pathway is overexpressed in nearly 50% of hepatocellular carcinomas and inhibits apoptosis by promoting the expression of antiapoptotic genes. Serine protease inhibitors have been shown to induce apoptosis in hepatoma cells by downregulating SPINK13 in the PI3K/Akt pathway. In this study, SPINK13 was expressed in lentiviral vectors. Changes in signaling pathway adapter proteins, apoptosis regulatory proteins, cell cycle regulatory proteins, and the biological behavior of hepatocellular carcinoma were observed in cell and nude mouse xenograft models. The underlying mechanism of endogenous SPINK13-induced apoptosis in hepatocellular carcinoma cells was explored via transcriptomics. As a result, endogenous SPINK13 might inhibit the activity of Furin protease, downregulate the Notch1/Hes1 pathway in a binding manner, activate the direct effector PTEN, inhibit Akt phosphorylation, inactivate the downstream PI3K/Akt pathway, and ultimately lead to mitochondrial apoptosis and cell cycle arrest in hepatoma cells. Therefore, the Notch1/Hes1/PTEN pathway may act upstream of SPINK13 to downregulate the PI3K/Akt signaling pathway. Our study helps elucidate the underlying mechanism of SPINK13 in anti-hepatocellular carcinoma and lays a theoretical foundation for the development of novel therapeutic serine protease inhibitors.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Mice, Nude
- Phosphorylation
- Apoptosis/genetics
- Mice
- Signal Transduction
- Cell Line, Tumor
- Phosphatidylinositol 3-Kinases/metabolism
- PTEN Phosphohydrolase/metabolism
- PTEN Phosphohydrolase/genetics
- Serine Peptidase Inhibitors, Kazal Type/metabolism
- Serine Peptidase Inhibitors, Kazal Type/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Trypsin Inhibitor, Kazal Pancreatic/metabolism
- Trypsin Inhibitor, Kazal Pancreatic/genetics
- Transcription Factor HES-1/metabolism
- Transcription Factor HES-1/genetics
- Hep G2 Cells
- Mice, Inbred BALB C
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Yongzhi Lun
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China.
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China.
| | - Jie Sun
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Ling Wei
- Beijing Centre for Physical and Chemical Analysis, 100089, Beijing, China
| | - Ben Liu
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Zhixue Li
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Wen Dong
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Wenqi Zhao
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
| |
Collapse
|
4
|
Maruyama N, Ogata T, Kasahara T, Hamaoka T, Higuchi Y, Tsuji Y, Tomita S, Sakamoto A, Nakanishi N, Matoba S. Loss of Cavin-2 destabilizes phosphatase and tensin homologue and enhances Akt signalling pathway in cardiomyocytes. Cardiovasc Res 2024; 120:1562-1576. [PMID: 38861679 DOI: 10.1093/cvr/cvae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
AIMS Specific cavins and caveolins, known as caveola-related proteins, have been implicated in cardiac hypertrophy and myocardial injury. Cavin-2 forms complexes with other caveola-related proteins, but the role of Cavin-2 in cardiomyocytes (CMs) is poorly understood. Here, we investigated an unknown function of Cavin-2 in CMs. METHODS AND RESULTS Under cardiac stress-free conditions, systemic Cavin-2 knockout (KO) induced mild and significant CM hypertrophy. Cavin-2 KO suppressed phosphatase and tensin homologue (PTEN) associated with Akt signalling, whereas there was no difference in Akt activity between the hearts of the wild-type and the Cavin-2 KO mice under cardiac stress-free conditions. However, after swim training, CM hypertrophy was more facilitated with enhanced phosphoinositide 3-kinase (PI3K)-Akt activity in the hearts of Cavin-2 KO mice. Cavin-2 knockdown neonatal rat CMs (NRCMs) using adenovirus expressing Cavin-2 short hairpin RNA were hypertrophied and resistant to hypoxia and H2O2-induced apoptosis. Cavin-2 knockdown increased Akt phosphorylation in NRCMs, and an Akt inhibitor inhibited Cavin-2 knockdown-induced anti-apoptotic responses in a dose-dependent manner. Cavin-2 knockdown increased phosphatidylinositol-3,4,5-triphosphate production and attenuated PTEN at the membrane fraction of NRCMs. Immunostaining and immunoprecipitation showed that Cavin-2 was associated with PTEN at the plasma membrane of NRCMs. A protein stability assay showed that Cavin-2 knockdown promoted PTEN destabilization in NRCMs. In an Angiotensin II (2-week continuous infusion)-induced pathological cardiac hypertrophy model, CM hypertrophy and CM apoptosis were suppressed in CM-specific Cavin-2 conditional KO (Cavin-2 cKO) mice. Because Cavin-2 cKO mouse hearts showed increased Akt activity but not decreased extracellular signal-regulated kinase activity, suppression of pathological hypertrophy by Cavin-2 loss may be due to increased survival of healthy CMs. CONCLUSION Cavin-2 plays a negative regulator in the PI3K-Akt signalling in CMs through interaction with PTEN. Loss of Cavin-2 enhances Akt activity by promoting PTEN destabilization, which promotes physiological CM hypertrophy and may enhance Akt-mediated cardioprotective effects against pathological CM hypertrophy.
Collapse
Affiliation(s)
- Naoki Maruyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeru Kasahara
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tetsuro Hamaoka
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
5
|
Dabral S, Noh M, Werner F, Krebes L, Völker K, Maier C, Aleksic I, Novoyatleva T, Hadzic S, Schermuly RT, Perez VADJ, Kuhn M. C-type natriuretic peptide/cGMP/FoxO3 signaling attenuates hyperproliferation of pericytes from patients with pulmonary arterial hypertension. Commun Biol 2024; 7:693. [PMID: 38844781 PMCID: PMC11156916 DOI: 10.1038/s42003-024-06375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.
Collapse
Affiliation(s)
- Swati Dabral
- Institute of Physiology, University of Würzburg, Würzburg, Germany.
| | - Minhee Noh
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Franziska Werner
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Lisa Krebes
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Katharina Völker
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Christopher Maier
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Ivan Aleksic
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Tatyana Novoyatleva
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Vinicio A de Jesus Perez
- Divisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, Stanford University, California, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Chesnokova LS, Mosher BS, Fulkerson HL, Nam HW, Shakya AK, Yurochko AD. Distinct early role of PTEN regulation during HCMV infection of monocytes. Proc Natl Acad Sci U S A 2024; 121:e2312290121. [PMID: 38483999 PMCID: PMC10962971 DOI: 10.1073/pnas.2312290121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to β1/β3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.
Collapse
Affiliation(s)
- Liudmila S. Chesnokova
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Bailey S. Mosher
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Heather L. Fulkerson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Hyung W. Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Akhalesh K. Shakya
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Feist-Weller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, Shreveport, LA71103
- Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| |
Collapse
|
7
|
De D, Ghosh G, Karmakar P. Sumoylation and phosphorylation of PTEN boosts and curtails autophagy respectively by influencing cell membrane localisation. Exp Cell Res 2024; 434:113872. [PMID: 38072303 DOI: 10.1016/j.yexcr.2023.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Autophagy is involved in the entirety of cellular survival, homeostasis and death which becomes more self-evident when its dysregulation is implicated in several pathological conditions. PTEN positively regulates autophagy and like other proteins undergo post-translational modifications. It is crucial to investigate the relationship between PTEN and autophagy as it is generally observed to be negligible in PTEN deficient cancer cells. Here, we have shown that such modifications of PTEN namely sumoylation and phosphorylation upregulates and downregulates autophagy respectively. Transfection of plasmid containing full length PTEN in PTEN-negative prostate cancer cell line PC3, induced autophagy on further starvation. When a sumoylation-deficient mutant of PTEN was transfected and cells were put under similar starvation, a decline in autophagy was observed. On the other hand, cells transfected with phosphorylation-deficient mutant of PTEN showed elevated expression of autophagy. Contrarily, transfection with phosphorylation-mimicking mutant caused reduced expression of autophagy. On further analysis, it was detected that PTEN's association with the plasma membrane was under positive and negative influence from its sumoylation and phosphorylation respectively. This association is integral as it is the foremost site for PTEN to oppose PI3K/AKT pathway and consequently upregulate autophagy. Thus, this study indicates that sumoylation and phosphorylation of PTEN can control autophagy via its cell membrane association.
Collapse
Affiliation(s)
- Debojyoti De
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| | - Ginia Ghosh
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| | - Parimal Karmakar
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
8
|
Bruserud Ø, Reikvam H. Casein Kinase 2 (CK2): A Possible Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:3711. [PMID: 37509370 PMCID: PMC10378128 DOI: 10.3390/cancers15143711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The protein kinase CK2 (also known as casein kinase 2) is one of the main contributors to the human phosphoproteome. It is regarded as a possible therapeutic strategy in several malignant diseases, including acute myeloid leukemia (AML), which is an aggressive bone marrow malignancy. CK2 is an important regulator of intracellular signaling in AML cells, especially PI3K-Akt, Jak-Stat, NFκB, Wnt, and DNA repair signaling. High CK2 levels in AML cells at the first time of diagnosis are associated with decreased survival (i.e., increased risk of chemoresistant leukemia relapse) for patients receiving intensive and potentially curative antileukemic therapy. However, it is not known whether these high CK2 levels can be used as an independent prognostic biomarker because this has not been investigated in multivariate analyses. Several CK2 inhibitors have been developed, but CX-4945/silmitasertib is best characterized. This drug has antiproliferative and proapoptotic effects in primary human AML cells. The preliminary results from studies of silmitasertib in the treatment of other malignancies suggest that gastrointestinal and bone marrow toxicities are relatively common. However, clinical AML studies are not available. Taken together, the available experimental and clinical evidence suggests that the possible use of CK2 inhibition in the treatment of AML should be further investigated.
Collapse
Affiliation(s)
- Øystein Bruserud
- Institute for Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Institute for Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
9
|
Patel S, Vyas VK, Sharma M, Ghate M. Structure-guided discovery of adenosine triphosphate-competitive casein kinase 2 inhibitors. Future Med Chem 2023; 15:987-1014. [PMID: 37307219 DOI: 10.4155/fmc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous, highly pleiotropic serine-threonine kinase. CK2 has been identified as a potential drug target for the treatment of cancer and related disorders. Several adenosine triphosphate-competitive CK2 inhibitors have been identified and have progressed at different levels of clinical trials. This review presents details of CK2 protein, structural insights into adenosine triphosphate binding pocket, current clinical trial candidates and their analogues. Further, it includes the emerging structure-based drug design approaches, chemistry, structure-activity relationship and biological screening of potent and selective CK2 inhibitors. The authors tabulated the details of CK2 co-crystal structures because these co-crystal structures facilitated the structure-guided discovery of CK2 inhibitors. The narrow hinge pocket compared with related kinases provides useful insights into the discovery of CK2 inhibitors.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manjunath Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
10
|
van Ree JH, Jeganathan KB, Fierro Velasco RO, Zhang C, Can I, Hamada M, Li H, Baker DJ, van Deursen JM. Hyperphosphorylated PTEN exerts oncogenic properties. Nat Commun 2023; 14:2983. [PMID: 37225693 PMCID: PMC10209192 DOI: 10.1038/s41467-023-38740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of β-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Janine H van Ree
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Torices L, Mingo J, Rodríguez-Escudero I, Fernández-Acero T, Luna S, Nunes-Xavier CE, López JI, Mercadillo F, Currás M, Urioste M, Molina M, Cid VJ, Pulido R. Functional analysis of PTEN variants of unknown significance from PHTS patients unveils complex patterns of PTEN biological activity in disease. Eur J Hum Genet 2023; 31:568-577. [PMID: 36543932 PMCID: PMC10172195 DOI: 10.1038/s41431-022-01265-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Heterozygous germline mutations in PTEN gene predispose to hamartomas and tumors in different tissues, as well as to neurodevelopmental disorders, and define at genetic level the PTEN Hamartoma Tumor Syndrome (PHTS). The major physiologic role of PTEN protein is the dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), counteracting the pro-oncogenic function of phosphatidylinositol 3-kinase (PI3K), and PTEN mutations in PHTS patients frequently abrogate PTEN PIP3 catalytic activity. PTEN also displays non-canonical PIP3-independent functions, but their involvement in PHTS pathogeny is less understood. We have previously identified and described, at clinical and genetic level, novel PTEN variants of unknown functional significance in PHTS patients. Here, we have performed an extensive functional characterization of these PTEN variants (c.77 C > T, p.(Thr26Ile), T26I; c.284 C > G, p.(Pro95Arg), P95R; c.529 T > A, p.(Tyr177Asn), Y177N; c.781 C > G, p.(Gln261Glu), Q261E; c.829 A > G, p.(Thr277Ala), T277A; and c.929 A > G, p.(Asp310Gly), D310G), including cell expression levels and protein stability, PIP3-phosphatase activity, and subcellular localization. In addition, caspase-3 cleavage analysis in cells has been assessed using a C2-domain caspase-3 cleavage-specific anti-PTEN antibody. We have found complex patterns of functional activity on PTEN variants, ranging from loss of PIP3-phosphatase activity, diminished protein expression and stability, and altered nuclear/cytoplasmic localization, to intact functional properties, when compared with PTEN wild type. Furthermore, we have found that PTEN cleavage at the C2-domain by the pro-apoptotic protease caspase-3 is diminished in specific PTEN PHTS variants. Our findings illustrate the multifaceted molecular features of pathogenic PTEN protein variants, which could account for the complexity in the genotype/phenotype manifestations of PHTS patients.
Collapse
Affiliation(s)
- Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Fátima Mercadillo
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Currás
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
12
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Barbernitz X, Raben DM. Phosphorylation of DGK. Adv Biol Regul 2022; 88:100941. [PMID: 36508895 DOI: 10.1016/j.jbior.2022.100941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Diacylglycerol (DAG) and phosphatidic acid (PtdOH) play important roles in a variety of signaling cascades (Carrasco and Merida, 2007; Stace and Ktistakis, 2006). Therefore, the physiological roles and regulatory mechanisms controlling the levels of these lipids are important. One class of enzymes capable of coordinating the levels of these two lipids are the diacylglycerol kinases (DGKs). DGKs catalyze the transfer of the γ-phosphate of ATP to the hydroxyl group of DAG which generates PtdOH(Merida et al., 2008; Sakane et al., 2007). As DGKs reciprocally modulate the relative levels of these two signaling lipids, it is not surprising that there is increasing interest in understanding the mechanism underlying the catalysis and regulation of these kinases. While post-translational modifications (PTMs) are often involved in enzyme regulation, there is surprisingly little information regarding the PTMs on these enzymes and their roles in modulating their activity and function. In this review, we will summarize what is known about one PTM on DGKs, phosphorylation, and the possible functions of this modification.
Collapse
Affiliation(s)
- Xin Barbernitz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
He F, Zhang F, Liao Y, Tang MS, Wu XR. Structural or functional defects of PTEN in urothelial cells lacking P53 drive basal/squamous-subtype muscle-invasive bladder cancer. Cancer Lett 2022; 550:215924. [PMID: 36195293 PMCID: PMC9813857 DOI: 10.1016/j.canlet.2022.215924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023]
Abstract
Muscle-invasive bladder cancer (MIBC) exhibits strong inter- and intra-tumor heterogeneity that affects biological behaviors, therapeutic responses, and prognoses. Mutations that activate RTK-RAS-PI3K and inactivate P19-P53-P21 coexist in 60-70% of MIBC. By time-controlled ablation of Tp53 and Pten, singly or combined, in adult mouse urothelium, we found that Tp53 loss alone produced no abnormality. While Pten loss elicited hyperplasia, it synergized with Tp53 loss to trigger 100% penetrant MIBC that exhibited basal/squamous features that resembled its human counterpart. Furthermore, PTEN was inactivated in human MIBC cell lines and specimens primarily by hyperphosphorylation of the C-terminus. Mutated or tailless PTEN incapable of C-terminal phosphorylation demonstrated increased inhibition of proliferation and invasion than full-length PTEN in cultured MIBC cells. In xenograft and transgenic mice, tailless PTEN, but not full-length PTEN, prevented further growth in established tumors. Collectively, deficiencies of both PTEN and P53 drive basal/squamous subtype MIBC. PTEN is inactivated by C-terminal hyperphosphorylation, and this modification may serve as a biomarker for subtyping MIBC and predicting tumor progression. Tailless PTEN is a potential molecular therapeutic for tumors, such as bladder cancer (BC), that can be readily accessed.
Collapse
Affiliation(s)
- Feng He
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA; Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY, 10010, USA
| | - Fenglin Zhang
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
| | - Yi Liao
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
| | - Moon-Shong Tang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA; Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY, 10010, USA.
| |
Collapse
|
15
|
Minor Kinases with Major Roles in Cytokinesis Regulation. Cells 2022; 11:cells11223639. [PMID: 36429067 PMCID: PMC9688779 DOI: 10.3390/cells11223639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis, the conclusive act of cell division, allows cytoplasmic organelles and chromosomes to be faithfully partitioned between two daughter cells. In animal organisms, its accurate regulation is a fundamental task for normal development and for preventing aneuploidy. Cytokinesis failures produce genetically unstable tetraploid cells and ultimately result in chromosome instability, a hallmark of cancer cells. In animal cells, the assembly and constriction of an actomyosin ring drive cleavage furrow ingression, resulting in the formation of a cytoplasmic intercellular bridge, which is severed during abscission, the final event of cytokinesis. Kinase-mediated phosphorylation is a crucial process to orchestrate the spatio-temporal regulation of the different stages of cytokinesis. Several kinases have been described in the literature, such as cyclin-dependent kinase, polo-like kinase 1, and Aurora B, regulating both furrow ingression and/or abscission. However, others exist, with well-established roles in cell-cycle progression but whose specific role in cytokinesis has been poorly investigated, leading to considering these kinases as "minor" actors in this process. Yet, they deserve additional attention, as they might disclose unexpected routes of cell division regulation. Here, we summarize the role of multifunctional kinases in cytokinesis with a special focus on those with a still scarcely defined function during cell cleavage. Moreover, we discuss their implication in cancer.
Collapse
|
16
|
PTEN Dual Lipid- and Protein-Phosphatase Function in Tumor Progression. Cancers (Basel) 2022; 14:cancers14153666. [PMID: 35954330 PMCID: PMC9367293 DOI: 10.3390/cancers14153666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a multifunctional tumor suppressor with protein- and lipid-phosphatase activities. The inactivation of PTEN is commonly found in all human cancers and is correlated with tumor progression. PTEN-lipid-phosphatase activity has been well documented to dephosphorylate phosphatidylinositol-3, 4, 5-phosphate (PIP3), which hinders cell growth and survival by dampening the PI3K and AKT signaling activity. PTEN-protein-phosphatase activity is less well studied and understood. Recent studies have reported that PTEN-protein-phosphatase activity dephosphorylates the different proteins and acts in various cell functions. We here review the PTEN mutations and protein-phosphatase substrates in tumor progression. We aim to address the gap in our understanding as to how PTEN protein phosphatase contributes to its tumor-suppression functions. Abstract PTEN is the second most highly mutated tumor suppressor in cancer, following only p53. The PTEN protein functions as a phosphatase with lipid- and protein-phosphatase activity. PTEN-lipid-phosphatase activity dephosphorylates PIP3 to form PIP2, and it then antagonizes PI3K and blocks the activation of AKT, while its protein-phosphatase activity dephosphorylates different protein substrates and plays various roles in tumorigenesis. Here, we review the PTEN mutations and protein-phosphatase substrates in tumorigenesis and metastasis. Our purpose is to clarify how PTEN protein phosphatase contributes to its tumor-suppressive functions through PI3K-independent activities.
Collapse
|
17
|
He YM, Zhou XM, Jiang SY, Zhang ZB, Cao BY, Liu JB, Zeng YY, Zhao J, Mao XL. TRIM25 activates AKT/mTOR by inhibiting PTEN via K63-linked polyubiquitination in non-small cell lung cancer. Acta Pharmacol Sin 2022; 43:681-691. [PMID: 33931764 PMCID: PMC8888698 DOI: 10.1038/s41401-021-00662-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
The PTEN/AKT/mTOR signaling pathway is frequently dysregulated in non-small cell lung cancer (NSCLC), but the mechanisms are not well-understood. The present study found that the ubiquitin ligase TRIM25 is highly expressed in NSCLC tissues and promotes NSCLC cell survival and tumor growth. Mechanistic studies revealed that TRIM25 binds to PTEN and mediates its K63-linked ubiquitination at K266. This modification prevents the plasma membrane translocation of PTEN and reduces its phosphatase activity therefore accumulating PI(3,4,5)P3. TRIM25 thus activates the AKT/mTOR signaling. Moreover, we found that the antibacterial nitroxoline can activate PTEN by reducing its K63-linked polyubiquitination and sensitizes NSCLC to cisplatin-induced apoptosis. This study thus identified a novel modulation on the PTEN signaling pathway by TRIM25 and provides a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Yuan-ming He
- grid.410737.60000 0000 8653 1072Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China ,grid.263761.70000 0001 0198 0694Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xiu-min Zhou
- grid.429222.d0000 0004 1798 0228Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215106 China
| | - Shuo-yi Jiang
- grid.410737.60000 0000 8653 1072Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China ,grid.263761.70000 0001 0198 0694Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Zu-bin Zhang
- grid.263761.70000 0001 0198 0694Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Bi-yin Cao
- grid.263761.70000 0001 0198 0694Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Jin-bao Liu
- grid.410737.60000 0000 8653 1072Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| | - Yuan-ying Zeng
- grid.440227.70000 0004 1758 3572Department of Oncology, Suzhou Municipal Hospital, Suzhou, 215100 China
| | - Jun Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China. .,Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215106, China.
| | - Xin-liang Mao
- grid.410737.60000 0000 8653 1072Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| |
Collapse
|
18
|
Tariq K, Luikart BW. Striking a balance: PIP 2 and PIP 3 signaling in neuronal health and disease. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 1:86-100. [PMID: 35098253 PMCID: PMC8797975 DOI: 10.37349/ent.2021.00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphoinositides are membrane phospholipids involved in a variety of cellular processes like growth, development, metabolism, and transport. This review focuses on the maintenance of cellular homeostasis of phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidylinositol 3,4,5-trisphosphate (PIP3). The critical balance of these PIPs is crucial for regulation of neuronal form and function. The activity of PIP2 and PIP3 can be regulated through kinases, phosphatases, phospholipases and cholesterol microdomains. PIP2 and PIP3 carry out their functions either indirectly through their effectors activating integral signaling pathways, or through direct regulation of membrane channels, transporters, and cytoskeletal proteins. Any perturbations to the balance between PIP2 and PIP3 signaling result in neurodevelopmental and neurodegenerative disorders. This review will discuss the upstream modulators and downstream effectors of the PIP2 and PIP3 signaling, in the context of neuronal health and disease.
Collapse
Affiliation(s)
- Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
19
|
He M, Wang X, Chen W, Zhang J, Xiong Y, Cao L, Zhang L, Zhao N, Yang Y, Wang L. PTPIP51 inhibits non-small-cell lung cancer by promoting PTEN-mediated EGFR degradation. Life Sci 2022; 297:120293. [DOI: 10.1016/j.lfs.2021.120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
|
20
|
Kato T, Igarashi A, Sesaki H, Iijima M. Generating a new mouse model for nuclear PTEN deficiency by a single K13R mutation. Genes Cells 2021; 26:1014-1022. [PMID: 34661323 DOI: 10.1111/gtc.12902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022]
Abstract
Many human diseases, including cancer and neurological abnormalities, are linked to deficiencies of phosphatase and tensin homolog deleted on chromosome ten (PTEN), a dual phosphatase that dephosphorylates both lipids and proteins. PTEN functions in multiple intracellular locations, including the plasma membrane and nucleus. Therefore, a critical challenge to understand the pathogenesis of PTEN-associated diseases is to determine the specific role of PTEN at different locations. Toward this goal, the current study generated a mouse line in which lysine 13, which is critical for the nuclear localization of PTEN, is changed to arginine in the lipid-binding domain using the CRISPR-Ca9 gene-editing system. We found that PTENK13R mice show a strong decrease in the localization of PTEN in the nucleus without affecting the protein stability, phosphatase activity, and phosphorylation in the C-terminal tail region. PTENK13R mice are viable but produce smaller neurons and develop microcephaly. These data demonstrate that PTENK13R mice provide a useful animal model to study the role of PTEN in the nucleus in vivo.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Hasebe K, Yamaguchi J, Kokuryo T, Yokoyama Y, Ochiai Y, Nagino M, Ebata T. Trefoil factor family 2 inhibits cholangiocarcinogenesis by regulating the PTEN pathway in mice. Carcinogenesis 2021; 42:1496-1505. [PMID: 34644378 DOI: 10.1093/carcin/bgab093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/14/2022] Open
Abstract
Trefoil factor family 2 (TFF2) is one of three trefoil factor family proteins and is expressed abundantly in the gastrointestinal epithelium. Recent studies have shown that TFF2 acts as a tumor suppressor in gastric and pancreatic carcinogenesis; however, little is known about its function in cholangiocarcinogenesis. To investigate the function of TFF2 in cholangiocellular carcinoma (CCC), immunohistochemistry of surgically resected human CCC samples was performed. TFF2 expression was upregulated in the early stage and lost in the late stage of cholangiocarcinogenesis, suggesting the association of TFF2 and CCC. A TFF2 expression vector was then transfected into a CCC cell line (HuCCT1) in vitro, revealing that TFF2 functions as a tumor suppressor not only by inhibiting proliferation and invasion but also by promoting the apoptosis of cancer cells. In addition, PTEN signaling activity was downregulated by TFF2, suggesting an association between TFF2 and PTEN. Next, hepatic carcinogenesis model mice (KC; albumin-Cre/Lox-Stop-Lox KRAS G12D) were bred with TFF2-knockout mice to generate a TFF2-deficient mouse model (KC/TFF2 -/-). Although the incidence of hepatocellular carcinoma was not different between KC/TFF2 -/- mice and control mice, biliary intraepithelial neoplasm (BilIN), the precursor of CCC, was frequently found in the biliary epithelium of KC/TFF2 -/- mice. Immunohistochemistry revealed that BilIN samples from these mice did not express PTEN. In addition, two KC/TFF2 -/- mice developed CCC adjacent to BilIN, suggesting that TFF2 functions to inhibit the development of CCC in vivo. These results indicate that TFF2 acts as a tumor suppressor to inhibit the development of CCC by regulating PTEN activity.
Collapse
Affiliation(s)
- Keiji Hasebe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosuke Ochiai
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Wu Y, Ma Y, Li J, Zhou XL, Li L, Xu PX, Li XR, Xue M. The bioinformatics and metabolomics research on anti-hypoxic molecular mechanisms of Salidroside via regulating the PTEN mediated PI3K/Akt/NF-κB signaling pathway. Chin J Nat Med 2021; 19:442-453. [PMID: 34092295 DOI: 10.1016/s1875-5364(21)60043-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 12/08/2022]
Abstract
Salidroside (SAL), a major bioactive compound of Rhodiola crenulata, has significant anti-hypoxia effect, however, its underlying molecular mechanism has not been elucidated. In order to explore the protective mechanism of SAL, the lactate dehydrogenase (LDH), reactive oxygen species (ROS), superoxide dismutase (SOD) and hypoxia-induced factor 1α (HIF-1α) were measured to establish the PC12 cell hypoxic model. Cell staining and cell viability analyses were performed to evaluate the protective effects of SAL. The metabolomics and bioinformatics methods were used to explore the protective effects of salidroside under hypoxia condition. The metabolite-protein interaction networks were further established and the protein expression level was examined by Western blotting. The results showed that 59 endogenous metabolites changed and the expression of the hub proteins of CK2, p-PTEN/PTEN, PI3K, p-Akt/Akt, NF-κB p65 and Bcl-2 were increased, suggesting that SAL could increase the expression of CK2, which induced the phosphorylation and inactivation of PTEN, reduced the inhibitory effect on PI3K signaling pathways and activated the PI3K/Akt/NF-κB survival signaling pathway. Our study provided an important insight to reveal the protective molecular mechanism of SAL as a novel drug candidate.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yi Ma
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xue-Lin Zhou
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China
| | - Lei Li
- Central Laboratory, Capital Medical University, Beijing 100069, China
| | - Ping-Xiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China
| | - Xiao-Rong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China.
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing 100053, China.
| |
Collapse
|
23
|
He T, Zhang X, Hao J, Ding S. Phosphatase and Tensin Homolog in Non-neoplastic Digestive Disease: More Than Just Tumor Suppressor. Front Physiol 2021; 12:684529. [PMID: 34140896 PMCID: PMC8204087 DOI: 10.3389/fphys.2021.684529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The Phosphatase and tensin homolog (PTEN) gene is one of the most important tumor suppressor genes, which acts through its unique protein phosphatase and lipid phosphatase activity. PTEN protein is widely distributed and exhibits complex biological functions and regulatory modes. It is involved in the regulation of cell morphology, proliferation, differentiation, adhesion, and migration through a variety of signaling pathways. The role of PTEN in malignant tumors of the digestive system is well documented. Recent studies have indicated that PTEN may be closely related to many other benign processes in digestive organs. Emerging evidence suggests that PTEN is a potential therapeutic target in the context of several non-neoplastic diseases of the digestive tract. The recent discovery of PTEN isoforms is expected to help unravel more biological effects of PTEN in non-neoplastic digestive diseases.
Collapse
Affiliation(s)
- Tianyu He
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Xiaoyun Zhang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
24
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
25
|
CDDO-Me Attenuates Astroglial Autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K/AKT-Mediated Signaling Pathways in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2021; 10:antiox10050655. [PMID: 33922531 PMCID: PMC8145743 DOI: 10.3390/antiox10050655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial death showing extensive swollen cell bodies with vacuoles and disintegrated/beaded processes. This astroglial degeneration is closely relevant to the synchronous epileptiform discharges. However, the underlying molecular mechanisms and the roles of clasmatodendrosis in spontaneous seizure activity are still unknown. The 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is one of the activators for nuclear factor-erythroid 2-related factor 2 (Nrf2) that is a redox-sensitive transcription factor. In the present study, we explored the effects of CDDO-Me on clasmatodendrosis in chronic epilepsy rats, which could prevent epilepsy-related complications. In the present study, clasmatodendritic astrocytes showed reduced Nrf2 expression and its nuclear accumulation, which were restored by CDDO-Me. CDDO-Me also abrogated heat shock protein 25 (HSP25) upregulation in clasmatodendritic astrocytes by regulating extracellular signal-related kinases 1/2 (ERK1/2)-specificity protein 1 (SP1)- and Src-casein kinase 2 (CK2)-phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-phosphatidylinositol-3-kinase (PI3K)-AKT-glycogen synthase kinase 3β (GSK3β)-bax-interacting factor 1 (Bif-1)-mediated signaling pathways in chronic epilepsy rats. In addition, CDDO-Me ameliorated spontaneous seizure duration, but not seizure frequency and behavioral seizure severity. Therefore, our findings suggest that clasmatodendrosis may affect seizure duration in chronic epilepsy rats, and that CDDO-Me may attenuate autophagic astroglial degeneration by regulating various signaling pathways.
Collapse
|
26
|
Wang Z, Lan R, Xu Y, Zuo J, Han X, Phouthapane V, Luo Z, Miao J. Taurine Alleviates Streptococcus uberis-Induced Inflammation by Activating Autophagy in Mammary Epithelial Cells. Front Immunol 2021; 12:631113. [PMID: 33777017 PMCID: PMC7996097 DOI: 10.3389/fimmu.2021.631113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Streptococcus uberis infection can cause serious inflammation and damage to mammary epithelial cells and tissues that can be significantly alleviated by taurine. Autophagy plays an important role in regulating immunity and clearing invasive pathogens and may be regulated by taurine. However, the relationships between taurine, autophagy, and S. uberis infection remain unclear. Herein, we demonstrate that taurine augments PTEN activity and inhibits Akt/mTOR signaling, which decreases phosphorylation of ULK1 and ATG13 by mTOR and activates autophagy. Activating autophagy accelerates the degradation of intracellular S. uberis, reduces intracellular bacterial load, inhibits over-activation of the NF-κB pathway, and alleviates the inflammation and damage caused by S. uberis infection. This study increases our understanding of the mechanism through which taurine regulates autophagy and is the first to demonstrate the role of autophagy in S. uberis infected MAC-T cells. Our study also provides a theoretical basis for employing nutritional elements (taurine) to regulate innate immunity and control S. uberis infection. It also provides theoretical support for the development of prophylactic strategies for this important pathogen.
Collapse
Affiliation(s)
- Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Riguo Lan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiakun Zuo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane, Laos
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Protein kinase CK2 inhibition as a pharmacological strategy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 124:23-46. [PMID: 33632467 DOI: 10.1016/bs.apcsb.2020.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CK2 is a constitutively active Ser/Thr protein kinase which phosphorylates hundreds of substrates. Since they are primarily related to survival and proliferation pathways, the best-known pathological roles of CK2 are in cancer, where its targeting is currently being considered as a possible therapy. However, CK2 activity has been found instrumental in many other human pathologies, and its inhibition will expectably be extended to different purposes in the near future. Here, after a description of CK2 features and implications in diseases, we analyze the different inhibitors and strategies available to target CK2, and update the results so far obtained by their in vivo application.
Collapse
|
28
|
Kim JE, Lee DS, Park H, Kang TC. Src/CK2/PTEN-Mediated GluN2B and CREB Dephosphorylations Regulate the Responsiveness to AMPA Receptor Antagonists in Chronic Epilepsy Rats. Int J Mol Sci 2020; 21:E9633. [PMID: 33348808 PMCID: PMC7766850 DOI: 10.3390/ijms21249633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022] Open
Abstract
Both α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) have been reported as targets for treatment of epilepsy. To investigate the roles and interactions of AMPAR and NMDAR in ictogenesis of epileptic hippocampus, we analyzed AMPAR antagonists (perampanel and GYKI 52466)-mediated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulation and glutamate ionotropic receptor NMDA type subunit 2B (GluN2B) tyrosine (Y) 1472 phosphorylation in epilepsy rats. Both perampanel and GYKI 52466 increased PTEN expression and its activity (reduced phosphorylation), concomitant with decreased activities (phosphorylations) of Src family-casein kinase 2 (CK2) signaling pathway. Compatible with these, they also restored the upregulated GluN2B Y1472 and Ca2+/cAMP response element-binding protein (CREB) serine (S) 133 phosphorylations and surface expression of glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) to basal level in the epileptic hippocampus. These effects of perampanel and GYKI 52466 are observed in responders (whose seizure activities are responsive to AMPAR antagonists), but not non-responders (whose seizure activities were uncontrolled by AMPAR antagonists). Therefore, our findings suggest that Src/CK2/PTEN-mediated GluN2B Y1472 and CREB S133 regulations may be one of the responsible signaling pathways for the generation of refractory seizures in non-responders to AMPAR antagonists.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
29
|
Qi T, Dong Y, Gao Z, Xu J. Research Progress on the Anti-Cancer Molecular Mechanisms of Huaier. Onco Targets Ther 2020; 13:12587-12599. [PMID: 33335400 PMCID: PMC7737552 DOI: 10.2147/ott.s281328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022] Open
Abstract
Huaier (Trametes robiniophila Murr), a Chinese traditional herb of medicine, has demonstrated promising curative effects in clinical treatment for various tumors. There are documented experiments showing the biological functions of Huaier with its antineoplastic molecular mechanisms: restraining proliferation and metastasis, arresting cell cycle, inducing apoptosis, pyrosis, and autophagy, anti-intratumoral angiogenesis, attenuating characteristics of tumor stem-like cells, interfering with the function of the tumor-related immune system, reversing drug resistance, and enhancing the sensitivity to chemotherapeutic drugs, etc. In addition, studies suggest that non-coding RNA (ncRNA) acts a pivotal part in cancer occurrence and development, and demonstrates that Huaier adjusts the performance of certain lncRNA (long non-coding RNA) and proceeds to affect the microRNA and its target genes, rendering an anti-tumor effect. Huaier also modulates the expression of lncRNA to attenuate the activity of ncRNA-sponged microRNA and then inhibits the expression of downstream target genes. We summarize and illustrate the experimentally confirmed anti-cancer molecular mechanisms of Huaier, to inspire new ideas for researchers in relevant fields.
Collapse
Affiliation(s)
- Tongtong Qi
- Department of General Surgery, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Yonghong Dong
- Department of Gastroenteropancreatic & Hernia Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, People's Republic of China
| | - Zili Gao
- Department of General Surgery, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Jun Xu
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| |
Collapse
|
30
|
Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, Dong L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front Oncol 2020; 10:1569. [PMID: 32984016 PMCID: PMC7492558 DOI: 10.3389/fonc.2020.01569] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most common and aggressive brain malignancy, characterized by heterogeneity and drug resistance. PTEN, a crucial tumor suppressor, exhibits phosphatase-dependent (PI3K-AKT-mTOR pathway)/independent (nucleus stability) activities to maintain the homeostatic regulation of numerous physiological processes. Premature and absolute loss of PTEN activity usually tends to cellular senescence. However, monoallelic loss of PTEN is frequently observed at tumor inception, and absolute loss of PTEN activity also occurs at the late stage of gliomagenesis. Consequently, aberrant PTEN homeostasis, mainly regulated at the post-translational level, renders cells susceptible to tumorigenesis and drug resistance. Ubiquitination-mediated degradation or deregulated intracellular localization of PTEN hijacks cell growth rheostat control for neoplastic remodeling. Functional inactivation of PTEN mediated by the overexpression of ubiquitin ligases (E3s) renders GB cells adaptive to PTEN loss, which confers resistance to EGFR tyrosine kinase inhibitors and immunotherapies. In this review, we discuss how glioma cells develop oncogenic addiction to the E3s-PTEN axis, promoting their growth and proliferation. Antitumor strategies involving PTEN-targeting E3 ligase inhibitors can restore the tumor-suppressive environment. E3 inhibitors collectively reactivate PTEN and may represent next-generation treatment against deadly malignancies such as GB.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
31
|
Strainic MG, Pohlmann E, Valley CC, Sammeta A, Hussain W, Lidke DS, Medof ME. RTK signaling requires C3ar1/C5ar1 and IL-6R joint signaling to repress dominant PTEN, SOCS1/3 and PHLPP restraint. FASEB J 2019; 34:2105-2125. [PMID: 31908021 DOI: 10.1096/fj.201900677r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/26/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
How receptor tyrosine kinase (RTK) growth signaling is controlled physiologically is incompletely understood. We have previously provided evidence that the survival and mitotic activities of vascular endothelial cell growth factor receptor-2 (VEGFR2) signaling are dependent on C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 joint signaling in a physically interactive platform. Herein, we document that the platelet derived and epidermal growth factor receptors (PDGFR and EGFR) are regulated by the same interconnection and clarify the mechanism underlying the dependence. We show that the joint signaling is required to overcome dominant restraint on RTK function by the combined repression of tonically activated PHLPP, SOCS1/SOCS3, and CK2/Fyn dependent PTEN. Signaling studies showed that augmented PI-3Kɣ activation is the process that overcomes the multilevel growth restraint. Live-cell flow cytometry and single-particle tracking indicated that blockade of C3ar1/C5ar1 or IL-6R signaling suppresses RTK growth factor binding and RTK complex formation. C3ar1/C5ar1 blockade abrogated growth signaling of four additional RTKs. Active relief of dominant growth repression via joint C3ar1/C5ar1 and IL-6R joint signaling thus enables RTK mitotic/survival signaling.
Collapse
Affiliation(s)
- Michael G Strainic
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Elliot Pohlmann
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Christopher C Valley
- Department of Pathology and Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ajay Sammeta
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Wasim Hussain
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Diane S Lidke
- Department of Pathology and Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - M Edward Medof
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
32
|
Pulido R, Mingo J, Gaafar A, Nunes-Xavier CE, Luna S, Torices L, Angulo JC, López JI. Precise Immunodetection of PTEN Protein in Human Neoplasia. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036293. [PMID: 31501265 DOI: 10.1101/cshperspect.a036293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN is a major tumor-suppressor protein whose expression and biological activity are frequently diminished in sporadic or inherited cancers. PTEN gene deletion or loss-of-function mutations favor tumor cell growth and are commonly found in clinical practice. In addition, diminished PTEN protein expression is also frequently observed in tumor samples from cancer patients in the absence of PTEN gene alterations. This makes PTEN protein levels a potential biomarker parameter in clinical oncology, which can guide therapeutic decisions. The specific detection of PTEN protein can be achieved by using highly defined anti-PTEN monoclonal antibodies (mAbs), characterized with precision in terms of sensitivity for the detection technique, specificity for PTEN binding, and constraints of epitope recognition. This is especially relevant taking into consideration that PTEN is highly targeted by mutations and posttranslational modifications, and different PTEN protein isoforms exist. The precise characterization of anti-PTEN mAb reactivity is an important step in the validation of these reagents as diagnostic and prognostic tools in clinical oncology, including their routine use in analytical immunohistochemistry (IHC). Here, we review the current status on the use of well-defined anti-PTEN mAbs for PTEN immunodetection in the clinical context and discuss their potential usefulness and limitations for a more precise cancer diagnosis and patient benefit.
Collapse
Affiliation(s)
- Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Ayman Gaafar
- Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo N-0310, Norway
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Javier C Angulo
- Department of Urology, University Hospital of Getafe, Getafe, Madrid 28904, Spain.,Clinical Department, European University of Madrid, Laureate Universities, Madrid 28904, Spain
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain.,University of the Basque Country, Leioa 48940, Spain
| |
Collapse
|
33
|
Chang J, Tang N, Fang Q, Zhu K, Liu L, Xiong X, Zhu Z, Zhang B, Zhang M, Tao J. Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway. Biochem Biophys Res Commun 2019; 517:1-7. [PMID: 29339153 DOI: 10.1016/j.bbrc.2018.01.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 01/18/2023]
Abstract
For colorectal cancer (CRC) patients, local and systemic inflammatory responses have been extensively reported to closely associate with patient survival. However, the specific signaling pathways responsible for carcinogenic responses are unclear. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of PI3K/AKT pathway that is gradually inactivated in cancers through mutation, loss of heterozygosity and others epigenetic mechanisms. In addition, COX and LOX metabolic pathways of arachidonic acid (AA) play a crucial role in promoting adenoma development. The aim of this study is to clarify the relationship of COX, LOX and PTEN/PI3K/AKT pathway. Results showed that the over-expressed COX and LOX in cancer cells can be targeted to decrease the expression of PTEN. After using corresponding inhibitors, this condition was significantly improved and promoted apoptosis, inhibited invasion, proliferation and the production of reactive oxygen species. And for COX-2-/- or 5-LOX-/- ApcMin/+ mice, the PI3K/AKT pathway was further inhibited via promoting PTEN. Furthermore, weakened oxidative stress, inhibited adenoma growth, and improved survival rate. All findings indicated that PTEN was indirectly targeted by these enzyme inhibitors and acted as the potential therapeutic target for colorectal cancer therapy. In short, COX-2 or 5-LOX deletion and its inhibitors enhanced activity of PTEN and suppressed cell and adenoma progression through PI3K/AKT pathway in colorectal cancer.
Collapse
Affiliation(s)
- Jian Chang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, China; Department of Hepatobiliary Surgery, Wuhan First Hospital, China
| | - Nan Tang
- Department of Neurosurgery, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qi Fang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, China
| | - Kongfan Zhu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, China
| | - Lei Liu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, China
| | - Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, China
| | - Zhongchao Zhu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China
| | - Mingzhi Zhang
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, China.
| |
Collapse
|
34
|
Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q, Tang Q, Sheng F, Li G, Zhang R. ROCK1 promotes migration and invasion of non‑small‑cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol 2019; 55:833-844. [PMID: 31485605 PMCID: PMC6741846 DOI: 10.3892/ijo.2019.4864] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Rho-associated protein kinase 1 (ROCK1), a member of the ROCK family, serves an important function in cell migration and invasion in neoplasms. ROCK1 has been found to be overexpressed in several types of cancers. However, the role of ROCK1 in non-small-cell lung cancer (NSCLC) is poorly understood. In the present study, ROCK1 was found to be overexpressed in NSCLC cells and tissues, and it was associated with poor survival of NSCLC patients. Subsequently, ROCK1 knockdown NSCLC cell lines were established using shRNA. ROCK1 knockdown significantly reduced the migration and invasion ability in the cell monolayer scratching and Transwell assays. ROCK1 knockdown was also found to markedly inhibit cell adhesion ability. Moreover, the phosphorylation of focal adhesion kinase (FAK) was inhibited by ROCK1 knockdown, reducing NSCLC cell migration and invasion ability. This mechanistic study revealed that ROCK1 significantly enhanced cell migration and invasion by inhibiting the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/FAK pathway. More importantly, the interruption of the PTEN/PI3K/FAK pathway markedly rescued the inhibition of cell migration and invasion mediated by ROCK1 knockdown. Taken together, these results suggest a novel role for ROCK1 in cell migration and invasion by inhibiting cell adhesion ability, and indicate that ROCK1 may be of value as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
35
|
Multifaceted Regulation of PTEN Subcellular Distributions and Biological Functions. Cancers (Basel) 2019; 11:cancers11091247. [PMID: 31454965 PMCID: PMC6770588 DOI: 10.3390/cancers11091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene frequently found to be inactivated in over 30% of human cancers. PTEN encodes a 54-kDa lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase pathway involved in the promotion of multiple pro-tumorigenic phenotypes. Although the PTEN protein plays a pivotal role in carcinogenesis, cumulative evidence has implicated it as a key signaling molecule in several other diseases as well, such as diabetes, Alzheimer's disease, and autism spectrum disorders. This finding suggests that diverse cell types, especially differentiated cells, express PTEN. At the cellular level, PTEN is widely distributed in all subcellular compartments and organelles. Surprisingly, the cytoplasmic compartment, not the plasma membrane, is the predominant subcellular location of PTEN. More recently, the finding of a secreted 'long' isoform of PTEN and the presence of PTEN in the cell nucleus further revealed unexpected biological functions of this multifaceted molecule. At the regulatory level, PTEN activity, stability, and subcellular distribution are modulated by a fascinating array of post-translational modification events, including phosphorylation, ubiquitination, and sumoylation. Dysregulation of these regulatory mechanisms has been observed in various human diseases. In this review, we provide an up-to-date overview of the knowledge gained in the last decade on how different functional domains of PTEN regulate its biological functions, with special emphasis on its subcellular distribution. This review also highlights the findings of published studies that have reported how mutational alterations in specific PTEN domains can lead to pathogenesis in humans.
Collapse
|
36
|
Borgo C, Ruzzene M. Role of protein kinase CK2 in antitumor drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:287. [PMID: 31277672 PMCID: PMC6612148 DOI: 10.1186/s13046-019-1292-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 01/21/2023]
Abstract
Drug resistance represents the major reason of pharmacological treatment failure. It is supported by a broad spectrum of mechanisms, whose molecular bases have been frequently correlated to aberrant protein phosphorylation. CK2 is a constitutively active protein kinase which phosphorylates hundreds of substrates; it is expressed in all cells, but its level is commonly found higher in cancer cells, where it plays anti-apoptotic, pro-migration and pro-proliferation functions. Several evidences support a role for CK2 in processes directly responsible of drug resistance, such as drug efflux and DNA repair; moreover, CK2 intervenes in signaling pathways which are crucial to evade drug response (as PI3K/AKT/PTEN, NF-κB, β-catenin, hedgehog signaling, p53), and controls the activity of chaperone machineries fundamental in resistant cells. Interestingly, a panel of specific and effective inhibitors of CK2 is available, and several examples are known of their efficacy in resistant cells, with synergistic effect when used in combination with conventional drugs, also in vivo. Here we analyze and discuss evidences supporting the hypothesis that CK2 targeting represents a valuable strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy.
| |
Collapse
|
37
|
Zhao C, Tao T, Yang L, Qin Q, Wang Y, Liu H, Song R, Yang X, Wang Q, Gu S, Xiong Y, Zhao D, Wang S, Feng D, Jiang WG, Zhang J, He J. Loss of PDZK1 expression activates PI3K/AKT signaling via PTEN phosphorylation in gastric cancer. Cancer Lett 2019; 453:107-121. [DOI: 10.1016/j.canlet.2019.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
38
|
An SWA, Choi E, Hwang W, Son HG, Yang J, Seo K, Nam H, Nguyen NTH, Kim EJE, Suh BK, Kim Y, Nakano S, Ryu Y, Man Ha C, Mori I, Park SK, Yoo J, Kim S, Lee SV. KIN-4/MAST kinase promotes PTEN-mediated longevity of Caenorhabditis elegans via binding through a PDZ domain. Aging Cell 2019; 18:e12906. [PMID: 30773781 PMCID: PMC6516182 DOI: 10.1111/acel.12906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/16/2018] [Accepted: 12/02/2018] [Indexed: 01/09/2023] Open
Abstract
PDZ domain‐containing proteins (PDZ proteins) act as scaffolds for protein–protein interactions and are crucial for a variety of signal transduction processes. However, the role of PDZ proteins in organismal lifespan and aging remains poorly understood. Here, we demonstrate that KIN‐4, a PDZ domain‐containing microtubule‐associated serine‐threonine (MAST) protein kinase, is a key longevity factor acting through binding PTEN phosphatase in Caenorhabditis elegans. Through a targeted genetic screen for PDZ proteins, we find that kin‐4 is required for the long lifespan of daf‐2/insulin/IGF‐1 receptor mutants. We then show that neurons are crucial tissues for the longevity‐promoting role of kin‐4. We find that the PDZ domain of KIN‐4 binds PTEN, a key factor for the longevity of daf‐2 mutants. Moreover, the interaction between KIN‐4 and PTEN is essential for the extended lifespan of daf‐2 mutants. As many aspects of lifespan regulation in C. elegans are evolutionarily conserved, MAST family kinases may regulate aging and/or age‐related diseases in mammals through their interaction with PTEN.
Collapse
Affiliation(s)
- Seon Woo A. An
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Eun‐Seok Choi
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Wooseon Hwang
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Heehwa G. Son
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Jae‐Seong Yang
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Keunhee Seo
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Hyun‐Jun Nam
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Nhung T. H. Nguyen
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Eun Ji E. Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Bo Kyoung Suh
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Youngran Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Shunji Nakano
- Neuroscience Institute, Graduate School of Science Nagoya University Nagoya Japan
| | - Youngjae Ryu
- Research Division Korea Brain Research Institute Daegu South Korea
| | - Chang Man Ha
- Research Division Korea Brain Research Institute Daegu South Korea
| | - Ikue Mori
- Neuroscience Institute, Graduate School of Science Nagoya University Nagoya Japan
| | - Sang Ki Park
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Joo‐Yeon Yoo
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Sanguk Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| | - Seung‐Jae V. Lee
- Department of Life Sciences Pohang University of Science and Technology Pohang Gyeongbuk South Korea
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang Gyeongbuk South Korea
| |
Collapse
|
39
|
Martelli AM, Paganelli F, Fazio A, Bazzichetto C, Conciatori F, McCubrey JA. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers (Basel) 2019; 11:cancers11050629. [PMID: 31064074 PMCID: PMC6562458 DOI: 10.3390/cancers11050629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10–15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
40
|
Precise definition of PTEN C-terminal epitopes and its implications in clinical oncology. NPJ Precis Oncol 2019; 3:11. [PMID: 30993208 PMCID: PMC6465295 DOI: 10.1038/s41698-019-0083-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Anti-PTEN monoclonal antibodies (mAb) are arising as important tools for immunohistochemistry (IHC) and protein quantification routine analysis in clinical oncology. Although an effort has been made to document the reliability of tumor tissue section immunostaining by anti-PTEN mAb, and to standardize their IHC use in research and in the clinical practice, the precise topological and biochemical definition of the epitope recognized by each mAb has been conventionally overlooked. In this study, six commercial anti-PTEN mAb have been validated and characterized for sensitivity and specificity by IHC and FISH, using a set of prostate and urothelial bladder tumor specimens, and by immunoblot, using PTEN positive and PTEN negative human cell lines. Immunoblot precise epitope mapping, performed using recombinant PTEN variants and mutations, revealed that all mAb recognized linear epitopes of 6–11 amino acid length at the PTEN C-terminus. Tumor-associated or disease-associated mutations at the PTEN C-terminus did not affect subcellular localization or PIP3 phosphatase activity of PTEN in cells, although resulted in specific loss of reactivity for some mAb. Furthermore, specific mimicking-phosphorylation mutations at the PTEN C-terminal region also abolished binding of specific mAb. Our study adds new evidence on the relevance of a precise epitope mapping in the validation of anti-PTEN mAb for their use in the clinics. This will be substantial to provide a more accurate diagnosis in clinical oncology based on PTEN protein expression in tumors and biological fluids.
Collapse
|
41
|
Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol 2019; 59:66-79. [PMID: 30738865 DOI: 10.1016/j.semcancer.2019.02.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 01/04/2023]
Abstract
PTEN is a phosphatase which metabolises PIP3, the lipid product of PI 3-Kinase, directly opposing the activation of the oncogenic PI3K/AKT/mTOR signalling network. Accordingly, loss of function of the PTEN tumour suppressor is one of the most common events observed in many types of cancer. Although the mechanisms by which PTEN function is disrupted are diverse, the most frequently observed events are deletion of a single gene copy of PTEN and gene silencing, usually observed in tumours with little or no PTEN protein detectable by immunohistochemistry. Accordingly, with the exceptions of glioblastoma and endometrial cancer, mutations of the PTEN coding sequence are uncommon (<10%) in most types of cancer. Here we review the data relating to PTEN loss in seven common tumour types and discuss mechanisms of PTEN regulation, some of which appear to contribute to reduced PTEN protein levels in cancers.
Collapse
Affiliation(s)
- Virginia Álvarez-Garcia
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Yasmine Tawil
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Helen M Wise
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
42
|
Soni UK, Chadchan SB, Kumar V, Ubba V, Khan MTA, Vinod BSV, Konwar R, Bora HK, Rath SK, Sharma S, Jha RK. A high level of TGF-B1 promotes endometriosis development via cell migration, adhesiveness, colonization, and invasiveness†. Biol Reprod 2018; 100:917-938. [DOI: 10.1093/biolre/ioy242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/29/2017] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Upendra Kumar Soni
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Vijay Kumar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vaibhave Ubba
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | - Rituraj Konwar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Himangsu Kousik Bora
- Animal Laboratory Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Srikanta Kumar Rath
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sharad Sharma
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajesh Kumar Jha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
43
|
Keul P, Polzin A, Kaiser K, Gräler M, Dannenberg L, Daum G, Heusch G, Levkau B. Potent anti-inflammatory properties of HDL in vascular smooth muscle cells mediated by HDL-S1P and their impairment in coronary artery disease due to lower HDL-S1P: a new aspect of HDL dysfunction and its therapy. FASEB J 2018; 33:1482-1495. [PMID: 30130432 DOI: 10.1096/fj.201801245r] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dysfunctional HDL is associated with coronary artery disease (CAD), but its effect on inflammation in vascular smooth muscle cells (VSMCs) in atherosclerosis is unknown. We investigated the effect of healthy human HDL and CAD-HDL on TNF-α-driven inflammation in VSMCs and examined whether HDL-associated sphingosine-1-phosphate (HDL-S1P) could modulate inflammation with the aim of designing novel HDL-based anti-inflammatory strategies. Healthy human HDL, human CAD-HDL, and mouse HDL were isolated by ultracentrifugation, S1P was measured by liquid chromatography-tandem mass spectrometry, and TNF-α-induced inflammation was characterized by gene expression and analysis of NF-κB-dependent signaling. Mechanisms of S1P interference with TNF-α were assessed by S1P receptor antagonists, mouse knockouts, and short interfering RNA. We observed that healthy HDL potently inhibited the induction of TNF-α-stimulated inflammatory genes, such as iNOS (inducible NO synthase) and MMP9 (matrix metalloproteinase 9), a process that was entirely dependent on HDL-S1P, as evidenced by loss-of-function using S1P-less HDL and mimicked by genuine S1P. Inhibition was based on suppression of TNF-α-activated Akt signaling resulting in reduced IkBαSer32 and p65Ser534 NF-κB phosphorylation based on a persistent phosphatase and tensin homolog activation by S1P through the S1P receptor 2. Intriguingly, S1P suppressed inflammation even hours after initial TNF-α stimulation. The anti-inflammatory effect of healthy HDL correlated with HDL-S1P content and was superior to that of CAD-HDL featuring lower HDL-S1P. Nevertheless, therapeutic loading of HDL with S1P completely restored the anti-inflammatory capacity of CAD-HDL and greatly boosted that of both healthy and CAD-HDL. Suppression of inflammation by HDL-S1P defines a novel pathophysiologic characteristic that distinguishes functional from dysfunctional HDL. The anti-inflammatory HDL function can be boosted by S1P-loading and exploited by S1P receptor-targeting to prevent and even turn off ongoing inflammation.-Keul, P., Polzin, A., Kaiser, K., Gräler, M., Dannenberg, L., Daum, G., Heusch, G., Levkau, B. Potent anti-inflammatory properties of HDL in vascular smooth muscle cells mediated by HDL-S1P and their impairment in coronary artery disease due to lower HDL-S1P: a new aspect of HDL dysfunction and its therapy.
Collapse
Affiliation(s)
- Petra Keul
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Amin Polzin
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich Heine University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Klaus Kaiser
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Markus Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.,Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany; and
| | - Lisa Dannenberg
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich Heine University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Günter Daum
- Clinic and Polyclinic for Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bodo Levkau
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
Ling Y, Kuang Y, Chen LL, Lao WF, Zhu YR, Wang LQ, Wang D. A novel RON splice variant lacking exon 2 activates the PI3K/AKT pathway via PTEN phosphorylation in colorectal carcinoma cells. Oncotarget 2018; 8:39101-39116. [PMID: 28388571 PMCID: PMC5503598 DOI: 10.18632/oncotarget.16603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022] Open
Abstract
Abnormal expression of the Recepteur d'Origine Nantais (RON) receptor tyrosine kinase is accompanied by the generation of multiple splice or truncated variants, which mediate many critical cellular functions that contribute to tumor progression and metastasis. Here, we report a new RON splice variant in the human colorectal cancer (CRC) cell line HT29. This variant is a 165 kda protein generated by alternative pre-mRNA splicing that eliminates exon 2, causing an in-frame deletion of 63 amino acids in the extracellular domain of the RON β chain. The deleted transcript was a single chain expressed in the intracellular compartment. Although it lacked tyrosine phosphorylation activity, the RONΔ165E2 variant could phosphorylate phosphatase and tensin homolog (PTEN), thereby activating the PI3K/AKT pathway. In addition, in vitro and in vivo experiments showed that the RONΔ165E2 promoted cell migration and tumor growth. Finally, in an investigation of 67 clinical CRC samples, the variant was highly expressed in about 58% of the samples, and was positively correlated with the invasive depth of the tumor (P < 0.05). These results demonstrate that the novel RONΔ165E2 variant promoted tumor progression while activating the PI3K/AKT pathway via PTEN phosphorylation.
Collapse
Affiliation(s)
- Yu Ling
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yeye Kuang
- Biomedical Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lin-Lin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Wei-Feng Lao
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yao-Ru Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Le-Qi Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| |
Collapse
|
45
|
Zhang R, Li G, Zhang Q, Tang Q, Huang J, Hu C, Liu Y, Wang Q, Liu W, Gao N, Zhou S. Hirsutine induces mPTP-dependent apoptosis through ROCK1/PTEN/PI3K/GSK3β pathway in human lung cancer cells. Cell Death Dis 2018; 9:598. [PMID: 29789524 PMCID: PMC5964100 DOI: 10.1038/s41419-018-0641-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 02/02/2023]
Abstract
Hirsutine extracted from Uncaria rhynchophylla has been shown to exhibit anti-cancer activity. However, the molecular mechanism by which hirsutine exhibits anti-lung cancer activity remains unclear. In the present study, we showed that hirsutine induces apoptosis in human lung cancer cells via loss of mitochondrial membrane potential (∆ψm), adenosine triphosphate (ATP) depletion, ROS production, as well as cytochrome c release. Dephosphorylation of GSK3β is involved in hirsutine-mediated mitochondrial permeability transition pore (mPTP) opening through ANT1/CypD interaction. Mechanistic study revealed that interruption of ROCK1/PTEN/PI3K/Akt signaling pathway plays a critical role in hirsutine-mediated GSK3β dephosphorylation and mitochondrial apoptosis. Our in vivo study also showed that hirsutine effectively inhibits tumor growth in a A549 xenograft mouse model through ROCK1/PTEN/PI3K/Akt signaling-mediated GSK3β dephosphorylation and apoptosis. Collectively, these findings suggest a hierarchical model in which induction of apoptosis by hirsutine stems primarily from activation of ROCK1 and PTEN, inactivation of PI3K/Akt, leading in turn to GSK3β dephosphorylation and mPTP opening, and culminating in caspase-3 activation and apoptosis. These findings could provide a novel mechanistic basis for the application of hirsutine in the treatment of human lung cancer.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Qing Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China
| | - Ning Gao
- College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| | - Shiwen Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 400037, Chongqing, China.
| |
Collapse
|
46
|
Wong CW, Or PMY, Wang Y, Li L, Li J, Yan M, Cao Y, Luk HM, Tong TMF, Leslie NR, Lo IFM, Choy KW, Chan AML. Identification of a PTEN mutation with reduced protein stability, phosphatase activity, and nuclear localization in Hong Kong patients with autistic features, neurodevelopmental delays, and macrocephaly. Autism Res 2018; 11:1098-1109. [PMID: 29608813 PMCID: PMC6220804 DOI: 10.1002/aur.1950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/28/2018] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
PTEN is a tumor suppressor gene inactivated in over 30% of human cancers. It encodes a lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase signaling pathway. Germline mutation frequently occurs in this gene in patients diagnosed with PTEN Hamartoma Tumor Syndrome (PHTS). PHTS individuals are characterized by macrocephaly, benign growth of multiple tissues and increased tumor risk. In addition, autistic phenotypes are found in 10-20% of individuals carrying the germline PTEN mutation with macrocephaly. In this report, 13 suspected PHTS patients were screened for mutation in the PTEN gene. A missense variant (c. 302T > C) substituting the isoleucine at codon 101 to a threonine, a single nucleotide insertion (c. 327-328insC) causing a frame shift mutation and termination at codon 109, and a nonsense variant (c. 1003C > T) truncated the protein at codon 335 were identified. The I101T mutation significantly reduced PTEN protein expression levels by 2.5- to 4.0-fold. Mechanistically, I101T reduced the protein half-life of PTEN possibly due to enhanced polyubiquitination at Lysine 13. However, the I101T mutant retained almost 30% of the lipid phosphatase activity of the wild-type protein. Finally, the I101T mutant has reduced phosphorylation at a PTEN auto-dephosphorylation site at Threonine 366 and a lowered ratio of nuclear to cytosolic protein level. These partial losses of multiple PTEN biochemical functions may contribute to the tissue overgrowth and autistic features of this PHTS patient. Autism Res 2018, 11: 1098-1109. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. LAY SUMMARY: The genetics of autism spectrum disorders is highly complex with individual risk influenced by both genetic and environmental factors. Mutation in the human PTEN gene confers a high risk of developing autistic behavior. This report revealed that PTEN mutations occurred in 23% of a selected group of Hong Kong patients harboring autistic features with gross overgrowth symptoms. Detailed characterization of a PTEN mutation revealed reduced protein stability as one of the underlying mechanisms responsible for reduced PTEN activity.
Collapse
Affiliation(s)
- Chi Wai Wong
- School of Biomedical Sciences, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Penelope Mei Yu Or
- School of Biomedical Sciences, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yubing Wang
- School of Biomedical Sciences, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lisha Li
- School of Biomedical Sciences, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jing Li
- School of Biomedical Sciences, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Mingfei Yan
- School of Biomedical Sciences, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ye Cao
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ho Ming Luk
- Clinical Genetic Service, Department of Health, Cheung Sha Wan Jockey Club Clinic, Hong Kong, SAR, China
| | - Tony Ming For Tong
- Clinical Genetic Service, Department of Health, Cheung Sha Wan Jockey Club Clinic, Hong Kong, SAR, China
| | - Nick R Leslie
- Institute of Biological Chemistry, Biophysics and Bio-engineering, Heriot Watt University, Edinburgh, Scotland, UK
| | - Ivan Fai-Man Lo
- Clinical Genetic Service, Department of Health, Cheung Sha Wan Jockey Club Clinic, Hong Kong, SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Centre For Medical Genetics, Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Andrew Man Lok Chan
- School of Biomedical Sciences, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
47
|
Xiong S, Cheng JC, Klausen C, Zhao J, Leung PCK. TGF-β1 stimulates migration of type II endometrial cancer cells by down-regulating PTEN via activation of SMAD and ERK1/2 signaling pathways. Oncotarget 2018; 7:61262-61272. [PMID: 27542208 PMCID: PMC5308649 DOI: 10.18632/oncotarget.11311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
PTEN acts as a tumor suppressor primarily by antagonizing the PI3K/AKT signaling pathway. PTEN is frequently mutated in human cancers; however, in type II endometrial cancers its mutation rate is very low. Overexpression of TGF-β1 and its receptors has been reported to correlate with metastasis of human cancers and reduced survival rates. Although TGF-β1 has been shown to regulate PTEN expression through various mechanisms, it is not yet known if the same is true in type II endometrial cancer. In the present study, we show that treatment with TGF-β1 stimulates the migration of two type II endometrial cancer cell lines, KLE and HEC-50. In addition, TGF-β1 treatment down-regulates both mRNA and protein levels of PTEN. Overexpression of PTEN or inhibition of PI3K abolishes TGF-β1-stimulated cell migration. TGF-β1 induces SMAD2/3 phosphorylation and knockdown of common SMAD4 inhibits the suppressive effects of TGF-β1 on PTEN mRNA and protein. Interestingly, TGF-β1 induces ERK1/2 phosphorylation and pre-treatment with a MEK inhibitor attenuates the suppression of PTEN protein, but not mRNA, by TGF-β1. This study provides important insights into the molecular mechanisms mediating TGF-β1-induced down-regulation of PTEN and demonstrates an important role of PTEN in the regulation of type II endometrial cancer cell migration.
Collapse
Affiliation(s)
- Siyuan Xiong
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jianfang Zhao
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
48
|
Folino A, Accomasso L, Giachino C, Montarolo PG, Losano G, Pagliaro P, Rastaldo R. Apelin-induced cardioprotection against ischaemia/reperfusion injury: roles of epidermal growth factor and Src. Acta Physiol (Oxf) 2018; 222. [PMID: 28748611 DOI: 10.1111/apha.12924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/31/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
Abstract
AIM Apelin, the ligand of the G-protein-coupled receptor (GPCR) APJ, exerts a post-conditioning-like protection against ischaemia/reperfusion injury through activation of PI3K-Akt-NO signalling. The pathway connecting APJ to PI3K is still unknown. As other GPCR ligands act through transactivation of epidermal growth factor receptor (EGFR) via a matrix metalloproteinase (MMP) or Src kinase, we investigated whether EGFR transactivation is involved in the following three features of apelin-induced cardioprotection: limitation of infarct size, suppression of contracture and improvement of post-ischaemic contractile recovery. METHOD Isolated rat hearts underwent 30 min of global ischaemia and 2 h of reperfusion. Apelin (0.5 μm) was infused during the first 20 min of reperfusion. EGFR, MMP or Src was inhibited to study the pathway connecting APJ to PI3K. Key components of RISK pathway, namely PI3K, guanylyl cyclase or mitochondrial K+ -ATP channels, were also inhibited. Apelin-induced EGFR and phosphatase and tensing homolog (PTEN) phosphorylation were assessed. Left ventricular pressure and infarct size were measured. RESULTS Apelin-induced reductions in infarct size and myocardial contracture were prevented by the inhibition of EGFR, Src, MMP or RISK pathway. The involvement of EGFR was confirmed by its phosphorylation. However, neither direct EGFR nor MMP inhibition affected apelin-induced improvement of early post-ischaemic contractile recovery, which was suppressed by Src and RISK inhibitors only. Apelin also increased PTEN phosphorylation, which was removed by Src inhibition. CONCLUSION While EGFR and MMP limit infarct size and contracture, Src or RISK pathway inhibition suppresses the three features of cardioprotection. Src does not only transactivate EGFR, but also inhibits PTEN by phosphorylation thus playing a crucial role in apelin-induced cardioprotection.
Collapse
Affiliation(s)
- A. Folino
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - L. Accomasso
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - C. Giachino
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - P. G. Montarolo
- Department of Neurosciences; University of Turin; Torino Italy
| | - G. Losano
- Department of Neurosciences; University of Turin; Torino Italy
| | - P. Pagliaro
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| | - R. Rastaldo
- Department of Clinical and Biological Sciences; University of Turin; Orbassano Italy
| |
Collapse
|
49
|
Maysinger D, Moquin A, Choi J, Kodiha M, Stochaj U. Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. NANOSCALE 2018; 10:1716-1726. [PMID: 29308473 DOI: 10.1039/c7nr07833a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The physicochemical properties and cytotoxicity of diverse gold nanoparticle (AuNP) morphologies with smooth surfaces have been examined extensively. Much less is known about AuNPs with irregular surfaces. This study focuses on the effects of gold nanourchins in glioblastoma cells. With limited success of monotherapies for glioblastoma, multimodal treatment has become the preferred regimen. One possible example for such future therapeutic applications is the combination of AuNPs with the natural cytotoxic agent celastrol. Here, we used complementary physical, chemical and biological methods to characterize AuNPs and investigate their impact on glioblastoma cells. Our results show that gold nanourchins altered glioblastoma cell morphology and reorganized the nucleo- and cytoskeleton. These changes were dependent on gold nanourchin surface modification. PEGylated nanourchins had no significant effect on glioblastoma cell morphology or viability, unless they were combined with celastrol. By contrast, CTAB-nanourchins adversely affected the nuclear lamina, microtubules and filamentous actin. These alterations correlated with significant glioblastoma cell death. We identified several mechanisms that contributed to the impact of AuNPs on the cytoskeleton and cell survival. Specifically, CTAB-nanourchins caused a significant increase in the abundance of Rock1. This protein kinase is a key regulator of the cytoskeleton. In addition, CTAB-nanourchins led to a marked decline in pro-survival signaling via the PI3 kinase-Akt pathway. Taken together, our study provides new insights into the molecular pathways and structural components altered by gold nanourchins and their implications for multimodal glioblastoma therapy.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
50
|
Targeting PTEN in Colorectal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:55-73. [DOI: 10.1007/978-3-030-02771-1_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|