1
|
Escobar H, Di Francescantonio S, Smirnova J, Graf R, Müthel S, Marg A, Zhogov A, Krishna S, Metzler E, Petkova M, Daumke O, Kühn R, Spuler S. Gene-editing in patient and humanized-mice primary muscle stem cells rescues dysferlin expression in dysferlin-deficient muscular dystrophy. Nat Commun 2025; 16:120. [PMID: 39747848 PMCID: PMC11695731 DOI: 10.1038/s41467-024-55086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Dystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function, DYSF exon 44, founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients. We observed a consistent >60% exon 44 re-framing, rescuing a full-length and functional dysferlin protein. A new mouse model harboring a humanized Dysf exon 44 with the founder mutation, hEx44mut, recapitulates the patients' phenotype and an identical re-framing outcome in primary muscle stem cells. Finally, gene-edited murine primary muscle stem-cells are able to regenerate muscle and rescue dysferlin when transplanted back into hEx44mut hosts. These findings are the first to show that a CRISPR-mediated therapy can ameliorate dysferlin deficiency. We suggest that gene-edited primary muscle stem cells could exhibit utility, not only in treating dysferlin deficiency syndromes, but also perhaps other forms of muscular dystrophy.
Collapse
Affiliation(s)
- Helena Escobar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany.
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Silvia Di Francescantonio
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julia Smirnova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Robin Graf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stefanie Müthel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andreas Marg
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexej Zhogov
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Supriya Krishna
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eric Metzler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simone Spuler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany.
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Sen P, Ortiz O, Brivio E, Menegaz D, Sotillos Elliott L, Du Y, Ries C, Chen A, Wurst W, Lopez JP, Eder M, Deussing JM. A bipolar disorder-associated missense variant alters adenylyl cyclase 2 activity and promotes mania-like behavior. Mol Psychiatry 2025; 30:97-110. [PMID: 39003412 PMCID: PMC11649569 DOI: 10.1038/s41380-024-02663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
The single nucleotide polymorphism rs13166360, causing a substitution of valine (Val) 147 to leucine (Leu) in the adenylyl cyclase 2 (ADCY2), has previously been associated with bipolar disorder (BD). Here we show that the disease-associated ADCY2 missense mutation diminishes the enzyme´s capacity to generate the second messenger 3',5'-cylic adenosine monophosphate (cAMP) by altering its subcellular localization. We established mice specifically carrying the Val to Leu substitution using CRISPR/Cas9-based gene editing. Mice homozygous for the Leu variant display symptoms of a mania-like state accompanied by cognitive impairments. Mutant animals show additional characteristic signs of rodent mania models, i.e., they are hypersensitive to amphetamine, the observed mania-like behaviors are responsive to lithium treatment and the Val to Leu substitution results in a shifted excitatory/inhibitory synaptic balance towards more excitation. Exposure to chronic social defeat stress switches homozygous Leu variant carriers from a mania- to a depressive-like state, a transition which is reminiscent of the alternations characterizing the symptomatology in BD patients. Single-cell RNA-seq (scRNA-seq) revealed widespread Adcy2 mRNA expression in numerous hippocampal cell types. Differentially expressed genes particularly identified from glutamatergic CA1 neurons point towards ADCY2 variant-dependent alterations in multiple biological processes including cAMP-related signaling pathways. These results validate ADCY2 as a BD risk gene, provide insights into underlying disease mechanisms, and potentially open novel avenues for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Paromita Sen
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Oskar Ortiz
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Elena Brivio
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | | | - Ying Du
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, 81377, Munich, Germany
| | - Juan Pablo Lopez
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
3
|
Dunot J, Moreno S, Gandin C, Pousinha PA, Amici M, Dupuis J, Anisimova M, Winschel A, Uriot M, Petshow SJ, Mensch M, Bethus I, Giudici C, Hampel H, Wefers B, Wurst W, Naumann R, Ashby MC, Laube B, Zito K, Mellor JR, Groc L, Willem M, Marie H. APP fragment controls both ionotropic and non-ionotropic signaling of NMDA receptors. Neuron 2024; 112:2708-2720.e9. [PMID: 38878768 PMCID: PMC11343662 DOI: 10.1016/j.neuron.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
NMDA receptors (NMDARs) are ionotropic receptors crucial for brain information processing. Yet, evidence also supports an ion-flux-independent signaling mode mediating synaptic long-term depression (LTD) and spine shrinkage. Here, we identify AETA (Aη), an amyloid-β precursor protein (APP) cleavage product, as an NMDAR modulator with the unique dual regulatory capacity to impact both signaling modes. AETA inhibits ionotropic NMDAR activity by competing with the co-agonist and induces an intracellular conformational modification of GluN1 subunits. This favors non-ionotropic NMDAR signaling leading to enhanced LTD and favors spine shrinkage. Endogenously, AETA production is increased by in vivo chemogenetically induced neuronal activity. Genetic deletion of AETA production alters NMDAR transmission and prevents LTD, phenotypes rescued by acute exogenous AETA application. This genetic deletion also impairs contextual fear memory. Our findings demonstrate AETA-dependent NMDAR activation (ADNA), characterizing AETA as a unique type of endogenous NMDAR modulator that exerts bidirectional control over NMDAR signaling and associated information processing.
Collapse
Affiliation(s)
- Jade Dunot
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sebastien Moreno
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Carine Gandin
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Mascia Amici
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Dupuis
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Alex Winschel
- Department of Biology, Neurophysiology und Neurosensory Systems, TU Darmstadt, 64287 Darmstadt, Germany
| | - Magalie Uriot
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Samuel J Petshow
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Maria Mensch
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Ingrid Bethus
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Camilla Giudici
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Heike Hampel
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Michael C Ashby
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Bodo Laube
- Department of Biology, Neurophysiology und Neurosensory Systems, TU Darmstadt, 64287 Darmstadt, Germany
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Laurent Groc
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, 33076 Bordeaux Cedex, France
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Hélène Marie
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| |
Collapse
|
4
|
Wang M, Flaswinkel H, Joshi A, Napoli M, Masgrau-Alsina S, Kamper JM, Henne A, Heinz A, Berouti M, Schmacke NA, Hiller K, Kremmer E, Wefers B, Wurst W, Sperandio M, Ruland J, Fröhlich T, Hornung V. Phosphorylation of PFKL regulates metabolic reprogramming in macrophages following pattern recognition receptor activation. Nat Commun 2024; 15:6438. [PMID: 39085210 PMCID: PMC11291651 DOI: 10.1038/s41467-024-50104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Innate immune responses are linked to key metabolic pathways, yet the proximal signaling events that connect these systems remain poorly understood. Here we show that phosphofructokinase 1, liver type (PFKL), a rate-limiting enzyme of glycolysis, is phosphorylated at Ser775 in macrophages following several innate stimuli. This phosphorylation increases the catalytic activity of PFKL, as shown by biochemical assays and glycolysis monitoring in cells expressing phosphorylation-defective PFKL variants. Using a genetic mouse model in which PFKL Ser775 phosphorylation cannot take place, we observe that upon activation, glycolysis in macrophages is lower than in the same cell population of wild-type animals. Consistent with their higher glycolytic activity, wild-type cells have higher levels of HIF1α and IL-1β than PfklS775A/S775A after LPS treatment. In an in vivo inflammation model, PfklS775A/S775A mice show reduced levels of MCP-1 and IL-1β. Our study thus identifies a molecular link between innate immune activation and early induction of glycolysis.
Collapse
Affiliation(s)
- Meiyue Wang
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heinrich Flaswinkel
- Faculty of Biology, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Abhinav Joshi
- TranslaTUM, Center of Translational Cancer Research, Technische Universität München, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technische Universität München, Munich, Germany
| | - Matteo Napoli
- Faculty of Medicine Biomedical Center, Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Faculty of Medicine Biomedical Center, Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Julia M Kamper
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Antonia Henne
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Alexander Heinz
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marleen Berouti
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Niklas A Schmacke
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karsten Hiller
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Elisabeth Kremmer
- Faculty of Biology, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Benedikt Wefers
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Sperandio
- Faculty of Medicine Biomedical Center, Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jürgen Ruland
- TranslaTUM, Center of Translational Cancer Research, Technische Universität München, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technische Universität München, Munich, Germany
| | - Thomas Fröhlich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Beaufort N, Ingendahl L, Merdanovic M, Schmidt A, Podlesainski D, Richter T, Neumann T, Kuszner M, Vetter IR, Stege P, Burston SG, Filipovic A, Ruiz-Blanco YB, Bravo-Rodriguez K, Mieres-Perez J, Beuck C, Uebel S, Zobawa M, Schillinger J, Malik R, Todorov-Völgyi K, Rey J, Roberti A, Hagemeier B, Wefers B, Müller SA, Wurst W, Sanchez-Garcia E, Zimmermann A, Hu XY, Clausen T, Huber R, Lichtenthaler SF, Schmuck C, Giese M, Kaiser M, Ehrmann M, Dichgans M. Rational correction of pathogenic conformational defects in HTRA1. Nat Commun 2024; 15:5944. [PMID: 39013852 PMCID: PMC11252331 DOI: 10.1038/s41467-024-49982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Linda Ingendahl
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Melisa Merdanovic
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU Munich, Munich, Germany
| | - David Podlesainski
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Tim Richter
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Thorben Neumann
- Organic Chemistry, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Michael Kuszner
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Ingrid R Vetter
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Patricia Stege
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Steven G Burston
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, UK
| | - Anto Filipovic
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Yasser B Ruiz-Blanco
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Kenny Bravo-Rodriguez
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Joel Mieres-Perez
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Christine Beuck
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Stephan Uebel
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Monika Zobawa
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Jasmin Schillinger
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katalin Todorov-Völgyi
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Juliana Rey
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Annabell Roberti
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Birte Hagemeier
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Technische Universität München-Weihenstephan, Freising, Germany
| | - Elsa Sanchez-Garcia
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Alexander Zimmermann
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Xiao-Yu Hu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Robert Huber
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carsten Schmuck
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Michael Giese
- Organic Chemistry, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
6
|
Li J, Canham SM, Wu H, Henault M, Chen L, Liu G, Chen Y, Yu G, Miller HR, Hornak V, Brittain SM, Michaud GA, Tutter A, Broom W, Digan ME, McWhirter SM, Sivick KE, Pham HT, Chen CH, Tria GS, McKenna JM, Schirle M, Mao X, Nicholson TB, Wang Y, Jenkins JL, Jain RK, Tallarico JA, Patel SJ, Zheng L, Ross NT, Cho CY, Zhang X, Bai XC, Feng Y. Activation of human STING by a molecular glue-like compound. Nat Chem Biol 2024; 20:365-372. [PMID: 37828400 PMCID: PMC10907298 DOI: 10.1038/s41589-023-01434-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
Stimulator of interferon genes (STING) is a dimeric transmembrane adapter protein that plays a key role in the human innate immune response to infection and has been therapeutically exploited for its antitumor activity. The activation of STING requires its high-order oligomerization, which could be induced by binding of the endogenous ligand, cGAMP, to the cytosolic ligand-binding domain. Here we report the discovery through functional screens of a class of compounds, named NVS-STGs, that activate human STING. Our cryo-EM structures show that NVS-STG2 induces the high-order oligomerization of human STING by binding to a pocket between the transmembrane domains of the neighboring STING dimers, effectively acting as a molecular glue. Our functional assays showed that NVS-STG2 could elicit potent STING-mediated immune responses in cells and antitumor activities in animal models.
Collapse
Affiliation(s)
- Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen M Canham
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| | - Hua Wu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Martin Henault
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Lihao Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Guoxun Liu
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Yu Chen
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Gary Yu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Howard R Miller
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Viktor Hornak
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | - Antonin Tutter
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Wendy Broom
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | | | - Helen T Pham
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - George S Tria
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Xiaohong Mao
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Yuan Wang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Rishi K Jain
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Sejal J Patel
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Lianxing Zheng
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Nathan T Ross
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Charles Y Cho
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yan Feng
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| |
Collapse
|
7
|
Brunner TM, Serve S, Marx AF, Fadejeva J, Saikali P, Dzamukova M, Durán-Hernández N, Kommer C, Heinrich F, Durek P, Heinz GA, Höfer T, Mashreghi MF, Kühn R, Pinschewer DD, Löhning M. A type 1 immunity-restricted promoter of the IL-33 receptor gene directs antiviral T-cell responses. Nat Immunol 2024; 25:256-267. [PMID: 38172258 PMCID: PMC10834369 DOI: 10.1038/s41590-023-01697-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
The pleiotropic alarmin interleukin-33 (IL-33) drives type 1, type 2 and regulatory T-cell responses via its receptor ST2. Subset-specific differences in ST2 expression intensity and dynamics suggest that transcriptional regulation is key in orchestrating the context-dependent activity of IL-33-ST2 signaling in T-cell immunity. Here, we identify a previously unrecognized alternative promoter in mice and humans that is located far upstream of the curated ST2-coding gene and drives ST2 expression in type 1 immunity. Mice lacking this promoter exhibit a selective loss of ST2 expression in type 1- but not type 2-biased T cells, resulting in impaired expansion of cytotoxic T cells (CTLs) and T-helper 1 cells upon viral infection. T-cell-intrinsic IL-33 signaling via type 1 promoter-driven ST2 is critical to generate a clonally diverse population of antiviral short-lived effector CTLs. Thus, lineage-specific alternative promoter usage directs alarmin responsiveness in T-cell subsets and offers opportunities for immune cell-specific targeting of the IL-33-ST2 axis in infections and inflammatory diseases.
Collapse
Affiliation(s)
- Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
| | - Sebastian Serve
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Anna-Friederike Marx
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jelizaveta Fadejeva
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Philippe Saikali
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Maria Dzamukova
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Nayar Durán-Hernández
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Christoph Kommer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Frederik Heinrich
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Gitta A Heinz
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
8
|
Xu H, Tan S, Zhao Y, Zhang L, Cao W, Li X, Tian J, Wang X, Li X, Wang F, Cao J, Zhao T. Lin - PU.1 dim GATA-1 - defines haematopoietic stem cells with long-term multilineage reconstitution activity. Cell Prolif 2023; 56:e13490. [PMID: 37147872 PMCID: PMC10623959 DOI: 10.1111/cpr.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Despite extensive characterization of the state and function of haematopoietic stem cells (HSCs), the use of transcription factors to define the HSC population is still limited. We show here that the HSC population in mouse bone marrow can be defined by the distinct expression levels of Spi1 and Gata1. By using a double fluorescence knock-in mouse model, PGdKI, in which the expression levels of PU.1 and GATA-1 are indicated by the expression of GFP and mCherry, respectively, we uncover that the HSCs with lymphoid and myeloid repopulating activity are specifically enriched in a Lin- PU.1dim GATA-1- (LPG) cell subset. In vivo competitive repopulation assays demonstrate that bone marrow cells gated by LPG exhibit haematopoietic reconstitution activity which is comparable to that of classical Lin- Sca1+ c-kit+ (LSK). The integrated analysis of single-cell RNA sequence data from LPG and LSK-gated cells reveals that a transcriptional network governed by core TFs contributes to regulation of HSC multipotency. These discoveries provide new clues for HSC characterization and functional study.
Collapse
Affiliation(s)
- Haoyu Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shaojing Tan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiyun Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xing Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayi Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoyan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS)BeijingChina
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Wang Y, Wang M, Bao R, Wang L, Du X, Qiu S, Yang C, Song H. A novel humanized tri-receptor transgenic mouse model of HAdV infection and pathogenesis. J Med Virol 2023; 95:e29026. [PMID: 37578851 DOI: 10.1002/jmv.29026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Human adenovirus (HAdV) is a highly virulent respiratory pathogen that poses clinical challenges in terms of diagnostics and treatment. Currently, no effective therapeutic drugs or prophylactic vaccines are available for HAdV infections. One factor contributing to this deficiency is that existing animal models, including wild-type and single-receptor transgenic mice, are unsuitable for HAdV proliferation and pathology testing. In this study, a tri-receptor transgenic mouse model expressing the three best-characterized human cellular receptors for HAdV (hCAR, hCD46, and hDSG2) was generated and validated via analysis of transgene insertion, receptor mRNA expression, and protein abundance distribution. Following HAdV-7 infection, the tri-receptor mice exhibited high transcription levels at the early and late stages of the HAdV gene, as well as viral protein expression. Furthermore, the tri-receptor mice infected with HAdV exhibited dysregulated cytokine responses and multiple tissue lesions. This transgenic mouse model represents human HAdV infection and pathogenesis with more accuracy than any other reported animal model. As such, this model facilitates the comprehensive investigation of HAdV pathogenesis as well as the evaluation of potential vaccines and therapeutic modalities for HAdV.
Collapse
Affiliation(s)
- Yawei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Min Wang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Heaith, China Medical University, Shenyang, China
| | - Renlong Bao
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xinying Du
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Infectious Disease Control and Prevention Department, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
10
|
Lowenstein ED, Ruffault PL, Misios A, Osman KL, Li H, Greenberg RS, Thompson R, Song K, Dietrich S, Li X, Vladimirov N, Woehler A, Brunet JF, Zampieri N, Kühn R, Liberles SD, Jia S, Lewin GR, Rajewsky N, Lever TE, Birchmeier C. Prox2 and Runx3 vagal sensory neurons regulate esophageal motility. Neuron 2023; 111:2184-2200.e7. [PMID: 37192624 DOI: 10.1016/j.neuron.2023.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/31/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Vagal sensory neurons monitor mechanical and chemical stimuli in the gastrointestinal tract. Major efforts are underway to assign physiological functions to the many distinct subtypes of vagal sensory neurons. Here, we use genetically guided anatomical tracing, optogenetics, and electrophysiology to identify and characterize vagal sensory neuron subtypes expressing Prox2 and Runx3 in mice. We show that three of these neuronal subtypes innervate the esophagus and stomach in regionalized patterns, where they form intraganglionic laminar endings. Electrophysiological analysis revealed that they are low-threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis in freely behaving mice. Our work defines the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders.
Collapse
Affiliation(s)
- Elijah D Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany; NeuroCure Cluster of Excellence, CharitéUniversitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Aristotelis Misios
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany; NeuroCure Cluster of Excellence, CharitéUniversitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Kate L Osman
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Huimin Li
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Rachel S Greenberg
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Thompson
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Kun Song
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stephan Dietrich
- Development and Function of Neural Circuits, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Xun Li
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nikita Vladimirov
- Systems Biology Imaging, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andrew Woehler
- Systems Biology Imaging, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jean-François Brunet
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Niccolò Zampieri
- Development and Function of Neural Circuits, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ralf Kühn
- Genome Engineering & Disease Models, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shiqi Jia
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Teresa E Lever
- Department of Otolaryngology - Head & Neck Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany; NeuroCure Cluster of Excellence, CharitéUniversitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Späth MR, Hoyer-Allo KJR, Seufert L, Höhne M, Lucas C, Bock T, Isermann L, Brodesser S, Lackmann JW, Kiefer K, Koehler FC, Bohl K, Ignarski M, Schiller P, Johnsen M, Kubacki T, Grundmann F, Benzing T, Trifunovic A, Krüger M, Schermer B, Burst V, Müller RU. Organ Protection by Caloric Restriction Depends on Activation of the De Novo NAD+ Synthesis Pathway. J Am Soc Nephrol 2023; 34:772-792. [PMID: 36758124 PMCID: PMC10125653 DOI: 10.1681/asn.0000000000000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.
Collapse
Affiliation(s)
- Martin R. Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - K. Johanna R. Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Seufert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christina Lucas
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Theresa Bock
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Lea Isermann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katharina Kiefer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix C. Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Schiller
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Emergency Department, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Suitability of a universal electroporation device for genome editing and production of transgenic rats. Reprod Biol 2023; 23:100755. [PMID: 36933474 DOI: 10.1016/j.repbio.2023.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
Mammalian genome editing has utilized expensive and highly specialized electroporator devices. The "Gene Pulser XCell," a modular electroporation system for transfecting all cell types, has not been used extensively in mammalian embryo genome editing. The present experiment was undertaken to determine the usefulness of the Gene Pulser XCell for inserting the CRISPR/Cas9 system into intact zygotes in order to obtain the enhanced green fluorescent protein reporter rats (eGFP-R). An electroporation pulse response test using mCherry mRNA was performed to optimize the settings of the electroporator. Forty-five combinations of five pulse voltages (15, 25, 30, 35 and 40 V), three pulse durations (5, 10 and 25 ms), and three pulse frequencies (2, 5 and 6 pulses) applied at a constant 100-ms pulse interval and temperature of 37.5 °C were evaluated. The test revealed that the 35 V was the only voltage suitable for insertion of mCherry mRNA into intact rat zygotes and the only one that resulted in the production of embryos attaining the blastocyst stage. The incorporation of mCherry mRNA increased but the survival of the electroporated embryos declined with an increment in the number of pulses. Subsequent transfer of 1112 surviving Sprague Dawley rat embryos (after 8 h of incubating 1800 zygotes electroporated with the CRISPR/Cas9) resulted in the production of 287 offspring (25.8%). Ensuing PCR and phenotypic evaluation confirmed that twenty animals (6.96%) expressed eGFP in all body organs/tissues except for blood and blood vessels. The mortality of males and females before the attainment of puberty was 2 and 3 pups, respectively, and the final number/ratio of male to female of offspring was 9:11. All the surviving rats mated naturally and successfully transmitted the GFP transgene to their progeny. The Gene Pulser XCell total system with the settings predetermined in the present experiment can effectively be used to produce transgenic rats through the CRISPR/Cas9-mediated genome editing of zygotes.
Collapse
|
13
|
Franz A, Weber AI, Preußner M, Dimos N, Stumpf A, Ji Y, Moreno-Velasquez L, Voigt A, Schulz F, Neumann A, Kuropka B, Kühn R, Urlaub H, Schmitz D, Wahl MC, Heyd F. Branch point strength controls species-specific CAMK2B alternative splicing and regulates LTP. Life Sci Alliance 2023; 6:6/3/e202201826. [PMID: 36543542 PMCID: PMC9772828 DOI: 10.26508/lsa.202201826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Regulation and functionality of species-specific alternative splicing has remained enigmatic to the present date. Calcium/calmodulin-dependent protein kinase IIβ (CaMKIIβ) is expressed in several splice variants and plays a key role in learning and memory. Here, we identify and characterize several primate-specific CAMK2B splice isoforms, which show altered kinetic properties and changes in substrate specificity. Furthermore, we demonstrate that primate-specific CAMK2B alternative splicing is achieved through branch point weakening during evolution. We show that reducing branch point and splice site strengths during evolution globally renders constitutive exons alternative, thus providing novel mechanistic insight into cis-directed species-specific alternative splicing regulation. Using CRISPR/Cas9, we introduce a weaker, human branch point sequence into the mouse genome, resulting in strongly altered Camk2b splicing in the brains of mutant mice. We observe a strong impairment of long-term potentiation in CA3-CA1 synapses of mutant mice, thus connecting branch point-controlled CAMK2B alternative splicing with a fundamental function in learning and memory.
Collapse
Affiliation(s)
- Andreas Franz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - A Ioana Weber
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Nicole Dimos
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Alexander Stumpf
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Laura Moreno-Velasquez
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Voigt
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frederic Schulz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Mass Spectrometry Core Facility (BioSupraMol), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar Schmitz
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| |
Collapse
|
14
|
Biggs D, Chen CM, Davies B. Targeted Integration of Transgenes at the Mouse Gt(ROSA)26Sor Locus. Methods Mol Biol 2023; 2631:299-323. [PMID: 36995674 DOI: 10.1007/978-1-0716-2990-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The targeting of transgenic constructs at single copy into neutral genomic loci avoids the unpredictable outcomes associated with conventional random integration approaches. The Gt(ROSA)26Sor locus on chromosome 6 has been used many times for the integration of transgenic constructs and is known to be permissive for transgene expression and disruption of the gene is not associated with a known phenotype. Furthermore, the transcript made from the Gt(ROSA)26Sor locus is ubiquitously expressed and subsequently the locus can be used to drive the ubiquitous expression of transgenes.Here we report a protocol for the generation of targeted transgenic alleles at Gt(ROSA)26Sor, taking as an example a conditional overexpression allele, by PhiC31 integrase/recombinase-mediated cassette exchange of an engineered Gt(ROSA)26Sor locus in mouse embryonic stem cells. The overexpression allele is initially silenced by the presence of a loxP flanked stop sequence but can be strongly activated through the action of Cre recombinase.
Collapse
Affiliation(s)
- Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chiann-Mun Chen
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
15
|
Lahmann I, Birchmeier C. Visualizing MyoD Oscillations in Muscle Stem Cells. Methods Mol Biol 2023; 2640:259-276. [PMID: 36995601 DOI: 10.1007/978-1-0716-3036-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The bHLH transcription factor MyoD is a master regulator of myogenic differentiation, and its sustained expression in fibroblasts suffices to differentiate them into muscle cells. MyoD expression oscillates in activated muscle stem cells of developing, postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. The oscillatory period is around 3 h and thus much shorter than the cell cycle or circadian rhythm. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed when stem cells undergo myogenic differentiation. The oscillatory expression of MyoD is driven by the oscillatory expression of the bHLH transcription factor Hes1 that periodically represses MyoD. Ablation of the Hes1 oscillator interferes with stable MyoD oscillations and leads to prolonged periods of sustained MyoD expression. This interferes with the maintenance of activated muscle stem cells and impairs muscle growth and repair. Thus, oscillations of MyoD and Hes1 control the balance between the proliferation and differentiation of muscle stem cells. Here, we describe time-lapse imaging methods using luciferase reporters, which can monitor dynamic MyoD gene expression in myogenic cells.
Collapse
Affiliation(s)
- Ines Lahmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, Berlin, Germany
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, Berlin, Germany.
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
17
|
Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. Nature 2022; 609:590-596. [PMID: 36002575 PMCID: PMC9477735 DOI: 10.1038/s41586-022-05125-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Bacterial cell wall components provide various unique molecular structures that are detected by pattern recognition receptors (PRRs) of the innate immune system as non-self. Most bacterial species form a cell wall that consists of peptidoglycan (PGN), a polymeric structure comprising alternating amino sugars that form strands cross-linked by short peptides. Muramyl dipeptide (MDP) has been well documented as a minimal immunogenic component of peptidoglycan1–3. MDP is sensed by the cytosolic nucleotide-binding oligomerization domain-containing protein 24 (NOD2). Upon engagement, it triggers pro-inflammatory gene expression, and this functionality is of critical importance in maintaining a healthy intestinal barrier function5. Here, using a forward genetic screen to identify factors required for MDP detection, we identified N-acetylglucosamine kinase (NAGK) as being essential for the immunostimulatory activity of MDP. NAGK is broadly expressed in immune cells and has previously been described to contribute to the hexosamine biosynthetic salvage pathway6. Mechanistically, NAGK functions upstream of NOD2 by directly phosphorylating the N-acetylmuramic acid moiety of MDP at the hydroxyl group of its C6 position, yielding 6-O-phospho-MDP. NAGK-phosphorylated MDP—but not unmodified MDP—constitutes an agonist for NOD2. Macrophages from mice deficient in NAGK are completely deficient in MDP sensing. These results reveal a link between amino sugar metabolism and innate immunity to bacterial cell walls. N-acetylglucosamine kinase catalyses the phosphorylation of muramyl dipeptide and is thus essential for its recognition and immunostimulatory activity in human and mouse cells.
Collapse
|
18
|
Pan Q, Luo J, Jiang Y, Wang Z, Lu K, Chen T. Efficient gene editing in a medaka ( Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. J Zhejiang Univ Sci B 2022; 23:74-83. [PMID: 35029089 PMCID: PMC8758932 DOI: 10.1631/jzus.b2100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/09/2021] [Indexed: 11/11/2022]
Abstract
Generation of mutants with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is commonly carried out in fish species by co-injecting a mixture of Cas9 messenger RNA (mRNA) or protein and transcribed guide RNA (gRNA). However, the appropriate expression system to produce functional gRNAs in fish embryos and cells is rarely present. In this study, we employed a poly-transfer RNA (tRNA)-gRNA (PTG) system driven by cytomegalovirus (CMV) promoter to target the medaka (Oryzias latipes) endogenous gene tyrosinase(tyr) or paired box 6.1 (pax6.1) and illustrated its function in a medaka cell line and embryos. The PTG system was combined with the CRISPR/Cas9 system under high levels of promoter to successfully induce gene editing in medaka. This is a valuable step forward in potential application of the CRISPR/Cas9 system in medaka and other teleosts.
Collapse
Affiliation(s)
- Qihua Pan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen 361021, China
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Junzhi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuewen Jiang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiansheng Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen 361021, China.
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
van Hees M, Slott S, Hansen AH, Kim HS, Ji HP, Astakhova K. New approaches to moderate CRISPR-Cas9 activity: Addressing issues of cellular uptake and endosomal escape. Mol Ther 2022; 30:32-46. [PMID: 34091053 PMCID: PMC8753288 DOI: 10.1016/j.ymthe.2021.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 05/27/2021] [Indexed: 02/09/2023] Open
Abstract
CRISPR-Cas9 is rapidly entering molecular biology and biomedicine as a promising gene-editing tool. A unique feature of CRISPR-Cas9 is a single-guide RNA directing a Cas9 nuclease toward its genomic target. Herein, we highlight new approaches for improving cellular uptake and endosomal escape of CRISPR-Cas9. As opposed to other recently published works, this review is focused on non-viral carriers as a means to facilitate the cellular uptake of CRISPR-Cas9 through endocytosis. The majority of non-viral carriers, such as gold nanoparticles, polymer nanoparticles, lipid nanoparticles, and nanoscale zeolitic imidazole frameworks, is developed with a focus toward optimizing the endosomal escape of CRISPR-Cas9 by taking advantage of the acidic environment in the late endosomes. Among the most broadly used methods for in vitro and ex vivo ribonucleotide protein transfection are electroporation and microinjection. Thus, other delivery formats are warranted for in vivo delivery of CRISPR-Cas9. Herein, we specifically revise the use of peptide and nanoparticle-based systems as platforms for CRISPR-Cas9 delivery in vivo. Finally, we highlight future perspectives of the CRISPR-Cas9 gene-editing tool and the prospects of using non-viral vectors to improve its bioavailability and therapeutic potential.
Collapse
Affiliation(s)
- Maja van Hees
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Sofie Slott
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | - Heon Seok Kim
- School of Medicine, Stanford University, Stanford, CA 94350, USA
| | - Hanlee P. Ji
- School of Medicine, Stanford University, Stanford, CA 94350, USA
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark,Corresponding author: Kira Astakhova, Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
20
|
Krause F, Mohebian K, Delpero M, Hesse D, Kühn R, Arends D, Brockmann GA. A deletion containing a CTCF-element in intron 8 of the Bbs7 gene is partially responsible for juvenile obesity in the Berlin Fat Mouse. Mamm Genome 2021; 33:465-470. [PMID: 34910225 PMCID: PMC9360062 DOI: 10.1007/s00335-021-09938-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
The Berlin Fat Mouse Inbred (BFMI) line is a model for juvenile obesity. Previous studies on crosses between BFMI and C57Bl/6N (B6N) have identified a recessive defect causing juvenile obesity on chromosome 3 (jObes1). Bbs7 was identified as the most likely candidate gene for the observed effect. Comparative sequence analysis showed a 1578 bp deletion in intron 8 of Bbs7 in BFMI mice. A CTCF-element is located inside this deletion. To investigate the functional effect of this deletion, it was introduced into B6N mice using CRISPR/Cas9. Two mice containing the target deletion were obtained (B6N Bbs7emI8∆1 and Bbs7emI8∆2) and were subsequently mated to BFMI and B6N to generate two families suitable for complementation. Inherited alleles were determined and body composition was measured by quantitative magnetic resonance. Evidence for a partial complementation (13.1-15.1%) of the jObes1 allele by the CRISPR/Cas9 modified B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles was found. Mice carrying the complementation alleles had a 23-27% higher fat-to-lean ratio compared to animals which have a B6N allele (P(Bbs7emI8∆1) = 4.25 × 10-7; P(Bbs7emI8∆2) = 3.17 × 10-5). Consistent with previous findings, the recessive effect of the BFMI allele was also seen for the B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles. However, the effect size of the B6N Bbs7emI8∆1 and Bbs7emI8∆2 alleles was smaller than the BFMI allele, and thus showed only a partial complementation. Findings suggest additional variants near Bbs7 in addition to or interacting with the deletion in intron 8.
Collapse
Affiliation(s)
- Florian Krause
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Kourosh Mohebian
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Manuel Delpero
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Deike Hesse
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Danny Arends
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| |
Collapse
|
21
|
Kühn R. Genome engineering in rodents - status quo and perspectives. Lab Anim 2021; 56:83-87. [PMID: 34674587 DOI: 10.1177/00236772211051842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The introduction of the CRISPR-Cas9 system in 2013 has revolutionized experimental genetics in mice and rats. This commentary gives an overview on the use of CRISPR either for gene editing in the germline or for editing and beyond editing in somatic cells. Future perspectives are opened by emerging CRISPR technologies that could enable genome engineering at larger scale.
Collapse
Affiliation(s)
- Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Germany
| |
Collapse
|
22
|
Hsia HE, Tüshaus J, Feng X, Hofmann LI, Wefers B, Marciano DK, Wurst W, Lichtenthaler SF. Endoglycan (PODXL2) is proteolytically processed by ADAM10 (a disintegrin and metalloprotease 10) and controls neurite branching in primary neurons. FASEB J 2021; 35:e21813. [PMID: 34390512 DOI: 10.1096/fj.202100475r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023]
Abstract
Cell adhesion is tightly controlled in multicellular organisms, for example, through proteolytic ectodomain shedding of the adhesion-mediating cell surface transmembrane proteins. In the brain, shedding of cell adhesion proteins is required for nervous system development and function, but the shedding of only a few adhesion proteins has been studied in detail in the mammalian brain. One such adhesion protein is the transmembrane protein endoglycan (PODXL2), which belongs to the CD34-family of highly glycosylated sialomucins. Here, we demonstrate that endoglycan is broadly expressed in the developing mouse brains and is proteolytically shed in vitro in mouse neurons and in vivo in mouse brains. Endoglycan shedding in primary neurons was mediated by the transmembrane protease a disintegrin and metalloprotease 10 (ADAM10), but not by its homolog ADAM17. Functionally, endoglycan deficiency reduced the branching of neurites extending from primary neurons in vitro, whereas deletion of ADAM10 had the opposite effect and increased neurite branching. Taken together, our study discovers a function for endoglycan in neurite branching, establishes endoglycan as an ADAM10 substrate and suggests that ADAM10 cleavage of endoglycan may contribute to neurite branching.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xiao Feng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Laura I Hofmann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg/Munich, Germany
| | - Denise K Marciano
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg/Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Technical University of Munich-Weihenstephan, Neuherberg/Munich, Neuherberg, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
23
|
Gertsenstein M, Nutter LMJ. Production of knockout mouse lines with Cas9. Methods 2021; 191:32-43. [PMID: 33524495 DOI: 10.1016/j.ymeth.2021.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/05/2020] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Knockout mice are used extensively to explore the phenotypic effects of mammalian gene dysfunction. With the application of RNA-guided Cas9 nuclease technology for the production of knockout mouse lines, the time, as well as the resources needed, to progress from identification of a gene of interest to production of a knockout line is significantly reduced. Here we present our standard methodology to produce knockout mouse lines by the electroporation of Cas9 ribonucleoprotein (RNP) into mouse zygotes. Using this protocol, we have obtained an 80% success rate in the generation of founders for null alleles with a subsequent 93% germline transmission rate. These methods rely on equipment already present in the majority of transgenic facilities and should be straightforward to implement where appropriate embryo handling expertise exists.
Collapse
Affiliation(s)
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto M5T 3H7, Canada; The Hospital for Sick Children, Toronto M5G 1X8, Canada
| |
Collapse
|
24
|
An Overview on Diffuse Large B-Cell Lymphoma Models: Towards a Functional Genomics Approach. Cancers (Basel) 2021; 13:cancers13122893. [PMID: 34207773 PMCID: PMC8226720 DOI: 10.3390/cancers13122893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Lymphoma research is a paradigm of integrating basic and applied research within the fields of molecular marker-based diagnosis and therapy. In recent years, major advances in next-generation sequencing have substantially improved the understanding of the genomics underlying diffuse large B-cell lymphoma (DLBCL), the most frequent type of B-cell lymphoma. This review addresses the various approaches that have helped unveil the biology and intricate alterations in this pathology, from cell lines to more sophisticated last-generation experimental models, such as organoids. We also provide an overview of the most recent findings in the field, their potential relevance for designing targeted therapies and the corresponding applicability to personalized medicine. Abstract Lymphoma research is a paradigm of the integration of basic and clinical research within the fields of diagnosis and therapy. Clinical, phenotypic, and genetic data are currently used to predict which patients could benefit from standard treatment. However, alternative therapies for patients at higher risk from refractoriness or relapse are usually empirically proposed, based on trial and error, without considering the genetic complexity of aggressive B-cell lymphomas. This is primarily due to the intricate mosaic of genetic and epigenetic alterations in lymphomas, which are an obstacle to the prediction of which drug will work for any given patient. Matching a patient’s genes to drug sensitivity by directly testing live tissues comprises the “precision medicine” concept. However, in the case of lymphomas, this concept should be expanded beyond genomics, eventually providing better treatment options for patients in need of alternative therapeutic approaches. We provide an overview of the most recent findings in diffuse large B-cell lymphomas genomics, from the classic functional models used to study tumor biology and the response to experimental treatments using cell lines and mouse models, to the most recent approaches with spheroid/organoid models. We also discuss their potential relevance and applicability to daily clinical practice.
Collapse
|
25
|
Ragu Varman D, Subler MA, Windle JJ, Jayanthi LD, Ramamoorthy S. Novelty-induced hyperactivity and suppressed cocaine induced locomotor activation in mice lacking threonine 53 phosphorylation of dopamine transporter. Behav Brain Res 2021; 408:113267. [PMID: 33794225 DOI: 10.1016/j.bbr.2021.113267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/03/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
Dopamine (DA) transporter (DAT) is dynamically regulated by several protein kinases and the Thr53 phosphorylation of DAT (pT53-DAT) is documented in heterologous cell models and in rat brain. However, the role of endogenous pT53-DAT in living animals has never been addressed. Here we generated and studied the pT53-lacking DAT mouse model (DAT-Ala53) by CRISPR/Cas9 technology. DAT-Ala53 mice showed normal growth, body weight, body temperature, grip strength, and sucrose preference while pT53-DAT was completely absent. However, DAT-Ala53 mice showed hyperlocomotion, pronounced vertical exploratory behavior, and stereotypy in a novel environment compared to wild-type littermates (WT). DAT-Ala53 mice displayed unaltered levels of monoamines, glutamate, and GABA in the striatum compared to WT. There were also no significant differences between DAT-Ala53 mice and WT in tyrosine hydroxylase (TH) and phospho-TH levels, or in total and surface DAT levels, or in DA-transport kinetic parameters Vmax and Km. Immunohistochemical and colocalization analyses of TH and DAT in caudate-putamen and nucleus accumbens revealed no significant differences between DAT-Ala53 and WT mice. Interestingly, cocaine's potency to inhibit striatal DA transport and cocaine-induced locomotor activation were significantly reduced in the DAT-Ala53 mice. Also, ERK1/2 inhibitors completely failed to inhibit striatal DA uptake in DAT-Ala53 mice. Collectively, our findings reveal that the mice lacking pT53-DAT display novelty-induced hyperactive phenotype despite having normal transporter protein expression, DA-transport kinetics and DA-linked markers. The results also reveal that the lack of endogenous pT53-DAT renders DAT resistant to ERK1/2 inhibition and also less susceptible to cocaine inhibition and cocaine-evoked locomotor stimulation.
Collapse
Affiliation(s)
- Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
26
|
Weisheit I, Kroeger JA, Malik R, Wefers B, Lichtner P, Wurst W, Dichgans M, Paquet D. Simple and reliable detection of CRISPR-induced on-target effects by qgPCR and SNP genotyping. Nat Protoc 2021; 16:1714-1739. [PMID: 33597771 DOI: 10.1038/s41596-020-00481-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023]
Abstract
The recent CRISPR revolution has provided researchers with powerful tools to perform genome editing in a variety of organisms. However, recent reports indicate widespread occurrence of unintended CRISPR-induced on-target effects (OnTEs) at the edited site in mice and human induced pluripotent stem cells (iPSCs) that escape standard quality controls. By altering gene expression of targeted or neighbouring genes, OnTEs can severely affect phenotypes of CRISPR-edited cells and organisms and thus lead to data misinterpretation, which can undermine the reliability of CRISPR-based studies. Here we describe a broadly applicable framework for detecting OnTEs in genome-edited cells and organisms after non-homologous end joining-mediated and homology-directed repair-mediated editing. Our protocol enables identification of OnTEs such as large deletions, large insertions, rearrangements or loss of heterozygosity (LOH). This is achieved by subjecting genomic DNA first to quantitative genotyping PCR (qgPCR), which determines the number of intact alleles at the target site using the same PCR amplicon that has been optimized for genotyping. This combination of genotyping and quantitation makes it possible to exclude clones with monoallelic OnTEs and hemizygous editing, which are often mischaracterized as correctly edited in standard Sanger sequencing. Second, occurrence of LOH around the edited locus is detected by genotyping neighbouring single-nucleotide polymorphisms (SNPs), using either a Sanger sequencing-based method or SNP microarrays. All steps are optimized to maximize simplicity and minimize cost to promote wide dissemination and applicability across the field. The entire protocol from genomic DNA extraction to OnTE exclusion can be performed in 6-9 d.
Collapse
Affiliation(s)
- Isabel Weisheit
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Joseph A Kroeger
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Institute of Developmental Genetics (IDG), HelmholtzZentrum München, Neuherberg, Germany
| | - Peter Lichtner
- Core Facility NGS, HelmholtzZentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Institute of Developmental Genetics (IDG), HelmholtzZentrum München, Neuherberg, Germany
- Technische Universität München-Weihenstephan, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
27
|
Plasil SL, Seth A, Homanics GE. CRISPR Turbo Accelerated KnockOut (CRISPy TAKO) for Rapid in vivo Screening of Gene Function. Front Genome Ed 2021; 2. [PMID: 33604589 PMCID: PMC7889042 DOI: 10.3389/fgeed.2020.598522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of CRISPR/Cas9 technology has vastly sped up the process of mammalian genome editing by introducing a bacterial system that can be exploited for reverse genetics-based research. However, generating homozygous functional knockout (KO) animals using traditional CRISPR/Cas9-mediated techniques requires three generations of animals. A founder animal with a desired mutation is crossed to produce heterozygous F1 offspring which are subsequently interbred to generate homozygous F2 KO animals. This study describes an adaptation of the CRISPR/Cas9-mediated method to develop a cohort of homozygous gene-targeted KO animals in one generation. A well-characterized ethanol-responsive gene, MyD88, was chosen as a candidate gene for generation of KO mice as proof-of-concept. Previous studies have reported changes in ethanol-related behavioral outcomes in MyD88 KO mice. One-cell mouse embryos were simultaneously electroporated with four gRNAs targeting a critical Exon of MyD88 along with Cas9 protein. DNA and RNA analysis of founder mice revealed a complex mix of genetic alterations, all of which were predicted to ablate MyD88 gene function. Behavioral testing confirmed the hypothesis that successful one-generation KO of MyD88 would reproduce the decreased ethanol-induced sedative/hypnotic effects and increased ethanol consumption in males that were observed in previous studies. This study additionally compared responses of Mock treatment control mice generated through electroporation to controls purchased from a vendor. No substantial behavioral changes were noted between control cohorts. Overall, the CRISPR/Cas9 KO protocol reported here, which we call CRISPR Turbo Accelerated KnockOut (CRISPy TAKO), will be useful for reverse genetic in vivo screens of gene function in whole animals.
Collapse
Affiliation(s)
- Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Hansen J, von Melchner H, Wurst W. Mutant non-coding RNA resource in mouse embryonic stem cells. Dis Model Mech 2021; 14:14/2/dmm047803. [PMID: 33729986 PMCID: PMC7875499 DOI: 10.1242/dmm.047803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
Gene trapping is a high-throughput approach that has been used to introduce insertional mutations into the genome of mouse embryonic stem (ES) cells. It is performed with generic gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA sequence tag for the rapid identification of the disrupted gene. Large-scale international efforts assembled a gene trap library of 566,554 ES cell lines with single gene trap integrations distributed throughout the genome. Here, we re-investigated this unique library and identified mutations in 2202 non-coding RNA (ncRNA) genes, in addition to mutations in 12,078 distinct protein-coding genes. Moreover, we found certain types of gene trap vectors preferentially integrating into genes expressing specific long non-coding RNA (lncRNA) biotypes. Together with all other gene-trapped ES cell lines, lncRNA gene-trapped ES cell lines are readily available for functional in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jens Hansen
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Harald von Melchner
- Department of Molecular Hematology, University Hospital Frankfurt, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany .,Technische Universität München-Weihenstephan, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, D-81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, D-81377 München, Germany
| |
Collapse
|
29
|
Du K, Li Y, Liu J, Chen W, Wei Z, Luo Y, Liu H, Qi Y, Wang F, Sui J. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol Ther 2021; 29:1572-1584. [PMID: 33429083 DOI: 10.1016/j.ymthe.2021.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/23/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is a well-characterized hepatocellular carcinoma (HCC)-associated antigen, yet anti-GPC3 therapies have achieved only minimal clinical progress. CD47 is a ubiquitously expressed innate immune checkpoint that promotes evasion of tumors from immune surveillance. Given both the specific expression of GPC3 in HCC and the known phagocytosis inhibitory effect of CD47 in liver cancer, we hypothesized that a bispecific antibody (BsAb) that co-engages with GPC3 and CD47 may offer excellent antitumor efficacy with minimal toxicity. Here, we generated a novel BsAb: GPC3/CD47 biAb. With the use of both in vitro and in vivo assays, we found that GPC3/CD47 biAb exerts strong antitumor activity preferentially against dual antigen-expressing tumor cells. In hCD47/human signal regulatory protein alpha (hCD47/hSIRPα) humanized mice, GPC3/CD47 biAb had an extended serum half-life without causing systemic toxicity. Importantly, GPC3/CD47 biAb induced enhanced Fc-mediated effector functions to dual antigen-expressing HCC cells in vitro, and both macrophages and neutrophils are required for its strong efficacy against xenograft HCC tumors. Notably, GPC3/CD47 biAb outperformed monotherapies and a combination therapy with anti-CD47 and anti-GPC3 monoclonal antibodies (mAbs) in a xenograft HCC model. Our study illustrates a strategy for improving HCC treatment by boosting innate immune responses and presents new insights to inform antibody design for the future development of innovative immune therapies.
Collapse
Affiliation(s)
- Kaixin Du
- School of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Juan Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Wei Chen
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong Luo
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Huisi Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yonghe Qi
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
30
|
Takalo M, Wittrahm R, Wefers B, Parhizkar S, Jokivarsi K, Kuulasmaa T, Mäkinen P, Martiskainen H, Wurst W, Xiang X, Marttinen M, Poutiainen P, Haapasalo A, Hiltunen M, Haass C. The Alzheimer's disease-associated protective Plcγ2-P522R variant promotes immune functions. Mol Neurodegener 2020; 15:52. [PMID: 32917267 PMCID: PMC7488484 DOI: 10.1186/s13024-020-00402-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/06/2020] [Indexed: 01/19/2023] Open
Abstract
Background Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer’s disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. Methods To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. Results Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice. Conclusion The AD-associated protective Plcγ2-P522R variant promotes protective functions associated with TREM2 signaling. Our findings provide further support for the idea that pharmacological modulation of microglia via TREM2-PLCγ2 pathway-dependent stimulation may be a novel therapeutic option for the treatment of AD.
Collapse
Affiliation(s)
- Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Rebekka Wittrahm
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wefers
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Samira Parhizkar
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kimmo Jokivarsi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Wolfgang Wurst
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xianyuan Xiang
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pekka Poutiainen
- Center of Diagnostic Imaging, Department of Cyclotron and Radiopharmacy, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Christian Haass
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Munich, Germany. .,Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
31
|
Schober K, Müller TR, Busch DH. Orthotopic T-Cell Receptor Replacement-An "Enabler" for TCR-Based Therapies. Cells 2020; 9:E1367. [PMID: 32492858 PMCID: PMC7348731 DOI: 10.3390/cells9061367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Natural adaptive immunity co-evolved with pathogens over millions of years, and adoptive transfer of non-engineered T cells to fight infections or cancer so far exhibits an exceptionally safe and functional therapeutic profile in clinical trials. However, the personalized nature of therapies using virus-specific T cells, donor lymphocyte infusion, or tumor-infiltrating lymphocytes makes implementation in routine clinical care difficult. In principle, genetic engineering can be used to make T-cell therapies more broadly applicable, but so far it significantly alters the physiology of cells. We recently demonstrated that orthotopic T-cell receptor (TCR) replacement (OTR) by clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) can be used to generate engineered T cells with preservation of near-physiological function. In this review, we present the current status of OTR technology development and discuss its potential for TCR-based therapies. By providing the means to combine the therapeutic efficacy and safety profile of physiological T cells with the versatility of cell engineering, OTR can serve as an "enabler" for TCR-based therapies.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Thomas R. Müller
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| |
Collapse
|
32
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
33
|
Lahmann I, Bröhl D, Zyrianova T, Isomura A, Czajkowski MT, Kapoor V, Griger J, Ruffault PL, Mademtzoglou D, Zammit PS, Wunderlich T, Spuler S, Kühn R, Preibisch S, Wolf J, Kageyama R, Birchmeier C. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells. Genes Dev 2019; 33:524-535. [PMID: 30862660 PMCID: PMC6499323 DOI: 10.1101/gad.322818.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
Lahmann et al. show that Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. Hes1 is expressed in an oscillatory manner in activated stem cells, where it drives the oscillatory expression of MyoD. The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.
Collapse
Affiliation(s)
- Ines Lahmann
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Dominique Bröhl
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Tatiana Zyrianova
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Maciej T Czajkowski
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Varun Kapoor
- Microscopy/Image Analysis, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Joscha Griger
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Pierre-Louis Ruffault
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Despoina Mademtzoglou
- IMRB U955-E10, Institut National de la Santé et de la Recherche Médicale (INSERM), Faculté de Medicine, Université Paris Est, 94000 Creteil, France
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Thomas Wunderlich
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Max-Delbrück-Center, Charité Medical Faculty, 13125 Berlin, Germany
| | - Ralf Kühn
- Transgenic Core Facility, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany
| | - Stephan Preibisch
- Microscopy/Image Analysis, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
34
|
Homanics GE. Gene-edited CRISPy Critters for alcohol research. Alcohol 2019; 74:11-19. [PMID: 30621855 PMCID: PMC6334660 DOI: 10.1016/j.alcohol.2018.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/26/2022]
Abstract
Genetically engineered animals are powerful tools that have provided invaluable insights into mechanisms of alcohol action and alcohol-use disorder. Traditionally, production of gene-targeted animals was a tremendously expensive, time consuming, and technically demanding undertaking. However, the recent advent of facile methods for editing the genome at very high efficiency is revolutionizing how these animals are made. While pioneering approaches to create gene-edited animals first used zinc finger nucleases and subsequently used transcription activator-like effector nucleases, these approaches have been largely supplanted in an extremely short period of time with the recent discovery and precocious maturation of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system. CRISPR uses a short RNA sequence to guide a non-specific CRISPR-associated nuclease (Cas) to a precise, single location in the genome. Because the CRISPR/Cas system can be cheaply, rapidly, and easily reprogrammed to target nearly any genomic locus of interest simply by recoding the sequence of the guide RNA, this gene-editing system has been rapidly adopted by numerous labs around the world. With CRISPR/Cas, it is now possible to perform gene editing directly in early embryos from every species of animals that is of interest to the alcohol field. Techniques have been developed that enable the rapid production of animals in which a gene has been inactivated (knockout) or modified to harbor specific nucleotide changes (knockins). This system has also been used to insert specific DNA sequences such as reporter or recombinase genes into specific loci of interest. Genetically engineered animals created with the CRISPR/Cas system (CRISPy Critters) are being produced at an astounding pace. Animal production is no longer a significant bottleneck to new discoveries. CRISPy animal studies are just beginning to appear in the alcohol literature, but their use is expected to explode in the near future. CRISPy mice, rats, and other model organisms are sure to facilitate advances in our understanding of alcohol-use disorder.
Collapse
Affiliation(s)
- Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 6060 Biomedical Science Tower-3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 6060 Biomedical Science Tower-3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, 6060 Biomedical Science Tower-3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States.
| |
Collapse
|
35
|
Hansen LA, Füchtbauer EM. Genome Editing in Mice. Methods Mol Biol 2019; 1961:249-254. [PMID: 30912050 DOI: 10.1007/978-1-4939-9170-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Programmable nucleases like CRISPR/Cas9 enable to edit the mouse genome directly in the zygote. Several methods have been successfully used for this. Here we describe injection into one of the pronuclei of the zygote and electroporation of zygotes. Alternative methods will be mentioned.
Collapse
|
36
|
Regulation of the Natriuretic Peptide Receptor 2 (Npr2) by Phosphorylation of Juxtamembrane Serine and Threonine Residues Is Essential for Bifurcation of Sensory Axons. J Neurosci 2018; 38:9768-9780. [PMID: 30249793 DOI: 10.1523/jneurosci.0495-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/28/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
cGMP signaling elicited by activation of the transmembrane receptor guanylyl cyclase Npr2 (also known as guanylyl cyclase B) by the ligand CNP controls sensory axon bifurcation of DRG and cranial sensory ganglion (CSG) neurons entering the spinal cord or hindbrain, respectively. Previous studies have shown that Npr2 is phosphorylated on serine and threonine residues in its kinase homology domain (KHD). However, it is unknown whether phosphorylation of Npr2 is essential for axon bifurcation. Here, we generated a knock-in mouse line in which the seven regulatory serine and threonine residues in the KHD of Npr2 were substituted by alanine (Npr2-7A), resulting in a nonphosphorylatable enzyme. Real-time imaging of cGMP in DRG neurons with a genetically encoded fluorescent cGMP sensor or biochemical analysis of guanylyl cyclase activity in brain or lung tissue revealed the absence of CNP-induced cGMP generation in the Npr27A/7A mutant. Consequently, bifurcation of axons, but not collateral formation, from DRG or CSG in this mouse mutant was perturbed at embryonic and mature stages. In contrast, axon branching was normal in a mouse mutant in which constitutive phosphorylation of Npr2 is mimicked by a replacement of all of the seven serine and threonine sites by glutamic acid (Npr2-7E). Furthermore, we demonstrate that the Npr27A/7A mutation causes dwarfism as described for global Npr2 mutants. In conclusion, our in vivo studies provide strong evidence that phosphorylation of the seven serine and threonine residues in the KHD of Npr2 is an important regulatory element of Npr2-mediated cGMP signaling which affects physiological processes, such as axon bifurcation and bone growth.SIGNIFICANCE STATEMENT The branching of axons is a morphological hallmark of virtually all neurons. It allows an individual neuron to innervate different targets and to communicate with neurons located in different regions of the nervous system. The natriuretic peptide receptor 2 (Npr2), a transmembrane guanylyl cyclase, is essential for the initiation of bifurcation of sensory axons when entering the spinal cord or the hindbrain. By using two genetically engineered mouse lines, we show that phosphorylation of specific serine and threonine residues in juxtamembrane regions of Npr2 are required for its enzymatic activity and for axon bifurcation. These investigations might help to understand the regulation of Npr2 and its integration in intracellular signaling systems.
Collapse
|
37
|
Meyer K, Kirchner M, Uyar B, Cheng JY, Russo G, Hernandez-Miranda LR, Szymborska A, Zauber H, Rudolph IM, Willnow TE, Akalin A, Haucke V, Gerhardt H, Birchmeier C, Kühn R, Krauss M, Diecke S, Pascual JM, Selbach M. Mutations in Disordered Regions Can Cause Disease by Creating Dileucine Motifs. Cell 2018; 175:239-253.e17. [PMID: 30197081 DOI: 10.1016/j.cell.2018.08.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/09/2018] [Accepted: 08/08/2018] [Indexed: 01/12/2023]
Abstract
Many disease-causing missense mutations affect intrinsically disordered regions (IDRs) of proteins, but the molecular mechanism of their pathogenicity is enigmatic. Here, we employ a peptide-based proteomic screen to investigate the impact of mutations in IDRs on protein-protein interactions. We find that mutations in disordered cytosolic regions of three transmembrane proteins (GLUT1, ITPR1, and CACNA1H) lead to an increased clathrin binding. All three mutations create dileucine motifs known to mediate clathrin-dependent trafficking. Follow-up experiments on GLUT1 (SLC2A1), the glucose transporter causative of GLUT1 deficiency syndrome, revealed that the mutated protein mislocalizes to intracellular compartments. Mutant GLUT1 interacts with adaptor proteins (APs) in vitro, and knocking down AP-2 reverts the cellular mislocalization and restores glucose transport. A systematic analysis of other known disease-causing variants revealed a significant and specific overrepresentation of gained dileucine motifs in structurally disordered cytosolic domains of transmembrane proteins. Thus, several mutations in disordered regions appear to cause "dileucineopathies."
Collapse
Affiliation(s)
- Katrina Meyer
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marieluise Kirchner
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Bora Uyar
- Bioinformatics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jing-Yuan Cheng
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Giulia Russo
- Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Luis R Hernandez-Miranda
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Anna Szymborska
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research) partner site, 13347 Berlin, Germany
| | - Henrik Zauber
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Ina-Maria Rudolph
- Molecular Cardiovascular Research, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Thomas E Willnow
- Molecular Cardiovascular Research, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Altuna Akalin
- Bioinformatics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Volker Haucke
- Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research) partner site, 13347 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Ralf Kühn
- Berlin Institute of Health (BIH), 10178 Berlin, Germany; Core Facility Transgenics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Michael Krauss
- Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sebastian Diecke
- DZHK (German Centre for Cardiovascular Research) partner site, 13347 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany; Core Facility Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Juan M Pascual
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390, USA
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
38
|
Xiang X, Piers TM, Wefers B, Zhu K, Mallach A, Brunner B, Kleinberger G, Song W, Colonna M, Herms J, Wurst W, Pocock JM, Haass C. The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans. Mol Neurodegener 2018; 13:49. [PMID: 30185230 PMCID: PMC6126019 DOI: 10.1186/s13024-018-0280-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The R47H variant of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) significantly increases the risk for late onset Alzheimer's disease. Mouse models accurately reproducing phenotypes observed in Alzheimer' disease patients carrying the R47H coding variant are required to understand the TREM2 related dysfunctions responsible for the enhanced risk for late onset Alzheimer's disease. METHODS A CRISPR/Cas9-assisted gene targeting strategy was used to generate Trem2 R47H knock-in mice. Trem2 mRNA and protein levels as well as Trem2 splicing patterns were assessed in these mice, in iPSC-derived human microglia-like cells, and in human brains from Alzheimer's patients carrying the TREM2 R47H risk factor. RESULTS Two independent Trem2 R47H knock-in mouse models show reduced Trem2 mRNA and protein production. In both mouse models Trem2 haploinsufficiency was due to atypical splicing of mouse Trem2 R47H, which introduced a premature stop codon. Cellular splicing assays using minigene constructs demonstrate that the R47H variant induced abnormal splicing only occurs in mice but not in humans. TREM2 mRNA levels and splicing patterns were both normal in iPSC-derived human microglia-like cells and patient brains with the TREM2 R47H variant. CONCLUSIONS The Trem2 R47H variant activates a cryptic splice site that generates miss-spliced transcripts leading to Trem2 haploinsufficiency only in mice but not in humans. Since Trem2 R47H related phenotypes are mouse specific and do not occur in humans, humanized TREM2 R47H knock-in mice should be generated to study the cellular consequences caused by the human TREM2 R47H coding variant. Currently described phenotypes of Trem2 R47H knock-in mice can therefore not be translated to humans.
Collapse
Affiliation(s)
- Xianyuan Xiang
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neuroscience, Ludwig- Maximilians- University Munich, Munich, Germany
| | - Thomas M Piers
- Department of Neuroinflammation, Cell Signalling Lab, University College London Institute of Neurology, WC1N 1PJ, London, UK
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kaichuan Zhu
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anna Mallach
- Department of Neuroinflammation, Cell Signalling Lab, University College London Institute of Neurology, WC1N 1PJ, London, UK
| | - Bettina Brunner
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Gernot Kleinberger
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Wilbur Song
- Department of Immunology and Pathology, Washington University in St. Louis, St. Louis, MO, USA
| | - Marco Colonna
- Department of Immunology and Pathology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Technische Universität München-Weihenstephan, 85764, Neuherberg/Munich, Germany
| | - Jennifer M Pocock
- Department of Neuroinflammation, Cell Signalling Lab, University College London Institute of Neurology, WC1N 1PJ, London, UK
| | - Christian Haass
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
39
|
Kherraf ZE, Conne B, Amiri-Yekta A, Kent MC, Coutton C, Escoffier J, Nef S, Arnoult C, Ray PF. Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility. Mol Cell Endocrinol 2018. [PMID: 29522859 DOI: 10.1016/j.mce.2018.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High throughput sequencing (HTS) and CRISPR/Cas9 are two recent technologies that are currently revolutionizing biological and clinical research. Both techniques are complementary as HTS permits to identify new genetic variants and genes involved in various pathologies and CRISPR/Cas9 permits to create animals or cell models to validate the effect of the identified variants, to characterize the pathogeny of the identified variants and the function of the genes of interest and ultimately to provide ways of correcting the molecular defects. We analyzed a cohort of 78 infertile men presenting with multiple morphological anomalies of the sperm flagella (MMAF), a severe form of male infertility. Using whole exome sequencing (WES), homozygous mutations in autosomal candidate genes were identified in 63% of the tested subjects. We decided to produce by CRISPR/cas9 four knock-out (KO) and one knock-in (KI) mouse lines to confirm these results and to increase our understanding of the physiopathology associated with these genetic variations. Overall 31% of the live pups obtained presented a mutational event in one of the targeted regions. All identified events were insertions or deletions localized near the PAM sequence. Surprisingly we observed a high rate of germline mosaicism as 30% of the F1 displayed a different mutation than the parental event characterized on somatic tissue (tail), indicating that CRISPR/Cas9 mutational events kept happening several cell divisions after the injection. Overall, we created mouse models for 5 distinct loci and in each case homozygous animals could be obtained in approximately 6 months. These results demonstrate that the combined use of WES and CRISPR/Cas9 is an efficient and timely strategy to identify and validate mutations responsible for infertility phenotypes in human.
Collapse
Affiliation(s)
- Zine-Eddine Kherraf
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, F-38000, Grenoble, France; UM GI-DPI, CHU Grenoble Alpes, Grenoble, F-38000, France
| | - Beatrice Conne
- Department of Genetic Medicine and Development University of Geneva Medical School, CH 1211, Geneva 4, Switzerland
| | - Amir Amiri-Yekta
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, F-38000, Grenoble, France; UM GI-DPI, CHU Grenoble Alpes, Grenoble, F-38000, France; Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, PO Box 16635-148, Iran
| | - Marie Christou Kent
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, F-38000, Grenoble, France
| | - Charles Coutton
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, F-38000, Grenoble, France; UM de Génétique Chromosomique, CHU de Grenoble, Grenoble, F-38000, France
| | - Jessica Escoffier
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, F-38000, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development University of Geneva Medical School, CH 1211, Geneva 4, Switzerland
| | - Christophe Arnoult
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, F-38000, Grenoble, France
| | - Pierre F Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, F-38000, Grenoble, France; UM GI-DPI, CHU Grenoble Alpes, Grenoble, F-38000, France.
| |
Collapse
|
40
|
Tröder SE, Ebert LK, Butt L, Assenmacher S, Schermer B, Zevnik B. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS One 2018; 13:e0196891. [PMID: 29723268 PMCID: PMC5933690 DOI: 10.1371/journal.pone.0196891] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Electroporation of zygotes represents a rapid alternative to the elaborate pronuclear injection procedure for CRISPR/Cas9-mediated genome editing in mice. However, current protocols for electroporation either require the investment in specialized electroporators or corrosive pre-treatment of zygotes which compromises embryo viability. Here, we describe an easily adaptable approach for the introduction of specific mutations in C57BL/6 mice by electroporation of intact zygotes using a common electroporator with synthetic CRISPR/Cas9 components and minimal technical requirement. Direct comparison to conventional pronuclear injection demonstrates significantly reduced physical damage and thus improved embryo development with successful genome editing in up to 100% of living offspring. Hence, our novel approach for Easy Electroporation of Zygotes (EEZy) allows highly efficient generation of CRISPR/Cas9 transgenic mice while reducing the numbers of animals required.
Collapse
Affiliation(s)
- Simon E. Tröder
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- in vivo Research Facility, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lena K. Ebert
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Linus Butt
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sonja Assenmacher
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- in vivo Research Facility, Medical Faculty, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Systems Biology of Aging Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Branko Zevnik
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- in vivo Research Facility, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
41
|
Concordet JP, Giovannangeli C. CRISPR-Cas systems for genome engineering and investigation. Methods 2017. [DOI: 10.1016/j.ymeth.2017.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|