1
|
Hao Y, Zhang B, Chen R. Application of mass spectrometry for the advancement of PROTACs. J Pharm Biomed Anal 2025; 261:116829. [PMID: 40121702 DOI: 10.1016/j.jpba.2025.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/10/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
The advent of targeted protein degradation technologies, particularly Proteolysis-Targeting Chimeras (PROTACs), enable the selective elimination of target proteins and open up new avenues for the treatment of various diseases. This review delves into the pivotal role of mass spectrometry (MS) in the advancement of PROTACs. MS-based methodologies serve as invaluable tools for identifying PROTAC targets, validating their efficacy, and elucidating ubiquitination sites and protein degradation dynamics. These insights profoundly enrich our comprehension of the mechanisms of action and facilitate the rational design of PROTACs. Furthermore, this review discusses the role of MS in the structural analysis of proteins and the formation of ternary complexes crucial for the activity of PROTACs. The synergy between MS and PROTAC technology holds the promise of groundbreaking advancements in drug discovery by deepening our understanding of the underlying mechanisms that govern PROTAC drug action, thereby promoting the development of innovative strategies for disease treatment.
Collapse
Affiliation(s)
- Yuechen Hao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Baoshuang Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Shao X, Tian M, Yin J, Duan H, Tian Y, Wang H, Xia C, Wang Z, Zhu Y, Wang Y, Chaihu L, Tan M, Wang H, Huang Y, Wang J, Wang G. Biofunctionalized dissolvable hydrogel microbeads enable efficient characterization of native protein complexes. Nat Commun 2024; 15:8633. [PMID: 39366952 PMCID: PMC11452662 DOI: 10.1038/s41467-024-52948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The characterization of protein complex is vital for unraveling biological mechanisms in various life processes. Despite advancements in biophysical tools, the capture of non-covalent complexes and deciphering of their biochemical composition continue to present challenges for low-input samples. Here we introduce SNAP-MS, a Stationary-phase-dissolvable Native Affinity Purification and Mass Spectrometric characterization strategy. It allows for highly efficient purification and characterization from inputs at the pico-mole level. SNAP-MS replaces traditional elution with matrix dissolving during the recovery of captured targets, enabling the use of high-affinity bait-target pairs and eliminates interstitial voids. The purified intact protein complexes are compatible with native MS, which provides structural information including stoichiometry, topology, and distribution of proteoforms, size variants and interaction states. An algorithm utilizes the bait as a charge remover and mass corrector significantly enhances the accuracy of analyzing heterogeneously glycosylated complexes. With a sample-to-data time as brief as 2 hours, SNAP-MS demonstrates considerable versatility in characterizing native complexes from biological samples, including blood samples.
Collapse
Affiliation(s)
- Xinyang Shao
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Changping Laboratory, Beijing, China
| | - Meng Tian
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Junlong Yin
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Haifeng Duan
- CYGNUS Bioscience (Beijing) Co. Ltd, Beijing, China
| | - Ye Tian
- Changping Laboratory, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, China
| | - Changsheng Xia
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, China
| | - Ziwei Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanxi Zhu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Yifan Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Lingxiao Chaihu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Chemistry & Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Minjie Tan
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongwei Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yanyi Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Changping Laboratory, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Jianbin Wang
- Changping Laboratory, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Guanbo Wang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
| |
Collapse
|
3
|
Escobar EE, Yang W, Lanzillotti MB, Juetten KJ, Shields S, Siegel D, Zhang YJ, Brodbelt JS. Tracking Inhibition of Human Small C-Terminal Domain Phosphatase 1 Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1330-1341. [PMID: 38662915 PMCID: PMC11384422 DOI: 10.1021/jasms.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Working in tandem with kinases via a dynamic interplay of phosphorylation and dephosphorylation of proteins, phosphatases regulate many cellular processes and thus represent compelling therapeutic targets. Here we leverage ultraviolet photodissociation to shed light on the binding characteristics of two covalent phosphatase inhibitors, T65 and rabeprazole, and their respective interactions with the human small C-terminal domain phosphatase 1 (SCP1) and its single-point mutant C181A, in which a nonreactive alanine replaces one key reactive cysteine. Top-down MS/MS analysis is used to localize the binding of T65 and rabeprazole on the two proteins and estimate the relative reactivities of each cysteine residue.
Collapse
Affiliation(s)
| | | | | | | | | | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | | | | |
Collapse
|
4
|
Ivanov DG, Cheung K, Kaltashov IA. Probing the Architecture of Multisubunit Protein Complexes with In-line Disulfide Reduction and Native MS Analysis. Anal Chem 2024; 96:8243-8248. [PMID: 38733603 DOI: 10.1021/acs.analchem.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Native mass spectrometry (MS) continues to enjoy growing popularity as a means of providing a wealth of information on noncovalent biopolymer assemblies ranging from composition and binding stoichiometry to characterization of the topology of these assemblies. The latter frequently relies on supplementing MS measurements with limited fragmentation of the noncovalent complexes in the gas phase to identify the pairs of neighboring subunits. While this approach has met with much success in the past two decades, its implementation remains difficult (and the success record relatively modest) within one class of noncovalent assemblies: protein complexes in which at least one binding partner has multiple subunits cross-linked by disulfide bonds. We approach this problem by inducing chemical reduction of disulfide bonds under nondenaturing conditions in solution followed by native MS analysis with online buffer exchange to remove unconsumed reagents that are incompatible with the electrospray ionization process. While this approach works well with systems comprised of thiol-linked subunits that remain stable upon reduction of the disulfide bridges (such as immunoglobulins), chemical reduction frequently gives rise to species that are unstable (prone to aggregation). This problem is circumvented by taking advantage of the recently introduced cross-path reactive chromatography platform (XPRC), which allows the disulfide reduction to be carried out in-line, thereby minimizing the loss of metastable protein subunits and their noncovalent complexes with the binding partners prior to MS analysis. The feasibility of this approach is demonstrated using hemoglobin complexes with haptoglobin 1-1, a glycoprotein consisting of four polypeptide chains cross-linked by disulfide bonds.
Collapse
Affiliation(s)
- Daniil G Ivanov
- Department of Chemistry, University of Massachusetts─Amherst, Amherst, Massachusetts 01002, United States
| | - Kevin Cheung
- Department of Chemistry, University of Massachusetts─Amherst, Amherst, Massachusetts 01002, United States
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts─Amherst, Amherst, Massachusetts 01002, United States
| |
Collapse
|
5
|
Kaltashov IA, Ivanov DG, Yang Y. Mass spectrometry-based methods to characterize highly heterogeneous biopharmaceuticals, vaccines, and nonbiological complex drugs at the intact-mass level. MASS SPECTROMETRY REVIEWS 2024; 43:139-165. [PMID: 36582075 PMCID: PMC10307928 DOI: 10.1002/mas.21829] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The intact-mass MS measurements are becoming increasingly popular in characterization of a range of biopolymers, especially those of interest to biopharmaceutical industry. However, as the complexity of protein therapeutics and other macromolecular medicines increases, the new challenges arise, one of which is the high levels of structural heterogeneity that are frequently exhibited by such products. The very notion of the molecular mass measurement loses its clear and intuitive meaning when applied to an extremely heterogenous system that cannot be characterized by a unique mass, but instead requires that a mass distribution be considered. Furthermore, convoluted mass distributions frequently give rise to unresolved ionic signal in mass spectra, from which little-to-none meaningful information can be extracted using standard approaches that work well for homogeneous systems. However, a range of technological advances made in the last decade, such as the hyphenation of intact-mass MS measurements with front-end separations, better integration of ion mobility in MS workflows, development of an impressive arsenal of gas-phase ion chemistry tools to supplement MS methods, as well as the revival of the charge detection MS and its triumphant entry into the field of bioanalysis already made impressive contributions towards addressing the structural heterogeneity challenge. An overview of these techniques is accompanied by critical analysis of the strengths and weaknesses of different approaches, and a brief overview of their applications to specific classes of biopharmaceutical products, vaccines, and nonbiological complex drugs.
Collapse
Affiliation(s)
- Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | - Daniil G. Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | | |
Collapse
|
6
|
Yin V, Devine PWA, Saunders JC, Barendregt A, Cusdin F, Ristani A, Hines A, Shepherd S, Dembek M, Dobson CL, Snijder J, Bond NJ, Heck AJR. Stochastic assembly of biomacromolecular complexes: impact and implications on charge interpretation in native mass spectrometry. Chem Sci 2023; 14:9316-9327. [PMID: 37712025 PMCID: PMC10498669 DOI: 10.1039/d3sc03228k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Native mass spectrometry is a potent method for characterizing biomacromolecular assemblies. A critical aspect to extracting accurate mass information is the correct inference of the ion ensemble charge states. While a variety of experimental strategies and algorithms have been developed to facilitate this, virtually all approaches rely on the implicit assumption that any peaks in a native mass spectrum can be directly attributed to an underlying charge state distribution. Here, we demonstrate that this paradigm breaks down for several types of macromolecular protein complexes due to the intrinsic heterogeneity induced by the stochastic nature of their assembly. Utilizing several protein assemblies of adeno-associated virus capsids and ferritin, we demonstrate that these particles can produce a variety of unexpected spectral appearances, some of which appear superficially similar to a resolved charge state distribution. When interpreted using conventional charge inference strategies, these distorted spectra can lead to substantial errors in the calculated mass (up to ∼5%). We provide a novel analytical framework to interpret and extract mass information from these spectra by combining high-resolution native mass spectrometry, single particle Orbitrap-based charge detection mass spectrometry, and sophisticated spectral simulations based on a stochastic assembly model. We uncover that these mass spectra are extremely sensitive to not only mass heterogeneity within the subunits, but also to the magnitude and width of their charge state distributions. As we postulate that many protein complexes assemble stochastically, this framework provides a generalizable solution, further extending the usability of native mass spectrometry in the characterization of biomacromolecular assemblies.
Collapse
Affiliation(s)
- Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
- Netherlands Proteomics Center Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Paul W A Devine
- Analytical Sciences, Biopharmaceutical Development, R & D, AstraZeneca Granta Park Cambridge UK
| | - Janet C Saunders
- In Vivo Expressed Biologics, Discovery Sciences, R & D, AstraZeneca Granta Park Cambridge UK
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
- Netherlands Proteomics Center Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Fiona Cusdin
- In Vivo Expressed Biologics, Discovery Sciences, R & D, AstraZeneca Granta Park Cambridge UK
| | - Alexandra Ristani
- In Vivo Expressed Biologics, Discovery Sciences, R & D, AstraZeneca Granta Park Cambridge UK
| | - Alistair Hines
- Analytical Sciences, Biopharmaceutical Development, R & D, AstraZeneca Granta Park Cambridge UK
| | - Sam Shepherd
- Analytical Sciences, Biopharmaceutical Development, R & D, AstraZeneca Granta Park Cambridge UK
| | - Marcin Dembek
- Purification Process Sciences, Biopharmaceutical Development, R & D, AstraZeneca Granta Park Cambridge UK
| | - Claire L Dobson
- In Vivo Expressed Biologics, Discovery Sciences, R & D, AstraZeneca Granta Park Cambridge UK
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
- Netherlands Proteomics Center Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Nicholas J Bond
- Analytical Sciences, Biopharmaceutical Development, R & D, AstraZeneca Granta Park Cambridge UK
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
- Netherlands Proteomics Center Padualaan 8, 3584 CH Utrecht The Netherlands
| |
Collapse
|
7
|
Rolland AD, Takata T, Donor MT, Lampi KJ, Prell JS. Eye lens β-crystallins are predicted by native ion mobility-mass spectrometry and computations to form compact higher-ordered heterooligomers. Structure 2023; 31:1052-1064.e3. [PMID: 37453416 PMCID: PMC10528727 DOI: 10.1016/j.str.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Eye lens α- and β-/γ-crystallin proteins are not replaced after fiber cell denucleation and maintain lens transparency and refractive properties. The exceptionally high (∼400-500 mg/mL) concentration of crystallins in mature lens tissue and multiple other factors impede precise characterization of β-crystallin interactions, oligomer composition, size, and topology. Native ion mobility-mass spectrometry is used here to probe β-crystallin association and provide insight into homo- and heterooligomerization kinetics for these proteins. These experiments include separation and characterization of higher-order β-crystallin oligomers and illustrate the unique advantages of native IM-MS. Recombinantly expressed βB1, βB2, and βA3 isoforms are found to have different homodimerization propensities, and only βA3 forms larger homooligomers. Heterodimerization of βB2 with βA3 occurs ∼3 times as fast as that of βB1 with βA3, and βB1 and βB2 heterodimerize less readily. Ion mobility experiments, molecular dynamics simulations, and PISA analysis together reveal that observed oligomers are consistent with predominantly compact, ring-like topologies.
Collapse
Affiliation(s)
- Amber D Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA
| | - Takumi Takata
- Kyoto University, Research Reactor Institute 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Micah T Donor
- Department of Biological & Molecular Sciences, George Fox University, 414 N Meridian St, Newberg, OR 97132, USA
| | - Kirsten J Lampi
- Integrative Biosciences, School of Dentistry, 3181 SW Sam Jackson Park Road, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | - James S Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403-1253, USA; Materials Science Institute, 1252 University of Oregon, Eugene, OR 97403-1252, USA.
| |
Collapse
|
8
|
De Figueiredo I, Bartenlian B, Van der Rest G, Pallandre A, Halgand F. Proteomics Methodologies: The Search of Protein Biomarkers Using Microfluidic Systems Coupled to Mass Spectrometry. Proteomes 2023; 11:proteomes11020019. [PMID: 37218924 DOI: 10.3390/proteomes11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Protein biomarkers have been the subject of intensive studies as a target for disease diagnostics and monitoring. Indeed, biomarkers have been extensively used for personalized medicine. In biological samples, these biomarkers are most often present in low concentrations masked by a biologically complex proteome (e.g., blood) making their detection difficult. This complexity is further increased by the needs to detect proteoforms and proteome complexity such as the dynamic range of compound concentrations. The development of techniques that simultaneously pre-concentrate and identify low-abundance biomarkers in these proteomes constitutes an avant-garde approach to the early detection of pathologies. Chromatographic-based methods are widely used for protein separation, but these methods are not adapted for biomarker discovery, as they require complex sample handling due to the low biomarker concentration. Therefore, microfluidics devices have emerged as a technology to overcome these shortcomings. In terms of detection, mass spectrometry (MS) is the standard analytical tool given its high sensitivity and specificity. However, for MS, the biomarker must be introduced as pure as possible in order to avoid chemical noise and improve sensitivity. As a result, microfluidics coupled with MS has become increasingly popular in the field of biomarker discovery. This review will show the different approaches to protein enrichment using miniaturized devices and the importance of their coupling with MS.
Collapse
Affiliation(s)
- Isabel De Figueiredo
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Bernard Bartenlian
- Centre des Nanosciences et Nanotechnologies, Université Paris Saclay, 10 Boulevard Thomas Gobert, F91120 Palaiseau, France
| | - Guillaume Van der Rest
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Antoine Pallandre
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| |
Collapse
|
9
|
Shao X, Huang Y, Wang G. Microfluidic devices for protein analysis using intact and top‐down mass spectrometry. VIEW 2022. [DOI: 10.1002/viw.20220032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Xinyang Shao
- Institute for Cell Analysis Shenzhen Bay Laboratory Shenzhen China
- Biomedical Pioneering Innovation Center Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing China
| | - Yanyi Huang
- Institute for Cell Analysis Shenzhen Bay Laboratory Shenzhen China
- Biomedical Pioneering Innovation Center Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences Peking University Beijing China
| | - Guanbo Wang
- Institute for Cell Analysis Shenzhen Bay Laboratory Shenzhen China
- Biomedical Pioneering Innovation Center Peking University Beijing China
| |
Collapse
|
10
|
Kachhawaha K, Singh S, Joshi K, Nain P, Singh SK. Bioprocessing of recombinant proteins from Escherichia coli inclusion bodies: insights from structure-function relationship for novel applications. Prep Biochem Biotechnol 2022; 53:728-752. [PMID: 36534636 DOI: 10.1080/10826068.2022.2155835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of inclusion bodies (IBs) during expression of recombinant therapeutic proteins using E. coli is a significant hurdle in producing high-quality, safe, and efficacious medicines. The improved understanding of the structure-function relationship of the IBs has resulted in the development of novel biotechnologies that have streamlined the isolation, solubilization, refolding, and purification of the active functional proteins from the bacterial IBs. Together, this overall effort promises to radically improve the scope of experimental biology of therapeutic protein production and expand new prospects in IBs usage. Notably, the IBs are increasingly used for applications in more pristine areas such as drug delivery and material sciences. In this review, we intend to provide a comprehensive picture of the bio-processing of bacterial IBs, including assessing critical gaps that still need to be addressed and potential solutions to overcome them. We expect this review to be a useful resource for those working in the area of protein refolding and therapeutic protein production.
Collapse
Affiliation(s)
- Kajal Kachhawaha
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Santanu Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Khyati Joshi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Priyanka Nain
- Department of Chemical and Bimolecular Engineering, University of Delaware, Newark, DE, USA
| | - Sumit K Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
11
|
The increasing role of structural proteomics in cyanobacteria. Essays Biochem 2022; 67:269-282. [PMID: 36503929 PMCID: PMC10070481 DOI: 10.1042/ebc20220095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Cyanobacteria, also known as blue–green algae, are ubiquitous organisms on the planet. They contain tremendous protein machineries that are of interest to the biotechnology industry and beyond. Recently, the number of annotated cyanobacterial genomes has expanded, enabling structural studies on known gene-coded proteins to accelerate. This review focuses on the advances in mass spectrometry (MS) that have enabled structural proteomics studies to be performed on the proteins and protein complexes within cyanobacteria. The review also showcases examples whereby MS has revealed critical mechanistic information behind how these remarkable machines within cyanobacteria function.
Collapse
|
12
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Li W, Chaihu L, Jiang J, Wu B, Zheng X, Dai R, Tian Y, Huang Y, Wang G, Men Y. Microfluidic Platform for Time-Resolved Characterization of Protein Higher-Order Structures and Dynamics Using Top-Down Mass Spectrometry. Anal Chem 2022; 94:7520-7527. [PMID: 35584038 DOI: 10.1021/acs.analchem.2c00077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Characterization of protein higher-order structures and dynamics is essential for understanding the biological functions of proteins and revealing the underlying mechanisms. Top-down mass spectrometry (MS) accesses structural information at both the intact protein level and the peptide fragment level. Native top-down MS allows analysis of a protein complex's architecture and subunits' identity and modifications. Top-down hydrogen/deuterium exchange (HDX) MS offers high spatial resolution for conformational or binding interface analysis and enables conformer-specific characterization. A microfluidic chip can provide superior performance for front-end reactions useful for these MS workflows, such as flexibility in manipulating multiple reactant flows, integrating various functional modules, and automation. However, most microchip-MS devices are designed for bottom-up approaches or top-down proteomics. Here, we demonstrate a strategy for designing a microchip for top-down MS analysis of protein higher-order structures and dynamics. It is suitable for time-resolved native MS and HDX MS, with designs aiming for efficient ionization of intact protein complexes, flexible manipulation of multiple reactant flows, and precise control of reaction times over a broad range of flow rates on the submicroliter per minute scale. The performance of the prototype device is demonstrated by measurements of systems including monoclonal antibodies, antibody-antigen complexes, and coexisting protein conformers. This strategy may benefit elaborate structural analysis of biomacromolecules and inspire method development using the microchip-MS approach.
Collapse
Affiliation(s)
- Wen Li
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingxiao Chaihu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jialu Jiang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bizhu Wu
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuan Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rongrong Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ye Tian
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yanyi Huang
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| | - Guanbo Wang
- Institute of Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| | - Yongfan Men
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
14
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
15
|
Studying protein structure and function by native separation–mass spectrometry. Nat Rev Chem 2022; 6:215-231. [PMID: 37117432 DOI: 10.1038/s41570-021-00353-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Alterations in protein structure may have profound effects on biological function. Analytical techniques that permit characterization of proteins while maintaining their conformational and functional state are crucial for studying changes in the higher order structure of proteins and for establishing structure-function relationships. Coupling of native protein separations with mass spectrometry is emerging rapidly as a powerful approach to study these aspects in a reliable, fast and straightforward way. This Review presents the available native separation modes for proteins, covers practical considerations on the hyphenation of these separations with mass spectrometry and highlights the involvement of affinity-based separations to simultaneously obtain structural and functional information of proteins. The impact of these approaches is emphasized by selected applications addressing biomedical and biopharmaceutical research questions.
Collapse
|
16
|
Muneeruddin K, Kaltashov IA, Wang G. Characterizing Soluble Protein Aggregates Using Native Mass Spectrometry Coupled with Temperature-Controlled Electrospray Ionization and Size-Excl usion Chromatography. Methods Mol Biol 2022; 2406:455-468. [PMID: 35089574 DOI: 10.1007/978-1-0716-1859-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characterization of soluble protein aggregates provides valuable information for revealing mechanisms of protein aggregation process and assessing the activity and safety of protein therapeutics. However, the noncovalent interaction, the transient nature and higher degree of structural heterogeneity of the soluble aggregation system hinders precise characterization at the molecular level. Here, we describe methods using native mass spectrometry coupled with temperature-control electrospray ionization and size-exclusion chromatography to monitor the aggregation process and profile the aggregates in detail.
Collapse
Affiliation(s)
- Khaja Muneeruddin
- The Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Guanbo Wang
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China.
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
17
|
Yang W, Ivanov DG, Kaltashov IA. Extending the capabilities of intact-mass analyses to monoclonal immunoglobulins of the E-isotype (IgE). MAbs 2022; 14:2103906. [PMID: 35895856 PMCID: PMC9336480 DOI: 10.1080/19420862.2022.2103906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mass spectrometry (MS) has become an indispensable tool in structural characterization and quality control of monoclonal antibodies (mAbs). Intact-mass analysis is a particularly attractive option that provides a powerful and cost-effective means to not only confirm the structural integrity of the protein, but also probe its interactions with therapeutic targets. To a certain extent, this success can be attributed to relatively modest glycosylation levels exhibited by IgG molecules, which limits their structural heterogeneity and enables straightforward mass measurements at the intact molecule level. The recent surge of interest in expanding the repertoire of mAbs to include other classes of immunoglobulins places a premium on efforts to adapt the IgG-tailored experimental strategies to other classes of antibodies, but their dramatically higher levels of glycosylation may create insurmountable obstacles. The monoclonal murine IgE antibody explored in this work provides a challenging model system, as its glycosylation level exceeds that of conventional IgG mAbs by a factor of nine. The commercial sample, which included various IgE fragments, yields a poorly resolved ionic signal in intact-mass measurements, from which little useful information can be extracted. However, coupling MS measurements with the limited charge reduction of select polycationic species in the gas phase gives rise to well-defined charge ladders, from which both ionic masses and charges can be readily determined. The measurements reveal significant variation of the extent of glycosylation within intact IgE molecules, as well as the presence of low-molecular weight impurities in the commercial IgE sample. Furthermore, incubation of the monoclonal IgE with its antigen (ovalbumin) gives rise to the formation of complexes with varying stoichiometries, which can also be uniquely identified using a combination of native MS, limited charge reduction in the gas phase and data fitting procedures. This work demonstrates that following appropriate modifications, intact-mass analysis measurements can be successfully applied to mAbs beyond the IgG isotype, providing a wealth of information not only on the mass distribution of the intact IgE molecules, but also their large-scale conformational integrity, the integrity of their covalent structure, and their interactions with antigens.
Collapse
Affiliation(s)
- Wenhua Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.,College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
18
|
Snyder DT, Jones BJ, Lin YF, Cooper-Shepherd DA, Hewitt D, Wildgoose J, Brown JM, Langridge JI, Wysocki VH. Surface-induced dissociation of protein complexes on a cyclic ion mobility spectrometer. Analyst 2021; 146:6861-6873. [PMID: 34632987 PMCID: PMC8574189 DOI: 10.1039/d1an01407b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe the implementation of a simple three-electrode surface-induced dissociation (SID) cell on a cyclic ion mobility spectrometer (cIMS) and demonstrate the utility of multipass mobility separations for resolving multiple conformations of protein complexes generated during collision-induced and surface-induced unfolding (CIU & SIU) experiments. In addition to CIU and SIU, SID of protein complexes is readily accomplished within the native instrument software and with no additional external power supplies by entering a single SID collision energy, a simplification in user experience compared to prior implementations. A set of cyclic homomeric protein complexes and a heterohexamer with known CID and SID behavior were analyzed to investigate mass and mobility resolution improvements, the latter of which improved by 20-50% (median: 33%) compared to a linear travelling wave device. Multiple passes of intact complexes, or their SID fragments, increased the mobility resolution by an average of 15% per pass, with the racetrack effect being observed after ∼3 or 4 passes, depending on the drift time spread of the analytes. Even with modest improvements to apparent mobility resolving power, multipass experiments were particularly useful for separating conformations produced from CIU and SIU experiments. We illustrate several examples where either (1) multipass experiments revealed multiple overlapping conformations previously unobserved or obscured due to limited mobility resolution, or (2) CIU or SIU conformations that appeared 'native' in a single pass experiment were actually slightly compacted or expanded, with the change only being measurable through multipass experiments. The work conducted here, the first utilization of multipass cyclic ion mobility for CIU, SIU, and SID of protein assemblies and a demonstration of a wholly integrated SIU/SID workflow, paves the way for widespread adoption of SID technology for native mass spectrometry and also improves our understanding of gas-phase protein complex CIU and SIU conformationomes.
Collapse
Affiliation(s)
- Dalton T Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210
| | - Benjamin J Jones
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA 43210.
| | - Yu-Fu Lin
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA 43210.
| | | | - Darren Hewitt
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Jason Wildgoose
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Jeffery M Brown
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - James I Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Vicki H Wysocki
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA 43210.
| |
Collapse
|
19
|
The challenge of structural heterogeneity in the native mass spectrometry studies of the SARS-CoV-2 spike protein interactions with its host cell-surface receptor. Anal Bioanal Chem 2021; 413:7205-7214. [PMID: 34389878 PMCID: PMC8362873 DOI: 10.1007/s00216-021-03601-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022]
Abstract
Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community—the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native MS as a means of characterizing its interactions with both the host cell–surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work, we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.
Collapse
|
20
|
Yang Y, Ivanov DG, Kaltashov IA. The challenge of structural heterogeneity in the native mass spectrometry studies of the SARS-CoV-2 spike protein interactions with its host cell-surface receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34189525 DOI: 10.1101/2021.06.20.449191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community â€" the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of structural heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native mass spectrometry (MS) as a means of characterizing its interactions with both the host cell-surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.
Collapse
|
21
|
Niu C, Du Y, Kaltashov IA. Towards better understanding of the heparin role in NETosis: feasibility of using native mass spectrometry to monitor interactions of neutrophil elastase with heparin oligomers. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 463:116550. [PMID: 33692650 PMCID: PMC7939139 DOI: 10.1016/j.ijms.2021.116550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Neutrophil elastase is a serine protease released by neutrophils, and its dysregulation has been associated with a variety of debilitating pathologies, most notably cystic fibrosis. This protein is also a prominent component of the so-called neutrophil extracellular traps (NETs), whose formation is a part of the innate immunity response to invading pathogens, but also contributes to a variety of pathologies ranging from autoimmune disorders and inflammation to cancer to thrombotic complications in COVID-19. Retention of neutrophil elastase within NETs is provided by ejected DNA chains, although this protein is also capable of interacting with a range of other endogenous polyanions, such as heparin and heparan sulfate. In this work, we evaluate the feasibility of using native mass spectrometry (MS) as a means of studying interactions of neutrophil elastase with heparin oligomers ranging from structurally homogeneous synthetic pentasaccharide fondaparinux to relatively long (up to twenty saccharide units) and structurally heterogeneous chains produced by partial depolymerization of heparin. The presence of heterogeneous glycan chains on neutrophil elastase and the structural heterogeneity of heparin oligomers render the use of standard MS to study their complexes impractical. However, supplementing MS with limited charge reduction in the gas phase allows meaningful data to be extracted from MS measurements. In contrast to earlier molecular modeling studies where a single heparin-binding site was identified, our work reveals the existence of multiple binding sites, with a single protein molecule being able to accommodate up to three decasaccharides. The measurements also reveal the ability of even relatively short heparin oligomers to bridge two protein molecules, suggesting that characterization of these complexes using native MS can shed light on the structural properties of NETs. Lastly, the use of MS allows the binding preferences of heparin oligomers to neutrophil elastase to be studied with respect to specific structural properties of heparin, such as the level of sulfation (i.e., charge density). All experimental measurements are carried out in parallel with molecular dynamics simulations of the protein/heparin oligomer systems, which are in remarkable agreement with the experimental data and highlight the role of electrostatic interactions as dominant forces governing the formation of these complexes.
Collapse
Affiliation(s)
| | | | - Igor A. Kaltashov
- Corresponding author: Igor A. Kaltashov; address: 240 Thatcher Way, Life Sciences Laboratories N369, Amherst, MA 01003; ; phone: 413-545-1460; fax: 413-545-4490
| |
Collapse
|
22
|
Shi D, Sheng A, Chi L. Glycosaminoglycan-Protein Interactions and Their Roles in Human Disease. Front Mol Biosci 2021; 8:639666. [PMID: 33768117 PMCID: PMC7985165 DOI: 10.3389/fmolb.2021.639666] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a family of linear and negatively charged polysaccharides that exist ubiquitously on the human cell surface as well as in the extracellular matrix. GAGs interact with a wide range of proteins, including proteases, growth factors, cytokines, chemokines and adhesion molecules, enabling them to mediate many physiological processes, such as protein function, cellular adhesion and signaling. GAG-protein interactions participate in and intervene in a variety of human diseases, including cardiovascular disease, infectious disease, neurodegenerative diseases and tumors. The breakthrough in analytical tools and approaches during the last two decades has facilitated a greater understanding of the importance of GAG-protein interactions and their roles in human diseases. This review focuses on aspects of the molecular basis and mechanisms of GAG-protein interactions involved in human disease. The most recent advances in analytical tools, especially mass spectrometry-based GAG sequencing and binding motif characterization methods, are introduced. An update of selected families of GAG binding proteins is presented. Perspectives on development of novel therapeutics targeting specific GAG-protein interactions are also covered in this review.
Collapse
Affiliation(s)
- Deling Shi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Anran Sheng
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
23
|
Yang Y, Niu C, Bobst CE, Kaltashov IA. Charge Manipulation Using Solution and Gas-Phase Chemistry to Facilitate Analysis of Highly Heterogeneous Protein Complexes in Native Mass Spectrometry. Anal Chem 2021; 93:3337-3342. [PMID: 33566581 PMCID: PMC8514162 DOI: 10.1021/acs.analchem.0c05249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structural heterogeneity is a significant challenge complicating (and in some cases making impossible) electrospray ionization mass spectrometry (ESI MS) analysis of noncovalent complexes comprising structurally heterogeneous biopolymers. The broad mass distribution exhibited by such species inevitably gives rise to overlapping ionic signals representing different charge states, resulting in a continuum spectrum with no discernible features that can be used to assign ionic charges and calculate their masses. This problem can be circumvented by using limited charge reduction, which utilizes gas-phase chemistry to induce charge-transfer reactions within ionic populations selected within narrow m/z windows, thereby producing well-defined and readily interpretable charge ladders. However, the ionic signal in native MS typically populates high m/z regions of mass spectra, which frequently extend beyond the precursor ion isolation limits of most commercial mass spectrometers. While the ionic signal of single-chain proteins can be shifted to lower m/z regions simply by switching to a denaturing solvent, this approach cannot be applied to noncovalent assemblies due to their inherent instability under denaturing conditions. An alternative approach explored in this work relies on adding supercharging reagents to protein solutions as a means of increasing the extent of multiple charging of noncovalent complexes in ESI MS without compromising their integrity. This shifts the ionic signal down the m/z scale to the region where ion selection and isolation can be readily accomplished with a front-end quadrupole, followed by limited charge reduction of the isolated ionic population. The feasibility of the new approach is demonstrated using noncovalent complexes formed by hemoglobin with structurally heterogeneous haptoglobin.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003
| | | | - Cedric E. Bobst
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003
| |
Collapse
|
24
|
Wang G, Chaihu L, Tian M, Shao X, Dai R, de Jong RN, Ugurlar D, Gros P, Heck AJR. Releasing Nonperipheral Subunits from Protein Complexes in the Gas Phase. Anal Chem 2020; 92:15799-15805. [DOI: 10.1021/acs.analchem.0c02845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Lingxiao Chaihu
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, 518132 Shenzhen, China
| | - Meng Tian
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xinyang Shao
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Rongrong Dai
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | | | - Deniz Ugurlar
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
25
|
Yang Y, Du Y, Kaltashov IA. The Utility of Native MS for Understanding the Mechanism of Action of Repurposed Therapeutics in COVID-19: Heparin as a Disruptor of the SARS-CoV-2 Interaction with Its Host Cell Receptor. Anal Chem 2020; 92:10930-10934. [PMID: 32678978 PMCID: PMC7384394 DOI: 10.1021/acs.analchem.0c02449] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
The emergence and rapid proliferation of the novel coronavirus (SARS-CoV-2) resulted in a global pandemic, with over 6,000,000 cases and nearly 400,000 deaths reported worldwide by the end of May 2020. A rush to find a cure prompted re-evaluation of a range of existing therapeutics vis-à-vis their potential role in treating COVID-19, placing a premium on analytical tools capable of supporting such efforts. Native mass spectrometry (MS) has long been a tool of choice in supporting the mechanistic studies of drug/therapeutic target interactions, but its applications remain limited in the cases that involve systems with a high level of structural heterogeneity. Both SARS-CoV-2 spike protein (S-protein), a critical element of the viral entry to the host cell, and ACE2, its docking site on the host cell surface, are extensively glycosylated, making them challenging targets for native MS. However, supplementing native MS with a gas-phase ion manipulation technique (limited charge reduction) allows meaningful information to be obtained on the noncovalent complexes formed by ACE2 and the receptor-binding domain (RBD) of the S-protein. Using this technique in combination with molecular modeling also allows the role of heparin in destabilizing the ACE2/RBD association to be studied, providing critical information for understanding the molecular mechanism of its interference with the virus docking to the host cell receptor. Both short (pentasaccharide) and relatively long (eicosasaccharide) heparin oligomers form 1:1 complexes with RBD, indicating the presence of a single binding site. This association alters the protein conformation (to maximize the contiguous patch of the positive charge on the RBD surface), resulting in a notable decrease in its ability to associate with ACE2. The destabilizing effect of heparin is more pronounced in the case of the longer chains due to the electrostatic repulsion between the low-pI ACE2 and the heparin segments not accommodated on the RBD surface. In addition to providing important mechanistic information on attenuation of the ACE2/RBD association by heparin, the study demonstrates the yet untapped potential of native MS coupled to gas-phase ion chemistry as a means of facilitating rational repurposing of the existing medicines for treating COVID-19.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, MA 01003
| | - Yi Du
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, MA 01003
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, MA 01003
| |
Collapse
|
26
|
Garcia AM, Giorgiutti C, El Khoury Y, Bauer V, Spiegelhalter C, Leize-Wagner E, Hellwig P, Potier N, Torbeev V. Aggregation and Amyloidogenicity of the Nuclear Coactivator Binding Domain of CREB-Binding Protein. Chemistry 2020; 26:9889-9899. [PMID: 32364648 DOI: 10.1002/chem.202001847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/30/2020] [Indexed: 12/28/2022]
Abstract
The nuclear coactivator binding domain (NCBD) of transcriptional co-regulator CREB-binding protein (CBP) is an example of conformationally malleable proteins that can bind to structurally unrelated protein targets and adopt distinct folds in the respective protein complexes. Here, we show that the folding landscape of NCBD contains an alternative pathway that results in protein aggregation and self-assembly into amyloid fibers. The initial steps of such protein misfolding are driven by intermolecular interactions of its N-terminal α-helix bringing multiple NCBD molecules into contact. These oligomers then undergo slow but progressive interconversion into β-sheet-containing aggregates. To reveal the concealed aggregation potential of NCBD we used a chemically synthesized mirror-image d-NCBD form. The addition of d-NCBD promoted self-assembly into amyloid precipitates presumably due to formation of thermodynamically more stable racemic β-sheet structures. The unexpected aggregation of NCBD needs to be taken into consideration given the multitude of protein-protein interactions and resulting biological functions mediated by CBP.
Collapse
Affiliation(s)
- Ana Maria Garcia
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Christophe Giorgiutti
- Laboratory of Mass-Spectrometry of Interactions and Systems, University of Strasbourg, CNRS-UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Youssef El Khoury
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Valentin Bauer
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Coralie Spiegelhalter
- Imaging Center, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM-U964, University of Strasbourg, CNRS-UMR 7104, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Emmanuelle Leize-Wagner
- Laboratory of Mass-Spectrometry of Interactions and Systems, University of Strasbourg, CNRS-UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Petra Hellwig
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
- Institute for Advanced Study, USIAS University of Strasbourg, 5 allée du Général Rouvillois, 67083, Strasbourg, France
| | - Noelle Potier
- Laboratory of Mass-Spectrometry of Interactions and Systems, University of Strasbourg, CNRS-UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Vladimir Torbeev
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| |
Collapse
|
27
|
Yan Y, Xing T, Wang S, Daly TJ, Li N. Online coupling of analytical hydrophobic interaction chromatography with native mass spectrometry for the characterization of monoclonal antibodies and related products. J Pharm Biomed Anal 2020; 186:113313. [DOI: 10.1016/j.jpba.2020.113313] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/25/2022]
|
28
|
Yang Y, Du Y, Kaltashov IA. The utility of native MS for understanding the mechanism of action of repurposed therapeutics in COVID-19: heparin as a disruptor of the SARS-CoV-2 interaction with its host cell receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32577646 DOI: 10.1101/2020.06.09.142794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The emergence and rapid proliferation of the novel coronavirus (SARS-CoV-2) resulted in a global pandemic, with over six million cases and nearly four hundred thousand deaths reported world-wide by the end of May 2020. A rush to find the cures prompted re-evaluation of a range of existing therapeutics vis-à-vis their potential role in treating COVID-19, placing a premium on analytical tools capable of supporting such efforts. Native mass spectrometry (MS) has long been a tool of choice in supporting the mechanistic studies of drug/therapeutic target interactions, but its applications remain limited in the cases that involve systems with a high level of structural heterogeneity. Both SARS-CoV-2 spike protein (S-protein), a critical element of the viral entry to the host cell, and ACE2, its docking site on the host cell surface, are extensively glycosylated, making them challenging targets for native MS. However, supplementing native MS with a gas-phase ion manipulation technique (limited charge reduction) allows meaningful information to be obtained on the non-covalent complexes formed by ACE2 and the receptor-binding domain (RBD) of the S-protein. Using this technique in combination with molecular modeling also allows the role of heparin in destabilizing the ACE2/RBD association to be studied, providing critical information for understanding the molecular mechanism of its interference with the virus docking to the host cell receptor. Both short (pentasaccharide) and relatively long (eicosasaccharide) heparin oligomers form 1:1 complexes with RBD, indicating the presence of a single binding site. This association alters the protein conformation (to maximize the contiguous patch of the positive charge on the RBD surface), resulting in a notable decrease of its ability to associate with ACE2. The destabilizing effect of heparin is more pronounced in the case of the longer chains due to the electrostatic repulsion between the low-p I ACE2 and the heparin segments not accommodated on the RBD surface. In addition to providing important mechanistic information on attenuation of the ACE2/RBD association by heparin, the study demonstrates the yet untapped potential of native MS coupled to gas-phase ion chemistry as a means of facilitating rational repurposing of the existing medicines for treating COVID-19. Abstract Figure
Collapse
|
29
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
30
|
Niu C, Yang Y, Huynh A, Nazy I, Kaltashov IA. Platelet Factor 4 Interactions with Short Heparin Oligomers: Implications for Folding and Assembly. Biophys J 2020; 119:1371-1379. [PMID: 32348723 DOI: 10.1016/j.bpj.2020.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Association of platelet factor 4 (PF4) with heparin is a first step in formation of aggregates implicated in the development of heparin-induced thrombocytopenia (HIT), a potentially fatal immune disorder affecting 1-5% of patients receiving heparin. Despite being a critically important element in HIT etiology, relatively little is known about the specific molecular mechanism of PF4-heparin interactions. This work uses native mass spectrometry to investigate PF4 interactions with relatively short heparin chains (up to decasaccharides). The protein is shown to be remarkably unstable at physiological ionic strength in the absence of polyanions; only monomeric species are observed, and the extent of multiple charging of corresponding ions indicates a partial loss of conformational integrity. The tetramer signal remains at or below the detection threshold in the mass spectra until the solution's ionic strength is elevated well above the physiological level, highlighting the destabilizing role played by electrostatic interactions vis-à-vis quaternary structure of this high-pI protein. The tetramer assembly is dramatically facilitated by relatively short polyanions (synthetic heparin-mimetic pentasaccharide), with the majority of the protein molecules existing in the tetrameric state even at physiological ionic strength. Each tetramer accommodates up to six pentasaccharides, with at least three such ligands required to guarantee the higher-order structure integrity. Similar results are obtained for PF4 association with longer and structurally heterogeneous heparin oligomers (decamers). These longer polyanions can also induce PF4 dimer assembly when bound to the protein in relatively low numbers, lending support to a model of PF4/heparin interaction in which the latter wraps around the protein, making contacts with multiple subunits. Taken together, these results provide a more nuanced picture of PF4-glycosaminoglycan interactions leading to complex formation. This work also advocates for a greater utilization of native mass spectrometry in elucidating molecular mechanisms underlying HIT, as well as other physiological processes driven by electrostatic interactions.
Collapse
Affiliation(s)
- Chendi Niu
- Chemistry Department, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Yang Yang
- Chemistry Department, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Angela Huynh
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ishac Nazy
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Igor A Kaltashov
- Chemistry Department, University of Massachusetts-Amherst, Amherst, Massachusetts.
| |
Collapse
|
31
|
Hajduk J, Brunner C, Malik S, Bangerter J, Schneider G, Thomann M, Reusch D, Zenobi R. Interaction analysis of glycoengineered antibodies with CD16a: a native mass spectrometry approach. MAbs 2020; 12:1736975. [PMID: 32167012 PMCID: PMC7153833 DOI: 10.1080/19420862.2020.1736975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022] Open
Abstract
Minor changes in the quality of biologically manufactured monoclonal antibodies (mAbs) can affect their bioactivity and efficacy. One of the most important variations concerns the N-glycosylation pattern, which directly affects an anti-tumor mechanism called antibody-dependent cell-meditated cytotoxicity (ADCC). Thus, careful engineering of mAbs is expected to enhance both protein-receptor binding and ADCC. The specific aim of this study is to evaluate the influence of terminal carbohydrates within the Fc region on the interaction with the FcγRIIIa/CD16a receptor in native and label-free conditions. The single mAb molecule comprises variants with minimal and maximal galactosylation, as well as α2,3 and α2,6-sialic acid isomers. Here, we apply native electrospray ionization mass spectrometry to determine the solution-phase antibody-receptor equilibria and by using temperature-controlled nanoelectrospray, a thermal stability of the complex is examined. Based on these, we prove that the galactosylation of a fucosylated Fc region increases the binding to CD16a 1.5-fold when compared with the non-galactosylated variant. The α2,6-sialylation has no significant effect on the binding, whereas the α2,3-sialylation decreases it 1.72-fold. In line with expectation, the galactoslylated and α2,6-sialylated mAb:CD16a complex exhibit higher thermal stability when measured in the temperature gradient from 20 to 50°C. The similar binding pattern is observed based on surface plasmon resonance analysis and immunofluorescence staining using natural killer cells. The results of our study provide new insight into N-glycosylation-based interaction of the mAb:CD16a complex.
Collapse
Affiliation(s)
- Joanna Hajduk
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Cyrill Brunner
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Sebastian Malik
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Jana Bangerter
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marco Thomann
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Recent advances in mass spectrometry studies of non-covalent complexes of macrocycles - A review. Anal Chim Acta 2019; 1081:32-50. [DOI: 10.1016/j.aca.2019.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
|
33
|
Shen Y, Zhao X, Wang G, Chen DDY. Differential Hydrogen/Deuterium Exchange during Proteoform Separation Enables Characterization of Conformational Differences between Coexisting Protein States. Anal Chem 2019; 91:3805-3809. [DOI: 10.1021/acs.analchem.9b00558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yue Shen
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Xiuxiu Zhao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - David D. Y. Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
34
|
Kaltashov IA. Mass spectrometry-based methods to study macromolecular higher order structure and interactions. Methods 2018; 144:1-2. [DOI: 10.1016/j.ymeth.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|