1
|
Li J, Zong H, Zhao X, Liu Y, Zhao S, Li N, Li Z. KLF11/TMEM87B promoted the occurrence of glioma and decreased TMZ sensitivity. Cell Signal 2025; 130:111651. [PMID: 39929351 DOI: 10.1016/j.cellsig.2025.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
Whether KLF11 functions as a tumor promoter or inhibitor depends on the type of tumor. Our previous reports revealed the oncogenic role of KLF11 in glioma. In this study, TMEM87B was identified as a downstream gene of KLF11 through ChIP-seq assay, and the binding of KLF11 to the promoter area of TMEM87B was demonstrated using luciferase assay. KLF11 positively regulated the expression of TMEM87B mRNA and protein in glioma cell lines. Furthermore. TMEM87B was highly expressed in glioma samples, which indicated a poor prognosis in glioma patients. The elimination of TMEM87B reduced the proliferation and migration cell viability, along with the formation of tumor spheroids, while increasing TMZ sensitivity, whereas the overexpression of TMEM87B had the opposite effect. Furthermore, both the knockdown of TMEM87B and TMZ treatment could retard tumor growth in xenograft mice, and their combination significantly reduced tumor size and weight. Our findings identified the effects of the KLF11/ TMEM87B axis on glioma progression and TMZ sensitivity, which could provide new targets for glioma therapy.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China.
| | - Hua Zong
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| | - Xiaoli Zhao
- Clinical Laboratory, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| | - Yanping Liu
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| | - Shaoyun Zhao
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| | - Ning Li
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| | - Zhuolun Li
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, 046000, Shanxi, China
| |
Collapse
|
2
|
Wang Y, Jin RU, Xu J, Lin DC, Sun Z, Xu Y, Li QK, Zhang H. Harnessing technologies to unravel gastric cancer heterogeneity. Trends Cancer 2025:S2405-8033(25)00107-4. [PMID: 40425443 DOI: 10.1016/j.trecan.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025]
Abstract
Gastric cancer arises from complex carcinogenic factor interactions, with limited treatment options due to the lack of targetable driver gene mutations and significant tumor heterogeneity. Recent studies have provided promising novel approaches to improve our understanding of gastric cancer heterogeneity through integrated characterization, combining genomics with emerging technologies. Delineating the molecular changes and targeting specific molecular subtypes will enhance the efficacy of gastric cancer treatment and improve clinical outcomes. This review provides a comprehensive overview of current technologies used in gastric cancer research, highlighting key discoveries and treatment strategies driven by these innovations. Finally, we discuss the emerging technology-guided directions and potential breakthroughs that could enhance the understanding of gastric cancer tumor heterogeneity, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Yuefan Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Ramon U Jin
- Division of Oncology and Gastroenterology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joanne Xu
- College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ding Chiao Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Zhenyu Sun
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yuanwei Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Qing K Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
3
|
Wang R, Wu Y, Zhou Z, Ma Y, Zhang W, Wang Z, Luo W, Hua P. Benchmark of chromatin-protein interaction methods in haploid round spermatids. Front Cell Dev Biol 2025; 13:1572405. [PMID: 40433546 PMCID: PMC12106302 DOI: 10.3389/fcell.2025.1572405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction Chromatin-protein interactions are fundamental for regulation of gene transcription. While chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) has long been the gold standard for mapping these interactions, emerging techniques such as CUT&RUN and CUT&Tag, which offer advantages such as low-input requirements and high signal-to-noise ratios, have aroused great attention. However, research addressing the potential biases introduced by enzyme-based tagmentation approaches and comparative assessment with ChIP-seq remain absent. Methods This study aims to systematically evaluate and compare the performance of ChIP-seq, CUT&Tag, and CUT&RUN for profiling genome-wide transcription factors and histone modification binding. Results Our analysis revealed that all three methods reliably detect histone modifications and transcription factor enrichment, with CUT&Tag standing out for its comparatively higher signal-to-noise ratio. Detailed peak comparison revealed unique and overlapping enrichment among the three techniques. Additionally, CUT&Tag can identify novel CTCF peaks compared with the other two methods. A strong correlation was observed between CUT&Tag signal intensity and chromatin accessibility, highlighting its ability to generate high-resolution signals in accessible regions. Discussion The systematic comparison summarizes the differences between CUT&Tag and CUT&RUN in terms of the signal-to-noise ratio and bias toward accessible chromatin. Considering the experimental procedures, signal specificity, and inherent biases, we recommend tailoring the choice of method to the type of chromatin-protein interaction under study. CUT&Tag offers a promising alternative for applications requiring high sensitivity and reduced background noise.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihan Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Aalam J, Ahmad Shah SN, Parveen R. An extensive review on infectious disease diagnosis using machine learning techniques and next generation sequencing: State-of-the-art and perspectives. Comput Biol Med 2025; 189:109962. [PMID: 40054170 DOI: 10.1016/j.compbiomed.2025.109962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
Infectious diseases, including tuberculosis (TB), HIV/AIDS, and emerging pathogens like COVID-19 pose severe global health challenges due to their rapid spread and significant morbidity and mortality rates. Next-generation sequencing (NGS) and machine learning (ML) have emerged as transformative technologies for enhancing disease diagnosis and management. OBJECTIVE This review aims to explore integrating ML techniques with NGS for diagnosing infectious diseases, highlighting their effectiveness and identifying existing challenges. METHODS A comprehensive literature review spanning the past decade was conducted using reputable databases, including IEEE Xplore, PubMed, Scopus, SpringerLink, and Science Direct. Research papers, articles, and conference proceedings meeting stringent quality criteria were analysed to assess the performance of ML algorithms applied to NGS and metagenomic NGS (mNGS) data. RESULTS The findings reveal that ML algorithms, such as deep neural networks (DNNs), support vector machines (SVM), and K-nearest neighbours (KNN), achieve high accuracy rates, often exceeding 95 %, in diagnosing infectious diseases. Deep learning methods excel in genomic and metagenomic data analysis, while traditional algorithms like Gaussian mixture models (GMM) also demonstrate robust classification capabilities. Challenges include reliance on single data types and difficulty distinguishing closely related pathogens. CONCLUSION The integration of ML and NGS significantly advances infectious disease diagnosis, offering rapid and precise detection capabilities. Addressing current limitations can further enhance the effectiveness of these technologies, ultimately improving global public health outcomes.
Collapse
Affiliation(s)
- Javed Aalam
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| | | | - Rafat Parveen
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
5
|
Yum S, Lee H, Kwon YK, Lee G, Lee HY, Youn H, Youn B. Unraveling ER dimerization dynamics in endocrine disruption based on a BRET-focused approach. Anim Cells Syst (Seoul) 2025; 29:282-295. [PMID: 40304013 PMCID: PMC12039421 DOI: 10.1080/19768354.2025.2481984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that interact with the estrogen receptor (ER), thereby disrupting estrogen-mediated signaling. In a previous study, we employed a bioluminescence resonance energy transfer (BRET) system to assess ER dimerization for detecting EDCs. To further determine whether the BRET assay could be used independently to identify EDCs, we investigated ER-EDC interactions before and after dimerization. Results from isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) revealed that ER dimerization can be mediated by EDCs. Consequently, the BRET assay proved effective in detecting dimerization and clarifying its relevance to EDC-induced signaling disruption. Additionally, to examine EDC-induced transcriptional changes, we performed chromatin immunoprecipitation sequencing (ChIP-seq), followed by gene ontology (GO) analysis. These analyses demonstrated that EDCs affect various signaling pathways, including those involved in antibody-dependent cytotoxicity, bone morphogenetic protein (BMP) signaling in cardiac induction, and hepatocyte growth factor receptor signaling. Overall, this study elucidates the molecular mechanisms by which EDCs influence ER dimerization and signaling. These findings highlight the utility of the BRET-based assay for EDC detection and contribute to a deeper understanding of the systemic effects of EDCs on endocrine disruption.
Collapse
Affiliation(s)
- Soomin Yum
- Department of Integrated Biological Science, Pusan National University, Kumjeong-ku, Republic of Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Kumjeong-ku, Republic of Korea
| | - Yong-Kook Kwon
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju-si, Republic of Korea
| | - Gunyoung Lee
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju-si, Republic of Korea
| | - Hye-Young Lee
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Cheongju-si, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Kumjeong-ku, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
- Nuclear Science Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
6
|
Yang H, Sun W, Li J, Zhang X. Epigenetics factors in schizophrenia: future directions for etiologic and therapeutic study approaches. Ann Gen Psychiatry 2025; 24:21. [PMID: 40186258 PMCID: PMC11969811 DOI: 10.1186/s12991-025-00557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
Schizophrenia is a complex, heterogeneous, and highly disabling severe mental disorder whose pathogenesis has not yet been fully elucidated. Epigenetics, as a bridge between genetic and environmental factors, plays an important role in the pathophysiology of schizophrenia. Over the past decade, epigenetic-wide association studies have rapidly become an important branch of psychiatric research, especially in deciphering the molecular mechanisms of schizophrenia. This review systematically analyzes recent advances in epigenome-wide association studies (EWAS) of schizophrenia, focusing on technological developments. We synthesize findings from large-scale EWAS alongside emerging evidence on DNA methylation patterns, histone modifications, and regulatory networks, emphasizing their roles in disease mechanisms and treatment responses. In addition, this review provides a prospective outlook, evaluating the impact that technological developments may have on future studies of schizophrenia. With the continuous advancement of high-throughput sequencing technology and the increasing maturity of big data analysis methods, epigenetics is expected to have a significant impact on the early diagnosis, prognosis assessment and even personalized treatment of schizophrenia.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, People's Republic of China
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, People's Republic of China
| | - Wenxi Sun
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, People's Republic of China
| | - Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, People's Republic of China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, People's Republic of China.
| |
Collapse
|
7
|
Su Y, Lian J, Deng C. Dataset of histone H3K4me2 modified genes in the liver of female Sprague-Dawley rats with chronic antipsychotic drugs of olanzapine or clozapine. Data Brief 2025; 59:111425. [PMID: 40124298 PMCID: PMC11928814 DOI: 10.1016/j.dib.2025.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Epigenetic histone modifications have been found to be associated with the development of metabolic disorders. However, the potential contribution of these modifications to metabolic disturbances induced by chronic treatment with second-generation antipsychotic drugs (SGAs) remains unclear. This dataset presents chromatin immunoprecipitation (ChIP) data on H3K4me methylation in hepatic tissue of rats treated with olanzapine or clozapine for 9 weeks for a comprehensive view of the effects of SGAs on H3K4me methylation in an animal model. It offers new insights into the epigenetic mechanisms underlying SGAs-induced metabolic side effects.
Collapse
Affiliation(s)
- Yueqing Su
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- College of Clinical Medicine for Obstetrics & Gynaecology and Paediatrics, Fujian Medical University Fuzhou, China
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jiamei Lian
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Long J, Sliger S, Luo ZW, Pascuzzi PE, Chapple C, Ogas J. A semidominant point mutation of Mediator tail subunit MED5b in Arabidopsis leads to altered enrichment of H3K27me3 and reduced expression of targets of MYC2. G3 (BETHESDA, MD.) 2025; 15:jkae301. [PMID: 39950577 PMCID: PMC11917473 DOI: 10.1093/g3journal/jkae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 03/20/2025]
Abstract
The Mediator complex coordinates regulatory input for transcription driven by RNA polymerase II in eukaryotes. reduced epidermal fluorescence4-3 (ref4-3) is a semidominant mutation that results in a single amino acid substitution in the Mediator tail subunit Med5b. Previous characterization of ref4-3 revealed altered expression of a variety of loci in Arabidopsis, including those contributing to phenylpropanoid biosynthesis. Examination of existing RNA-seq data indicated that loci enriched for the transcriptionally repressive chromatin modification H3K27me3 are overrepresented among genes that are misregulated in ref4-3. We used ChIP-seq and RNA-seq to examine the possibility that perturbation of H3K27me3 homeostasis in ref4-3 plants contributed to altered transcript levels. We observed that ref4-3 results in a modest global reduction of H3K27me3 at enriched loci and that this reduction is not dependent on gene expression; however, altered H3K27me3 was not strongly predictive of altered expression in ref4-3 plants. Instead, our analyses revealed a substantial enrichment of targets of the MYC2 transcriptional regulator among genes that exhibit decreased expression in ref4-3. Consistent with previous characterization of ref4-3, we observed that ref4-3-dependent decreased expression of MYC2 targets can be suppressed by loss of another Mediator tail subunit, MED25. This observation is consistent with previous biochemical characterization of MYC2. Our data highlight the diverse and distinct impacts that a single amino acid change in the tail subunit of Mediator can have on transcriptional circuits and raise the prospect that Mediator directly contributes to H3K27me3 homeostasis in plants.
Collapse
Affiliation(s)
- Jiaxin Long
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Shelby Sliger
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Zhi-Wei Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Pete E Pascuzzi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Libraries and School of Information Studies, Purdue University, West Lafayette, IN 47907, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Obinata D, Yamada Y, Sumiyoshi T, Tanegashima T, Watanabe R, Kobayashi H, Ito D, Urabe F. Recent advances in basic research on prostate cancer: Where we are heading? Int J Urol 2025; 32:219-228. [PMID: 39474871 DOI: 10.1111/iju.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 03/21/2025]
Abstract
In the over 80 years since androgens were found to play a pivotal role in prostate cancer (PCa) progression, androgen deprivation therapy (ADT) has been a cornerstone in treating advanced PCa. Castration-resistant PCa persists, however, with some of these tumors evolving to androgen receptor (AR)-independent forms like neuroendocrine PCa. The development of novel diagnostic and therapeutic approaches to PCa is therefore crucial. This review provides an overview of recent basic research in PCa, focusing on two main areas: PCa cells and their tumor microenvironments. The first section describes current knowledge on the intricate mechanisms of AR signaling pathways, emphasizing the roles of coactivators and chromatin state alterations in gene regulation. Genomic analyses have revealed recurrent mutations and copy number alterations critical for precision medicine. Liquid biopsy has become a promising tool for real-time tumor monitoring, identifying genetic alterations in circulating-tumor DNA or extracellular vesicles. The second section describes the tumor microenvironment of PCa, highlighting its immunosuppressive landscape and the potential of combining ADT with immunotherapy. Advanced techniques, including single-cell RNA sequencing and spatial transcriptomics offer insights into cellular heterogeneity and interactions within the tumor microenvironment, paving the way for novel therapeutic strategies. Integration of these diverse research areas will provide a comprehensive understanding of the current state and future directions of PCa research, underscoring the importance of personalized medicine and the dynamic nature of cancer treatment strategies.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Yasutaka Yamada
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Sumiyoshi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuta Watanabe
- Department of Urology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroaki Kobayashi
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Daisuke Ito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Chen Y, Zhao J, Zhong C, Kang Y, Xiong Z, Huang J, Li Z, Liu Q, Shi D, Li X, Wang J, Li H. Enhancer Enh483 regulates myoblast proliferation and differentiation of buffalo myoblasts by targeting FAXC. Cell Tissue Res 2025; 399:161-171. [PMID: 39688691 DOI: 10.1007/s00441-024-03944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
A detailed understanding of the precise regulatory mechanisms governing buffalo skeletal muscle is crucial for improving meat quality and yield. Proper skeletal muscle fate decisions necessitate the accurate regulation of key enhancers. This study screened nine potential enhancers linked to muscle development by analysing ATAC-seq data from buffalo myoblasts during the proliferative and differentiative phases. The enhancer activity of these candidates was confirmed in buffalo myoblasts, C2C12, and human skeletal muscle myoblasts using a dual-luciferase reporter system. The CRISPRi system and RT-qPCR were used to test the effects of 9 candidate enhancers on buffalo myoblasts. The active enhancer, Enh483, was selected based on its significant impact. Upon successful inhibition of Enh483 using CRISPRi, decreases in the expression of buffalo myogenic proliferation marker genes (PCNA, CyclinD1, and CDK2) were observed via RT-qPCR and Western blot. Subsequent proliferation assays using CCK-8 and EdU confirmed the promotive effect of Enh483 on buffalo myogenic cell proliferation. Following a 5-day differentiation induction period, changes in the expression of differentiation marker genes (MyoD1, MyoG, and MyHC) were analysed using RT-qPCR and Western blot. Additionally, fused myotube numbers were quantified, and the impact of Enh483 on buffalo myogenic cell differentiation was assessed through immunofluorescence. Our findings indicate that Enh483 facilitates buffalo myogenic cell differentiation. Further interaction analysis utilising 3C-PCR revealed a direct association between Enh483 and the FAXC promoter. In summary, the results from this study lay a foundational framework for deciphering the intricate regulatory mechanisms underpinning buffalo muscle development.
Collapse
Affiliation(s)
- Yaling Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jiahui Zhao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Cuiwei Zhong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Yujin Kang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Zhaocheng Xiong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jieping Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Zhipeng Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qingyou Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Xinxin Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Hui Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
11
|
He W, Xu J, Zuo Y, Bai Y, Guo F. EnsembleSE: identification of super-enhancers based on ensemble learning. Brief Funct Genomics 2025; 24:elaf003. [PMID: 40251827 PMCID: PMC12008123 DOI: 10.1093/bfgp/elaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/31/2025] [Accepted: 02/27/2025] [Indexed: 04/21/2025] Open
Abstract
Super-enhancers (SEs) are typically located in the regulatory regions of genes, driving high-level gene expression. Identifying SEs is crucial for a deeper understanding of gene regulatory networks, disease mechanisms, and the development and physiological processes of organisms, thus exerting a profound impact on research and applications in the life sciences field. Traditional experimental methods for identifying SEs are costly and time-consuming. Existing methods for predicting SEs based solely on sequence data use deep learning for feature representation and have achieved good results. However, they overlook biological features related to physicochemical properties, leading to low interpretability. Additionally, the complex model structure often requires extensive labeled data for training, which limits their further application in biological data. In this paper, we integrate the strengths of different models and proposes an ensemble model based on an integration strategy to enhance the model's generalization ability. It designs a multi-angle feature representation method that combines local structure and global information to extract high-dimensional abstract relationships and key low-dimensional biological features from sequences. This enhances the effectiveness and interpretability of the model's input features, providing technical support for discovering cell-specific and species-specific patterns of SEs. We evaluated the performance on both mouse and human datasets using five metrics, including area under the receiver operating characteristic curve accuracy, and others. Compared to the latest models, EnsembleSE achieved an average improvement of 4.5% in F1 score and an average improvement of 8.05% in recall, demonstrating the robustness and adaptability of the model on a unified test set. Source codes are available at https://github.com/2103374200/EnsembleSE-main.
Collapse
Affiliation(s)
- Wenying He
- School of Artificial Intelligence, Hebei University of Technology, No. 5340, Xiping Road, Beichen District, Tianjin 300400, China
- Hebei Province Key Laboratory of Big Data Calculation, Hebei University of Technology, No. 5340, Xiping Road, Beichen District, Tianjin 300130, China
| | - Jialu Xu
- School of Artificial Intelligence, Hebei University of Technology, No. 5340, Xiping Road, Beichen District, Tianjin 300400, China
| | - Yun Zuo
- School of Artificial Intelligence and Computer Science, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214000, China
| | - Yude Bai
- School of Software, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, No. 932 South Lushan Road, Changsha 410083, China
| |
Collapse
|
12
|
Ren X, Shi Y, Xiao B, Su X, Shi H, He G, Chen P, Wu D, Shi Y. Gene Doping Detection From the Perspective of 3D Genome. Drug Test Anal 2025. [PMID: 39757126 DOI: 10.1002/dta.3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Since the early 20th century, the concept of doping was first introduced. To achieve better athletic performance, chemical substances were used. By the mid-20th century, it became gradually recognized that the illegal use of doping substances can seriously endangered athletes' health and compromised the fairness of sports competitions. Over the past 30 years, the World Anti-Doping Agency (WADA) has established corresponding rules and regulations to prohibit athletes from using doping substances or restrict the use of certain drugs, and isotope, chromatography, and mass spectrometry techniques were accredited to detect doping substances. With the development of gene editing technology, many genetic diseases have been effectively treated, but enabled by the same technology, doping has also the potential to pose a threat to sports in the form of gene doping. WADA has explicitly indicated gene doping in the Prohibited List as a prohibited method (M3) and approved qPCR detection. However, gene doping can easily evade detection, if the target genes' upstream regulatory elements are considered, the task became more challenging. Hi-C experiment driven 3D genome technology, through perspectives such as topologically associating domain (TAD) and chromatin loop, provides a more comprehensive and in-depth understanding of gene regulation and expression, thereby better preventing the potential use of 3D genome level gene doping. In this work, we will explore gene doping from a different perspective by analyzing recent studies on gene doping and explore related genes under 3D genome.
Collapse
Affiliation(s)
- Xinyuan Ren
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Bo Xiao
- Faculty of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xianbin Su
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Chen
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Yi Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
González D, Infante A, López L, Ceschin D, Fernández-Sanchez MJ, Cañas A, Zafra-Mejía C, Rojas A. Airborne fine particulate matter exposure induces transcriptomic alterations resembling asthmatic signatures: insights from integrated omics analysis. ENVIRONMENTAL EPIGENETICS 2025; 11:dvae026. [PMID: 39850030 PMCID: PMC11753294 DOI: 10.1093/eep/dvae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025]
Abstract
Fine particulate matter (PM2.5), an atmospheric pollutant that settles deep in the respiratory tract, is highly harmful to human health. Despite its well-known impact on lung function and its ability to exacerbate asthma, the molecular basis of this effect is not fully understood. This integrated transcriptomic and epigenomic data analysis from publicly available datasets aimed to determine the impact of PM2.5 exposure and its association with asthma in human airway epithelial cells. Differential gene expression and binding analyses identified 349 common differentially expressed genes and genes associated with differentially enriched H3K27ac regions in both conditions. Co-expression network analysis revealed three preserved modules (Protein Folding, Cell Migration, and Hypoxia Response) significantly correlated with PM2.5 exposure and preserved in asthma networks. Pathways dysregulated in both conditions included epithelial function, hypoxia response, interleukin-17 and TNF signaling, and immune/inflammatory processes. Hub genes like TGFB2, EFNA5, and PFKFB3 were implicated in airway remodeling, cell migration, and hypoxia-induced glycolysis. These findings elucidate common altered expression patterns and processes between PM2.5 exposure and asthma, helping to understand their molecular connection. This provides guidance for future research to utilize them as potential biomarkers or therapeutic targets and generates evidence supporting the need for implementing effective air quality management strategies.
Collapse
Affiliation(s)
- Daniel González
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Alexis Infante
- School of Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Liliana López
- Department of Statistics, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Danilo Ceschin
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba X5016KEJ, Argentina
- Centro de Investigación en Medicina Traslacional “Severo R. Amuchástegui” (CIMETSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5016KEJ, Argentina
| | - María José Fernández-Sanchez
- School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Pulmonary Unit, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Alejandra Cañas
- School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Pulmonary Unit, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Carlos Zafra-Mejía
- Grupo de Investigación en Ingeniería Ambiental (GIIAUD), Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá 110321, Colombia
| | - Adriana Rojas
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Department of Genetics, University of Córdoba, Córdoba 14071, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba 14004, Spain
- Reina Sofía University Hospital, Córdoba 14004, Spain
| |
Collapse
|
14
|
Akintunde O, Tucker T, Carabetta VJ. The Evolution of Next-Generation Sequencing Technologies. Methods Mol Biol 2025; 2866:3-29. [PMID: 39546194 DOI: 10.1007/978-1-0716-4192-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The genetic information that dictates the structure and function of all life forms is encoded in the DNA. In 1953, Watson and Crick first presented the double helical structure of a DNA molecule. Their findings unearthed the desire to elucidate the exact composition and sequence of DNA molecules. Discoveries and the subsequent development and optimization of techniques that allowed for deciphering the DNA sequence has opened new doors in research, biotech, and healthcare. The application of high-throughput sequencing technologies in these industries has positively impacted and will continue to contribute to the betterment of humanity and the global economy. Improvements, such as the use of radioactive molecules for DNA sequencing to the use of florescent dyes and the implementation of polymerase chain reaction (PCR) for amplification, led to sequencing a few hundred base pairs in days, to automation, where sequencing of thousands of base pairs in hours became possible. Significant advances have been made, but there is still room for improvement. Here, we look at the history and the technology of the currently available next-generation sequencing platforms and the possible applications of such technologies to biomedical research and beyond.
Collapse
Affiliation(s)
- Olaitan Akintunde
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Trichina Tucker
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
15
|
Zhang B, Zhang Y, Liu J, Reverter D, Wang Q, Choi SH, Liu B, Shao S. ChIP-seq and structural analyses delineating the regulatory mechanism of master regulator EsrB in Edwardsiella piscicida. Appl Environ Microbiol 2024; 90:e0180524. [PMID: 39545739 PMCID: PMC11653779 DOI: 10.1128/aem.01805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
As a response regulator of the EsrA-EsrB two-component system, EsrB is conserved in Hafniaceae and plays a crucial role in virulence and pathogenicity. EsrB possesses DNA binding abilities, enabling it to regulate the transcription of virulence genes to confront different stresses and achieve systematic infections. Here, ChIP-seq analysis of EsrB in Dulbecco's Modified Eagle's Medium (DMEM) (mimicking in vivo environments) revealed that EsrB preferred to bind to virulence-associated promoters with a distinct 7'-4-7'' pseudopalindromic DNA motif and interact with metabolic-related promoters with a high AT DNA motif. The crystal structure of the C-terminal of EsrB (EsrBC) was solved at 2.20-Å resolution. Specifically, Lys181 enabled the DNA-binding affinity of EsrB and promoted the in vitro and in vivo pathogenicity of Edwardsiella piscicida. Moreover, EsrB directly regulated the expression of genes associated with basal metabolism, including iron and tricarboxylic acid (TCA) cycles. Furthermore, EsrB enhanced iron transport capability and the enzyme activity of succinate dehydrogenase and pyruvate dehydrogenase in DMEM. Collectively, our structural and ChIP-seq analysis provides valuable insights into the DNA binding mechanism of EsrB which will facilitate our understanding of EsrB coordinating virulence and basal metabolism gene expression. IMPORTANCE As a crucial virulence regulator, EsrB possesses a LuxR-like superfamily domain at the C-terminal, which is conserved within the canonical NarL family regulators. Due to its critically important role in virulence and pathogenicity in fish hosts, the DNA binding ability has been believed to allow EsrB to regulate genes associated with the invasion process of host cells and basal metabolism in response to environmental stimuli. The lack of EsrB's crystal structure has been a major obstacle in understanding the molecular mechanisms of EsrB-DNA interaction which choreographs EsrB-mediated pathogenic behavior. Here, we conducted ChIP-seq and solved the crystal structure of the C-terminal of EsrB (EsrBC) at 2.20-Å resolution, which revealed that EsrB preferred to bind to virulence-associated promoters with a distinct 7'-4-7' pseudopalindromic DNA motif and interacted with metabolic-related promoters with a high AT DNA motif in Dulbecco's Modified Eagle's Medium (DMEM) (mimicking in vivo environments). Our results facilitate a detailed understanding of EsrB's regulatory role in Edwardsiella piscicida pathogenesis and expand our knowledge of virulence regulators in the family Hafniaceae.
Collapse
Affiliation(s)
- Boya Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Yi Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Bing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| |
Collapse
|
16
|
Nishigaki K. Discoveries by the genome profiling, symbolic powers of non-next generation sequencing methods. Brief Funct Genomics 2024; 23:775-797. [PMID: 39602495 DOI: 10.1093/bfgp/elae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Next-generation sequencing and other sequencing approaches have made significant progress in DNA analysis. However, there are indispensable advantages in the nonsequencing methods. They have their justifications such as being speedy, cost-effective, multi-applicable, and straightforward. Among the nonsequencing methods, the genome profiling method is worthy of reviewing because of its high potential. This article first reviews its basic properties, highlights the key concept of species identification dots (spiddos), and then summarizes its various applications.
Collapse
Affiliation(s)
- Koichi Nishigaki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama 338-8570, Japan
| |
Collapse
|
17
|
Lu Y, Li M, Gao Z, Ma H, Chong Y, Hong J, Wu J, Wu D, Xi D, Deng W. Innovative Insights into Single-Cell Technologies and Multi-Omics Integration in Livestock and Poultry. Int J Mol Sci 2024; 25:12940. [PMID: 39684651 DOI: 10.3390/ijms252312940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, single-cell RNA sequencing (scRNA-seq) has marked significant strides in livestock and poultry research, especially when integrated with multi-omics approaches. These advancements provide a nuanced view into complex regulatory networks and cellular dynamics. This review outlines the application of scRNA-seq in key species, including poultry, swine, and ruminants, with a focus on outcomes related to cellular heterogeneity, developmental biology, and reproductive mechanisms. We emphasize the synergistic power of combining scRNA-seq with epigenomic, proteomic, and spatial transcriptomic data, enhancing molecular breeding precision, optimizing health management strategies, and refining production traits in livestock and poultry. The integration of these technologies offers a multidimensional approach that not only broadens the scope of data analysis but also provides actionable insights for improving animal health and productivity.
Collapse
Affiliation(s)
- Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
18
|
Behl T, Kyada A, Roopashree R, Nathiya D, Arya R, Kumar MR, Khalid M, Gulati M, Sachdeva M, Fareed M, Patra PK, Agrawal A, Wal P, Gasmi A. Epigenetic biomarkers in Alzheimer's disease: Diagnostic and prognostic relevance. Ageing Res Rev 2024; 102:102556. [PMID: 39490904 DOI: 10.1016/j.arr.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive decline in the aging population, presenting a critical need for early diagnosis and effective prognostic tools. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, have emerged as promising biomarkers for AD due to their roles in regulating gene expression and potential for reversibility. This review examines the current landscape of epigenetic biomarkers in AD, emphasizing their diagnostic and prognostic relevance. DNA methylation patterns in genes such as APP, PSEN1, and PSEN2 are highlighted for their strong associations with AD pathology. Alterations in DNA methylation at specific CpG sites have been consistently observed in AD patients, suggesting their utility in early detection. Histone modifications, such as acetylation and methylation, also play a crucial role in chromatin remodelling and gene expression regulation in AD. Dysregulated histone acetylation and methylation have been linked to AD progression, making these modifications valuable biomarkers. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), further contribute to the epigenetic regulation in AD. miRNAs can modulate gene expression post-transcriptionally and have been found in altered levels in AD, while lncRNAs can influence chromatin structure and gene expression. The presence of these non-coding RNAs in biofluids like blood and cerebrospinal fluid positions them as accessible and minimally invasive biomarkers. Technological advancements in detecting and quantifying epigenetic modifications have propelled the field forward. Techniques such as next-generation sequencing, bisulfite sequencing, and chromatin immunoprecipitation assays offer high sensitivity and specificity, enabling the detailed analysis of epigenetic changes in clinical samples. These tools are instrumental in translating epigenetic research into clinical practice. This review underscores the potential of epigenetic biomarkers to enhance the early diagnosis and prognosis of AD, paving the way for personalized therapeutic strategies and improved patient outcomes. The integration of these biomarkers into clinical workflows promises to revolutionize AD management, offering hope for better disease monitoring and intervention.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India.
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Khalid
- Department of pharmacognosy, College of pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box No. 71666, Riyadh 11597, Saudi Arabia
| | - Pratap Kumar Patra
- School of Pharmacy & Life Sciences, Centurion University of Technology & Managemnet, Bhubaneswar, Odisha 752050, India
| | - Ankur Agrawal
- Jai Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh 474001, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP 209305, India
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint-Étienne, France
| |
Collapse
|
19
|
Liu L, Han L, Han K, Zhang Z, Zhang H, Zhang L. Identification of co-localised transcription factors based on paired motifs analysis. IET Syst Biol 2024; 18:238-249. [PMID: 39588827 DOI: 10.1049/syb2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction of transcription factors (TFs) with DNA precisely regulates gene transcription. In mammalian cells, thousands of TFs often interact with DNA cis-regulatory elements in a combinatorial manner rather than act alone. The identification of cooperativity between TFs can help to explore the mechanism of transcriptional regulation. However, little is known about the cooperative patterns of TFs in the genome. To identify which TFs prefer co-localisation, the authors conducted a paired motif analysis in the accessible regions of the human genome based on the Poisson background model. Especially, the authors distinguish the cooperative binding TFs and the competitive binding TFs according to the distance between TF motifs. In the K562 cell line, the authors find that TFs from a same family are always competing the same binding sites, such as FOS_JUN family, whereas KLF family TFs show significant cooperative binding in the adjacency region. Furthermore, the comparative analysis across 16 human cell lines indicates that most TF combination patterns are conserved, but there are still some cell-line-specific patterns. Finally, in human prostate cancer cells (PC-3) and human prostate normal cells (RWPE-2), the authors investigate the specific TF combination patterns in the disease cell and normal cell. The results show that the cooperative binding TF pairs shared by PC-3 and RWPE-2 account for over 90%. Simultaneously, the authors also identify 26 specific TF combination pairs in PC-3 cancer cells.
Collapse
Affiliation(s)
- Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lu Han
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Kaiyuan Han
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng Zhang
- Computer Science and Information Systems, Murray State University, Murray, USA
| | - Haojiang Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lirong Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| |
Collapse
|
20
|
Yun HS, Yoneda K, Sugasawa T, Suzuki I, Maeda Y. Genome-Wide Mapping of Autonomously Replicating Sequences in the Marine Diatom Phaeodactylum tricornutum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:14. [PMID: 39604577 DOI: 10.1007/s10126-024-10390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024]
Abstract
Autonomously replicating sequences (ARSs) are important accessories in episomal vectors that allow them to be replicated and stably maintained within transformants. Despite their importance, no information on ARSs in diatoms has been reported. Therefore, we attempted to identify ARS candidates in the model diatom, Phaeodactylum tricornutum, via chromatin immunoprecipitation sequencing. In this study, subunits of the origin recognition complex (ORC), ORC2 and ORC4, were used to screen for ARS candidates. ORC2 and ORC4 bound to 355 sites on the P. tricornutum genome, of which 69 were constantly screened after multiple attempts. The screened ARS candidates had an AT-richness of approximately 50% (44.39-52.92%) and did not have conserved sequences. In addition, ARS candidates were distributed randomly but had a dense distribution pattern at several sites. Their positions tended to overlap with those of the genetic region (73.91%). Compared to the ARSs of several other eukaryotic organisms, the characteristics of the screened ARS candidates are complex. Thus, our findings suggest that the diatom has a distinct and unique native ARSs.
Collapse
Affiliation(s)
- Hyun-Sik Yun
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | - Kohei Yoneda
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | - Takehito Sugasawa
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8577, Japan
- Department of Sports Medicine Analysis, Open Facility Network Office, Organization for Open Facility Initiatives, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8577, Japan
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Maeda
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
21
|
Artemyev V, Gubaeva A, Paremskaia AI, Dzhioeva AA, Deviatkin A, Feoktistova SG, Mityaeva O, Volchkov PY. Synthetic Promoters in Gene Therapy: Design Approaches, Features and Applications. Cells 2024; 13:1963. [PMID: 39682712 PMCID: PMC11640742 DOI: 10.3390/cells13231963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Gene therapy is a promising approach to the treatment of various inherited diseases, but its development is complicated by a number of limitations of the natural promoters used. The currently used strong ubiquitous natural promoters do not allow for the specificity of expression, while natural tissue-specific promoters have lowactivity. These limitations of natural promoters can be addressed by creating new synthetic promoters that achieve high levels of tissue-specific target gene expression. This review discusses recent advances in the development of synthetic promoters that provide a more precise regulation of gene expression. Approaches to the design of synthetic promoters are reviewed, including manual design and bioinformatic methods using machine learning. Examples of successful applications of synthetic promoters in the therapy of hereditary diseases and cancer are presented, as well as prospects for their clinical use.
Collapse
Affiliation(s)
- Valentin Artemyev
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia;
| | - Anna Gubaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
| | - Anastasiia Iu. Paremskaia
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
| | - Amina A. Dzhioeva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia;
| | - Andrei Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
| | - Sofya G. Feoktistova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
| | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia;
- Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Pr., 27, 119991 Moscow, Russia
| | - Pavel Yu. Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia; (A.G.); (A.D.); (O.M.); (P.Y.V.)
- Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Pr., 27, 119991 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
22
|
Zhu R, Ni J, Ren J, Li D, Xu J, Yu X, Ma YJ, Kou L. Transcriptomic era of cancers in females: new epigenetic perspectives and therapeutic prospects. Front Oncol 2024; 14:1464125. [PMID: 39605897 PMCID: PMC11598703 DOI: 10.3389/fonc.2024.1464125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
In the era of transcriptomics, the role of epigenetics in the study of cancers in females has gained increasing recognition. This article explores the impact of epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNA, on cancers in females, including breast, cervical, and ovarian cancers (1). Our findings suggest that these epigenetic markers not only influence tumor onset, progression, and metastasis but also present novel targets for therapeutic intervention. Detailed analyses of DNA methylation patterns have revealed aberrant events in cancer cells, particularly promoter region hypermethylation, which may lead to silencing of tumor suppressor genes. Furthermore, we examined the complex roles of histone modifications and long non-coding RNAs in regulating the expression of cancer-related genes, thereby providing a scientific basis for developing targeted epigenetic therapies. Our research emphasizes the importance of understanding the functions and mechanisms of epigenetics in cancers in females to develop effective treatment strategies. Future therapeutic approaches may include drugs targeting specific epigenetic markers, which could not only improve therapeutic outcomes but also enhance patient survival and quality of life. Through these efforts, we aim to offer new perspectives and hope for the prevention, diagnosis, and treatment of cancers in females.
Collapse
Affiliation(s)
- Runhe Zhu
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Ni
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayin Ren
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongye Li
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawei Xu
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinru Yu
- The Pharmacy College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Luan Kou
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
23
|
Zhao C, Jin H, Lei Y, Li Q, Zhang Y, Lu Q. The dual effects of Benzo(a)pyrene/Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide on DNA Methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175042. [PMID: 39084379 DOI: 10.1016/j.scitotenv.2024.175042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Benzo(a)pyrene (BaP) is one of the most thoroughly studied polycyclic aromatic hydrocarbons(PAHs) and a widespread organic pollutant in various areas of human life. Its teratogenic, immunotoxic and carcinogenic effects on organisms are well documented and widely recognized by researchers. In the body, BaP is enzymatically converted to form a more active benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). BaP/BPDE has the potential to trigger gene mutations, influence epigenetic modifications and cause damage to cellular structures, ultimately contributing to disease onset and progression. However, there are different points of view when studying epigenetics using BaP/BPDE. On the one hand, it is claimed in cancer research that BaP/BPDE contributes to gene hypermethylation and, in particular, induces the hypermethylation of tumor's suppressor gene promoters, leading to gene silencing and subsequent cancer development. Conversely, studies in human and animal populations suggest that exposure to BaP results in genome-wide DNA hypomethylation, potentially leading to adverse outcomes in inflammatory diseases. This apparent contradiction has not been summarized in research for almost four decades. This article presents a comprehensive review of the current literature on the influence of BaP/BPDE on DNA methylation regulation. It demonstrates that BaP/BPDE exerts a dual-phase regulatory effect on methylation, which is influenced by factors such as the concentration and duration of BaP/BPDE exposure, experimental models and detection methods used in various studies. Acute/high concentration exposure to BaP/BPDE often results in global demethylation of DNA, which is associated with inhibition of DNA methyltransferase 1 (DNMT1) after exposure. At certain specific gene loci (e.g., RAR-β), BPDE can form DNA adducts, recruiting DNMT3 and leading to hypermethylation at specific sites. By integrating these different mechanisms, our goal is to unravel the patterns and regulations of BaP/BPDE-induced DNA methylation changes and provide insights into future precision therapies targeting epigenetics.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Yu Lei
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| |
Collapse
|
24
|
Matsuyama K, Yamada S, Sato H, Zhan J, Shoda T. Advances in omics data for eosinophilic esophagitis: moving towards multi-omics analyses. J Gastroenterol 2024; 59:963-978. [PMID: 39297956 PMCID: PMC11496339 DOI: 10.1007/s00535-024-02151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, allergic inflammatory disease of the esophagus characterized by eosinophil accumulation and has a growing global prevalence. EoE significantly impairs quality of life and poses a substantial burden on healthcare resources. Currently, only two FDA-approved medications exist for EoE, highlighting the need for broader research into its management and prevention. Recent advancements in omics technologies, such as genomics, epigenetics, transcriptomics, proteomics, and others, offer new insights into the genetic and immunologic mechanisms underlying EoE. Genomic studies have identified genetic loci and mutations associated with EoE, revealing predispositions that vary by ancestry and indicating EoE's complex genetic basis. Epigenetic studies have uncovered changes in DNA methylation and chromatin structure that affect gene expression, influencing EoE pathology. Transcriptomic analyses have revealed a distinct gene expression profile in EoE, dominated by genes involved in activated type 2 immunity and epithelial barrier function. Proteomic approaches have furthered the understanding of EoE mechanisms, identifying potential new biomarkers and therapeutic targets. However, challenges in integrating diverse omics data persist, largely due to their complexity and the need for advanced computational methods. Machine learning is emerging as a valuable tool for analyzing extensive and intricate datasets, potentially revealing new aspects of EoE pathogenesis. The integration of multi-omics data through sophisticated computational approaches promises significant advancements in our understanding of EoE, improving diagnostics, and enhancing treatment effectiveness. This review synthesizes current omics research and explores future directions for comprehensively understanding the disease mechanisms in EoE.
Collapse
Affiliation(s)
- Kazuhiro Matsuyama
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, USA
| | - Shingo Yamada
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA
| | - Hironori Sato
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Justin Zhan
- Department of Computer Science, University of Cincinnati, Cincinnati, USA
| | - Tetsuo Shoda
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA.
| |
Collapse
|
25
|
Aertgeerts M, Meyers S, Demeyer S, Segers H, Cools J. Unlocking the Complexity: Exploration of Acute Lymphoblastic Leukemia at the Single Cell Level. Mol Diagn Ther 2024; 28:727-744. [PMID: 39190087 DOI: 10.1007/s40291-024-00739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. ALL originates from precursor lymphocytes that acquire multiple genomic changes over time, including chromosomal rearrangements and point mutations. While a large variety of genomic defects was identified and characterized in ALL over the past 30 years, it was only in recent years that the clonal heterogeneity was recognized. Thanks to the latest advancements in single-cell sequencing techniques, which have evolved from the analysis of a few hundred cells to the analysis of thousands of cells simultaneously, the study of tumor heterogeneity now becomes possible. Different modalities can be explored at the single-cell level: DNA, RNA, epigenetic modifications, and intracellular and cell surface proteins. In this review, we describe these techniques and highlight their advantages and limitations in the study of ALL biology. Moreover, multiomics technologies and the incorporation of the spatial dimension can provide insight into intercellular communication. We describe how the different single-cell sequencing technologies help to unravel the molecular complexity of ALL, shedding light on its development, its heterogeneity, its interaction with the leukemia microenvironment and possible relapse mechanisms.
Collapse
Affiliation(s)
- Margo Aertgeerts
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium
| | - Sarah Meyers
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium
| | - Heidi Segers
- Department of Oncology, KU Leuven, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium.
- Department of Pediatric Hematology and Oncology, UZ Leuven, Leuven, Belgium.
| | - Jan Cools
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven-UZ Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Hsieh CH, Chang YTS, Yen MR, Hsieh JWA, Chen PY. Predicting protein synergistic effect in Arabidopsis using epigenome profiling. Nat Commun 2024; 15:9160. [PMID: 39448614 PMCID: PMC11502919 DOI: 10.1038/s41467-024-53565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Histone modifications can regulate transcription epigenetically by marking specific genomic loci, which can be mapped using chromatin immunoprecipitation sequencing (ChIP-seq). Here we present QHistone, a predictive database of 1534 ChIP-seqs from 27 histone modifications in Arabidopsis, offering three key functionalities. Firstly, QHistone employs machine learning to predict the epigenomic profile of a query protein, characterized by its most associated histone modifications, and uses these modifications to infer the protein's role in transcriptional regulation. Secondly, it predicts synergistic regulatory activities between two proteins by comparing their profiles. Lastly, it detects previously unexplored co-regulating protein pairs by screening all known proteins. QHistone accurately identifies histone modifications associated with specific known proteins, and allows users to computationally validate their results using gene expression data from various plant tissues. These functions demonstrate an useful approach to utilizing epigenome data for gene regulation analysis, making QHistone a valuable resource for the scientific community ( https://qhistone.paoyang.ipmb.sinica.edu.tw ).
Collapse
Affiliation(s)
- Chih-Hung Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | | | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan.
| |
Collapse
|
27
|
Yang A, Poholek AC. Systems immunology approaches to study T cells in health and disease. NPJ Syst Biol Appl 2024; 10:117. [PMID: 39384819 PMCID: PMC11464710 DOI: 10.1038/s41540-024-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
T cells are dynamically regulated immune cells that are implicated in a variety of diseases ranging from infection, cancer and autoimmunity. Recent advancements in sequencing methods have provided valuable insights in the transcriptional and epigenetic regulation of T cells in various disease settings. In this review, we identify the key sequencing-based methods that have been applied to understand the transcriptomic and epigenomic regulation of T cells in diseases.
Collapse
Affiliation(s)
- Aaron Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Wu X, Yang X, Dai Y, Zhao Z, Zhu J, Guo H, Yang R. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res 2024; 12:110. [PMID: 39334490 PMCID: PMC11438019 DOI: 10.1186/s40364-024-00643-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cells, as the fundamental units of life, contain multidimensional spatiotemporal information. Single-cell RNA sequencing (scRNA-seq) is revolutionizing biomedical science by analyzing cellular state and intercellular heterogeneity. Undoubtedly, single-cell transcriptomics has emerged as one of the most vibrant research fields today. With the optimization and innovation of single-cell sequencing technologies, the intricate multidimensional details concealed within cells are gradually unveiled. The combination of scRNA-seq and other multi-omics is at the forefront of the single-cell field. This involves simultaneously measuring various omics data within individual cells, expanding our understanding across a broader spectrum of dimensions. Single-cell multi-omics precisely captures the multidimensional aspects of single-cell transcriptomes, immune repertoire, spatial information, temporal information, epitopes, and other omics in diverse spatiotemporal contexts. In addition to depicting the cell atlas of normal or diseased tissues, it also provides a cornerstone for studying cell differentiation and development patterns, disease heterogeneity, drug resistance mechanisms, and treatment strategies. Herein, we review traditional single-cell sequencing technologies and outline the latest advancements in single-cell multi-omics. We summarize the current status and challenges of applying single-cell multi-omics technologies to biological research and clinical applications. Finally, we discuss the limitations and challenges of single-cell multi-omics and potential strategies to address them.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunhan Dai
- Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
29
|
Tomasiak A, Piński A, Milewska-Hendel A, Andreu Godall I, Borowska-Żuchowska N, Morończyk J, Moreno-Romero J, Betekhtin A. H3K4me3 changes occur in cell wall genes during the development of Fagopyrum tataricum morphogenic and non-morphogenic calli. FRONTIERS IN PLANT SCIENCE 2024; 15:1465514. [PMID: 39385990 PMCID: PMC11461221 DOI: 10.3389/fpls.2024.1465514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Epigenetic changes accompany the dynamic changes in the cell wall composition during the development of callus cells. H3K4me3 is responsible for active gene expression and reaction to environmental cues. Chromatin immunoprecipitation (ChIP) is a powerful technique for studying the interplay between epigenetic modifications and the DNA regions of interest. In combination with sequencing, it can provide the genome-wide enrichment of the specific epigenetic mark, providing vital information on its involvement in the plethora of cellular processes. Here, we describe the genome-wide distribution of H3K4me3 in morphogenic and non-morphogenic callus of Fagopyrum tataricum. Levels of H3K4me3 were higher around the transcription start site, in agreement with the role of this mark in transcriptional activation. The global levels of methylation were higher in the non-morphogenic callus, which indicated increased gene activation compared to the morphogenic callus. We also employed ChIP to analyse the changes in the enrichment of this epigenetic mark on the cell wall-related genes in both calli types during the course of the passage. Enrichment of H3K4me3 on cell wall genes was specific for callus type, suggesting that the role of this mark in cell-wall remodelling is complex and involved in many processes related to dedifferentiation and redifferentiation. This intricacy of the cell wall composition was supported by the immunohistochemical analysis of the cell wall epitopes' distribution of pectins and extensins. Together, these data give a novel insight into the involvement of H3K4me3 in the regeneration processes in F. tataricum in vitro callus tissue culture.
Collapse
Affiliation(s)
- Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ignasi Andreu Godall
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Natalia Borowska-Żuchowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jordi Moreno-Romero
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
30
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
31
|
Saeki N, Inui-Yamamoto C, Ikeda Y, Kanai R, Hata K, Itoh S, Inubushi T, Akiyama S, Ohba S, Abe M. Deletion of Trps1 regulatory elements recapitulates postnatal hip joint abnormalities and growth retardation of Trichorhinophalangeal syndrome in mice. Hum Mol Genet 2024; 33:1618-1629. [PMID: 38899779 DOI: 10.1093/hmg/ddae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Trichorhinophalangeal syndrome (TRPS) is a genetic disorder caused by point mutations or deletions in the gene-encoding transcription factor TRPS1. TRPS patients display a range of skeletal dysplasias, including reduced jaw size, short stature, and a cone-shaped digit epiphysis. Certain TRPS patients experience early onset coxarthrosis that leads to a devastating drop in their daily activities. The etiologies of congenital skeletal abnormalities of TRPS were revealed through the analysis of Trps1 mutant mouse strains. However, early postnatal lethality in Trps1 knockout mice has hampered the study of postnatal TRPS pathology. Here, through epigenomic analysis we identified two previously uncharacterized candidate gene regulatory regions in the first intron of Trps1. We deleted these regions, either individually or simultaneously, and examined their effects on skeletal morphogenesis. Animals that were deleted individually for either region displayed only modest phenotypes. In contrast, the Trps1Δint/Δint mouse strain with simultaneous deletion of both genomic regions exhibit postnatal growth retardation. This strain displayed delayed secondary ossification center formation in the long bones and misshaped hip joint development that resulted in acetabular dysplasia. Reducing one allele of the Trps1 gene in Trps1Δint mice resulted in medial patellar dislocation that has been observed in some patients with TRPS. Our novel Trps1 hypomorphic strain recapitulates many postnatal pathologies observed in human TRPS patients, thus positioning this strain as a useful animal model to study postnatal TRPS pathogenesis. Our observations also suggest that Trps1 gene expression is regulated through several regulatory elements, thus guaranteeing robust expression maintenance in skeletal cells.
Collapse
Affiliation(s)
- Naoya Saeki
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
- Department of Special Needs Dentistry, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Chizuko Inui-Yamamoto
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Yuki Ikeda
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Rinna Kanai
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
- Department of Fixed Prosthodontics and Orofacial Function, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Shigehisa Akiyama
- Department of Special Needs Dentistry, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| | - Makoto Abe
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Yamada-oka 1-8, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Xu L, Liu Y. Identification, Design, and Application of Noncoding Cis-Regulatory Elements. Biomolecules 2024; 14:945. [PMID: 39199333 PMCID: PMC11352686 DOI: 10.3390/biom14080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Cis-regulatory elements (CREs) play a pivotal role in orchestrating interactions with trans-regulatory factors such as transcription factors, RNA-binding proteins, and noncoding RNAs. These interactions are fundamental to the molecular architecture underpinning complex and diverse biological functions in living organisms, facilitating a myriad of sophisticated and dynamic processes. The rapid advancement in the identification and characterization of these regulatory elements has been marked by initiatives such as the Encyclopedia of DNA Elements (ENCODE) project, which represents a significant milestone in the field. Concurrently, the development of CRE detection technologies, exemplified by massively parallel reporter assays, has progressed at an impressive pace, providing powerful tools for CRE discovery. The exponential growth of multimodal functional genomic data has necessitated the application of advanced analytical methods. Deep learning algorithms, particularly large language models, have emerged as invaluable tools for deconstructing the intricate nucleotide sequences governing CRE function. These advancements facilitate precise predictions of CRE activity and enable the de novo design of CREs. A deeper understanding of CRE operational dynamics is crucial for harnessing their versatile regulatory properties. Such insights are instrumental in refining gene therapy techniques, enhancing the efficacy of selective breeding programs, pushing the boundaries of genetic innovation, and opening new possibilities in microbial synthetic biology.
Collapse
Affiliation(s)
- Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
33
|
Kafida M, Karela M, Giakountis A. RNA-Independent Regulatory Functions of lncRNA in Complex Disease. Cancers (Basel) 2024; 16:2728. [PMID: 39123456 PMCID: PMC11311644 DOI: 10.3390/cancers16152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
During the metagenomics era, high-throughput sequencing efforts both in mice and humans indicate that non-coding RNAs (ncRNAs) constitute a significant fraction of the transcribed genome. During the past decades, the regulatory role of these non-coding transcripts along with their interactions with other molecules have been extensively characterized. However, the study of long non-coding RNAs (lncRNAs), an ncRNA regulatory class with transcript lengths that exceed 200 nucleotides, revealed that certain non-coding transcripts are transcriptional "by-products", while their loci exert their downstream regulatory functions through RNA-independent mechanisms. Such mechanisms include, but are not limited to, chromatin interactions and complex promoter-enhancer competition schemes that involve the underlying ncRNA locus with or without its nascent transcription, mediating significant or even exclusive roles in the regulation of downstream target genes in mammals. Interestingly, such RNA-independent mechanisms often drive pathological manifestations, including oncogenesis. In this review, we summarize selective examples of lncRNAs that regulate target genes independently of their produced transcripts.
Collapse
Affiliation(s)
| | | | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
34
|
Rossi S, Richards EL, Orozco G, Eyre S. Functional Genomics in Psoriasis. Int J Mol Sci 2024; 25:7349. [PMID: 39000456 PMCID: PMC11242296 DOI: 10.3390/ijms25137349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Psoriasis is an autoimmune cutaneous condition that significantly impacts quality of life and represents a burden on society due to its prevalence. Genome-wide association studies (GWASs) have pinpointed several psoriasis-related risk loci, underlining the disease's complexity. Functional genomics is paramount to unveiling the role of such loci in psoriasis and disentangling its complex nature. In this review, we aim to elucidate the main findings in this field and integrate our discussion with gold-standard techniques in molecular biology-i.e., Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-and high-throughput technologies. These tools are vital to understanding how disease risk loci affect gene expression in psoriasis, which is crucial in identifying new targets for personalized treatments in advanced precision medicine.
Collapse
Affiliation(s)
| | | | | | - Stephen Eyre
- Centre for Genetics and Genomics versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (S.R.); (E.L.R.); (G.O.)
| |
Collapse
|
35
|
Yang M, Chen T, Liu Y, Huang L. Visualizing set relationships: EVenn's comprehensive approach to Venn diagrams. IMETA 2024; 3:e184. [PMID: 38898979 PMCID: PMC11183158 DOI: 10.1002/imt2.184] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 06/21/2024]
Abstract
Venn diagrams serve as invaluable tools for visualizing set relationships due to their ease of interpretation. Widely applied across diverse disciplines such as metabolomics, genomics, transcriptomics, and proteomics, their utility is undeniable. However, the operational complexity has been compounded by the absence of standardized data formats and the need to switch between various platforms for generating different Venn diagrams. To address these challenges, we introduce the EVenn platform, a versatile tool offering a unified interface for efficient data exploration and visualization of diverse Venn diagrams. EVenn (http://www.ehbio.com/test/venn) streamlines the data upload process with a standardized format, enhancing the capabilities for multimodule analysis. This comprehensive protocol outlines various applications of EVenn, featuring representative results of multiple Venn diagrams, data uploads in the centralized data center, and step-by-step case demonstrations. Through these functionalities, EVenn emerges as a valuable and user-friendly tool for the in-depth exploration of multiomics data.
Collapse
Affiliation(s)
- Mei Yang
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yong‐Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
36
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
37
|
Wan W, Guo D, Kang T, Pang J, Pan Y, Chen J, Liao W, Chen Y, Lin P, Li L, Yang H, He Y. Exploring the impact of insufficient thermal ablation on hepatocellular carcinoma: NDST2 overexpression mechanism and its role in facilitating growth and invasion of residual cancer cells. Int J Hyperthermia 2024; 41:2353309. [PMID: 38749506 DOI: 10.1080/02656736.2024.2353309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 08/07/2024] Open
Abstract
OBJECTIVE Incomplete thermal ablation (ITA) fosters the malignancy of residual cells in Hepatocellular carcinoma (HCC) with unclear mechanisms now. This study aims to investigate the expression changes of NDST2 following ITA of HCC and its impact on residual cancer cells. METHODS An in vitro model of heat stress-induced liver cancer was constructed to measure the expression of NDST2 using Quantitative Real-Time PCR and Western blotting experiments. The sequencing data from nude mice were used for validation. The clinical significance of NDST2 in HCC was evaluated by integrating datasets. Gene ontology and pathway analysis were conducted to explore the potential signaling pathways regulated by NDST2. Additionally, NDST2 was knocked down in heat stress-induced HCC cells, and the effects of NDST2 on these cells were verified using Cell Counting Kit-8 assays, scratch assays, and Transwell assays. RESULTS NDST2 expression levels are elevated in HCC, leading to a decrease in overall survival rates of HCC patients. Upregulation of immune checkpoint levels in high NDST2-expressing HCC may contribute to immune evasion by liver cancer cells. Additionally, the low mutation rate of NDST2 in HCC suggests a relatively stable expression of NDST2 in this disease. Importantly, animal and cell models treated with ITA demonstrate upregulated expression of NDST2. Knockdown of NDST2 in heat stress-induced liver cancer cells results in growth inhibition associated with gene downregulation. CONCLUSION The upregulation of NDST2 can accelerate the progression of residual HCC after ITA, suggesting a potential role for NDST2 in the therapeutic efficacy and prognosis of residual HCC.
Collapse
Affiliation(s)
- Weijun Wan
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Danxia Guo
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tong Kang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jinshu Pang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yunjing Pan
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiamin Chen
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wei Liao
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuji Chen
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Peng Lin
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lipeng Li
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hong Yang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yun He
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
38
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
39
|
Brooks TG, Lahens NF, Mrčela A, Grant GR. Challenges and best practices in omics benchmarking. Nat Rev Genet 2024; 25:326-339. [PMID: 38216661 DOI: 10.1038/s41576-023-00679-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/14/2024]
Abstract
Technological advances enabling massively parallel measurement of biological features - such as microarrays, high-throughput sequencing and mass spectrometry - have ushered in the omics era, now in its third decade. The resulting complex landscape of analytical methods has naturally fostered the growth of an omics benchmarking industry. Benchmarking refers to the process of objectively comparing and evaluating the performance of different computational or analytical techniques when processing and analysing large-scale biological data sets, such as transcriptomics, proteomics and metabolomics. With thousands of omics benchmarking studies published over the past 25 years, the field has matured to the point where the foundations of benchmarking have been established and well described. However, generating meaningful benchmarking data and properly evaluating performance in this complex domain remains challenging. In this Review, we highlight some common oversights and pitfalls in omics benchmarking. We also establish a methodology to bring the issues that can be addressed into focus and to be transparent about those that cannot: this takes the form of a spreadsheet template of guidelines for comprehensive reporting, intended to accompany publications. In addition, a survey of recent developments in benchmarking is provided as well as specific guidance for commonly encountered difficulties.
Collapse
Affiliation(s)
- Thomas G Brooks
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Antonijo Mrčela
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Vogl C, Karapetiants M, Yıldırım B, Kjartansdóttir H, Kosiol C, Bergman J, Majka M, Mikula LC. Inference of genomic landscapes using ordered Hidden Markov Models with emission densities (oHMMed). BMC Bioinformatics 2024; 25:151. [PMID: 38627634 PMCID: PMC11021005 DOI: 10.1186/s12859-024-05751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Genomes are inherently inhomogeneous, with features such as base composition, recombination, gene density, and gene expression varying along chromosomes. Evolutionary, biological, and biomedical analyses aim to quantify this variation, account for it during inference procedures, and ultimately determine the causal processes behind it. Since sequential observations along chromosomes are not independent, it is unsurprising that autocorrelation patterns have been observed e.g., in human base composition. In this article, we develop a class of Hidden Markov Models (HMMs) called oHMMed (ordered HMM with emission densities, the corresponding R package of the same name is available on CRAN): They identify the number of comparably homogeneous regions within autocorrelated observed sequences. These are modelled as discrete hidden states; the observed data points are realisations of continuous probability distributions with state-specific means that enable ordering of these distributions. The observed sequence is labelled according to the hidden states, permitting only neighbouring states that are also neighbours within the ordering of their associated distributions. The parameters that characterise these state-specific distributions are inferred. RESULTS We apply our oHMMed algorithms to the proportion of G and C bases (modelled as a mixture of normal distributions) and the number of genes (modelled as a mixture of poisson-gamma distributions) in windows along the human, mouse, and fruit fly genomes. This results in a partitioning of the genomes into regions by statistically distinguishable averages of these features, and in a characterisation of their continuous patterns of variation. In regard to the genomic G and C proportion, this latter result distinguishes oHMMed from segmentation algorithms based in isochore or compositional domain theory. We further use oHMMed to conduct a detailed analysis of variation of chromatin accessibility (ATAC-seq) and epigenetic markers H3K27ac and H3K27me3 (modelled as a mixture of poisson-gamma distributions) along the human chromosome 1 and their correlations. CONCLUSIONS Our algorithms provide a biologically assumption free approach to characterising genomic landscapes shaped by continuous, autocorrelated patterns of variation. Despite this, the resulting genome segmentation enables extraction of compositionally distinct regions for further downstream analyses.
Collapse
Affiliation(s)
- Claus Vogl
- Department of Biomedical Sciences and Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria.
- Vienna Graduate School of Population Genetics, Vienna, Austria.
| | - Mariia Karapetiants
- Department of Biomedical Sciences and Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria
| | - Burçin Yıldırım
- Department of Biomedical Sciences and Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
- Department of Ecology and Genetics, Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Hrönn Kjartansdóttir
- Department of Biomedical Sciences and Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, Vienna, Austria
| | - Carolin Kosiol
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Juraj Bergman
- Department of Biology, Centre for Biodiversity Dynamics in a Changing World (BIOCHANGE) & Section for Ecoinformatics and Biodiversity, Aarhus University, Aarhus, Denmark
| | | | - Lynette Caitlin Mikula
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland, UK.
| |
Collapse
|
41
|
Hua K, Wu C, Lin C, Chen C. E2F1 promotes cell migration in hepatocellular carcinoma via FNDC3B. FEBS Open Bio 2024; 14:687-694. [PMID: 38403291 PMCID: PMC10988749 DOI: 10.1002/2211-5463.13783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
FNDC3B (fibronectin type III domain containing 3B) is highly expressed in hepatocellular carcinoma (HCC) and other cancer types, and fusion genes involving FNDC3B have been identified in HCC and leukemia. Growing evidence suggests the significance of FNDC3B in tumorigenesis, particularly in cell migration and tumor metastasis. However, its regulatory mechanisms remain elusive. In this study, we employed bioinformatic, gene regulation, and protein-DNA interaction screening to investigate the transcription factors (TFs) involved in regulating FNDC3B. Initially, 338 candidate TFs were selected based on previous chromatin immunoprecipitation (ChIP)-seq experiments available in public domain databases. Through TF knockdown screening and ChIP coupled with Droplet Digital PCR assays, we identified that E2F1 (E2F transcription factor 1) is crucial for the activation of FNDC3B. Overexpression or knockdown of E2F1 significantly impacts the expression of FNDC3B. In conclusion, our study elucidated the mechanistic link between FNDC3B and E2F1. These findings contribute to a better understanding of FNDC3B in tumorigenesis and provide insights into potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kate Hua
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chen‐Tang Wu
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chin‐Hui Lin
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chian‐Feng Chen
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
42
|
Xiao R, Chen Y, Hu Z, Tang Q, Wang P, Zhou M, Wu L, Liang D. Identification of the Efficient Enhancer Elements in FVIII-Padua for Gene Therapy Study of Hemophilia A. Int J Mol Sci 2024; 25:3635. [PMID: 38612447 PMCID: PMC11011560 DOI: 10.3390/ijms25073635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Hemophilia A (HA) is a common X-linked recessive hereditary bleeding disorder. Coagulation factor VIII (FVIII) is insufficient in patients with HA due to the mutations in the F8 gene. The restoration of plasma levels of FVIII via both recombinant B-domain-deleted FVIII (BDD-FVIII) and B-domain-deleted F8 (BDDF8) transgenes was proven to be helpful. FVIII-Padua is a 23.4 kb tandem repeat mutation in the F8 associated with a high F8 gene expression and thrombogenesis. Here we screened a core enhancer element in FVIII-Padua for improving the F8 expression. In detail, we identified a 400 bp efficient enhancer element, C400, in FVIII-Padua for the first time. The core enhancer C400 extensively improved the transcription of BDDF8 driven by human elongation factor-1 alpha in HepG2, HeLa, HEK-293T and induced pluripotent stem cells (iPSCs) with different genetic backgrounds, as well as iPSCs-derived endothelial progenitor cells (iEPCs) and iPSCs-derived mesenchymal stem cells (iMSCs). The expression of FVIII protein was increased by C400, especially in iEPCs. Our research provides a novel molecular target to enhance expression of FVIII protein, which has scientific value and application prospects in both viral and nonviral HA gene therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Desheng Liang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (R.X.); (Y.C.); (Z.H.); (M.Z.)
| |
Collapse
|
43
|
Liu R, Xu R, Yan S, Li P, Jia C, Sun H, Sheng K, Wang Y, Zhang Q, Guo J, Xin X, Li X, Guo D. Hi-C, a chromatin 3D structure technique advancing the functional genomics of immune cells. Front Genet 2024; 15:1377238. [PMID: 38586584 PMCID: PMC10995239 DOI: 10.3389/fgene.2024.1377238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
The functional performance of immune cells relies on a complex transcriptional regulatory network. The three-dimensional structure of chromatin can affect chromatin status and gene expression patterns, and plays an important regulatory role in gene transcription. Currently available techniques for studying chromatin spatial structure include chromatin conformation capture techniques and their derivatives, chromatin accessibility sequencing techniques, and others. Additionally, the recently emerged deep learning technology can be utilized as a tool to enhance the analysis of data. In this review, we elucidate the definition and significance of the three-dimensional chromatin structure, summarize the technologies available for studying it, and describe the research progress on the chromatin spatial structure of dendritic cells, macrophages, T cells, B cells, and neutrophils.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Dianhao Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
44
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
45
|
Jeppsson K, Pradhan B, Sutani T, Sakata T, Umeda Igarashi M, Berta DG, Kanno T, Nakato R, Shirahige K, Kim E, Björkegren C. Loop-extruding Smc5/6 organizes transcription-induced positive DNA supercoils. Mol Cell 2024; 84:867-882.e5. [PMID: 38295804 DOI: 10.1016/j.molcel.2024.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
The structural maintenance of chromosomes (SMC) protein complexes-cohesin, condensin, and the Smc5/6 complex (Smc5/6)-are essential for chromosome function. At the molecular level, these complexes fold DNA by loop extrusion. Accordingly, cohesin creates chromosome loops in interphase, and condensin compacts mitotic chromosomes. However, the role of Smc5/6's recently discovered DNA loop extrusion activity is unknown. Here, we uncover that Smc5/6 associates with transcription-induced positively supercoiled DNA at cohesin-dependent loop boundaries on budding yeast (Saccharomyces cerevisiae) chromosomes. Mechanistically, single-molecule imaging reveals that dimers of Smc5/6 specifically recognize the tip of positively supercoiled DNA plectonemes and efficiently initiate loop extrusion to gather the supercoiled DNA into a large plectonemic loop. Finally, Hi-C analysis shows that Smc5/6 links chromosomal regions containing transcription-induced positive supercoiling in cis. Altogether, our findings indicate that Smc5/6 controls the three-dimensional organization of chromosomes by recognizing and initiating loop extrusion on positively supercoiled DNA.
Collapse
Affiliation(s)
- Kristian Jeppsson
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden; Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Biswajit Pradhan
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Takashi Sutani
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Toyonori Sakata
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden; Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Miki Umeda Igarashi
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
| | - Davide Giorgio Berta
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden
| | - Takaharu Kanno
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden; Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Eugene Kim
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| | - Camilla Björkegren
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77 Stockholm, Sweden; Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83 Huddinge, Sweden.
| |
Collapse
|
46
|
Yu L, Huang T, Liu S, Yu J, Hou M, Su S, Jiang T, Li X, Li Y, Damba T, Zhou L, Liang Y. The landscape of super-enhancer regulates remote target gene transcription through loop domains in adipose tissue of pig. Heliyon 2024; 10:e25725. [PMID: 38390098 PMCID: PMC10881545 DOI: 10.1016/j.heliyon.2024.e25725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND A super-enhancer (SE) is a huge cluster of multiple enhancers that control the key genes for cell identity and function. The rise of advanced chromatin immunoprecipitation sequencing (ChIP-seq) technology such as Cleavage Under Targets and Tagmentation (CUT&Tag) allows more SEs to be discovered. However, SE studies in Luchuan and Duroc pigs are very rare in animal husbandry. RESULTS We used the CUT&Tag technique to identify 145 and 378 SEs from the adipose tissues of Luchuan and Duroc pigs, respectively. There were significant differences in the peak coverage ratio of SE peaks in the gene promoter region between the two breeds. Not only that, peak signals at the start and end point of the SE peak profile showed obvious spikes. The proximal target genes of SE were highly expressed compared with the background genes and the typical enhancer target genes. Subsequently, in conjoint analysis with high-throughput chromosome conformation capture sequencing (Hi-C seq) data, we predicted the remote regulatory genes of SE and found that their expression level was related to the distance of SE extended to the loop's anchor, but not the length of loops. According to our prediction model, SEs can maintain promoter accessibility of partial remote target genes through loop domains. Finally, a batch of SEs closely related to fat metabolism traits were obtained by performing a coalition analysis of quantitative trait loci and SE data. CONCLUSIONS This work enabled us to obtain hundreds of SEs from Luchuan and Duroc pigs. Our model provides a new method for predicting the SE remote target genes based on loop domains, and to further explore the potential role of super-enhancer in the regulation of fat metabolism.
Collapse
Affiliation(s)
- Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tengda Huang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Siqi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsu Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Menglong Hou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Songtao Su
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tianyu Jiang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiangling Li
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yixing Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Turtushikh Damba
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yunxiao Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
47
|
Ortolan F, Trenz TS, Delaix CL, Lazzarotto F, Margis-Pinheiro M. bHLH-regulated routes in anther development in rice and Arabidopsis. Genet Mol Biol 2024; 46:e20230171. [PMID: 38372977 PMCID: PMC10875983 DOI: 10.1590/1678-4685-gmb-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024] Open
Abstract
Anther development is a complex process essential for plant reproduction and crop yields. In recent years, significant progress has been made in the identification and characterization of the bHLH transcription factor family involved in anther regulation in rice and Arabidopsis, two extensively studied model plants. Research on bHLH transcription factors has unveiled their crucial function in controlling tapetum development, pollen wall formation, and other anther-specific processes. By exploring deeper into regulatory mechanisms governing anther development and bHLH transcription factors, we can gain important insights into plant reproduction, thereby accelerating crop yield improvement and the development of new plant breeding strategies. This review provides an overview of the current knowledge on anther development in rice and Arabidopsis, emphasizing the critical roles played by bHLH transcription factors in this process. Recent advances in gene expression analysis and functional studies are highlighted, as they have significantly enhanced our understanding of the regulatory networks involved in anther development.
Collapse
Affiliation(s)
- Francieli Ortolan
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
| | - Thomaz Stumpf Trenz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| | - Camila Luiza Delaix
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| | - Marcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Departamento de Genética, Porto Alegre, RS,
Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS,
Brazil
| |
Collapse
|
48
|
Badet T, Tralamazza SM, Feurtey A, Croll D. Recent reactivation of a pathogenicity-associated transposable element is associated with major chromosomal rearrangements in a fungal wheat pathogen. Nucleic Acids Res 2024; 52:1226-1242. [PMID: 38142443 PMCID: PMC10853768 DOI: 10.1093/nar/gkad1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Transposable elements (TEs) are key drivers of genomic variation contributing to recent adaptation in most species. Yet, the evolutionary origins and insertion dynamics within species remain poorly understood. We recapitulate the spread of the pathogenicity-associated Styx element across five species that last diverged ∼11 000 years ago. We show that the element likely originated in the Zymoseptoria fungal pathogen genus and underwent multiple independent reactivation events. Using a global 900-genome panel of the wheat pathogen Zymoseptoria tritici, we assess Styx copy number variation and identify renewed transposition activity in Oceania and South America. We show that the element can mobilize to create additional Styx copies in a four-generation pedigree. Importantly, we find that new copies of the element are not affected by genomic defenses suggesting minimal control against the element. Styx copies are preferentially located in recombination breakpoints and likely triggered multiple types of large chromosomal rearrangements. Taken together, we establish the origin, diversification and reactivation of a highly active TE with likely major consequences for chromosomal integrity and the expression of disease.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
49
|
Wang J, Nakato R. Churros: a Docker-based pipeline for large-scale epigenomic analysis. DNA Res 2024; 31:dsad026. [PMID: 38102723 PMCID: PMC11389749 DOI: 10.1093/dnares/dsad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023] Open
Abstract
The epigenome, which reflects the modifications on chromatin or DNA sequences, provides crucial insight into gene expression regulation and cellular activity. With the continuous accumulation of epigenomic datasets such as chromatin immunoprecipitation followed by sequencing (ChIP-seq) data, there is a great demand for a streamlined pipeline to consistently process them, especially for large-dataset comparisons involving hundreds of samples. Here, we present Churros, an end-to-end epigenomic analysis pipeline that is environmentally independent and optimized for handling large-scale data. We successfully demonstrated the effectiveness of Churros by analyzing large-scale ChIP-seq datasets with the hg38 or Telomere-to-Telomere (T2T) human reference genome. We found that applying T2T to the typical analysis workflow has important impacts on read mapping, quality checks, and peak calling. We also introduced a useful feature to study context-specific epigenomic landscapes. Churros will contribute a comprehensive and unified resource for analyzing large-scale epigenomic data.
Collapse
Affiliation(s)
- Jiankang Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
50
|
Lavezzo GM, Lauretto MDS, Andrioli LPM, Machado-Lima A. Position Weight Matrix or Acyclic Probabilistic Finite Automaton: Which model to use? A decision rule inferred for the prediction of transcription factor binding sites. Genet Mol Biol 2024; 46:e20230048. [PMID: 38285430 PMCID: PMC10945726 DOI: 10.1590/1678-4685-gmb-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/18/2023] [Indexed: 01/30/2024] Open
Abstract
Prediction of transcription factor binding sites (TFBS) is an example of application of Bioinformatics where DNA molecules are represented as sequences of A, C, G and T symbols. The most used model in this problem is Position Weight Matrix (PWM). Notwithstanding the advantage of being simple, PWMs cannot capture dependency between nucleotide positions, which may affect prediction performance. Acyclic Probabilistic Finite Automata (APFA) is an alternative model able to accommodate position dependencies. However, APFA is a more complex model, which means more parameters have to be learned. In this paper, we propose an innovative method to identify when position dependencies influence preference for PWMs or APFAs. This implied using position dependency features extracted from 1106 sets of TFBS to infer a decision tree able to predict which is the best model - PWM or APFA - for a given set of TFBSs. According to our results, as few as three pinpointed features are able to choose the best model, providing a balance of performance (average precision) and model simplicity.
Collapse
Affiliation(s)
- Guilherme Miura Lavezzo
- Universidade de São Paulo, Instituto de Matemática e Estatística,
Programa Interunidades de Pós-Graduação em Bioinformática, São Paulo, SP,
Brazil
| | | | | | - Ariane Machado-Lima
- Universidade de São Paulo, Escola de Artes, Ciências e Humanidades,
São Paulo, SP, Brazil
| |
Collapse
|