1
|
Shyam R, Sekhar Panda H, Mishra J, Jyoti Panda J, Kour A. Emerging biosensors in Phenylketonuria. Clin Chim Acta 2024; 559:119725. [PMID: 38734223 DOI: 10.1016/j.cca.2024.119725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Phenylketonuria (PKU) is an autosomal recessive metabolic disorder resulting from deficient phenylalanine hydroxylase (PAH) enzyme activity, leading to impaired phenylalanine (Phe) metabolism. This condition can lead to intellectual disability, epilepsy, and behavioural issues. Treatment typically involves strict dietary restrictions on natural protein intake, supplemented with chemically manufactured protein substitutes containing amino acids other than Phe. Various approaches, including casein glycomacropeptide (GMP), tetrahydrobiopterin (BH4), phenylalanine ammonia-lyase (PAL) therapy, large neutral amino acid (LNAA) supplementation, enzyme therapy, gene therapy, and medical therapies, aim to prevent Phe transport in the brain to potentially treat PKU. Although newborn screening programs and early dietary interventions have enhanced outcomes of the potential treatment strategies, limitations still persist in this direction. These involve potent accuracy concerns in diagnosis due to the existence of antibiotics in blood of PKU patients, affecting growth of the bacteria in the bacterial inhibition assay. Monitoring involves complex methods for instance, mass spectrometry and high-pressure liquid chromatography, which involve shortcomings such as lengthy protocols and the need for specialized equipment. To address these limitations, adaptable testing formats like bio/nano sensors are emerging with their cost-effectiveness, biodegradability, and rapid, accurate, and sensitive detection capabilities, offering promising alternatives for PKU diagnosis. This review provides insights into current treatment and diagnostic approaches, emphasizing on the potential applications of the diverse sensors intended for PKU diagnosis.
Collapse
Affiliation(s)
- Ritika Shyam
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | | | - Jibanananda Mishra
- School of Biosciences, RIMT University, Mandi Gobindgarh, Punjab 147301, India
| | - Jiban Jyoti Panda
- Institute of Nanoscience and Technology, Mohali, Punjab 140306, India.
| | - Avneet Kour
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India.
| |
Collapse
|
2
|
Donnelly C, Estrella L, Ginevic I, Ganesh J. A Case of DNAJC12-Deficient Hyperphenylalaninemia Detected on Newborn Screening: Clinical Outcomes from Early Detection. Int J Neonatal Screen 2024; 10:7. [PMID: 38248634 PMCID: PMC10801465 DOI: 10.3390/ijns10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
DNAJC12-deficient hyperphenylalaninemia is a recently described inborn error of metabolism associated with hyperphenylalaninemia, neurotransmitter deficiency, and developmental delay caused by biallelic pathogenic variants of the DNAJC12 gene. The loss of the DNAJC12-encoded chaperone results in the destabilization of the biopterin-dependent aromatic amino acid hydroxylases, resulting in deficiencies in dopamine, norepinephrine, and serotonin. We present the case of a patient who screened positive for hyperphenylalaninemia on newborn screening and was discovered to be homozygous for a likely pathogenic variant of DNAJC12. Here, we review the management of DNAJC12-related hyperphenylalaninemia and compare our patient to other reported cases in the literature to investigate how early detection and management may impact clinical outcomes.
Collapse
Affiliation(s)
- Colleen Donnelly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.E.)
| | | | | | - Jaya Ganesh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.E.)
| |
Collapse
|
3
|
Mahendran R, Selvaraj SP, Dhanapal AR, Sarasa SB, Mathias BM, Thankappan B, Femil Selta DR, Naveen P, Poorani R, Sundhar N, Pillai MM, Selvakumar R, Huang CY, Eswaran R, Angayarkanni J. Tetrahydrobiopterin from cyanide-degrading bacterium Bacillus pumilus strain SVD06 induces apoptosis in human lung adenocarcinoma cell (A549). Biotechnol Appl Biochem 2023; 70:2052-2068. [PMID: 37731306 DOI: 10.1002/bab.2509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Tetrahydrobiopterin (BH4) is an essential biological cofactor and a derivative of pterin which is considered potent anticancer agents. In continuation of our previous study on the identification of BH4 from cyanide-degrading Bacillus pumilus, the present study focuses on evaluating the anticancer properties of BH4 on A549, a human lung adenocarcinoma. Anticancer activity analysis shows that BH4 inhibited A549 cell growth after 24 h of incubation with 0.02 mg/mL. In acridine orange/ethidium bromide staining, BH4-treated A549 cells showed apoptotic morphology. BH4 treatment caused cell cycle arrest at G0/G1 phase compared to control cells. BH4 augmented p53 expression in alveolar cancer cells by downregulating MDM2 levels. There was downregulation of casp-3 and upregulation of iNOS gene in BH4-treated A549 cells. Further, docking studies indicated that BH4 had significant interactions with the above proteins affirming the apoptosis mechanism. Thus, BH4 could be considered a potential anticancer drug.
Collapse
Affiliation(s)
- Ramasamy Mahendran
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Anand Raj Dhanapal
- Institute of Forest Genetics and Tree Breeding (IFGTB), Forest Campus, Coimbatore, Tamil Nadu, India
| | - Sabna Bhaskaran Sarasa
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Beutline Malgija Mathias
- Computational Science Laboratory, MCC-MRF Innovation Park, Madras Christian College, Chennai, Tamil Nadu, India
| | - Bency Thankappan
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Daniel Raja Femil Selta
- Department of Biochemistry and Cancer Research Center, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Palanivel Naveen
- Department of Chemistry, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - Rhenghachar Poorani
- Gayatri Vidya parishad Institute of Health Care and Medical Technology, Visakhapatnam, India
| | - Navaneethan Sundhar
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mamatha M Pillai
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Rajendran Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Raju Eswaran
- Department of Zoology, The Madura College, Madurai, Tamil Nadu, India
| | - Jayaraman Angayarkanni
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Leuzzi V, Galosi S. Experimental pharmacology: Targeting metabolic pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:259-315. [PMID: 37482395 DOI: 10.1016/bs.irn.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.
Collapse
Affiliation(s)
- Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
5
|
Cronin SJF, Andrews NA, Latremoliere A. Peripheralized sepiapterin reductase inhibition as a safe analgesic therapy. Front Pharmacol 2023; 14:1173599. [PMID: 37251335 PMCID: PMC10213231 DOI: 10.3389/fphar.2023.1173599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The development of novel analgesics for chronic pain in the last 2 decades has proven virtually intractable, typically failing due to lack of efficacy and dose-limiting side effects. Identified through unbiased gene expression profiling experiments in rats and confirmed by human genome-wide association studies, the role of excessive tetrahydrobiopterin (BH4) in chronic pain has been validated by numerous clinical and preclinical studies. BH4 is an essential cofactor for aromatic amino acid hydroxylases, nitric oxide synthases, and alkylglycerol monooxygenase so a lack of BH4 leads to a range of symptoms in the periphery and central nervous system (CNS). An ideal therapeutic goal therefore would be to block excessive BH4 production, while preventing potential BH4 rundown. In this review, we make the case that sepiapterin reductase (SPR) inhibition restricted to the periphery (i.e., excluded from the spinal cord and brain), is an efficacious and safe target to alleviate chronic pain. First, we describe how different cell types that engage in BH4 overproduction and contribute to pain hypersensitivity, are themselves restricted to peripheral tissues and show their blockade is sufficient to alleviate pain. We discuss the likely safety profile of peripherally restricted SPR inhibition based on human genetic data, the biochemical alternate routes of BH4 production in various tissues and species, and the potential pitfalls to predictive translation when using rodents. Finally, we propose and discuss possible formulation and molecular strategies to achieve peripherally restricted, potent SPR inhibition to treat not only chronic pain but other conditions where excessive BH4 has been demonstrated to be pathological.
Collapse
Affiliation(s)
| | - Nick A. Andrews
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Alban Latremoliere
- Departments of Neurosurgery and Neuroscience, Johns Hopkins School of Medicine, Neurosurgery Pain Research Institute, Baltimore, MD, United States
| |
Collapse
|
6
|
Li Y, Tan Z, Zhang Y, Zhang Z, Hu Q, Liang K, Jun Y, Ye Y, Li YC, Li C, Liao L, Xu J, Xing Z, Pan Y, Chatterjee SS, Nguyen TK, Hsiao H, Egranov SD, Putluri N, Coarfa C, Hawke DH, Gunaratne PH, Tsai KL, Han L, Hung MC, Calin GA, Namour F, Guéant JL, Muntau AC, Blau N, Sutton VR, Schiff M, Feillet F, Zhang S, Lin C, Yang L. A noncoding RNA modulator potentiates phenylalanine metabolism in mice. Science 2021; 373:662-673. [PMID: 34353949 PMCID: PMC9714245 DOI: 10.1126/science.aba4991] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/31/2020] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
The functional role of long noncoding RNAs (lncRNAs) in inherited metabolic disorders, including phenylketonuria (PKU), is unknown. Here, we demonstrate that the mouse lncRNA Pair and human HULC associate with phenylalanine hydroxylase (PAH). Pair-knockout mice exhibited excessive blood phenylalanine (Phe), musty odor, hypopigmentation, growth retardation, and progressive neurological symptoms including seizures, which faithfully models human PKU. HULC depletion led to reduced PAH enzymatic activities in human induced pluripotent stem cell-differentiated hepatocytes. Mechanistically, HULC modulated the enzymatic activities of PAH by facilitating PAH-substrate and PAH-cofactor interactions. To develop a therapeutic strategy for restoring liver lncRNAs, we designed GalNAc-tagged lncRNA mimics that exhibit liver enrichment. Treatment with GalNAc-HULC mimics reduced excessive Phe in Pair -/- and Pah R408W/R408W mice and improved the Phe tolerance of these mice.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi Tan
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yao Jun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yi-Chuan Li
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Chunlai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan Liao
- Genetically Engineered Mouse Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yinghong Pan
- Department of Biochemistry and Biology, University of Houston, Houston, TX 77030, USA
| | - Sujash S Chatterjee
- Department of Biochemistry and Biology, University of Houston, Houston, TX 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heidi Hsiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Preethi H Gunaratne
- Department of Biochemistry and Biology, University of Houston, Houston, TX 77030, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fares Namour
- Department of Molecular Medicine and Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy F-54000, France
- INSERM, U1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Jean-Louis Guéant
- Department of Molecular Medicine and Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy F-54000, France
- INSERM, U1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zurich, CH-8032 Zurich, Switzerland
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics Department, University of Paris, Paris 75007, France
- Inserm UMR_S1163, Institut Imagine, Paris 75015, France
| | - François Feillet
- INSERM, U1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy F-54000, France.
- Pediatric Department Reference Center for Inborn Errors of Metabolism Children University Hospital Nancy, Nancy F-54000, France
| | - Shuxing Zhang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Abstract
Phenylketonuria (PKU; also known as phenylalanine hydroxylase (PAH) deficiency) is an autosomal recessive disorder of phenylalanine metabolism, in which especially high phenylalanine concentrations cause brain dysfunction. If untreated, this brain dysfunction results in severe intellectual disability, epilepsy and behavioural problems. The prevalence varies worldwide, with an average of about 1:10,000 newborns. Early diagnosis is based on newborn screening, and if treatment is started early and continued, intelligence is within normal limits with, on average, some suboptimal neurocognitive function. Dietary restriction of phenylalanine has been the mainstay of treatment for over 60 years and has been highly successful, although outcomes are still suboptimal and patients can find the treatment difficult to adhere to. Pharmacological treatments are available, such as tetrahydrobiopterin, which is effective in only a minority of patients (usually those with milder PKU), and pegylated phenylalanine ammonia lyase, which requires daily subcutaneous injections and causes adverse immune responses. Given the drawbacks of these approaches, other treatments are in development, such as mRNA and gene therapy. Even though PAH deficiency is the most common defect of amino acid metabolism in humans, brain dysfunction in individuals with PKU is still not well understood and further research is needed to facilitate development of pathophysiology-driven treatments.
Collapse
Affiliation(s)
- Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
| | - Nenad Blau
- University Children's Hospital in Zurich, Zurich, Switzerland
| | - Cary Harding
- Department of Molecular and Medical Genetics and Department of Pediatrics, Oregon Health & Science University, Oregon, USA
| | | | - Nicola Longo
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Annet M Bosch
- University of Amsterdam, Department of Pediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Ilgaz F, Marsaux C, Pinto A, Singh R, Rohde C, Karabulut E, Gökmen-Özel H, Kuhn M, MacDonald A. Protein Substitute Requirements of Patients with Phenylketonuria on BH4 Treatment: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:1040. [PMID: 33807079 PMCID: PMC8004763 DOI: 10.3390/nu13031040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
The traditional treatment for phenylketonuria (PKU) is a phenylalanine (Phe)-restricted diet, supplemented with a Phe-free/low-Phe protein substitute. Pharmaceutical treatment with synthetic tetrahydrobiopterin (BH4), an enzyme cofactor, allows a patient subgroup to relax their diet. However, dietary protocols guiding the adjustments of protein equivalent intake from protein substitute with BH4 treatment are lacking. We systematically reviewed protein substitute usage with long-term BH4 therapy. Electronic databases were searched for articles published between January 2000 and March 2020. Eighteen studies (306 PKU patients) were eligible. Meta-analyses demonstrated a significant increase in Phe and natural protein intakes and a significant decrease in protein equivalent intake from protein substitute with cofactor therapy. Protein substitute could be discontinued in 51% of responsive patients, but was still required in 49%, despite improvement in Phe tolerance. Normal growth was maintained, but micronutrient deficiency was observed with BH4 treatment. A systematic protocol to increase natural protein intake while reducing protein substitute dose should be followed to ensure protein and micronutrient requirements are met and sustained. We propose recommendations to guide healthcare professionals when adjusting dietary prescriptions of PKU patients on BH4. Studies investigating new therapeutic options in PKU should systematically collect data on protein substitute and natural protein intakes, as well as other nutritional factors.
Collapse
Affiliation(s)
- Fatma Ilgaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey; (F.I.); (H.G.-Ö.)
| | - Cyril Marsaux
- Danone Nutricia Research, 3584CT Utrecht, The Netherlands;
| | - Alex Pinto
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (A.P.); (A.M.)
| | - Rani Singh
- Metabolic Genetics Nutrition Program, Department of Human Genetics, Emory University, Atlanta, GA 30322, USA;
| | - Carmen Rohde
- Department of Paediatrics of the University Clinics Leipzig, University of Leipzig, 04103 Leipzig, Germany;
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey;
| | - Hülya Gökmen-Özel
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey; (F.I.); (H.G.-Ö.)
| | - Mirjam Kuhn
- Danone Nutricia Research, 3584CT Utrecht, The Netherlands;
| | - Anita MacDonald
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (A.P.); (A.M.)
| |
Collapse
|
9
|
Shintaku H, Ohura T, Takayanagi M, Kure S, Owada M, Matsubara Y, Yoshino M, Okano Y, Ito T, Okuyama T, Nakamura K, Matuo M, Endo F, Ida H. Guide for diagnosis and treatment of hyperphenylalaninemia. Pediatr Int 2021; 63:8-12. [PMID: 33423362 DOI: 10.1111/ped.14399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/20/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022]
Abstract
IMPORTANCE Sapropterin hydrochloride, a natural coenzyme (6R-tetrahydrobiopterin) of phenylalanine hydroxylase, was first approved as a treatment for tetrahydrobiopterin deficiency in 1992 in Japan, and was then approved as a treatment for a tetrahydrobiopterin-responsive hyperphenylalaninemia in 2007 and 2008, in the USA and Japan, respectively. Guidelines are required on the proper use of sapropterin hydrochloride for tetrahydrobiopterin-responsive hyperphenylalaninemia. OBSERVATIONS It is recommended that tetrahydrobiopterin-responsive hyperphenylalaninemia should be diagnosed in all cases of hyperphenylalaninemia, including phenylketonuria, by tetrahydrobiopterin administration tests rather than by phenotype or blood phenylalanine levels. CONCLUSIONS AND RELEVANCE If tetrahydrobiopterin-responsive hyperphenylalaninemia is diagnosed, all ages can be treated with sapropterin hydrochloride. Although there are reports that sapropterin hydrochloride is effective and safe for the prevention of maternal phenylketonuria, further investigation is required.
Collapse
Affiliation(s)
- Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Masaki Takayanagi
- Department of Physical Therapy, Faculty of Health Care and Medical Sports, Teikyo Heisei University, Tokyo, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Misao Owada
- First Division on Special Formula, Imperial Gift Foundation Boshi Aiiku Kai, Tokyo, Japan
| | | | - Makoto Yoshino
- Laboratory of Gene Therapy and Regenerative Medicine, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Fukuoka, Japan
| | | | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University School of Medicine, Aichi, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Masafumi Matuo
- Graduate School of Rehabilitation, Kobe Gakuin University, Hyogo, Japan
| | - Fumio Endo
- Kumamoto Ezuko Medical Care Center, kumamoto, Japan
| | - Hiroyuki Ida
- Department of Pediatrics, The Jikei University, Tokyo, Japan
| |
Collapse
|
10
|
Porta F, Ponzone A, Spada M. Phenylalanine and tyrosine metabolism in DNAJC12 deficiency: A comparison between inherited hyperphenylalaninemias and healthy subjects. Eur J Paediatr Neurol 2020; 28:77-80. [PMID: 32800687 DOI: 10.1016/j.ejpn.2020.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
DNAJC12 deficiency is a new cause of inherited hyperphenylalaninemia (HPA), besides phenylalanine hydroxylase (PAH) deficiency and tetrahydrobiopterin (BH4) deficiencies. Differently from other inherited HPAs, no quantitative data on peripheral phenylalanine (Phe) and tyrosine (Tyr) metabolism are currently available in DNAJC12 deficiency. Phe and Tyr metabolism in a patient with DNAJC12 after a simple Phe oral loading test (100 mg/kg) and a combined Phe (100 mg/kg) + BH4 (20 mg/kg) loading test is presented and compared to patients with disorders of BH4 metabolism, PAH deficiency, and healthy controls. Phe and Tyr metabolism in DNAJC12 deficiency is similar to non-PKU HPA. Differently from BH4 deficiency, BH4 administration in DNAJC12 deficiency does not firmly enhance the rate of Phe hydroxylation. A central effect of BH4 treatment in DNAJC12 deficiency cannot be excluded.
Collapse
Affiliation(s)
- Francesco Porta
- Department of Pediatrics, University of Torino, Torino, Italy.
| | - Alberto Ponzone
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
11
|
Sarodaya N, Suresh B, Kim KS, Ramakrishna S. Protein Degradation and the Pathologic Basis of Phenylketonuria and Hereditary Tyrosinemia. Int J Mol Sci 2020; 21:ijms21144996. [PMID: 32679806 PMCID: PMC7404301 DOI: 10.3390/ijms21144996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
A delicate intracellular balance among protein synthesis, folding, and degradation is essential to maintaining protein homeostasis or proteostasis, and it is challenged by genetic and environmental factors. Molecular chaperones and the ubiquitin proteasome system (UPS) play a vital role in proteostasis for normal cellular function. As part of protein quality control, molecular chaperones recognize misfolded proteins and assist in their refolding. Proteins that are beyond repair or refolding undergo degradation, which is largely mediated by the UPS. The importance of protein quality control is becoming ever clearer, but it can also be a disease-causing mechanism. Diseases such as phenylketonuria (PKU) and hereditary tyrosinemia-I (HT1) are caused due to mutations in PAH and FAH gene, resulting in reduced protein stability, misfolding, accelerated degradation, and deficiency in functional proteins. Misfolded or partially unfolded proteins do not necessarily lose their functional activity completely. Thus, partially functional proteins can be rescued from degradation by molecular chaperones and deubiquitinating enzymes (DUBs). Deubiquitination is an important mechanism of the UPS that can reverse the degradation of a substrate protein by covalently removing its attached ubiquitin molecule. In this review, we discuss the importance of molecular chaperones and DUBs in reducing the severity of PKU and HT1 by stabilizing and rescuing mutant proteins.
Collapse
Affiliation(s)
- Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.-S.K.); or (S.R.)
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (B.S.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
- Correspondence: (K.-S.K.); or (S.R.)
| |
Collapse
|
12
|
Tran ML, Génisson Y, Ballereau S, Dehoux C. Second-Generation Pharmacological Chaperones: Beyond Inhibitors. Molecules 2020; 25:molecules25143145. [PMID: 32660097 PMCID: PMC7397201 DOI: 10.3390/molecules25143145] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023] Open
Abstract
Protein misfolding induced by missense mutations is the source of hundreds of conformational diseases. The cell quality control may eliminate nascent misfolded proteins, such as enzymes, and a pathological loss-of-function may result from their early degradation. Since the proof of concept in the 2000s, the bioinspired pharmacological chaperone therapy became a relevant low-molecular-weight compound strategy against conformational diseases. The first-generation pharmacological chaperones were competitive inhibitors of mutant enzymes. Counterintuitively, in binding to the active site, these inhibitors stabilize the proper folding of the mutated protein and partially rescue its cellular function. The main limitation of the first-generation pharmacological chaperones lies in the balance between enzyme activity enhancement and inhibition. Recent research efforts were directed towards the development of promising second-generation pharmacological chaperones. These non-inhibitory ligands, targeting previously unknown binding pockets, limit the risk of adverse enzymatic inhibition. Their pharmacophore identification is however challenging and likely requires a massive screening-based approach. This review focuses on second-generation chaperones designed to restore the cellular activity of misfolded enzymes. It intends to highlight, for a selected set of rare inherited metabolic disorders, the strategies implemented to identify and develop these pharmacologically relevant small organic molecules as potential drug candidates.
Collapse
Affiliation(s)
| | | | | | - Cécile Dehoux
- Correspondence: (S.B.); (C.D.); Tel.: +33-5-6155-6127 (C.D.)
| |
Collapse
|
13
|
Management of three preterm infants with phenylketonuria. Nutrition 2019; 71:110619. [PMID: 31864970 DOI: 10.1016/j.nut.2019.110619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 10/25/2022]
Abstract
Providing adequate amounts of protein in preterm infants suffering from a metabolic disease that requires a reduced intake of natural protein is challenging. Phenylketonuria (PKU) is an inborn error of metabolism affecting the enzymatic conversion of phenylalanine to tyrosine. The dietary treatment of PKU aims to lower phenylalanine concentrations in the blood by implementing a low-phenylalanine diet restrictive in natural protein. We describe the nutritional management of three preterm infants, two with very low birth weight, with PKU detected by newborn screening. All three infants tolerated high amounts of phenylalanine; two were breastfed unrestrictedly during late prematurity. We show that nutrition of preterm infants with PKU according to recommendations of early and intensive nutrition with a high intake of protein is feasible even in infants with impaired enteral feeding. Due to a high phenylalanine tolerance of PKU infants during prematurity, there is no need for a phenylalanine-free parenteral amino acid mixture. During the catabolic state of prematurity preterm infants with PKU have phenylalanine requirements comparable to healthy preterm infants.
Collapse
|
14
|
Lv W, Li Z, Wei X, Zhu H, Teng Y, Zhou M, Gong Y, Cram DS, Liang D, Han L, Wu L. Noninvasive fetal genotyping in pregnancies at risk for PKU using a comprehensive quantitative cSMART assay for PAH gene mutations: a clinical feasibility study. BJOG 2019; 126:1466-1474. [PMID: 31295388 DOI: 10.1111/1471-0528.15869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the diagnostic performance of a novel circulating single molecule amplification and re-sequencing technology (cSMART) method for noninvasive prenatal testing (NIPT) of Phenylketonuria (PKU). DESIGN Blinded NIPT analysis of pregnancies at high risk for PKU. SETTING Shanghai Xinhua Hospital and Hunan Jiahui Genetics Hospital, China. POPULATION Couples (n = 33) with a child diagnosed with PKU. METHODS Trio testing for pathogenic PAH mutations was performed by Sanger sequencing. In second pregnancies, invasive prenatal diagnosis (IPD) was used to determine fetal genotypes. NIPT was performed using a PAH gene-specific cSMART assay. Based on the plasma DNA mutation ratio relative to the fetal DNA fraction, fetal genotypes were assigned using a maximum-likelihood algorithm. MAIN OUTCOME MEASURES Concordance of fetal genotyping results between IPD and NIPT, and the sensitivity and specificity of the NIPT assay. RESULTS Compared with gold standard IPD results, 32 of 33 fetuses (96.97%) were accurately genotyped by NIPT. The sensitivity and specificity of the NIPT assay was 100.00% (95% CI 59.04-100.00%) and 96.15% (95% CI 80.36-99.90%), respectively. CONCLUSIONS The novel cSMART assay demonstrated high accuracy for correctly calling fetal genotypes. We propose that this test has useful clinical utility for the rapid screening of high-risk and low-risk pregnancies with a known history of PKU on one or both sides of the family. TWEETABLE ABSTRACT NIPT of couples at high risk for PKU using a full-coverage cSMART PAH gene test.
Collapse
Affiliation(s)
- W Lv
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Z Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - X Wei
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - H Zhu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Y Teng
- Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - M Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Y Gong
- Berry Genomics Corporation, Beijing, China
| | - D S Cram
- Berry Genomics Corporation, Beijing, China.,Children's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - D Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - L Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - L Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| |
Collapse
|
15
|
In vitro residual activities in 20 variants of phenylalanine hydroxylase and genotype-phenotype correlation in phenylketonuria patients. Gene 2019; 707:239-245. [PMID: 31102715 DOI: 10.1016/j.gene.2019.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022]
Abstract
Phenylketonuria (PKU), caused by phenylalanine hydroxylase (PAH) gene variants, is a common autosomal inherited metabolic disease. So far, 1111 PAH variants have been revealed. The residual activity of the PAH variants is the key determinant of the metabolic phenotype and BH4 responsiveness in PKU patients. In this study, the spectrum of PAH variants in 1083 Chinese PKU patients was analyzed. Then 20 variants (p.L52F, p.R86P, p.L128P, p.L142P, p.D163N, p.C203G, p.E214G, p.F260L, p.M276T, p.L311R, p.P314A, p.L364F, p.Q375H, p.F382I, p.A395S, p.V412D, p.E108*, p.C203*, p.C284* and p.E353*) were expressed in COS-7 cells. The residual activities and protein expression levels were detected by isotope-dilution liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and Western blotting, respectively. We compared the results of the phenotypic prediction based on APV and PAH activity respectively, and further explored the relationship between residual activity and phenotype in PKU patients. We reported 9 newly discovered PAH variants for the first time, thereby expanding the spectrum of PAH variants. Among the 20 variants in our assay, 8 variants showed mild impaired residual activities (48-92%) and approximately normal protein expression levels compared to the wild-type PAH. In contrast, 9 variants showed severely impaired residual activities (0-34%) and reduced protein expression. However, three variants (p.L52F, p.F260L and p.P314A) showed impaired residual activities (5%, 32% and 29%), although the proteins were well expressed. We assigned APV scores for 14 variants, in which the results of the phenotypic prediction were consistent for 12/14 (86%) variants based on APV and residual activity respectively, and the residual activity correctly predicted 17/22 (77%) of the patients. Our study helped to further understand the genotype-phenotype correlation in PKU patients.
Collapse
|
16
|
Vieira Neto E, Laranjeira F, Quelhas D, Ribeiro I, Seabra A, Mineiro N, Carvalho LM, Lacerda L, Ribeiro MG. Genotype-phenotype correlations and BH 4 estimated responsiveness in patients with phenylketonuria from Rio de Janeiro, Southeast Brazil. Mol Genet Genomic Med 2019; 7:e610. [PMID: 30829006 PMCID: PMC6503030 DOI: 10.1002/mgg3.610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Genetic heterogeneity and compound heterozygosis give rise to a continuous spectrum of phenylalanine hydroxylase deficiency and metabolic phenotypes in phenylketonuria (PKU). The most used parameters for evaluating phenotype in PKU are pretreatment phenylalanine (Phe) levels, tolerance for dietary Phe, and Phe overloading test. Phenotype can vary from a "classic" (severe) form to mild hyperphenylalaninemia, which does not require dietary treatment. A subset of patients is responsive to treatment by the cofactor tetrahydrobiopterin (BH4 ). Genotypes of PKU patients from Rio de Janeiro, Brazil, were compared to predicted and observed phenotypes. Genotype-based estimations of responsiveness to BH4 were also conducted. METHODS Phenotype was defined by pretreatment Phe levels. A standard prediction system based on arbitrary assigned values was employed to measure genotype-phenotype concordance. Patients were also estimated as BH4 -responders according to the responsiveness previously reported for their mutations and genotypes. RESULTS A 48.3% concordance rate between genotype-predicted and observed phenotypes was found. When the predicted phenotypes included those reported at the BIOPKU database, the concordance rate reached 77%. A total of 18 genotypes from 30 patients (29.4%) were estimated as of potential or probable BH4 responsiveness. Inconsistencies were observed in genotypic combinations including the common "moderate" mutations p.R261Q, p.V388M, and p.I65T and the mild mutations p.L48S, p.R68S, and p.L249F. CONCLUSION The high discordance rate between genotype-predicted and observed metabolic phenotypes in this study seems to be due partially to the high frequency of the so-called "moderate" common mutations, p.R261Q, p.V388M, and p.I65T, which are reported to be associated to erratic or more severe than expected metabolic phenotypes. Although our results of BH4 estimated responsiveness must be regarded as tentative, it should be emphasized that genotyping and genotype-phenotype association studies are important in selecting patients to be offered a BH4 overload test, especially in low-resource settings like Brazil.
Collapse
Affiliation(s)
- Eduardo Vieira Neto
- Agência Nacional de Saúde SuplementarGerência de Monitoramento AssistencialRio de JaneiroBrazil
- Serviço de Genética MédicaInstituto de Puericultura e Pediatria Martagão GesteiraUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Francisco Laranjeira
- Centro de Genética Médica Doutor Jacinto MagalhãesUnidade de Bioquímica GenéticaPortoPortugal
| | - Dulce Quelhas
- Centro de Genética Médica Doutor Jacinto MagalhãesUnidade de Bioquímica GenéticaPortoPortugal
- Unidade Multidisciplinar de Investigação BiomédicaUniversidade do PortoPortoPortugal
| | - Isaura Ribeiro
- Centro de Genética Médica Doutor Jacinto MagalhãesUnidade de Bioquímica GenéticaPortoPortugal
- Unidade Multidisciplinar de Investigação BiomédicaUniversidade do PortoPortoPortugal
| | - Alexandre Seabra
- Centro de Genética Médica Doutor Jacinto MagalhãesUnidade de Bioquímica GenéticaPortoPortugal
- Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Nicole Mineiro
- Centro de Genética Médica Doutor Jacinto MagalhãesUnidade de Bioquímica GenéticaPortoPortugal
| | - Lilian M. Carvalho
- Serviço de MetabologiaInstituto Estadual de Diabetes e Endocrinologia Luiz CapriglioneRio de JaneiroBrazil
| | - Lúcia Lacerda
- Centro de Genética Médica Doutor Jacinto MagalhãesUnidade de Bioquímica GenéticaPortoPortugal
| | - Márcia G. Ribeiro
- Serviço de Genética MédicaInstituto de Puericultura e Pediatria Martagão GesteiraUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
17
|
|
18
|
Liu N, Wang Y, Yang M, Bian W, Zeng L, Yin S, Xiong Z, Hu Y, Wang S, Meng B, Sun J, Yang X. New Rice-Derived Short Peptide Potently Alleviated Hyperuricemia Induced by Potassium Oxonate in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:220-228. [PMID: 30562028 DOI: 10.1021/acs.jafc.8b05879] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gout that caused by hyperuricemia affects human health seriously and more efficient drugs are urgently required clinically. In this study, a novel peptide named RDP1 (AAAAGAKAR, 785.91 Da) was identified from the extract of shelled fruits of Oryza sativa. Our results demonstrated that RDP1 (the minimum effective concentration is 10 μg/kg) could significantly reduce the serum uric acid and creatinine and alleviate hyperuricemic nephropathy in rats by intragastric administration. RDP1 inhibited xanthine oxidase, which also was verified at the animal level. Results from molecular docking indicated that RDP1 can inhibit uric acid formation by occupying the binding site of xanthine oxidase to xanthine. Besides, RDP1 showed no toxicity on rats and was stable in several temperatures, demonstrating its advantages for transportation. This research was the first discovery of antihyperuricemic peptide from the shelled fruits of O. Sativa and provided a new candidate for the development of hypouricemic drugs.
Collapse
Affiliation(s)
- Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science , Kunming Medical University , Kunming 650500 , Yunnan , China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy , Yunnan MinZu University , Kunming 650500 , Yunnan , China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science , Kunming Medical University , Kunming 650500 , Yunnan , China
| | - Wenxin Bian
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science , Kunming Medical University , Kunming 650500 , Yunnan , China
| | - Lin Zeng
- Public Technical Service Center, Kunming Institute of Zoology , Chinese Academy of Science , Kunming 650223 , Yunnan , China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science , Kunming Medical University , Kunming 650500 , Yunnan , China
| | - Ziqian Xiong
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science , Kunming Medical University , Kunming 650500 , Yunnan , China
| | - Yan Hu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science , Kunming Medical University , Kunming 650500 , Yunnan , China
| | - Siyuan Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy , Yunnan MinZu University , Kunming 650500 , Yunnan , China
| | - Buliang Meng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science , Kunming Medical University , Kunming 650500 , Yunnan , China
| | - Jun Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science , Kunming Medical University , Kunming 650500 , Yunnan , China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science , Kunming Medical University , Kunming 650500 , Yunnan , China
| |
Collapse
|
19
|
Wang W, Yang J, Xue J, Mu W, Zhang X, Wu W, Xu M, Gong Y, Liu Y, Zhang Y, Xie X, Gu W, Bai J, Cram DS. A comprehensive multiplex PCR based exome-sequencing assay for rapid bloodspot confirmation of inborn errors of metabolism. BMC MEDICAL GENETICS 2019; 20:3. [PMID: 30612563 PMCID: PMC6322297 DOI: 10.1186/s12881-018-0731-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Tandem mass spectrometry (MS MS) and simple fluorometric assays are currently used in newborn screening programs to detect inborn errors of metabolism (IEM). The aim of the study was to evaluate the clinical utility of exome sequencing as a second tier screening method to assist clinical diagnosis of the newborn. METHODS A novel PCR-exome amplification and re-sequencing (PEARS) assay was designed and used to detect mutations in 122 genes associated with 101 IEM. Newborn bloodspots positive by biochemical testing were analysed by PEARS assay to detect pathogenic mutations relevant to the IEM. RESULTS In initial validation studies of genomic DNA samples, PEARS assay correctly detected 25 known mutations associated with 17 different IEM. Retrospective gene analysis of newborns with clinical phenylketonuria (PKU), identified compound heterozygote phenylalanine hydroxylase (PAH) gene mutations in eight of nine samples (89%). Prospective analysis of 211 bloodspots correctly identified the two true PKU samples, yielding positive and negative predictive values of 100%. Testing of 8 true positive MS MS samples correctly identified potentially pathogenic compound heterozygote genotypes in 2 cases of citrullinemia type 1 and one case each of methylmalonic acidemia, isobutyryl-CoA dehydrogenase deficiency, short chain acyl-CoA dehydrogenase deficiency and glutaric acid type II and heterozygous genotypes in 2 cases of autosomal dominant methioninemia. Analysis of 11 of 12 false positive MS MS samples for other IEM identified heterozygous carriers in 8 cases for the relevant genes associated with the suspected IEM. In the remaining 3 cases, the test revealed compound heterozygote mutations in other metabolic genes not associated with the suspected IEM, indicating a misinterpretation of the original MS MS data. CONCLUSIONS The PEARS assay has clinical utility as a rapid and cost effective second-tier test to assist the clinician to accurately diagnose newborns with a suspected IEM.
Collapse
Affiliation(s)
- Wenjie Wang
- Children and Women's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - Jianping Yang
- Children and Women's Hospital of Shanxi, Newborn Disease Screening Center of Shanxi Province, Taiyuan, Shanxi, China
| | - Jinjie Xue
- Children and Women's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - Wenjuan Mu
- Children and Women's Hospital of Shanxi, Newborn Disease Screening Center of Shanxi Province, Taiyuan, Shanxi, China
| | - Xiaogang Zhang
- Children and Women's Hospital of Shanxi, Newborn Disease Screening Center of Shanxi Province, Taiyuan, Shanxi, China
| | - Wang Wu
- Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China
| | - Mengnan Xu
- Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China
| | - Yuyan Gong
- Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China
| | - Yiqian Liu
- Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China
| | - Yu Zhang
- Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China
| | - Xiaobing Xie
- Beijing Chigene Translational Medicial Research Center Co., Beijing, 101111, China
| | - Weiyue Gu
- Beijing Chigene Translational Medicial Research Center Co., Beijing, 101111, China
| | - Jigeng Bai
- Children and Women's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - David S Cram
- Children and Women's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, Shanxi, China. .,Beijing Berry Genomics Corporation, Building 5, Courtyard 4, Yiliaoyuan Road, ZGC Life Science Park, Beijing, 102206, Changping District, China.
| |
Collapse
|
20
|
Sakamoto O, Arai-Ichinoi N, Murayama K, Kure S. Successful control of maternal phenylketonuria by tetrahydrobiopterin. Pediatr Int 2018; 60:985-986. [PMID: 30345699 DOI: 10.1111/ped.13678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Osamu Sakamoto
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | | | - Kei Murayama
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Bartus A, Palasti F, Juhasz E, Kiss E, Simonova E, Sumanszki C, Reismann P. The influence of blood phenylalanine levels on neurocognitive function in adult PKU patients. Metab Brain Dis 2018; 33:1609-1615. [PMID: 29948654 DOI: 10.1007/s11011-018-0267-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
Abstract
It is well known that hyperphenylalaninemia caused by phenylketonuria (PKU) negatively influences cognitive performance. Several tests have been used to study these functions. Until now, no universal, optimal tool has been developed for detecting PKU-caused brain dysfunctions. Using computerized neuropsychological tests during daily routine would be helpful for screening subclinical brain deficits in adult PKU patients. In a monocentric, cross-sectional study, adult patients with PKU (n = 46; median age = 29.5 years; female/male ratio = 21/25) were tested with the computerized Cambridge Cognition (CANTAB) test measuring neurocognitive functions. Patients were divided into two groups: The "on diet" group included patients whose blood Phe-level was under 600 μmol/l (n = 20), and the "loose diet" group included patients whose blood Phe-level was above 600 μmol/l (n = 26) at the examination time. The results of the PKU-affected individuals were compared with a healthy control group (n = 31; median age = 25 years; female/male ratio = 11/20). Compared with the control group, PKU patients had significantly worse test results in memory, problem-solving skills, and strategy. However, there were no significant differences in response speed or initial thinking time. There was no correlation between the blood Phe-level, tyrosine (Tyr)-level or Phe/Tyr ratio and the different cognitive test results. There were no significant differences in test results between the two PKU subgroups. Several cognitive functions measured by CANTAB are negatively influenced by hyperphenylalaninemia in adult PKU patients. However, response speed and initial thinking time were not impaired as seriously as other functions. Patients with lower Phe-levels failed to achieve better test results than patients whose Phe-levels were notably elevated.
Collapse
Affiliation(s)
- A Bartus
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest, H-1088, Hungary
| | - F Palasti
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest, H-1088, Hungary
| | - E Juhasz
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest, H-1088, Hungary
| | - E Kiss
- 1st Department of Pediatrics, Semmelweis University, Bókay János u. 53-54, Budapest, H-1083, Hungary
| | - E Simonova
- 1st Department of Pediatrics, Semmelweis University, Bókay János u. 53-54, Budapest, H-1083, Hungary
| | - Cs Sumanszki
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest, H-1088, Hungary
| | - P Reismann
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest, H-1088, Hungary.
| |
Collapse
|
22
|
Molecular Analysis of PKU-Associated PAH Mutations: A Fast and Simple Genotyping Test. Methods Protoc 2018; 1:mps1030030. [PMID: 31164572 PMCID: PMC6481045 DOI: 10.3390/mps1030030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022] Open
Abstract
Neonatal screening for phenylketonuria (PKU, OMIM: 261600) was introduced at the end of the 1960s. We developed a rapid and simple molecular test for the most frequent phenylalanine hydroxylase (PAH, Gene ID: 5053) mutations. Using this method to detect the 18 most frequent mutations, it is possible to achieve a 75% detection rate in Italian population. The variants selected also reach a high detection rate in other populations, for example, 70% in southern Germany, 68% in western Germany, 76% in Denmark, 68% in Sweden, 63% in Poland, and 60% in Bulgaria. We successfully applied this confirmation test in neonatal screening for hyperphenylalaninemias using dried blood spots and obtained the genotype in approximately 48 h. The method was found to be suitable as second tier test in neonatal screening for hyperphenylalaninemias in neonates with a positive screening test. This test can also be useful for carrier screening because it can bypass the entire coding sequence and intron–exon boundaries sequencing, thereby overcoming the questions that this approach implies, such as new variant interpretations.
Collapse
|
23
|
Schwoerer JS, Drilias N, Kuhl A, Mochal S, Baker M. Genotypes of patients with phenylalanine hydroxylase deficiency in the Wisconsin Amish. Mol Genet Metab Rep 2018; 15:75-77. [PMID: 29560316 PMCID: PMC5857495 DOI: 10.1016/j.ymgmr.2018.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 11/29/2022] Open
Abstract
In the Plain Community, there is an increased frequency of genetic disorders including phenylalanine hydroxylase (PAH) deficiency. Common pathogenic variants have been observed due to founder effect and closed community. This study obtained genotypes of 12 Plain individuals with PAH deficiency, identified through newborn screen or diagnosed by symptomatic presentation, who are receiving medical care at the University of Wisconsin metabolic clinic. Genotype and phenotypic data were evaluated to characterize genotype-phenotype correlations. Results can inform the need for confirmatory testing for the disorder and provide a better understanding of the biochemical phenotype, which may help with management.
Collapse
Affiliation(s)
| | - Nicoletta Drilias
- University of Wisconsin Department of Pediatrics, Waisman Center Madison, WI, USA
| | - Ashley Kuhl
- University of Wisconsin Department of Pediatrics, Waisman Center Madison, WI, USA
| | - Sean Mochal
- Newborn Screening Laboratory, Wisconsin State Laboratory of Hygiene Madison, WI, USA
| | - Mei Baker
- University of Wisconsin Department of Pediatrics, Waisman Center Madison, WI, USA
- Newborn Screening Laboratory, Wisconsin State Laboratory of Hygiene Madison, WI, USA
| |
Collapse
|
24
|
Zhang Z, Gao JJ, Feng Y, Zhu LL, Yan H, Shi XF, Chang AM, Shi Y, Wang P. Mutational spectrum of the phenylalanine hydroxylase gene in patients with phenylketonuria in the central region of China. Scand J Clin Lab Invest 2018; 78:211-218. [PMID: 29390883 DOI: 10.1080/00365513.2018.1434898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 01/15/2023]
Abstract
Phenylketonuria (PKU, OMIM 261600) caused by phenylalanine hydroxylase (PAH) deficiency is an autosomal recessive disease that is characterized by abnormalities of phenylalanine metabolism. In this study, a total of 77 patients, originating from the central region of China and who were diagnosed with PAH deficiency at the third affiliated hospital of Zhengzhou University, were enrolled in this study. The 13 exons and 12 flanking introns of the PAH gene were analyzed by Sanger sequencing and next generation sequencing. The sequencing data were aligned to the hg19, PAHvdb and HGMD databases to characterize the genotypes of PKU patients, and genotype-phenotype correlations and BH4 responsiveness predictions were performed using BIOPKUdb. In total, 149 alleles were characterized among the 154 PKU alleles. These mutations were located in exons 2-13, and intron 12 of the PAH gene, with a relative frequency of ≥5%, for EX6-96A>G, p.R241C, p.R243Q, p.V399V and p.R53H. Additionally, a novel variant, p.D84G, was identified. The genotype correlated with clinical symptoms in 33.3-100% of the cases, depending on the disease severity, and BH4 responsiveness predictions show that only five patients with MHP-PKU and one patient with Mild-PKU were predicted to be BH4 responsive. In conclusion, we have characterized the mutational spectrum of PAH in the central region of China and have identified a novel mutation. The hotspot mutation information might be useful for screening, diagnosis and treatment of PKU.
Collapse
Affiliation(s)
- Zhan Zhang
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
- b Shangqiu Medical College , Shangqiu , China
| | - Jun-Jun Gao
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yang Feng
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Lin-Lin Zhu
- c School of Laboratory Medicine , Xinxiang Medical University , Xinxiang , China
| | - Huan Yan
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Xu-Feng Shi
- d Department of Obstetrics , Henan Province People's Hospital , Zhengzhou , China
| | - Ai-Min Chang
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ying Shi
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ping Wang
- a The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
25
|
Porta F, Spada M, Ponzone A. Early Screening for Tetrahydrobiopterin Responsiveness in Phenylketonuria. Pediatrics 2017; 140:e20161591. [PMID: 28679641 DOI: 10.1542/peds.2016-1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 11/24/2022] Open
Abstract
Since 2007, synthetic tetrahydrobiopterin (BH4) has been approved as a therapeutic option in BH4-responsive phenylketonuria (PKU) and since 2015 extended to infants younger than 4 years in Europe. The current definition of BH4 responsiveness relies on the observation of a 20% to 30% blood phenylalanine (Phe) decrease after BH4 administration, under nonstandardized conditions. By this definition, however, patients with the same genotype or even the same patients were alternatively reported as responsive or nonresponsive to the cofactor. These inconsistencies are troubling, as frustrating patient expectations and impairing cost-effectiveness of BH4-therapy. Here we tried a quantitative procedure through the comparison of the outcome of a simple Phe and a combined Phe plus BH4 loading in a series of infants with PKU, most of them harboring genotypes already reported as BH4 responsive. Under these ideal conditions, blood Phe clearance did not significantly differ after the 2 types of loading, and a 20% to 30% decrease of blood Phe occurred irrespective of BH4 administration in milder forms of PKU. Such early screening for BH4 responsiveness, based on a quantitative assay, is essential for warranting an evidence-based and cost-effective therapy in those patients with PKU eventually but definitely diagnosed as responsive to the cofactor.
Collapse
Affiliation(s)
- Francesco Porta
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Alberto Ponzone
- Department of Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
26
|
Anikster Y, Haack TB, Vilboux T, Pode-Shakked B, Thöny B, Shen N, Guarani V, Meissner T, Mayatepek E, Trefz FK, Marek-Yagel D, Martinez A, Huttlin EL, Paulo JA, Berutti R, Benoist JF, Imbard A, Dorboz I, Heimer G, Landau Y, Ziv-Strasser L, Malicdan MCV, Gemperle-Britschgi C, Cremer K, Engels H, Meili D, Keller I, Bruggmann R, Strom TM, Meitinger T, Mullikin JC, Schwartz G, Ben-Zeev B, Gahl WA, Harper JW, Blau N, Hoffmann GF, Prokisch H, Opladen T, Schiff M. Biallelic Mutations in DNAJC12 Cause Hyperphenylalaninemia, Dystonia, and Intellectual Disability. Am J Hum Genet 2017; 100:257-266. [PMID: 28132689 PMCID: PMC5294665 DOI: 10.1016/j.ajhg.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/22/2016] [Indexed: 01/19/2023] Open
Abstract
Phenylketonuria (PKU, phenylalanine hydroxylase deficiency), an inborn error of metabolism, can be detected through newborn screening for hyperphenylalaninemia (HPA). Most individuals with HPA harbor mutations in the gene encoding phenylalanine hydroxylase (PAH), and a small proportion (2%) exhibit tetrahydrobiopterin (BH4) deficiency with additional neurotransmitter (dopamine and serotonin) deficiency. Here we report six individuals from four unrelated families with HPA who exhibited progressive neurodevelopmental delay, dystonia, and a unique profile of neurotransmitter deficiencies without mutations in PAH or BH4 metabolism disorder-related genes. In these six affected individuals, whole-exome sequencing (WES) identified biallelic mutations in DNAJC12, which encodes a heat shock co-chaperone family member that interacts with phenylalanine, tyrosine, and tryptophan hydroxylases catalyzing the BH4-activated conversion of phenylalanine into tyrosine, tyrosine into L-dopa (the precursor of dopamine), and tryptophan into 5-hydroxytryptophan (the precursor of serotonin), respectively. DNAJC12 was undetectable in fibroblasts from the individuals with null mutations. PAH enzyme activity was reduced in the presence of DNAJC12 mutations. Early treatment with BH4 and/or neurotransmitter precursors had dramatic beneficial effects and resulted in the prevention of neurodevelopmental delay in the one individual treated before symptom onset. Thus, DNAJC12 deficiency is a preventable and treatable cause of intellectual disability that should be considered in the early differential diagnosis when screening results are positive for HPA. Sequencing of DNAJC12 may resolve any uncertainty and should be considered in all children with unresolved HPA.
Collapse
Affiliation(s)
- Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer 52621, Israel.
| | - Tobias B Haack
- Institute of Human Genetics, Technische Universität München, Trogerstr. 32, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Thierry Vilboux
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892-1851, USA; Division of Medical Genomics, Inova Translational Medicine Institute, Falls Church, VA 22042, USA
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Beat Thöny
- Division of Metabolism, Clinical Chemistry and Biochemistry, Division of Metabolism, Department of Pediatrics, University of Zürich, Zürich 8032, Switzerland
| | - Nan Shen
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg 69120, Germany
| | - Virginia Guarani
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Duesseldorf 40225, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Duesseldorf 40225, Germany
| | - Friedrich K Trefz
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg 69120, Germany
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Aurora Martinez
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen 5009, Norway
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Riccardo Berutti
- Institute of Human Genetics, Technische Universität München, Trogerstr. 32, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Jean-François Benoist
- Department of Biochemistry, Robert-Debré University Hospital, APHP, Paris 75019, France
| | - Apolline Imbard
- Department of Biochemistry, Robert-Debré University Hospital, APHP, Paris 75019, France
| | - Imen Dorboz
- UMR1141, PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris 75019, France
| | - Gali Heimer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer 52621, Israel; Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Yuval Landau
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Limor Ziv-Strasser
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892-1851, USA; Division of Medical Genomics, Inova Translational Medicine Institute, Falls Church, VA 22042, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD 20892, USA
| | - Corinne Gemperle-Britschgi
- Division of Metabolism, Clinical Chemistry and Biochemistry, Division of Metabolism, Department of Pediatrics, University of Zürich, Zürich 8032, Switzerland
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, Bonn 53127, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, Bonn 53127, Germany
| | - David Meili
- Division of Metabolism, Clinical Chemistry and Biochemistry, Division of Metabolism, Department of Pediatrics, University of Zürich, Zürich 8032, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Berne 3012, Switzerland; Department of Clinical Research, University of Bern, Berne 3012, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Berne 3012, Switzerland
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Trogerstr. 32, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Trogerstr. 32, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - James C Mullikin
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, NIH, Bethesda, MD 20892-9400, USA
| | - Gerard Schwartz
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bruria Ben-Zeev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD 20892, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nenad Blau
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg 69120, Germany
| | - Georg F Hoffmann
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg 69120, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Trogerstr. 32, Munich 81675, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg 69120, Germany
| | - Manuel Schiff
- UMR1141, PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris 75019, France; Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris 75019, France.
| |
Collapse
|
27
|
Tanyalcin I, Stouffs K, Daneels D, Al Assaf C, Lissens W, Jansen A, Gheldof A. Convert your favorite protein modeling program into a mutation predictor: "MODICT". BMC Bioinformatics 2016; 17:425. [PMID: 27760515 PMCID: PMC5070100 DOI: 10.1186/s12859-016-1286-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/28/2016] [Indexed: 01/09/2023] Open
Abstract
Background Predict whether a mutation is deleterious based on the custom 3D model of a protein. Results We have developed modict, a mutation prediction tool which is based on per residue rmsd (root mean square deviation) values of superimposed 3D protein models. Our mathematical algorithm was tested for 42 described mutations in multiple genes including renin (REN), beta-tubulin (TUBB2B), biotinidase (BTD), sphingomyelin phosphodiesterase-1 (SMPD1), phenylalanine hydroxylase (PAH) and medium chain Acyl-Coa dehydrogenase (ACADM). Moreover, modict scores corresponded to experimentally verified residual enzyme activities in mutated biotinidase, phenylalanine hydroxylase and medium chain Acyl-CoA dehydrogenase. Several commercially available prediction algorithms were tested and results were compared. The modictperl package and the manual can be downloaded from https://github.com/IbrahimTanyalcin/MODICT. Conclusions We show here that modict is capable tool for mutation effect prediction at the protein level, using superimposed 3D protein models instead of sequence based algorithms used by polyphen and sift. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1286-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ibrahim Tanyalcin
- Center for Medical Genetics, UZ Brussel, Laarbeeklaan 101, Brussel, 1090, Belgium. .,Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Group, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussel, 1090, Belgium.
| | - Katrien Stouffs
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), UZ Brussel, Laarbeeklaan 101, Brussel, 1090, Belgium
| | - Dorien Daneels
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), UZ Brussel, Laarbeeklaan 101, Brussel, 1090, Belgium
| | - Carla Al Assaf
- Center for Human Genetics, KU Leuven and University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Willy Lissens
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), UZ Brussel, Laarbeeklaan 101, Brussel, 1090, Belgium
| | - Anna Jansen
- Center for Medical Genetics, UZ Brussel, Laarbeeklaan 101, Brussel, 1090, Belgium.,Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Group, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussel, 1090, Belgium.,Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Laarbeeklaan 101, Brussel, 1090, Belgium
| | - Alexander Gheldof
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), UZ Brussel, Laarbeeklaan 101, Brussel, 1090, Belgium
| |
Collapse
|
28
|
Juhász E, Kiss E, Simonova E, Patócs A, Reismann P. Serum prolactin as a biomarker for the study of intracerebral dopamine effect in adult patients with phenylketonuria: a cross-sectional monocentric study. Eur J Med Res 2016; 21:22. [PMID: 27169416 PMCID: PMC4864969 DOI: 10.1186/s40001-016-0212-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been previously postulated that high phenylalanine (Phe) might disturb intracerebral dopamine production, which is the main regulator of prolactin secretion in the pituitary gland. Previously, various associations between Phe and hyperprolactinemia were revealed in studies performed in phenylketonuria (PKU) children and adolescents. The aim of the present study was to clarify whether any relation between serum phenylalanine and prolactin levels can be found in adult PKU patients. PATIENTS AND METHODS We conducted a cross-sectional, monocentric study including 158 adult patients (male n = 68, female n = 90) with PKU. All patients were diagnosed during newborn screening and were treated since birth. Serum Phe, tyrosine (Tyr), prolactin (PRL), and thyroid-stimulating hormone (TSH) levels were measured, and Phe/Tyr ratio was calculated. Males and females were analyzed separately because the serum prolactin level is gender-dependent. RESULTS No significant correlations were found between serum phenylalanine, tyrosine, or the Phe/Tyr ratio and serum prolactin level either in the male or in the female group. CONCLUSIONS In treated adult PKU patients, the serum prolactin level may not be significantly influenced by Phe or Tyr serum levels.
Collapse
Affiliation(s)
- Eszter Juhász
- 2nd Department of Medicine, Semmelweis University, Szentkirályi Street 46, Budapest, 1088, Hungary
| | - Erika Kiss
- 1st Department of Pediatrics, Semmelweis University, Bókay J. Street 53, Budapest, 1083, Hungary
| | - Erika Simonova
- 1st Department of Pediatrics, Semmelweis University, Bókay J. Street 53, Budapest, 1083, Hungary
| | - Attila Patócs
- Hungarian Academy of Sciences and Semmelweis University "Lendület" Hereditary Endocrine Tumors Research Group, Szentkirályi Street 46, Budapest, 1088, Hungary
| | - Peter Reismann
- 2nd Department of Medicine, Semmelweis University, Szentkirályi Street 46, Budapest, 1088, Hungary.
| |
Collapse
|
29
|
Tansek MZ, Groselj U, Kelvisar M, Kobe H, Lampret BR, Battelino T. Long-term BH4 (sapropterin) treatment of children with hyperphenylalaninemia - effect on median Phe/Tyr ratios. J Pediatr Endocrinol Metab 2016; 29:561-6. [PMID: 26910740 DOI: 10.1515/jpem-2015-0337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Phenylalanine hydroxylase deficiency causes various degrees of hyperphenylalaninemia (HPA). Tetrahydrobiopterin (BH4; sapropterin) reduces phenylalanine (Phe) levels in responders, enabling relaxation of dietary therapy. We aimed to assess long-term effects of BH4 treatment in HPA patients. METHODS Nine pre-pubertal BH4 responsive children were treated with BH4 for at least 2 years. The median dietary tolerance to Phe and levels of blood Phe, tyrosine (Tyr), zinc, selenium and vitamin B12 and anthropometric measurements, in the 2 years periods before and after the introduction of BH4 treatment were analyzed and compared. Adverse effects of BH4 were assessed. RESULTS The daily Phe tolerance had tripled, from pretreatment median value of 620 mg (IQR 400-700 mg) to 2000 (IQR 1000-2000 mg) after 2 years of follow up (p<0.001). The median blood Phe levels during the 2 years period before introducing BH4 did not change significantly during the 2 years on therapy (from 200 μmol/L; IQR 191-302 to 190 μmol/L; IQR 135-285 μmol/L), but the median blood Phe/Tyr ratio had lowered significantly from pre-treatment value 4.7 to 2.4 during the 2 years on therapy (p=0.01). Median zinc, selenium, vitamin B12 levels and anthropometric measurements did not change while on BH4 therapy (p=NS). No adverse effects were noticed. CONCLUSIONS BH4 therapy enabled patients much higher dietary Phe intakes, with no noticeable adverse effects. Median blood Phe and Tyr levels, median zinc, selenium, vitamin B12 levels and anthropometric measurements did not change significantly on BH4 therapy, but median Phe/Tyr ratios had lowered.
Collapse
|
30
|
Shen N, Heintz C, Thiel C, Okun JG, Hoffmann GF, Blau N. Co-expression of phenylalanine hydroxylase variants and effects of interallelic complementation on in vitro enzyme activity and genotype-phenotype correlation. Mol Genet Metab 2016; 117:328-35. [PMID: 26803807 DOI: 10.1016/j.ymgme.2016.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND In phenylketonuria (PKU) patients, the combination of two phenylalanine hydroxylase (PAH) alleles is the main determinant of residual enzyme activity in vivo and in vitro. Inconsistencies in genotype-phenotype correlations have been observed in compound heterozygous patients and a particular combination of two PAH alleles may produce a phenotype that is different from the expected one, possibly due to interallelic complementation. METHODS A dual eukaryotic vector system with two distinct PAH proteins N-terminally fused to different epitope tags was used to investigate the co-expression of PAH alleles reported in patients with inconsistent phenotypes. PAH variant proteins were transiently co-transfected in COS-7 cells. PAH activity was measured by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS), and protein expression was measured by Western blot. Genotypes were compared with predicted PAH activity from the PAH locus-specific database (PAHvdb) and with phenotypes and tetrahydrobiopterin (BH4) responsiveness from more than 10,000 PKU patients (BIOPKU database). RESULTS Through the expression and co-expression of 17 variant alleles we demonstrated that interallelic interaction could be both positive and negative. The co-expressions of p.[I65T];[R261Q] (19.5% activity; predicted 43.5%) and p.[I65T];[R408W] (15.0% vs. 26.8% activity) are examples of genotypes with negative interallelic interaction. The co-expressions of p.[E178G];[Q232E] (55.0% vs.36.4%) and p.[P384S];[R408W] (56.1% vs. 40.8%) are examples of positive subunit interactions. Inconsistencies of PAH residual enzyme activity in vitro and of PKU patients' phenotypes were observed as well. The PAH activity of p.[R408W];[A300S] is 18.0% of the wild-type activity; however, 88% of patients with this genotype exhibit mild hyperphenylalaninemias (MHPs). CONCLUSION The co-expression of two distinct PAH variants revealed possible dominance effects (positive or negative) by one of the variants on residual PAH activity as a result of interallelic complementation.
Collapse
Affiliation(s)
- Nan Shen
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Department of General Pediatrics, Heidelberg, Germany
| | - Caroline Heintz
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Christian Thiel
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Department of General Pediatrics, Heidelberg, Germany
| | - Jürgen G Okun
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Department of General Pediatrics, Heidelberg, Germany
| | - Georg F Hoffmann
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Department of General Pediatrics, Heidelberg, Germany
| | - Nenad Blau
- Dietmar-Hopp Metabolic Center, University Children's Hospital, Department of General Pediatrics, Heidelberg, Germany.
| |
Collapse
|
31
|
Winn SR, Scherer T, Thöny B, Harding CO. High dose sapropterin dihydrochloride therapy improves monoamine neurotransmitter turnover in murine phenylketonuria (PKU). Mol Genet Metab 2016; 117:5-11. [PMID: 26653793 PMCID: PMC4706464 DOI: 10.1016/j.ymgme.2015.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023]
Abstract
Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism.
Collapse
Affiliation(s)
- Shelley R Winn
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Tanja Scherer
- Department of Pediatrics, University of Zurich, Steinweissstrasse 75, Zurich CH-8032, Switzerland
| | - Beat Thöny
- Department of Pediatrics, University of Zurich, Steinweissstrasse 75, Zurich CH-8032, Switzerland
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA.
| |
Collapse
|
32
|
Al Hafid N, Christodoulou J. Phenylketonuria: a review of current and future treatments. Transl Pediatr 2015; 4:304-17. [PMID: 26835392 PMCID: PMC4728993 DOI: 10.3978/j.issn.2224-4336.2015.10.07] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 01/16/2023] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive inborn error of metabolism caused by a deficiency in the hepatic enzyme phenylalanine hydroxylase (PAH). If left untreated, the main clinical feature is intellectual disability. Treatment, which includes a low Phe diet supplemented with amino acid formulas, commences soon after diagnosis within the first weeks of life. Although dietary treatment has been successful in preventing intellectual disability in early treated PKU patients, there are major issues with dietary compliance due to palatability of the diet. Other potential issues associated with dietary therapy include nutritional deficiencies especially vitamin D and B12. Suboptimal outcomes in cognitive and executive functioning have been reported in patients who adhere poorly to dietary therapy. There have been continuous attempts at improving the quality of medical foods including their palatability. Advances in dietary therapy such as the use of large neutral amino acids (LNAA) and glycomacropeptides (GMP; found within the whey fraction of bovine milk) have been explored. Gene therapy and enzyme replacement or substitution therapy have yielded more promising data in the recent years. In this review the current and possible future treatments for PKU are discussed.
Collapse
|
33
|
Longo N, Arnold GL, Pridjian G, Enns GM, Ficicioglu C, Parker S, Cohen-Pfeffer JL. Long-term safety and efficacy of sapropterin: the PKUDOS registry experience. Mol Genet Metab 2015; 114:557-63. [PMID: 25724073 DOI: 10.1016/j.ymgme.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
Abstract
The Phenylketonuria (PKU) Demographics, Outcomes and Safety (PKUDOS) registry is designed to provide longitudinal safety and efficacy data on subjects with PKU who are (or have been) treated with sapropterin dihydrochloride. The PKUDOS population consists of 1189 subjects with PKU: N = 504 who were continuously exposed to sapropterin from date of registry enrollment, N = 211 who had intermittent exposure to the drug, and N = 474 with some other duration of exposure. Subjects continuously exposed to sapropterin showed an average 34% decrease in blood phenylalanine (Phe)--from 591 ± 382 μmol/L at baseline to 392 ± 239 μmol/L (p = 0.0009) after 5 years. This drop in blood Phe was associated with an increase in dietary Phe tolerance [from 1000 ± 959 mg/day (pre-sapropterin baseline) to 1539 ± 840 mg/day after 6 years]. Drug-related adverse events (AEs) were reported in 6% of subjects, were mostly considered non-serious, and were identified in the gastrointestinal, respiratory, and nervous systems. Serious drug-related AEs were reported in ≤ 1% of subjects. Similar safety and efficacy data were observed for children<4 years. Long-term data from the PKUDOS registry suggest that sapropterin has a tolerable safety profile and that continuous use is associated with a significant and persistent decrease in blood Phe and improvements in dietary Phe tolerance.
Collapse
Affiliation(s)
- Nicola Longo
- University of Utah, Division of Medical Genetics, Salt Lake City, UT 84108, USA
| | - Georgianne L Arnold
- University of Pittsburgh School of Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15238, USA
| | - Gabriella Pridjian
- Tulane University School of Medicine, Hayward Genetics Center, New Orleans, LA 70112, USA
| | - Gregory M Enns
- Stanford University, Division of Medical Genetics, Stanford, CA 94305-5208, USA
| | - Can Ficicioglu
- The Children's Hospital of Philadelphia, Perelman School of Medicine,University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan Parker
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA
| | | |
Collapse
|
34
|
Abstract
There is a pressing need for new medicines (new molecular entities; NMEs) for rare diseases as few of the 6800 rare diseases (according to the NIH) have approved treatments. Drug discovery strategies for the 102 orphan NMEs approved by the US FDA between 1999 and 2012 were analyzed to learn from past success: 46 NMEs were first in class; 51 were followers; and five were imaging agents. First-in-class medicines were discovered with phenotypic assays (15), target-based approaches (12) and biologic strategies (18). Identification of genetic causes in areas with more basic and translational research such as cancer and in-born errors in metabolism contributed to success regardless of discovery strategy. In conclusion, greater knowledge increases the chance of success and empirical solutions can be effective when knowledge is incomplete.
Collapse
|
35
|
Abstract
BACKGROUND Phenylketonuria results from a deficiency of the enzyme phenylalanine hydroxylase. Dietary restriction of phenylalanine keeps blood phenylalanine concentration low. Most natural foods are excluded from diet and supplements are used to supply other nutrients. Recent publications report a decrease in blood phenylalanine concentration in some patients treated with sapropterin dihydrochloride. We examined the evidence for the use of sapropterin dihydrochloride to treat phenylketonuria. This is an update of a previously published Cochrane Review. OBJECTIVES To assess the safety and efficacy of sapropterin dihydrochloride in lowering blood phenylalanine concentration in people with phenylketonuria. SEARCH METHODS We identified relevant trials from the Group's Inborn Errors of Metabolism Trials Register. Date of last search: 11 August 2014.We also searched ClinicalTrials.gov and Current controlled trials. Last search: 4 September 2014We contacted the manufacturers of the drug (BioMarin Pharmaceutical Inc.) for information regarding any unpublished trials. SELECTION CRITERIA Randomized controlled trials comparing sapropterin with no supplementation or placebo in people with phenylketonuria due to phenylalanine hydroxylase deficiency. DATA COLLECTION AND ANALYSIS Two authors independently assessed trials and extracted outcome data. MAIN RESULTS Two placebo-controlled trials were included. One trial administered 10 mg/kg/day sapropterin in 89 children and adults with phenylketonuria whose diets were not restricted and who had previously responded to saproterin.This trial measured change in blood phenylalanine concentration. The second trial screened 90 children (4 to 12 years) with phenylketonuria whose diet was restricted, for responsiveness to sapropterin. Forty-six responders entered the placebo-controlled part of the trial and received 20 mg/kg/day sapropterin. This trial measured change in both phenylalanine concentration and protein tolerance. Both trials reported adverse events. The trials showed an overall low risk of bias; but both are Biomarin-sponsored. One trial showed a significant lowering in blood phenylalanine concentration in the sapropterin group (10 mg/kg/day), mean difference -238.80 μmol/L (95% confidence interval -343.09 to -134.51); a second trial (20 mg/kg/day sapropterin) showed a non-significant difference, mean difference -51.90 μmol/L (95% confidence interval -197.27 to 93.47). The second trial also reported a significant increase in phenylalanine tolerance, mean difference18.00 mg/kg/day (95% confidence interval 12.28 to 23.72) in the 20 mg/kg/day sapropterin group. AUTHORS' CONCLUSIONS There is evidence of short-term benefit from using sapropterin in some people with sapropterin-responsive forms of phenylketonuria; blood phenylalanine concentration is lowered and protein tolerance increased. There are no serious adverse events associated with using sapropterin in the short term.There is no evidence on the long-term effects of sapropterin and no clear evidence of effectiveness in severe phenylketonuria.
Collapse
Affiliation(s)
- Usha Rani Somaraju
- Malla Reddy Medical College for WomenDepartment of BiochemistrySuraram Main RoadJeedimetla Qutbullapur MunicipalityHyderabadIndia500 055
| | - Marcus Merrin
- American University of Antigua / Manipan Education AmericasIT1 Battery Park Plaza33rd FloorNew YorkNYUSA10004
| | | |
Collapse
|
36
|
Kochhar JS, Chan SY, Ong PS, Kang L. Clinical therapeutics for phenylketonuria. Drug Deliv Transl Res 2015; 2:223-37. [PMID: 25787029 DOI: 10.1007/s13346-012-0067-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylketonuria was amongst the first of the metabolic disorders to be characterised, exhibiting an inborn error in phenylalanine metabolism due to a functional deficit of the enzyme phenylalanine hydroxylase. It affects around 700,000 people around the globe. Mutations in the gene coding for hepatic phenylalanine hydroxylase cause this deficiency resulting in elevated plasma phenylalanine concentrations, leading to cognitive impairment, neuromotor disorders and related behavioural symptoms. Inception of low phenylalanine diet in the 1950s marked a revolution in the management of phenylketonuria and has since been a vital element of all therapeutic regimens. However, compliance to dietary therapy has been found difficult and newer supplement approaches are being examined. The current development of gene therapy and enzyme replacement therapeutics may offer promising alternatives for the management of phenylketonuria. This review outlines the pathological basis of phenylketonuria, various treatment regimes, their associated challenges and the future prospects of each approach. Briefly, novel drug delivery systems which can potentially deliver therapeutic strategies in phenylketonuria have been discussed.
Collapse
Affiliation(s)
- Jaspreet Singh Kochhar
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4 Level 2, Singapore, Singapore, 117543
| | | | | | | |
Collapse
|
37
|
Stockler-Ipsiroglu S, Yuskiv N, Salvarinova R, Apatean D, Ho G, Cheng B, Giezen A, Lillquist Y, Ueda K. Individualized long-term outcomes in blood phenylalanine concentrations and dietary phenylalanine tolerance in 11 patients with primary phenylalanine hydroxylase (PAH) deficiency treated with Sapropterin-dihydrochloride. Mol Genet Metab 2015; 114:409-14. [PMID: 25497838 DOI: 10.1016/j.ymgme.2014.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
We analyzed long-term sustainability of improved blood Phenylalanine (Phe) control and changes to dietary Phe tolerance in 11 patients (1 month to 16 years), with various forms of primary PAH deficiency (classic, moderate, severe phenylketonuria [PKU], mild hyperphenylalaninemia [HPA]), who were treated with 15-20mg/kg/d Sapropterin-dihydrochloride during a period of 13-44 months. 7/11 patients had a sustainable, significant reduction of baseline blood Phe concentrations and 6 of them also had an increase in mg/kg/day Phe tolerance. In 2 patients with mild HPA, blood Phe concentrations remained in the physiologic range even after a 22 and 36% increase in mg/kg/day Phe tolerance and an achieved Phe intake at 105% and 268% of the dietary reference intake (DRI) for protein. 2 of these responders had classic PKU. 1 patient with mild HPA who started treatment at 2 months of life, had a significant and sustainable reduction in pretreatment blood Phe concentrations, but no increase in the mg/kg/day Phe tolerance. An increase in Phe tolerance could only be demonstrated when expressing the patient's daily Phe tolerance with the DRI for protein showing an increase from 58% at baseline to 78% of normal DRI at the end of the observation. Long-term follow-up of patients with an initial response to treatment with Sapropterin is essential to determine clinically meaningful outcomes. Phenylalanine tolerance should be expressed in mg/kg/day and/or % of normal DRI to differentiate medical therapy related from physiologic growth related increase in daily Phe intake.
Collapse
Affiliation(s)
- Sylvia Stockler-Ipsiroglu
- Department of Pediatrics, University of British Columbia, Division of Biochemical Diseases, British Columbia Children's Hospital, Vancouver, Canada.
| | - Nataliya Yuskiv
- Department of Pediatrics, University of British Columbia, Division of Biochemical Diseases, British Columbia Children's Hospital, Vancouver, Canada
| | - Ramona Salvarinova
- Department of Pediatrics, University of British Columbia, Division of Biochemical Diseases, British Columbia Children's Hospital, Vancouver, Canada
| | - Delia Apatean
- Department of Pediatrics, University of British Columbia, Division of Biochemical Diseases, British Columbia Children's Hospital, Vancouver, Canada
| | - Gloria Ho
- Department of Pediatrics, University of British Columbia, Division of Biochemical Diseases, British Columbia Children's Hospital, Vancouver, Canada
| | - Barbara Cheng
- Department of Pediatrics, University of British Columbia, Division of Biochemical Diseases, British Columbia Children's Hospital, Vancouver, Canada
| | - Alette Giezen
- Department of Pediatrics, University of British Columbia, Division of Biochemical Diseases, British Columbia Children's Hospital, Vancouver, Canada
| | - Yolanda Lillquist
- Department of Pediatrics, University of British Columbia, Division of Biochemical Diseases, British Columbia Children's Hospital, Vancouver, Canada
| | - Keiko Ueda
- Department of Pediatrics, University of British Columbia, Division of Biochemical Diseases, British Columbia Children's Hospital, Vancouver, Canada
| |
Collapse
|
38
|
|
39
|
Danecka MK, Woidy M, Zschocke J, Feillet F, Muntau AC, Gersting SW. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. J Med Genet 2015; 52:175-85. [PMID: 25596310 DOI: 10.1136/jmedgenet-2014-102621] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. METHODS A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. RESULTS Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. CONCLUSIONS The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria.
Collapse
Affiliation(s)
- Marta K Danecka
- Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Mathias Woidy
- Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - François Feillet
- Department of Pediatrics, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Søren W Gersting
- Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
40
|
van Vliet D, Anjema K, Jahja R, de Groot MJ, Liemburg GB, Heiner-Fokkema MR, van der Zee EA, Derks TGJ, Kema IP, van Spronsen FJ. BH4 treatment in BH4-responsive PKU patients: preliminary data on blood prolactin concentrations suggest increased cerebral dopamine concentrations. Mol Genet Metab 2015; 114:29-33. [PMID: 25466353 DOI: 10.1016/j.ymgme.2014.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 11/20/2022]
Abstract
In phenylketonuria (PKU), cerebral neurotransmitter deficiencies have been suggested to contribute to brain dysfunction. Present treatment aims to reduce blood phenylalanine concentrations by a phenylalanine-restricted diet, while in some patients blood phenylalanine concentrations also respond to cofactor treatment with tetrahydrobiopterin (BH4). Recently, a repurposing approach of BH4 was suggested to increase cerebral neurotransmitter synthesis. To investigate whether BH4 may improve cerebral dopamine concentrations in PKU patients beyond its effect through lowering blood phenylalanine concentrations, we investigated blood prolactin concentrations-as a parameter of brain dopamine availability. We retrospectively compared blood prolactin in relation to blood phenylalanine concentrations of nine (male) BH4-responsive PKU patients, when being treated without and with BH4. Blood prolactin concentrations positively correlated to blood phenylalanine concentrations (p=0.002), being significantly lower with than without BH4 treatment (p=0.047). In addition, even in this small number of male patients, blood prolactin concentrations tended to be lower at increasing BH4 dose (p=0.054), while taking blood phenylalanine concentrations into account (p=0.002). In individual BH4-responsive patients, median blood prolactin concentrations were significantly lower while using BH4 than before using BH4 treatment (p=0.024), whereas median blood phenylalanine concentrations tended to be lower, but this did not reach statistical significance (p=0.107). Therefore, these data show that high blood phenylalanine in BH4-responsive PKU male patients seems to be associated with increased blood prolactin concentrations, suggesting reduced cerebral dopamine availability. Moreover, these data suggest that BH4 treatment in itself could decrease blood prolactin concentrations in a dose-responsive way, independent of blood phenylalanine concentrations. We conclude that these preliminary data indicate that BH4 treatment may improve cerebral dopamine concentrations in PKU patients beyond its effect through lowering blood phenylalanine concentrations, possibly in a dose-dependent manner, but further research would be warranted.
Collapse
Affiliation(s)
- Danique van Vliet
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands; University of Groningen, Center of Behavior and Neurosciences, Department of Molecular Neurobiology, Groningen, The Netherlands
| | - Karen Anjema
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Rianne Jahja
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Martijn J de Groot
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands; University of Groningen, Center of Behavior and Neurosciences, Department of Molecular Neurobiology, Groningen, The Netherlands
| | - Geertje B Liemburg
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, The Netherlands
| | - Eddy A van der Zee
- University of Groningen, Center of Behavior and Neurosciences, Department of Molecular Neurobiology, Groningen, The Netherlands
| | - Terry G J Derks
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Ido P Kema
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, The Netherlands
| | - Francjan J van Spronsen
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands.
| |
Collapse
|
41
|
Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria. Eur J Hum Genet 2014; 23:302-9. [PMID: 24939588 DOI: 10.1038/ejhg.2014.114] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 11/08/2022] Open
Abstract
The wide range of metabolic phenotypes in phenylketonuria is due to a large number of variants causing variable impairment in phenylalanine hydroxylase function. A total of 834 phenylalanine hydroxylase gene variants from the locus-specific database PAHvdb and genotypes of 4181 phenylketonuria patients from the BIOPKU database were characterized using FoldX, SIFT Blink, Polyphen-2 and SNPs3D algorithms. Obtained data was correlated with residual enzyme activity, patients' phenotype and tetrahydrobiopterin responsiveness. A descriptive analysis of both databases was compiled and an interactive viewer in PAHvdb database was implemented for structure visualization of missense variants. We found a quantitative relationship between phenylalanine hydroxylase protein stability and enzyme activity (r(s) = 0.479), between protein stability and allelic phenotype (r(s) = -0.458), as well as between enzyme activity and allelic phenotype (r(s) = 0.799). Enzyme stability algorithms (FoldX and SNPs3D), allelic phenotype and enzyme activity were most powerful to predict patients' phenotype and tetrahydrobiopterin response. Phenotype prediction was most accurate in deleterious genotypes (≈ 100%), followed by homozygous (92.9%), hemizygous (94.8%), and compound heterozygous genotypes (77.9%), while tetrahydrobiopterin response was correctly predicted in 71.0% of all cases. To our knowledge this is the largest study using algorithms for the prediction of patients' phenotype and tetrahydrobiopterin responsiveness in phenylketonuria patients, using data from the locus-specific and genotypes database.
Collapse
|
42
|
Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau N, Bodamer OA, Brosco JP, Brown CS, Burlina AB, Burton BK, Chang CS, Coates PM, Cunningham AC, Dobrowolski SF, Ferguson JH, Franklin TD, Frazier DM, Grange DK, Greene CL, Groft SC, Harding CO, Howell RR, Huntington KL, Hyatt-Knorr HD, Jevaji IP, Levy HL, Lichter-Konecki U, Lindegren ML, Lloyd-Puryear MA, Matalon K, MacDonald A, McPheeters ML, Mitchell JJ, Mofidi S, Moseley KD, Mueller CM, Mulberg AE, Nerurkar LS, Ogata BN, Pariser AR, Prasad S, Pridjian G, Rasmussen SA, Reddy UM, Rohr FJ, Singh RH, Sirrs SM, Stremer SE, Tagle DA, Thompson SM, Urv TK, Utz JR, van Spronsen F, Vockley J, Waisbren SE, Weglicki LS, White DA, Whitley CB, Wilfond BS, Yannicelli S, Young JM. Phenylketonuria Scientific Review Conference: state of the science and future research needs. Mol Genet Metab 2014; 112:87-122. [PMID: 24667081 DOI: 10.1016/j.ymgme.2014.02.013] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/17/2023]
Abstract
New developments in the treatment and management of phenylketonuria (PKU) as well as advances in molecular testing have emerged since the National Institutes of Health 2000 PKU Consensus Statement was released. An NIH State-of-the-Science Conference was convened in 2012 to address new findings, particularly the use of the medication sapropterin to treat some individuals with PKU, and to develop a research agenda. Prior to the 2012 conference, five working groups of experts and public members met over a 1-year period. The working groups addressed the following: long-term outcomes and management across the lifespan; PKU and pregnancy; diet control and management; pharmacologic interventions; and molecular testing, new technologies, and epidemiologic considerations. In a parallel and independent activity, an Evidence-based Practice Center supported by the Agency for Healthcare Research and Quality conducted a systematic review of adjuvant treatments for PKU; its conclusions were presented at the conference. The conference included the findings of the working groups, panel discussions from industry and international perspectives, and presentations on topics such as emerging treatments for PKU, transitioning to adult care, and the U.S. Food and Drug Administration regulatory perspective. Over 85 experts participated in the conference through information gathering and/or as presenters during the conference, and they reached several important conclusions. The most serious neurological impairments in PKU are preventable with current dietary treatment approaches. However, a variety of more subtle physical, cognitive, and behavioral consequences of even well-controlled PKU are now recognized. The best outcomes in maternal PKU occur when blood phenylalanine (Phe) concentrations are maintained between 120 and 360 μmol/L before and during pregnancy. The dietary management treatment goal for individuals with PKU is a blood Phe concentration between 120 and 360 μmol/L. The use of genotype information in the newborn period may yield valuable insights about the severity of the condition for infants diagnosed before maximal Phe levels are achieved. While emerging and established genotype-phenotype correlations may transform our understanding of PKU, establishing correlations with intellectual outcomes is more challenging. Regarding the use of sapropterin in PKU, there are significant gaps in predicting response to treatment; at least half of those with PKU will have either minimal or no response. A coordinated approach to PKU treatment improves long-term outcomes for those with PKU and facilitates the conduct of research to improve diagnosis and treatment. New drugs that are safe, efficacious, and impact a larger proportion of individuals with PKU are needed. However, it is imperative that treatment guidelines and the decision processes for determining access to treatments be tied to a solid evidence base with rigorous standards for robust and consistent data collection. The process that preceded the PKU State-of-the-Science Conference, the conference itself, and the identification of a research agenda have facilitated the development of clinical practice guidelines by professional organizations and serve as a model for other inborn errors of metabolism.
Collapse
Affiliation(s)
- Kathryn M Camp
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Melissa A Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Gerard T Berry
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Deborah A Bilder
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA.
| | - Nenad Blau
- University Children's Hospital, Heidelberg, Germany; University Children's Hospital, Zürich, Switzerland.
| | - Olaf A Bodamer
- University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Jeffrey P Brosco
- University of Miami Mailman Center for Child Development, Miami, FL 33101, USA.
| | | | | | - Barbara K Burton
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| | - Christine S Chang
- Agency for Healthcare Research and Quality, Rockville, MD 20850, USA.
| | - Paul M Coates
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Amy C Cunningham
- Tulane University Medical School, Hayward Genetics Center, New Orleans, LA 70112, USA.
| | | | - John H Ferguson
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | | | | | - Dorothy K Grange
- Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Carol L Greene
- University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Stephen C Groft
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Cary O Harding
- Oregon Health & Science University, Portland, OR 97239, USA.
| | - R Rodney Howell
- University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | - Henrietta D Hyatt-Knorr
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Indira P Jevaji
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD 20817, USA.
| | - Harvey L Levy
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Uta Lichter-Konecki
- George Washington University, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | | | | | | - Melissa L McPheeters
- Vanderbilt Evidence-based Practice Center, Institute for Medicine and Public Health, Nashville, TN 37203, USA.
| | - John J Mitchell
- McGill University Health Center, Montreal, Quebec H3H 1P3, Canada.
| | - Shideh Mofidi
- Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, NY 10595, USA.
| | - Kathryn D Moseley
- University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Christine M Mueller
- Office of Orphan Products Development, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Andrew E Mulberg
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Lata S Nerurkar
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20982, USA.
| | - Beth N Ogata
- University of Washington, Seattle, WA 98195, USA.
| | - Anne R Pariser
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Suyash Prasad
- BioMarin Pharmaceutical Inc., San Rafael, CA 94901, USA.
| | - Gabriella Pridjian
- Tulane University Medical School, Hayward Genetics Center, New Orleans, LA 70112, USA.
| | | | - Uma M Reddy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | - Sandra M Sirrs
- Vancouver General Hospital, University of British Columbia, Vancouver V5Z 1M9, Canada.
| | | | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Susan M Thompson
- The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.
| | - Tiina K Urv
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jeanine R Utz
- University of Minnesota, Minneapolis, MN 55455, USA.
| | - Francjan van Spronsen
- University of Groningen, University Medical Center of Groningen, Beatrix Children's Hospital, Netherlands.
| | - Jerry Vockley
- University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Susan E Waisbren
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Linda S Weglicki
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Desirée A White
- Department of Psychology, Washington University, St. Louis, MO 63130, USA.
| | | | - Benjamin S Wilfond
- Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA.
| | | | - Justin M Young
- The Young Face, Facial Plastic and Reconstructive Surgery, Cumming, GA 30041, USA.
| |
Collapse
|
43
|
Gu Y, Lu K, Yang G, Cen Z, Yu L, Lin L, Hao J, Yang Z, Peng J, Cui S, Huang J. Mutation spectrum of six genes in Chinese phenylketonuria patients obtained through next-generation sequencing. PLoS One 2014; 9:e94100. [PMID: 24705691 PMCID: PMC3976377 DOI: 10.1371/journal.pone.0094100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/11/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The identification of gene variants plays an important role in the diagnosis of genetic diseases. METHODOLOGY/PRINCIPAL FINDINGS To develop a rapid method for the diagnosis of phenylketonuria (PKU) and tetrahydrobiopterin (BH4) deficiency, we designed a multiplex, PCR-based primer panel to amplify all the exons and flanking regions (50 bp average) of six PKU-associated genes (PAH, PTS, GCH1, QDPR, PCBD1 and GFRP). The Ion Torrent Personal Genome Machine (PGM) System was used to detect mutations in all the exons of these six genes. We tested 93 DNA samples from blood specimens from 35 patients and their parents (32 families) and 26 healthy adults. Using strict bioinformatic criteria, this sequencing data provided, on average, 99.14% coverage of the 39 exons at more than 70-fold mean depth of coverage. We found 23 previously documented variants in the PAH gene and six novel mutations in the PAH and PTS genes. A detailed analysis of the mutation spectrum of these patients is described in this study. CONCLUSIONS/SIGNIFICANCE These results were confirmed by Sanger sequencing. In conclusion, benchtop next-generation sequencing technology can be used to detect mutations in monogenic diseases and can detect both point mutations and indels with high sensitivity, fidelity and throughput at a lower cost than conventional methods in clinical applications.
Collapse
Affiliation(s)
- Ying Gu
- Prenatal Diagnosis Center, Maternal and Child Health Care Hospital, Lianyungang, Jiangsu, China
| | - Kangmo Lu
- Prenatal Diagnosis Center, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China
| | | | - Zhong Cen
- Shanghai Find Bio-Tech Co., Ltd., Shanghai, China
| | - Li Yu
- Life Technologies Company, Shanghai, China
| | - Lin Lin
- Shanghai Find Bio-Tech Co., Ltd., Shanghai, China
| | - Jing Hao
- Shanghai Find Bio-Tech Co., Ltd., Shanghai, China
| | - Zhigang Yang
- Shanghai Find Bio-Tech Co., Ltd., Shanghai, China
| | - Jiabao Peng
- Shanghai Find Bio-Tech Co., Ltd., Shanghai, China
| | - Shujian Cui
- Shanghai Find Bio-Tech Co., Ltd., Shanghai, China
| | - Jian Huang
- National Engineering Center for Biochip at Shanghai, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|
44
|
Chadha N, Tiwari AK, Kumar V, Milton MD, Mishra AK. In silico thermodynamics stability change analysis involved in BH4 responsive mutations in phenylalanine hydroxylase: QM/MM and MD simulations analysis. J Biomol Struct Dyn 2014; 33:573-83. [PMID: 24628256 DOI: 10.1080/07391102.2014.897258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The mammalian tetrahydrobiopterin (BH4)-dependent phenylalanine hydroxylases (PAH), involved in important metabolic pathways of phenylalanine, belong to non-heme iron-containing aromatic acid hydroxylases' enzyme (AAH) family. AAHs utilize BH4 as protein co-factor and thus promote hydroxylation reactions of their substrates. Any alterations in BH4 -mediated AAH's pathway or mutations in these enzymes are responsible for various disorders, and thus highlights the importance of mutational analysis to assess the effect on their biosynthetic pathways. Our present studies are aimed at single-site mutations in PAH that lead to thermodynamic stability change upon folding and further validation of designed non-reduced BH2 designed co-factors. We have presented single-site mutational analysis of PAH where single-site mutations have been identified from known literature. Further, in silico studies with the PAH, in silico mutant PAH, and crystallized known mutant A313T forms, involved QM/MM and Molecular Dynamics (MD) simulations analysis. The modified co-factor A showed high affinity with PAH and all mutant PAH with high G-score of -14.851. The best pose high affinity co-factor A subjected to QM/MM optimization which leads to square-pyramidal coordination of non-heme active site. The structural and energetic information obtained from the production phase of 20 ns MD simulation of co-factor-metalloprotein complex results helped to understand the binding mode and involvement of three molecules throughout the reaction pathways' catalysis of PAH. The free energies of binding (dG) of A were found to be -68.181 kcal/mol and -72.249 for 1DMW and 1TDW for A313T mutant. Binding of Co-factor A do not perturb the coordination environment of iron at the active site which resides in 2-Histdine and 1-Glutamate triad, and may enhance the percentage response towards co-factor-mediated therapy.
Collapse
Affiliation(s)
- Nidhi Chadha
- a Division of Cyclotron and Radiopharmaceutical Sciences , Institute of Nuclear Medicine and Allied Sciences , Brig. S. K. Mazumdar Road, Delhi 110054 , India
| | | | | | | | | |
Collapse
|
45
|
Singh RH, Rohr F, Frazier D, Cunningham A, Mofidi S, Ogata B, Splett PL, Moseley K, Huntington K, Acosta PB, Vockley J, Van Calcar SC. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med 2014; 16:121-31. [PMID: 24385075 PMCID: PMC3918542 DOI: 10.1038/gim.2013.179] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/16/2013] [Indexed: 11/09/2022] Open
Abstract
The effectiveness of a phenylalanine-restricted diet to improve the outcome of individuals with phenylalanine hydroxylase deficiency (OMIM no. 261600) has been recognized since the first patients were treated 60 years ago. However, the treatment regime is complex, costly, and often difficult to maintain for the long term. Improvements and refinements in the diet for phenylalanine hydroxylase deficiency have been made over the years, and adjunctive therapies have proven to be successful for certain patients. Yet evidence-based guidelines for managing phenylalanine hydroxylase deficiency, optimizing outcomes, and addressing all available therapies are lacking. Thus, recommendations for nutrition management were developed using evidence from peer-reviewed publications, gray literature, and consensus surveys. The areas investigated included choice of appropriate medical foods, integration of adjunctive therapies, treatment during pregnancy, monitoring of nutritional and clinical markers, prevention of nutrient deficiencies, providing of access to care, and compliance strategies. This process has not only provided assessment and refinement of current nutrition management and monitoring recommendations but also charted a direction for future studies. This document serves as a companion to the concurrently published American College of Medical Genetics and Genomics guideline for the medical treatment of phenylalanine hydroxylase deficiency.
Collapse
Affiliation(s)
- Rani H. Singh
- Division of Medical Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fran Rohr
- Division of Genetics and Metabolism, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Dianne Frazier
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy Cunningham
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Shideh Mofidi
- Inherited Metabolic Disease Center, Maria Fareri Children's Hospital, Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| | - Beth Ogata
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - Kathryn Moseley
- Department of Pediatrics, University of Southern California Medical Center, Los Angeles, California, USA
| | - Kathleen Huntington
- Metabolic Clinic, Institute for Development and Disability, Oregon Health Science University, Portland, Oregon, USA
| | | | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sandra C. Van Calcar
- Division of Genetics and Metabolism, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
46
|
Abstract
INTRODUCTION Phenylketonuria (PKU) is caused by mutation of the enzyme, phenylalanine (Phe) hydroxylase (PAH). The hyperphenylalaninemia characteristic of PKU causes devastating neurological damage if not identified and treated at birth with a Phe-restricted diet. Sapropterin dihydrochloride, a pharmaceutical formulation of the natural cofactor for PAH (6R-tetrahydrobiopterin; BH4), is now available for the management of hyperphenylalaninemia in some PKU patients, including BH4 deficiencies. Sapropterin dihydrochloride improves dietary Phe tolerance in about 20% of patients with PKU. AREAS COVERED This evaluation describes the identification of patients suitable for treatment of sapropterin dihydrochloride, together with its indications, therapeutic properties and efficacy. Furthermore, the article reviews its safety and tolerability in patients with PKU or BH4 deficiency. EXPERT OPINION A reduction in blood Phe of at least 30% occurred in ∼ 20 - 30% of sapropterin-treated PKU patients (mostly with milder forms of PKU). Treatment with sapropterin resulted in clinically significant and sustained reductions in blood Phe concentrations and increased dietary Phe tolerance in well-designed clinical studies in PKU patients who responded to BH4. Successful treatment with sapropterin may lead to a relaxation of the Phe-restricted diet, although continued monitoring of blood Phe is required. Sapropterin was well tolerated.
Collapse
Affiliation(s)
- Nenad Blau
- University Children's Hospital, Division of Inborn Metabolic Diseases, Department of General Pediatrics, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| |
Collapse
|
47
|
Anjema K, van Rijn M, Hofstede FC, Bosch AM, Hollak CEM, Rubio-Gozalbo E, de Vries MC, Janssen MCH, Boelen CCA, Burgerhof JGM, Blau N, Heiner-Fokkema MR, van Spronsen FJ. Tetrahydrobiopterin responsiveness in phenylketonuria: prediction with the 48-hour loading test and genotype. Orphanet J Rare Dis 2013; 8:103. [PMID: 23842451 PMCID: PMC3711849 DOI: 10.1186/1750-1172-8-103] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How to efficiently diagnose tetrahydrobiopterin (BH4) responsiveness in patients with phenylketonuria remains unclear. This study investigated the positive predictive value (PPV) of the 48-hour BH4 loading test and the additional value of genotype. METHODS Data of the 48-hour BH4 loading test (20 mg BH4/kg/day) were collected at six Dutch university hospitals. Patients with ≥30% phenylalanine reduction at ≥1 time points during the 48 hours (potential responders) were invited for the BH4 extension phase, designed to establish true-positive BH4 responsiveness. This is defined as long-term ≥30% reduction in mean phenylalanine concentration and/or ≥4 g/day and/or ≥50% increase of natural protein intake. Genotype was collected if available. RESULTS 177/183 patients successfully completed the 48-hour BH4 loading test. 80/177 were potential responders and 67/80 completed the BH4 extension phase. In 58/67 true-positive BH4 responsiveness was confirmed (PPV 87%). The genotype was available for 120/177 patients. 41/44 patients with ≥1 mutation associated with long-term BH4 responsiveness showed potential BH4 responsiveness in the 48-hour test and 34/41 completed the BH4 extension phase. In 33/34 true-positive BH4 responsiveness was confirmed. 4/40 patients with two known putative null mutations were potential responders; 2/4 performed the BH4 extension phase but showed no true-positive BH4 responsiveness. CONCLUSIONS The 48-hour BH4 loading test in combination with a classified genotype is a good parameter in predicting true-positive BH4 responsiveness. We propose assessing genotype first, particularly in the neonatal period. Patients with two known putative null mutations can be excluded from BH4 testing.
Collapse
Affiliation(s)
- Karen Anjema
- Division of Metabolic Diseases, University Medical Center Groningen, Beatrix Children’s Hospital CA33, PO box 30.001, Groningen 9700 RB, The Netherlands
| | - Margreet van Rijn
- Division of Metabolic Diseases, University Medical Center Groningen, Beatrix Children’s Hospital CA33, PO box 30.001, Groningen 9700 RB, The Netherlands
| | - Floris C Hofstede
- University Medical Center Utrecht, Wilhelmina Children’s Hospital, Utrecht, The Netherlands
| | - Annet M Bosch
- Academic Medical Center, University Hospital of Amsterdam, Amsterdam, The Netherlands
| | - Carla EM Hollak
- Academic Medical Center, University Hospital of Amsterdam, Amsterdam, The Netherlands
| | | | - Maaike C de Vries
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Mirian CH Janssen
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Johannes GM Burgerhof
- Division of Metabolic Diseases, University Medical Center Groningen, Beatrix Children’s Hospital CA33, PO box 30.001, Groningen 9700 RB, The Netherlands
| | - Nenad Blau
- University Children’s Hospital, Heidelberg, Germany
- University Children’s Hospital, Zürich, Switzerland
| | - M Rebecca Heiner-Fokkema
- Division of Metabolic Diseases, University Medical Center Groningen, Beatrix Children’s Hospital CA33, PO box 30.001, Groningen 9700 RB, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, University Medical Center Groningen, Beatrix Children’s Hospital CA33, PO box 30.001, Groningen 9700 RB, The Netherlands
| |
Collapse
|
48
|
Heintz C, Cotton RGH, Blau N. Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase, and importance of genotypes for pharmacological therapy of phenylketonuria. Hum Mutat 2013; 34:927-36. [PMID: 23559577 DOI: 10.1002/humu.22320] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 11/11/2022]
Abstract
In about 20%-30% of phenylketonuria (PKU) patients (all phenotypes of PAH deficiency), Phe levels may be controlled through phenylalanine hydroxylase cofactor tetrahydrobiopterin therapy. These patients can be diagnosed by an oral tetrahydrobiopterin challenge and are characterized by mutations coding for proteins with substantial residual PAH activity. They can be treated with a commercially available synthetic form of tetrahydrobiopterin, either as a monotherapy or as adjunct to the diet. This review article summarizes molecular and metabolic bases of PKU and the importance of the tetrahydrobiopterin loading test used for PKU patients. On the basis of in vitro residual PAH activity, more than 1,200 genotypes from patients challenged with tetrahydrobiopterin were categorized as predictive for tetrahydrobiopterin responsiveness or non-responsiveness and correlated with the loading test, phenotype, and residual in vitro PAH activity. The coexpression of two distinct PAH mutant alleles revealed possible dominance effects (positive or negative) by one of the mutations on residual activity as result of interallelic complementation. The treatment of the transfected cells with tetrahydrobiopterin showed an increase in residual PAH activity with several mutations coexpressed.
Collapse
|
49
|
Keil S, Anjema K, van Spronsen FJ, Lambruschini N, Burlina A, Bélanger-Quintana A, Couce ML, Feillet F, Cerone R, Lotz-Havla AS, Muntau AC, Bosch AM, Meli CAP, Billette de Villemeur T, Kern I, Riva E, Giovannini M, Damaj L, Leuzzi V, Blau N. Long-term follow-up and outcome of phenylketonuria patients on sapropterin: a retrospective study. Pediatrics 2013; 131:e1881-8. [PMID: 23690520 DOI: 10.1542/peds.2012-3291] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Sapropterin dihydrochloride, the synthetic form of 6R-tetrahydrobiopterin (BH4), is an approved drug for the treatment of patients with BH4-responsive phenylketonuria (PKU). The purpose of this study was to assess genotypes and data on the long-term effects of BH4/sapropterin on metabolic control and patient-related outcomes in 6 large European countries. METHODS A questionnaire was developed to assess phenotype, genotype, blood phenylalanine (Phe) levels, Phe tolerance, quality of life, mood changes, and adherence to diet in PKU patients from 16 medical centers. RESULTS One hundred forty-seven patients, of whom 41.9% had mild hyperphenylalaninemia, 50.7% mild PKU, and 7.4% classic PKU, were followed up over ≤12 years. A total of 85 different genotypes were reported. With the exception of two splice variants, all of the most common mutations were reported to be associated with substantial residual Phe hydroxylase activity. Median Phe tolerance increased 3.9 times with BH4/sapropterin therapy, compared with dietary treatment, and median Phe blood concentrations were within the therapeutic range in all patients. Compared with diet alone, improvement in quality of life was reported in 49.6% of patients, improvement in adherence to diet was reported in 47% of patients, and improvement in adherence to treatment was reported in 63.3% of patients. No severe adverse events were reported. CONCLUSIONS Our data document a long-term beneficial effect of orally administered BH4/sapropterin in responsive PKU patients by improving the metabolic control, increasing daily tolerance for dietary Phe intake, and for some, by improving dietary adherence and quality of life. Patient genotypes help in predicting BH4 responsiveness.
Collapse
Affiliation(s)
- Stefanie Keil
- Division of Inborn Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Réblová K, Hrubá Z, Procházková D, Pazdírková R, Pouchlá S, Zeman J, Fajkusová L. Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations. Clin Chim Acta 2013; 419:1-10. [PMID: 23357515 DOI: 10.1016/j.cca.2013.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hyperphenylalaninemia (HPA) is one of the most common inherited metabolic disorders caused by deficiency of the enzyme phenylalanine hydroxylase (PAH). HPA is associated with mutations in the PAH gene, which leads to reduced protein stability and/or impaired catalytic function. Currently, almost 700 different disease-causing mutations have been described. The impact of mutations on enzyme activity varies ranging from classical PKU, mild PKU, to non-PKU HPA phenotype. METHODS We provide results of molecular genetic diagnostics of 665 Czech unrelated HPA patients, structural analysis of missense mutations associated with classical PKU and non-PKU HPA phenotype, and prediction of effects of 6 newly discovered HPA missense mutations using bioinformatic approaches and Molecular Dynamics simulations. RESULTS Ninety-eight different types of mutations were indentified. Thirteen of these were novel (6 missense, 2 nonsense, 1 splicing, and 4 small gene rearrangements). Structural analysis revealed that classical PKU mutations are more non-conservative compared to non-PKU HPA mutations and that specific sequence and structural characteristics of a mutation might be critical when distinguishing between non-PKU HPA and classical PKU mutations. The greatest impact was predicted for the p.(Phe263Ser) mutation while other novel mutations p.(Asn167Tyr), p.(Thr200Asn), p.(Asp229Gly), p.(Leu358Phe), and p.(Ile406Met) were found to be less deleterious.
Collapse
Affiliation(s)
- Kamila Réblová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|