1
|
Kido J, Sugawara K, Tavoulari S, Makris G, Rüfenacht V, Nakamura K, Kunji ERS, Häberle J. Deciphering the Mutational Background in Citrin Deficiency Through a Nationwide Study in Japan and Literature Review. Hum Mutat 2025; 2025:9326326. [PMID: 40309478 PMCID: PMC12041640 DOI: 10.1155/humu/9326326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/24/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Citrin deficiency (CD) is an autosomal recessive disorder caused by the absence or dysfunction of the mitochondrial transporter citrin, resulting from mutations in SLC25A13. The disease presents with age-dependent clinical manifestations: neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia by CD (FTTDCD), and an adult-onset form (formerly called Type II citrullinemia, CTLN2, recently renamed to "adolescent and adult citrin deficiency," AACD). We performed this study to compile known genotypes found in CD patients and investigate their impact on the clinical course. Through a nationwide survey in Japan as well as a literature review, we collected information regarding 68 genetic variants of a total of 345 patients with CD (285 NICCD, 19 post-NICCD, and 41 AACD). In this cohort, the pathogenic variants, arising from nonsense, insertion/deletion, and splice site mutations, are expected to have severe functional or biogenesis defects. Of 82 alleles in patients with AACD, the two most common variants, c.852_855del and c.1177+1G>A, accounted for 25 alleles (30.5%) and 15 alleles (18.3%), respectively. The c.852_855del variant, even when present as part of compound heterozygosity, often presented with hyperammonemia (≥ 180 μmol/L), cognitive impairment, short stature (< -2SD), liver cirrhosis, and pancreatitis, with some patients requiring liver transplantation. In conclusion, certain SLC25A13 genotypes are particularly frequent, especially those that result in severely truncated citrin proteins with often a significant impact on the clinical outcome of the patient. The most prevalent variant is c.852_855del, which was found in 42% (128/304) of NICCD/post-NICCD cases and 49% (20/41) of AACD patients.
Collapse
Affiliation(s)
- Jun Kido
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Georgios Makris
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Ahmed A, Iaconisi GN, Di Molfetta D, Coppola V, Caponio A, Singh A, Bibi A, Capobianco L, Palmieri L, Dolce V, Fiermonte G. The Role of Mitochondrial Solute Carriers SLC25 in Cancer Metabolic Reprogramming: Current Insights and Future Perspectives. Int J Mol Sci 2024; 26:92. [PMID: 39795950 PMCID: PMC11719790 DOI: 10.3390/ijms26010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis. In this context, mitochondria, which are primarily used to maintain energy homeostasis and support balanced biosynthesis in normal cells, become central organelles for fulfilling the heightened biosynthetic and energetic demands of proliferating cancer cells. Mitochondrial coordination and metabolite exchange with other cellular compartments are crucial. The human SLC25 mitochondrial carrier family, comprising 53 members, plays a pivotal role in transporting TCA intermediates, amino acids, vitamins, nucleotides, and cofactors across the inner mitochondrial membrane, thereby facilitating this cross-talk. Numerous studies have demonstrated that mitochondrial carriers are altered in cancer cells, actively contributing to tumorigenesis. This review comprehensively discusses the role of SLC25 carriers in cancer pathogenesis and metabolic reprogramming based on current experimental evidence. It also highlights the research gaps that need to be addressed in future studies. Understanding the involvement of these carriers in tumorigenesis may provide valuable novel targets for drug development.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.N.I.); (L.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Antonello Caponio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Ansu Singh
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Aasia Bibi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70125 Bari, Italy;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.N.I.); (L.C.)
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| |
Collapse
|
3
|
Tavoulari S, Lacabanne D, Pereira GC, Thangaratnarajah C, King MS, He J, Chowdhury SR, Tilokani L, Palmer SM, Prudent J, Walker JE, Kunji ERS. Distinct roles for the domains of the mitochondrial aspartate/glutamate carrier citrin in organellar localization and substrate transport. Mol Metab 2024; 90:102047. [PMID: 39419476 PMCID: PMC11539162 DOI: 10.1016/j.molmet.2024.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Citrin, the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), is structurally and mechanistically the most complex SLC25 family member, because it consists of three domains and forms a homo-dimer. Each protomer has an N-terminal calcium-binding domain with EF-hands, followed by a substrate-transporting carrier domain and a C-terminal domain with an amphipathic helix. The absence or dysfunction of citrin leads to citrin deficiency, a highly prevalent pan-ethnic mitochondrial disease. Here, we aim to understand the role of different citrin domains and how they contribute to pathogenic mechanisms in citrin deficiency. METHODS We have employed structural modeling and functional reconstitution of purified proteins in proteoliposomes to assess the transport activity and calcium regulation of wild-type citrin and pathogenic variants associated with citrin deficiency. We have also developed a double knockout of citrin and aralar (AGC1), the two paralogs of the mitochondrial aspartate/glutamate carrier, in HAP1 cells to perform mitochondrial imaging and to investigate mitochondrial localisation. RESULTS Using 33 pathogenic variants of citrin we clarify determinants of subcellular localization and transport mechanism. We identify crucial elements of the carrier domain that are required for transport, including those involved in substrate binding, network formation and dynamics. We show that the N-terminal domain is not involved in calcium regulation of transport, as previously thought, but when mutated causes a mitochondrial import defect. CONCLUSIONS Our work introduces a new role for the N-terminal domain of citrin and demonstrates that dysfunction of the different domains contributes to distinct pathogenic mechanisms in citrin deficiency.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Gonçalo C Pereira
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Jiuya He
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Suvagata R Chowdhury
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Lisa Tilokani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Shane M Palmer
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - John E Walker
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.
| |
Collapse
|
4
|
Häberle J. Citrin deficiency-The East-side story. J Inherit Metab Dis 2024; 47:1129-1133. [PMID: 38994653 PMCID: PMC11586598 DOI: 10.1002/jimd.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Citrin deficiency (CD) is a complex metabolic condition due to defects in SLC25A13 encoding citrin, an aspartate/glutamate carrier located in the mitochondrial inner membrane. The condition was first described in Japan and other East Asian countries in patients who were thought to suffer from classical citrullinemia type 1, and was therefore classified as a urea cycle disorder. With an improved understanding of its molecular basis, it became apparent that a defect of citrin is primarily affecting the malate-aspartate shuttle with however multiple secondary effects on many central metabolic pathways including glycolysis, gluconeogenesis, de novo lipogenesis and ureagenesis. In the meantime, it became also clear that CD must be considered as a global disease with patients identified in many parts of the world and affected by SLC25A13 genotypes different from those known in East Asian populations. The present short review summarizes the (hi)story of this complex metabolic condition and tries to explain the relevance of including CD as a differential diagnosis in neonates and infants with cholestasis and in (not only adult) patients with hyperammonemia of unknown origin with subsequent impact on the emergency management.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children's Hospital Zurich and Children's Research CenterUniversity of ZurichZurichSwitzerland
| |
Collapse
|
5
|
Kido J, Makris G, Santra S, Häberle J. Clinical landscape of citrin deficiency: A global perspective on a multifaceted condition. J Inherit Metab Dis 2024; 47:1144-1156. [PMID: 38503330 PMCID: PMC11586594 DOI: 10.1002/jimd.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/21/2024]
Abstract
Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in SLC25A13. The clinical manifestation is very variable and comprises three types: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD: OMIM 605814), post-NICCD including failure to thrive and dyslipidemia caused by citrin deficiency, and adult-onset type II citrullinemia (CTLN2: OMIM 603471). Frequently, NICCD can run with a mild clinical course and manifestations may resolve in the post-NICCD. However, a subset of patients may develop CTLN2 when they become more than 18 years old, and this condition is potentially life-threatening. Since a combination of diet with low-carbohydrate and high-fat content supplemented with medium-chain triglycerides is expected to ameliorate most manifestations and to prevent the progression to CTLN2, early detection and intervention are important and may improve long-term outcome in patients. Moreover, infusion of high sugar solution and/or glycerol may be life-threatening in patients with citrin deficiency, particularly CTLN2. The disease is highly prevalent in East Asian countries but is more and more recognized as a global entity. Since newborn screening for citrin deficiency has only been introduced in a few countries, the diagnosis still mainly relies on clinical suspicion followed by genetic testing or selective metabolic screening. This paper aims at describing (1) the different stages of the disease focusing on clinical aspects; (2) the current published clinical situation in East Asia, Europe, and North America; (3) current efforts in increasing awareness by establishing management guidelines and patient registries, hereby illustrating the ongoing development of a global network for this rare disease.
Collapse
Affiliation(s)
- Jun Kido
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
- Department of Pediatrics, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of PediatricsKumamoto University HospitalKumamotoJapan
| | - Georgios Makris
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
| | - Saikat Santra
- Department of Clinical Inherited Metabolic DisordersBirmingham Children's HospitalBirminghamUK
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
| |
Collapse
|
6
|
Komatsu M, Tanaka N, Kimura T, Yazaki M. Citrin Deficiency: Clinical and Nutritional Features. Nutrients 2023; 15:2284. [PMID: 37242166 PMCID: PMC10224054 DOI: 10.3390/nu15102284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
SLC25A13 gene mutations are responsible for diseases related to citrin deficiency (CD), such as neonatal intrahepatic cholestasis caused by citrin deficiency and adult-onset type II citrullinemia (CTLN2). From childhood to adulthood, CD patients are apparently healthy due to metabolic compensation with peculiar dietary habits-disliking high-carbohydrate foods and liking fat and protein-rich foods. Carbohydrate overload and alcohol consumption may trigger the sudden onset of CTLN2, inducing hyperammonemia and consciousness disturbance. Well-compensated asymptomatic CD patients are sometimes diagnosed as having non-obese (lean) non-alcoholic fatty liver disease and steatohepatitis, which have the risk of developing into liver cirrhosis and hepatocellular carcinoma. CD-induced fatty liver demonstrates significant suppression of peroxisome proliferator-activated receptor α and its downstream enzymes/proteins involved in fatty acid transport and oxidation and triglyceride secretion as a very low-density lipoprotein. Nutritional therapy is an essential and important treatment of CD, and medium-chain triglycerides oil and sodium pyruvate are useful for preventing hyperammonemia. We need to avoid the use of glycerol for treating brain edema by hyperammonemia. This review summarizes the clinical and nutritional features of CD-associated fatty liver disease and promising nutritional interventions.
Collapse
Affiliation(s)
- Michiharu Komatsu
- Department of Gastroenterology, Suwa Red Cross Hospital, Suwa 392-8510, Nagano, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Nagano, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Nagano, Japan
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Masahide Yazaki
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Nagano, Japan
| |
Collapse
|
7
|
Gorgoglione R, Seccia R, Ahmed A, Vozza A, Capobianco L, Lodi A, Marra F, Paradies E, Palmieri L, Coppola V, Dolce V, Fiermonte G. Generation of a Yeast Cell Model Potentially Useful to Identify the Mammalian Mitochondrial N-Acetylglutamate Transporter. Biomolecules 2023; 13:biom13050808. [PMID: 37238678 DOI: 10.3390/biom13050808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The human mitochondrial carrier family (MCF) consists of 53 members. Approximately one-fifth of them are still orphans of a function. Most mitochondrial transporters have been functionally characterized by reconstituting the bacterially expressed protein into liposomes and transport assays with radiolabeled compounds. The efficacy of this experimental approach is constrained to the commercial availability of the radiolabeled substrate to be used in the transport assays. A striking example is that of N-acetylglutamate (NAG), an essential regulator of the carbamoyl synthetase I activity and the entire urea cycle. Mammals cannot modulate mitochondrial NAG synthesis but can regulate the levels of NAG in the matrix by exporting it to the cytosol, where it is degraded. The mitochondrial NAG transporter is still unknown. Here, we report the generation of a yeast cell model suitable for identifying the putative mammalian mitochondrial NAG transporter. In yeast, the arginine biosynthesis starts in the mitochondria from NAG which is converted to ornithine that, once transported into cytosol, is metabolized to arginine. The deletion of ARG8 makes yeast cells unable to grow in the absence of arginine since they cannot synthetize ornithine but can still produce NAG. To make yeast cells dependent on a mitochondrial NAG exporter, we moved most of the yeast mitochondrial biosynthetic pathway to the cytosol by expressing four E. coli enzymes, argB-E, able to convert cytosolic NAG to ornithine. Although argB-E rescued the arginine auxotrophy of arg8∆ strain very poorly, the expression of the bacterial NAG synthase (argA), which would mimic the function of a putative NAG transporter increasing the cytosolic levels of NAG, fully rescued the growth defect of arg8∆ strain in the absence of arginine, demonstrating the potential suitability of the model generated.
Collapse
Affiliation(s)
- Ruggiero Gorgoglione
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Roberta Seccia
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Angelo Vozza
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Federica Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Eleonora Paradies
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70125 Bari, Italy
| | - Luigi Palmieri
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
8
|
Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets. Biochem Pharmacol 2023; 208:115405. [PMID: 36603686 DOI: 10.1016/j.bcp.2022.115405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.
Collapse
|
9
|
Giangregorio N, Pierri CL, Tonazzi A, Incampo G, Tragni V, De Grassi A, Indiveri C. Proline/Glycine residues of the PG-levels guide conformational changes along the transport cycle in the mitochondrial carnitine/acylcarnitine carrier (SLC25A20). Int J Biol Macromol 2022; 221:1453-1465. [PMID: 36122779 DOI: 10.1016/j.ijbiomac.2022.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
Mitochondrial carnitine/acylcarnitine carrier (CAC) is a member of the mitochondrial carrier (MC) family and imports acylcarnitine into the mitochondrial matrix in exchange for carnitine, playing a pivotal role in carnitine shuttle, crucial for fatty acid oxidation. The crystallized structure of CAC has not been solved yet, however, the availability of several in vitro/in silico studies, also based on the crystallized structures of the ADP/ATP carrier in the cytosolic-conformation and in the matrix-conformation, has made possible to confirm the hypothesis of the single-binding centered-gated pore mechanism for all the members of the MC family. In addition, our recent bioinformatics analyses allowed quantifying in silico the importance of protein residues of MC substrate binding region, of those involved in the formation of the matrix and cytosolic gates, and of those belonging to the Pro/Gly (PG) levels, proposed to be crucial for the tilting/kinking/bending of the six MC transmembrane helices, funneling the substrate translocation pathway. Here we present a combined in silico/in vitro analysis employed for investigating the role played by a group of 6 proline residues and 6 glycine residues, highly conserved in CAC, belonging to MC PG-levels. Residues of the PG-levels surround the similarly located MC common substrate binding region, and were proposed to lead conformational changes and substrate translocation, following substrate binding. For our analysis, we employed 3D molecular modeling approaches, alanine scanning site-directed mutagenesis and in vitro transport assays. Our analysis reveals that P130 (H3), G268 (H6) and G220 (H5), mutated in alanine, affect severely CAC transport activity (mutant catalytic efficiency lower than 5 % compared to the wild type CAC), most likely due to their major role in triggering CAC conformational changes, following carnitine binding. Notably, P30A (H1) and G121A (H3) CAC mutants, increase the carnitine uptake up to 217 % and 112 %, respectively, compared to the wild type CAC.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy.
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy.
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Giovanna Incampo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Vincenzo Tragni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy; Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
10
|
Tavoulari S, Lacabanne D, Thangaratnarajah C, Kunji ERS. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol Metab 2022; 33:539-553. [PMID: 35725541 PMCID: PMC7614230 DOI: 10.1016/j.tem.2022.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022]
Abstract
Citrin deficiency is a pan-ethnic and highly prevalent mitochondrial disease with three different stages: neonatal intrahepatic cholestasis (NICCD), a relatively mild adaptation stage, and type II citrullinemia in adulthood (CTLN2). The cause is the absence or dysfunction of the calcium-regulated mitochondrial aspartate/glutamate carrier 2 (AGC2/SLC25A13), also called citrin, which imports glutamate into the mitochondrial matrix and exports aspartate to the cytosol. In citrin deficiency, these missing transport steps lead to impairment of the malate-aspartate shuttle, gluconeogenesis, amino acid homeostasis, and the urea cycle. In this review, we describe the geological spread and occurrence of citrin deficiency, the metabolic consequences and use our current knowledge of the structure to predict the impact of the known pathogenic mutations on the calcium-regulatory and transport mechanism of citrin.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
11
|
Citrate Regulates the Saccharomyces cerevisiae Mitochondrial GDP/GTP Carrier (Ggc1p) by Triggering Unidirectional Transport of GTP. J Fungi (Basel) 2022; 8:jof8080795. [PMID: 36012783 PMCID: PMC9410265 DOI: 10.3390/jof8080795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
The yeast mitochondrial transport of GTP and GDP is mediated by Ggc1p, a member of the mitochondrial carrier family. The physiological role of Ggc1p in S. cerevisiae is probably to transport GTP into mitochondria in exchange for GDP generated in the matrix. ggc1Δ cells exhibit lower levels of GTP and increased levels of GDP in mitochondria, are unable to grow on nonfermentable substrates and lose mtDNA. Because in yeast, succinyl-CoA ligase produces ATP instead of GTP, and the mitochondrial nucleoside diphosphate kinase is localized in the intermembrane space, Ggc1p is the only supplier of mitochondrial GTP required for the maturation of proteins containing Fe-S clusters, such as aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. In this work, it was demonstrated that citrate is a regulator of purified and reconstituted Ggc1p by trans-activating unidirectional transport of GTP across the proteoliposomal membrane. It was also shown that the binding site of Ggc1p for citrate is different from the binding site for the substrate GTP. It is proposed that the citrate-induced GTP uniport (CIGU) mediated by Ggc1p is involved in the homeostasis of the guanine nucleotide pool in the mitochondrial matrix.
Collapse
|
12
|
Tragni V, Primiano G, Tummolo A, Cafferati Beltrame L, La Piana G, Sgobba MN, Cavalluzzi MM, Paterno G, Gorgoglione R, Volpicella M, Guerra L, Marzulli D, Servidei S, De Grassi A, Petrosillo G, Lentini G, Pierri CL. Personalized Medicine in Mitochondrial Health and Disease: Molecular Basis of Therapeutic Approaches Based on Nutritional Supplements and Their Analogs. Molecules 2022; 27:3494. [PMID: 35684429 PMCID: PMC9182050 DOI: 10.3390/molecules27113494] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (S.S.)
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy; (A.T.); (G.P.)
| | - Lucas Cafferati Beltrame
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Gianluigi La Piana
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Giulia Paterno
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy; (A.T.); (G.P.)
| | - Ruggiero Gorgoglione
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Domenico Marzulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (S.S.)
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Giovanni Lentini
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| |
Collapse
|
13
|
Okamoto M, Okano Y, Okano M, Yazaki M, Inui A, Ohura T, Murayama K, Watanabe Y, Tokuhara D, Takeshima Y. Food Preferences of Patients with Citrin Deficiency. Nutrients 2021; 13:nu13093123. [PMID: 34579000 PMCID: PMC8468903 DOI: 10.3390/nu13093123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023] Open
Abstract
Citrin deficiency is characterized by a wide range of symptoms from infancy through adulthood and presents a distinct preference for a diet composed of high protein, high fat, and low carbohydrate. The present study elucidates the important criteria by patients with citrin deficiency for food selection through detailed analysis of their food preferences. The survey was conducted in 70 citrin-deficient patients aged 2–63 years and 55 control subjects aged 2–74 years and inquired about their preference for 435 food items using a scale of 1–4 (the higher, the more favored). The results showed that the foods marked as “dislike” accounted for 36.5% in the patient group, significantly higher than the 16.0% in the controls. The results also showed that patients clearly disliked foods with 20–24 (% of energy) or less protein, 45–54% (of energy) or less fat, and 30–39% (of energy) or more carbohydrate. Multiple regression analysis showed carbohydrates had the strongest influence on patients’ food preference (β = −0.503). It also showed female patients had a stronger aversion to foods with high carbohydrates than males. The protein, fat, and carbohydrate energy ratio (PFC) of highly favored foods among patients was almost the same as the average PFC ratio of their daily diet (protein 20–22: fat 47–51: carbohydrates 28–32). The data strongly suggest that from early infancy, patients start aspiring to a nutritional balance that can compensate for the metabolism dissonance caused by citrin deficiency in every food.
Collapse
Affiliation(s)
| | - Yoshiyuki Okano
- Okano Children’s Clinic, Izumi 594-0071, Japan;
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
- Correspondence: ; Tel.: +81-725-40-1199; Fax: +81-725-40-1099
| | - Mai Okano
- Department of Pediatrics, Kansai Medical University, Hirakata 573-1010, Japan;
| | - Masahide Yazaki
- Department of Biological Sciences for Intractable Neurological Disorders, Institute for Biomedical Sciences, Shinshu University, Nagano 390-8621, Japan;
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama 230-0012, Japan;
| | - Toshihiro Ohura
- Division of Clinical Laboratory, Sendai City Hospital, Sendai 982-8502, Japan;
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Chiba 266-0007, Japan;
| | - Yoriko Watanabe
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Kurume 830-0011, Japan;
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Hospital, Osaka 545-0051, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| |
Collapse
|
14
|
Lau NKC, Lee HHC, Chen SPL, Ng CWY, Mak CM, Chong YK, Tong TTY, Leung MT, Shek CC, Yuen YP, Ching CK. In-house multiplex ligation-dependent probe amplification assay for citrin deficiency: analytical validation and novel exonic deletions in SLC25A13. Pathology 2021; 53:867-874. [PMID: 34045052 DOI: 10.1016/j.pathol.2021.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Citrin deficiency is one of the most common inborn errors of metabolism in East Asians, which may manifest as neonatal cholestasis, failure to thrive and dyslipidaemia, or recurrent hyperammonaemic encephalopathy. Its molecular diagnosis requires confirmation of the presence of biallelic pathogenic variants in SLC25A13 gene by sequencing, and analysis for a common insertion IVS16ins3kb. However, patients with compatible biochemical features but only one monoallelic pathogenic variant have remained a diagnostic challenge. Here we report the development, validation and application of a multiplex ligation-dependent probe amplification (MLPA) assay using an in-house oligonucleotide probemix and a customised Coffalyer.NET worksheet for detection of exonic copy number variations in SLC25A13. With this MLPA assay, we successfully identified the presence of a heterozygous exonic deletion in SLC25A13 in three of 15 (20%) unrelated individuals with only one monoallelic pathogenic variant detected using conventional methods. Three exonic deletions, two novel involving exon 14 and one reported involving exon 5, were subsequently confirmed with Sanger sequencing. In summary, we developed, evaluated, and demonstrated the clinical utility of an in-house MLPA assay to look for exonic deletions in SLC25A13 in patients with citrin deficiency. With the discovery of novel deletions, MLPA should be considered a test of choice for molecular diagnosis of citrin deficiency when the sequencing result is inconclusive.
Collapse
Affiliation(s)
- Nike Kwai Cheung Lau
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Hencher Han Chih Lee
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Sammy Pak Lam Chen
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Candy Wai Yan Ng
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Chloe Miu Mak
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Yeow Kuan Chong
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Tammy Tsz Yan Tong
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Mei Tik Leung
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Chi Chung Shek
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yuet Ping Yuen
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chor Kwan Ching
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China.
| |
Collapse
|
15
|
The mitochondrial aspartate/glutamate carrier (AGC or Aralar1) isoforms in D. melanogaster: biochemical characterization, gene structure, and evolutionary analysis. Biochim Biophys Acta Gen Subj 2021; 1865:129854. [PMID: 33497735 DOI: 10.1016/j.bbagen.2021.129854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND In man two mitochondrial aspartate/glutamate carrier (AGC) isoforms, known as aralar and citrin, are required to accomplish several metabolic pathways. In order to fill the existing gap of knowledge in Drosophila melanogaster, we have studied aralar1 gene, orthologue of human AGC-encoding genes in this organism. METHODS The blastp algorithm and the "reciprocal best hit" approach have been used to identify the human orthologue of AGCs in Drosophilidae and non-Drosophilidae. Aralar1 proteins have been overexpressed in Escherichia coli and functionally reconstituted into liposomes for transport assays. RESULTS The transcriptional organization of aralar1 comprises six isoforms, three constitutively expressed (aralar1-RA, RD and RF), and the remaining three distributed during the development or in different tissues (aralar1-RB, RC and RE). Aralar1-PA and Aralar1-PE, representative of all isoforms, have been biochemically characterized. Recombinant Aralar1-PA and Aralar1-PE proteins share similar efficiency to exchange glutamate against aspartate, and same substrate affinities than the human isoforms. Interestingly, although Aralar1-PA and Aralar1-PE diverge only in their EF-hand 8, they greatly differ in their specific activities and substrate specificity. CONCLUSIONS The tight regulation of aralar1 transcripts expression and the high request of aspartate and glutamate during early embryogenesis suggest a crucial role of Aralar1 in this Drosophila developmental stage. Furthermore, biochemical characterization and calcium sensitivity have identified Aralar1-PA and Aralar1-PE as the human aralar and citrin counterparts, respectively. GENERAL SIGNIFICANCE The functional characterization of the fruit fly mitochondrial AGC transporter represents a crucial step toward a complete understanding of the metabolic events acting during early embryogenesis.
Collapse
|
16
|
Tragni V, Cotugno P, De Grassi A, Massari F, Di Ronzo F, Aresta AM, Zambonin C, Sanzani SM, Ippolito A, Pierri CL. Targeting mitochondrial metabolite transporters in Penicillium expansum for reducing patulin production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:158-181. [PMID: 33250320 DOI: 10.1016/j.plaphy.2020.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 06/12/2023]
Abstract
There is an increasing need of alternative treatments to control fungal infection and consequent mycotoxin accumulation in harvested fruits and vegetables. Indeed, only few biological targets of antifungal agents have been characterized and can be used for limiting fungal spread from decayed fruits/vegetables to surrounding healthy ones during storage. On this concern, a promising target of new antifungal treatments may be represented by mitochondrial proteins due to some species-specific functions played by mitochondria in fungal morphogenesis, drug resistance and virulence. One of the most studied mycotoxins is patulin produced by several species of Penicillium and Aspergillus genera. Patulin is toxic to many biological systems including bacteria, higher plants and animalia. Although precise biochemical mechanisms of patulin toxicity in humans are not completely clarified, its high presence in fresh and processed apple fruits and other apple-based products makes necessary developing a strategy for limiting its presence/accumulation. Patulin biosynthetic pathway consists of an enzymatic cascade, whose first step is represented by the synthesis of 6-methylsalicylic acid, obtained from the condensation of one acetyl-CoA molecule with three malonyl-CoA molecules. The most abundant acetyl-CoA precursor is represented by citrate produced by mitochondria. In the present investigation we report about the possibility to control patulin production through the inhibition of mitochondrial/peroxisome transporters involved in the export of acetyl-CoA precursors from mitochondria and/or peroxisomes, with specific reference to the predicted P. expansum mitochondrial Ctp1p, DTC, Sfc1p, Oac1p and peroxisomal PXN carriers.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Pietro Cotugno
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Anna De Grassi
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o, Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy
| | - Federica Massari
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Francesco Di Ronzo
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Antonella Maria Aresta
- Chemistry Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Carlo Zambonin
- Chemistry Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | | | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy.
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o, Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
17
|
AGC2 (Citrin) Deficiency-From Recognition of the Disease till Construction of Therapeutic Procedures. Biomolecules 2020; 10:biom10081100. [PMID: 32722104 PMCID: PMC7465890 DOI: 10.3390/biom10081100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022] Open
Abstract
Can you imagine a disease in which intake of an excess amount of sugars or carbohydrates causes hyperammonemia? It is hard to imagine the intake causing hyperammonemia. AGC2 or citrin deficiency shows their symptoms following sugar/carbohydrates intake excess and this disease is now known as a pan-ethnic disease. AGC2 (aspartate glutamate carrier 2) or citrin is a mitochondrial transporter which transports aspartate (Asp) from mitochondria to cytosol in exchange with glutamate (Glu) and H+. Asp is originally supplied from mitochondria to cytosol where it is necessary for synthesis of proteins, nucleotides, and urea. In cytosol, Asp can be synthesized from oxaloacetate and Glu by cytosolic Asp aminotransferase, but oxaloacetate formation is limited by the amount of NAD+. This means an increase in NADH causes suppression of Asp formation in the cytosol. Metabolism of carbohydrates and other substances which produce cytosolic NADH such as alcohol and glycerol suppress oxaloacetate formation. It is forced under citrin deficiency since citrin is a member of malate/Asp shuttle. In this review, we will describe history of identification of the SLC25A13 gene as the causative gene for adult-onset type II citrullinemia (CTLN2), a type of citrin deficiency, pathophysiology of citrin deficiency together with animal models and possible treatments for citrin deficiency newly developing.
Collapse
|
18
|
Mitochondrial Carriers for Aspartate, Glutamate and Other Amino Acids: A Review. Int J Mol Sci 2019; 20:ijms20184456. [PMID: 31510000 PMCID: PMC6769469 DOI: 10.3390/ijms20184456] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
Members of the mitochondrial carrier (MC) protein family transport various molecules across the mitochondrial inner membrane to interlink steps of metabolic pathways and biochemical processes that take place in different compartments; i.e., are localized partly inside and outside the mitochondrial matrix. MC substrates consist of metabolites, inorganic anions (such as phosphate and sulfate), nucleotides, cofactors and amino acids. These compounds have been identified by in vitro transport assays based on the uptake of radioactively labeled substrates into liposomes reconstituted with recombinant purified MCs. By using this approach, 18 human, plant and yeast MCs for amino acids have been characterized and shown to transport aspartate, glutamate, ornithine, arginine, lysine, histidine, citrulline and glycine with varying substrate specificities, kinetics, influences of the pH gradient, and capacities for the antiport and uniport mode of transport. Aside from providing amino acids for mitochondrial translation, the transport reactions catalyzed by these MCs are crucial in energy, nitrogen, nucleotide and amino acid metabolism. In this review we dissect the transport properties, phylogeny, regulation and expression levels in different tissues of MCs for amino acids, and summarize the main structural aspects known until now about MCs. The effects of their disease-causing mutations and manipulation of their expression levels in cells are also considered as clues for understanding their physiological functions.
Collapse
|
19
|
van Karnebeek CDM, Ramos RJ, Wen XY, Tarailo-Graovac M, Gleeson JG, Skrypnyk C, Brand-Arzamendi K, Karbassi F, Issa MY, van der Lee R, Drögemöller BI, Koster J, Rousseau J, Campeau PM, Wang Y, Cao F, Li M, Ruiter J, Ciapaite J, Kluijtmans LAJ, Willemsen MAAP, Jans JJ, Ross CJ, Wintjes LT, Rodenburg RJ, Huigen MCDG, Jia Z, Waterham HR, Wasserman WW, Wanders RJA, Verhoeven-Duif NM, Zaki MS, Wevers RA. Bi-allelic GOT2 Mutations Cause a Treatable Malate-Aspartate Shuttle-Related Encephalopathy. Am J Hum Genet 2019; 105:534-548. [PMID: 31422819 DOI: 10.1016/j.ajhg.2019.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022] Open
Abstract
Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Departments of Pediatrics & Clinical Genetics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam Gastro-enterology and Metabolism, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Pediatrics / Medical Genetics, BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Amalia Children's Hospital, Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands.
| | - Rúben J Ramos
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Sheng Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada; Department of Medicine, Physiology and LMP & Institute of Medical Science, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Joseph G Gleeson
- Department Neurosciences and Pediatric, Howard Hughes Medical Institute, University of California; Rady Children's Institute for Genomic Medicine, San Diego, CA 92093, USA
| | - Cristina Skrypnyk
- Department of Molecular Medicine and Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Postal Code 328, Bahrain
| | - Koroboshka Brand-Arzamendi
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Sheng Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Farhad Karbassi
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Sheng Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Britt I Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Gastro-enterology and Metabolism, 1105 AZ Amsterdam, the Netherlands
| | - Justine Rousseau
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Youdong Wang
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Sheng Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Feng Cao
- Department of Neuroscience & Mental Health, The Hospital for Sick Children & Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Meng Li
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, Li Ka Sheng Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Jos Ruiter
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Gastro-enterology and Metabolism, 1105 AZ Amsterdam, the Netherlands
| | - Jolita Ciapaite
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Leo A J Kluijtmans
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Michel A A P Willemsen
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Amalia Children's Hospital, Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Judith J Jans
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Colin J Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liesbeth T Wintjes
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Richard J Rodenburg
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Amalia Children's Hospital, Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Marleen C D G Huigen
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Zhengping Jia
- Department of Neuroscience & Mental Health, The Hospital for Sick Children & Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Hans R Waterham
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Gastro-enterology and Metabolism, 1105 AZ Amsterdam, the Netherlands
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Ronald J A Wanders
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Gastro-enterology and Metabolism, 1105 AZ Amsterdam, the Netherlands
| | - Nanda M Verhoeven-Duif
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Genetics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Ron A Wevers
- On behalf of "United for Metabolic Diseases," 1105AZ Amsterdam, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
20
|
Rabinovich S, Silberman A, Adler L, Agron S, Levin-Zaidman S, Bahat A, Porat Z, Ben-Zeev E, Geva I, Itkin M, Malitsky S, Buchaklian A, Helbling D, Dimmock D, Erez A. The mitochondrial carrier Citrin plays a role in regulating cellular energy during carcinogenesis. Oncogene 2019; 39:164-175. [PMID: 31462712 DOI: 10.1038/s41388-019-0976-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022]
Abstract
Citrin, encoded by SLC25A13 gene, is an inner mitochondrial transporter that is part of the malate-aspartate shuttle, which regulates the NAD+/NADH ratio between the cytosol and mitochondria. Citrullinemia type II (CTLN-II) is an inherited disorder caused by germline mutations in SLC25A13, manifesting clinically in growth failure that can be alleviated by dietary restriction of carbohydrates. The association of citrin with glycolysis and NAD+/NADH ratio led us to hypothesize that it may play a role in carcinogenesis. Indeed, we find that citrin is upregulated in multiple cancer types and is essential for supplementing NAD+ for glycolysis and NADH for oxidative phosphorylation. Consequently, citrin deficiency associates with autophagy, whereas its overexpression in cancer cells increases energy production and cancer invasion. Furthermore, based on the human deleterious mutations in citrin, we found a potential inhibitor of citrin that restricts cancerous phenotypes in cells. Collectively, our findings suggest that targeting citrin may be of benefit for cancer therapy.
Collapse
Affiliation(s)
- Shiran Rabinovich
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Silberman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lital Adler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Agron
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Bahat
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Cell Sorting, Weizmann Institute of Science, Rehovot, Israel
| | - Efrat Ben-Zeev
- Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Inbal Geva
- Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Adam Buchaklian
- Human and Molecular Genetic and Biochemistry Center, Medical College Wisconsin, Milwaukee, WI, USA
| | - Daniel Helbling
- Human and Molecular Genetic and Biochemistry Center, Medical College Wisconsin, Milwaukee, WI, USA
| | - David Dimmock
- Human and Molecular Genetic and Biochemistry Center, Medical College Wisconsin, Milwaukee, WI, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Zeng HS, Lin WX, Zhao ST, Zhang ZH, Yang HW, Chen FP, Song YZ, Yin ZN. SLC25A13 cDNA cloning analysis using peripheral blood lymphocytes facilitates the identification of a large deletion mutation: Molecular diagnosis of an infant with neonatal intrahepatic cholestasis caused by citrin deficiency. Mol Med Rep 2016; 14:5189-5194. [PMID: 27779681 DOI: 10.3892/mmr.2016.5873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/08/2016] [Indexed: 11/05/2022] Open
Abstract
Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is an autosomal recessive disorder resulting from biallelic mutations of the SLC25A13 gene. Due to the lack of well‑recognized clinical or biochemical diagnostic criteria, the definitive diagnosis of this disease relies on the genetic analysis of SLC25A13 at present. As novel large deletion/insertion mutations of the SLC25A13 gene are difficult to detect using routine DNA analytic approaches, the timely diagnosis of patients with these types of mutations remains a challenge. The present study aimed to examine SLC25A13 mutations in an infant with a suspected diagnosis of NICCD. DNA was extracted from blood samples, and SLC25A13 mutations were examined by screening for high‑frequency mutations and Sanger sequencing. Reverse transcription-polymerase chain reaction and cDNA cloning analyses were then performed using peripheral blood lymphocytes (PBLs) to identify the obscure mutation. The results demonstrated that the infant was heterozygous for a paternally‑inherited mutation, c.851_854del4, and a maternally‑inherited large deletion, c.1019_1177+893del, which has not been reported previously. A positive diagnosis of NICCD was made, and the infant responded favorably to a galactose‑free and medium‑chain triglyceride‑enriched formula. The present study confirmed the effectiveness of this formula in NICCD therapy, enriched the SLC25A13 mutational spectrum and supported the feasibility of cDNA cloning analysis using PBLs as a molecular tool for facilitating the identification of large SLC25A13 deletions.
Collapse
Affiliation(s)
- Han-Shi Zeng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Wei-Xia Lin
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Shu-Tao Zhao
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhan-Hui Zhang
- Core Laboratory, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Heng-Wen Yang
- Biomedical Translational Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Feng-Ping Chen
- Department of Laboratory Science, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhi-Nan Yin
- Biomedical Translational Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
22
|
Dionisi-Vici C, Shteyer E, Niceta M, Rizzo C, Pode-Shakked B, Chillemi G, Bruselles A, Semeraro M, Barel O, Eyal E, Kol N, Haberman Y, Lahad A, Diomedi-Camassei F, Marek-Yagel D, Rechavi G, Tartaglia M, Anikster Y. Expanding the molecular diversity and phenotypic spectrum of glycerol 3-phosphate dehydrogenase 1 deficiency. J Inherit Metab Dis 2016; 39:689-695. [PMID: 27368975 DOI: 10.1007/s10545-016-9956-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/29/2022]
Abstract
Transient infantile hypertriglyceridemia (HTGT1; OMIM #614480) is a rare autosomal recessive disorder, which manifests in early infancy with transient hypertriglyceridemia, hepatomegaly, elevated liver enzymes, persistent fatty liver and hepatic fibrosis. This rare clinical entity is caused by inactivating mutations in the GPD1 gene, which encodes the cytosolic isoform of glycerol-3-phosphate dehydrogenase. Here we report on four patients from three unrelated families of diverse ethnic origins, who presented with hepatomegaly, liver steatosis, hypertriglyceridemia, with or without fasting ketotic hypoglycemia. Whole exome sequencing revealed the affected individuals to harbor deleterious biallelic mutations in the GPD1 gene, including the previously undescribed c.806G > A (p.Arg269Gln) and c.640T > C (p.Cys214Arg) mutations. The clinical features in three of our patients showed several differences compared to the original reports. One subject presented with recurrent episodes of fasting hypoglycemia along with hepatomegaly, hypetriglyceridemia, and elevated liver enzymes; the second showed a severe liver disease, with intrahepatic cholestasis associated with kidney involvement; finally, the third presented persistent hypertriglyceridemia at the age of 30 years. These findings expand the current knowledge of this rare disorder, both with regard to the phenotype and molecular basis. The enlarged phenotypic spectrum of glycerol-3-phosphate dehydrogenase 1 deficiency can mimic other inborn errors of metabolism with liver involvement and should alert clinicians to recognize this entity by considering GPD1 mutations in appropriate clinical settings.
Collapse
Affiliation(s)
- Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Eyal Shteyer
- Pediatric Gastroenterology Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Marcello Niceta
- Genetics and Rare Disease Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolism, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome, Italy
| | - Alessandro Bruselles
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Semeraro
- Division of Metabolism, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Eran Eyal
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Nitzan Kol
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yael Haberman
- The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Avishai Lahad
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gideon Rechavi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome, Italy
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Marco Tartaglia
- Genetics and Rare Disease Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel.
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome, Italy.
| |
Collapse
|
23
|
Amoedo ND, Punzi G, Obre E, Lacombe D, De Grassi A, Pierri CL, Rossignol R. AGC1/2, the mitochondrial aspartate-glutamate carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2394-412. [PMID: 27132995 DOI: 10.1016/j.bbamcr.2016.04.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- N D Amoedo
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France; Instituto de Bioquímica Médica Leopoldo De Meis, UFRJ, Rio de Janeiro, Brazil
| | - G Punzi
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France; Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari
| | - E Obre
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France
| | - D Lacombe
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France
| | - A De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari
| | - C L Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari.
| | - R Rossignol
- Univ. Bordeaux, U1211, Bordeaux, France; INSERM, U1211, Bordeaux, France.
| |
Collapse
|
24
|
Identification of a Large SLC25A13 Deletion via Sophisticated Molecular Analyses Using Peripheral Blood Lymphocytes in an Infant with Neonatal Intrahepatic Cholestasis Caused by Citrin Deficiency (NICCD): A Clinical and Molecular Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4124263. [PMID: 27127784 PMCID: PMC4835617 DOI: 10.1155/2016/4124263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022]
Abstract
Background. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a Mendelian disorder arising from biallelic SLC25A13 mutations, and SLC25A13 genetic analysis was indispensable for its definite diagnosis. However, conventional SLC25A13 analysis could not detect all mutations, especially obscure large insertions/deletions. This paper aimed to explore the obscure SLC25A13 mutation in an NICCD infant. Methods. Genomic DNA was extracted to screen for 4 high-frequency SLC25A13 mutations, and then all 18 exons and their flanking sequences were analyzed by Sanger sequencing. Subsequently, cDNA cloning, SNP analyses, and semiquantitative PCR were performed to identify the obscure mutation. Results. A maternally inherited mutation IVS16ins3kb was screened out, and then cDNA cloning unveiled paternally inherited alternative splicing variants (ASVs) featuring exon 5 skipping. Ultimately, a large deletion c.329-1687_c.468+3865del5692bp, which has never been described in any other references, was identified via intensive study on the genomic DNA around exon 5 of SLC25A13 gene. Conclusions. An NICCD patient was definitely diagnosed as a compound heterozygote of IVS16ins3kb and c.329-1687_c.468+3865del5692bp. The large deletion enriched the SLC25A13 mutation spectrum, and its identification supported the concept that cDNA cloning analysis, along with other molecular tools such as semiquantitative PCR, could provide valuable clues, facilitating the identification of obscure SLC25A13 deletions.
Collapse
|
25
|
Marobbio CMT, Punzi G, Pierri CL, Palmieri L, Calvello R, Panaro MA, Palmieri F. Pathogenic potential of SLC25A15 mutations assessed by transport assays and complementation of Saccharomyces cerevisiae ORT1 null mutant. Mol Genet Metab 2015; 115:27-32. [PMID: 25818551 DOI: 10.1016/j.ymgme.2015.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 01/25/2023]
Abstract
HHH syndrome is an autosomal recessive urea cycle disorder caused by alterations in the SLC25A15 gene encoding the mitochondrial ornithine carrier 1, which catalyzes the transport of cytosolic ornithine into the mitochondria in exchange for intramitochondrial citrulline. In this study the functional effects of several SLC25A15 missense mutations p.G27R, p.M37R, p.N74A, p.F188L, p.F188Y, p.S200K, p.R275Q and p.R275K have been tested by transport assays in reconstituted liposomes and complementation of Saccharomyces cerevisiae ORT1 null mutant in arginine-less synthetic complete medium. The HHH syndrome-causing mutations p.G27R, p.M37R, p.F188L and p.R275Q had impaired transport and did not complement ORT1∆ cells (except p.M37R slightly after 5 days in solid medium). The experimentally produced mutations p.N74A, p.S200K and p.R275K exhibited normal or considerable transport activity and complemented ORT1∆ cells after 3 days (p.N74A, p.S200K) or 5 days (p.R275K) incubation. Furthermore, the experimentally produced p.F188Y mutation displayed a substantial transport activity but did not complement the ORT1∆ cells in both liquid and solid media. In view of the disagreement in the results obtained between the two methods, it is recommended that the method of complementing the S. cerevisiae ORT1 knockout strain is used complimentary with the measurement of the catalytic activity, in order to distinguish HHH syndrome-causing mutations from isomorphisms.
Collapse
Affiliation(s)
- Carlo M T Marobbio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Giuseppe Punzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Ciro L Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Maria A Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
26
|
Komatsu M, Kimura T, Yazaki M, Tanaka N, Yang Y, Nakajima T, Horiuchi A, Fang ZZ, Joshita S, Matsumoto A, Umemura T, Tanaka E, Gonzalez FJ, Ikeda SI, Aoyama T. Steatogenesis in adult-onset type II citrullinemia is associated with down-regulation of PPARα. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:473-481. [PMID: 25533124 PMCID: PMC6371055 DOI: 10.1016/j.bbadis.2014.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022]
Abstract
SLC25A13 (citrin or aspartate-glutamate carrier 2) is located in the mitochondrial membrane in the liver and its genetic deficiency causes adult-onset type II citrullinemia (CTLN2). CTLN2 is one of the urea cycle disorders characterized by sudden-onset hyperammonemia due to reduced argininosuccinate synthase activity. This disorder is frequently accompanied with hepatosteatosis in the absence of obesity and ethanol consumption. However, the precise mechanism of steatogenesis remains unclear. The expression of genes associated with fatty acid (FA) and triglyceride (TG) metabolism was examined using liver samples obtained from 16 CTLN2 patients and compared with 7 healthy individuals. Although expression of hepatic genes associated with lipogenesis and TG hydrolysis was not changed, the mRNAs encoding enzymes/proteins involved in FA oxidation (carnitine palmitoyl-CoA transferase 1α, medium- and very-long-chain acyl-CoA dehydrogenases, and acyl-CoA oxidase 1), very-low-density lipoprotein secretion (microsomal TG transfer protein), and FA transport (CD36 and FA-binding protein 1), were markedly suppressed in CTLN2 patients. Serum concentrations of ketone bodies were also decreased in these patients, suggesting reduced mitochondrial β-oxidation activity. Consistent with these findings, the expression of peroxisome proliferator-activated receptor α (PPARα), a master regulator of hepatic lipid metabolism, was significantly down-regulated. Hepatic PPARα expression was inversely correlated with severity of steatosis and circulating ammonia and citrulline levels. Additionally, phosphorylation of c-Jun-N-terminal kinase was enhanced in CTLN2 livers, which was likely associated with lower hepatic PPARα. Collectively, down-regulation of PPARα is associated with steatogenesis in CTLN2 patients. These findings provide a novel link between urea cycle disorder, lipid metabolism, and PPARα.
Collapse
Affiliation(s)
- Michiharu Komatsu
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Takefumi Kimura
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan; Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| | - Masahide Yazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan; Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Shinshu University, Japan
| | - Naoki Tanaka
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan; Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan.
| | - Yang Yang
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| | - Akira Horiuchi
- Digestive Disease Center, Showa Inan General Hospital, Japan
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, China
| | - Satoru Joshita
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Akihiro Matsumoto
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Takeji Umemura
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Eiji Tanaka
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Shu-Ichi Ikeda
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| |
Collapse
|
27
|
Chanprasert S, Scaglia F. Adult liver disorders caused by inborn errors of metabolism: review and update. Mol Genet Metab 2015; 114:1-10. [PMID: 25467056 DOI: 10.1016/j.ymgme.2014.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
Inborn errors of metabolism (IEMs) are a group of genetic diseases that have protean clinical manifestations and can involve several organ systems. The age of onset is highly variable but IEMs afflict mostly the pediatric population. However, in the past decades, the advancement in management and new therapeutic approaches have led to the improvement in IEM patient care. As a result, many patients with IEMs are surviving into adulthood and developing their own set of complications. In addition, some IEMs will present in adulthood. It is important for internists to have the knowledge and be familiar with these conditions because it is predicted that more and more adult patients with IEMs will need continuity of care in the near future. The review will focus on Wilson disease, alpha-1 antitrypsin deficiency, citrin deficiency, and HFE-associated hemochromatosis which are typically found in the adult population. Clinical manifestations and pathophysiology, particularly those that relate to hepatic disease as well as diagnosis and management will be discussed in detail.
Collapse
Affiliation(s)
- Sirisak Chanprasert
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children Hospital, Houston, TX, USA.
| |
Collapse
|
28
|
Zeng HS, Zhao ST, Deng M, Zhang ZH, Cai XR, Chen FP, Song YZ. Inspissated bile syndrome in an infant with citrin deficiency and congenital anomalies of the biliary tract and esophagus: identification and pathogenicity analysis of a novel SLC25A13 mutation with incomplete penetrance. Int J Mol Med 2014; 34:1241-8. [PMID: 25216257 PMCID: PMC4199400 DOI: 10.3892/ijmm.2014.1929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/05/2014] [Indexed: 01/14/2023] Open
Abstract
Biallelic mutations of the SLC25A13 gene result in citrin deficiency (CD) in humans. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is the major CD phenotype in pediatrics; however, knowledge on its genotypic and phenotypic characteristics remains limited. The present study aimed to explore novel molecular and clinical characteristics of CD. An infant suspected to have NICCD as well as her parents were enrolled as the research subjects. SLC25A13 mutations were investigated using various methods, including cDNA cloning and sequencing. The pathogenicity of a novel mutation was analyzed bioinformatically and functionally with a yeast model. Both the infant and her father were heterozygous for c.2T>C and c.790G>A, while the mother was only a c.2T>C carrier. The novel c.790G>A mutation proved bioinformatically and functionally pathogenic. The infant had esophageal atresia and an accessory hepatic duct, along with bile plug formation confirmed by laparoscopic surgery. However, the father seemed to be healthy thus far. The findings of the present study enrich the genotypic and phenotypic characteristics of CD patients, and provided clinical and molecular evidence suggesting the possible non-penetrance of SLC25A13 mutations and the likely involvement of this gene in primitive foregut development during early embryonic life.
Collapse
Affiliation(s)
- Han-Shi Zeng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Shu-Tao Zhao
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Mei Deng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhan-Hui Zhang
- Central Laboratory, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiang-Ran Cai
- Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Feng-Ping Chen
- Department of Laboratory Science, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
29
|
Zhang ZH, Lin WX, Deng M, Zhao ST, Zeng HS, Chen FP, Song YZ. Clinical, molecular and functional investigation on an infant with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). PLoS One 2014; 9:e89267. [PMID: 24586645 PMCID: PMC3931723 DOI: 10.1371/journal.pone.0089267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/16/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVE SLC25A13 analysis has provided reliable evidences for the definitive diagnosis of citrin deficiency (CD) in the past decade. Meanwhile, these studies generated some issues yet to be resolved, including the pathogenicity of SLC25A13 missense mutations and the mRNA product from the mutation c.615+5G>A. This study aims to investigate the effect of a novel missense mutation on the aspartate/glutamate carrier (AGC) function of citrin protein, and to explore the aberrant transcript from c.615+5G>A in the same CD infant. METHODS AND RESULTS By means of screening for prevalent SLC25A13 mutations and exons sequencing, the patient proved a compound heterozygote of c.615+5G>A and a novel c.1064G>A (p.Arg355Gln) mutation. An aberrant transcript with retention of the entire intron 6, r.[615+1_615+1789ins; 615+5 g>a] (GenBank accession number KJ128074), which was resulted from c.615+5G>A, was detected by RT-PCR and cDNA sequencing. After bioinformatic analyses of the novel missense mutation c.1064G>A, the growth abilities of three agc1Δ yeast strains were tested, which had been transformed with recombinant or empty vectors, respectively. Besides the bioinformatically pathogenic evidences, the growth ability of the agc1Δ strains transformed with mutant recombinant was the same as with empty vector, but significantly lower than that with normal control in functional analysis. CONCLUSIONS A CD infant was definitely diagnosed in this paper by a genetic, transcriptional and functional analysis of SLC25A13 gene. This study provided direct laboratory evidences supporting the splice-site nature of the c.615+5G>A mutation, and the novel c.1064G>A variation, which proved a pathogenic mutation bioinformatically and functionally, enriched the SLC25A13 mutation spectrum.
Collapse
Affiliation(s)
- Zhan-Hui Zhang
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Central Laboratory, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Wei-Xia Lin
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Mei Deng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Shu-Tao Zhao
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Han-Shi Zeng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Feng-Ping Chen
- Department of Laboratory Science, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yuan-Zong Song
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
30
|
Wongkittichote P, Sukasem C, Kikuchi A, Aekplakorn W, Jensen LT, Kure S, Wattanasirichaigoon D. Screening of SLC25A13 mutation in the Thai population. World J Gastroenterol 2013; 19:7735-7742. [PMID: 24282362 PMCID: PMC3837273 DOI: 10.3748/wjg.v19.i43.7735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/29/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the prevalence of SLC25A13 mutations in the Thai population.
METHODS: A total of 1537 subjects representing the Thai population were screened for a novel pathologic allele p.Met1? (c.2T > C) and six previously known common SLC25A13 mutations: [I] (c.851_854delGTAT), [II] (g.IVS11 + 1G > A), [III] (c.1638_1660dup), [IV] (p.S225X), [V] (IVS13 + 1G > A), and [XIX] (g.IVS16ins3kb) using a newly developed TaqMan and established HybProbe assay, respectively. Sanger sequencing was employed for specimens showing an aberrant peak to confirm the targeted mutation as well as the unknown aberrant peaks detected. Frequencies of the mutations identified were compared in each region. Carrier frequency and disease prevalence of citrin deficiency caused by SCL25A13 mutations were estimated.
RESULTS: p.Met1? was identified in the heterozygous state in 85 individuals, giving a carrier frequency of 1/18, which suggests possible selective advantage of this variant. The question of p.Met1? homozygote lethality remains unanswered which may serve as an explanation as to why this homozygote has yet to be identified in patients/controls even with high allele frequency. The p.Met1? mutation has rarely been studied in populations other than Thai and Chinese; therefore, may have been overlooked. Development of the TaqMan assay in the present study would allow a simple, rapid, and cost-effective method for mass screening. Heterozygous mutations: [XIX] and [I] were identified in 17 individuals, giving a carrier rate of 1/90 and a calculated homozygote rate of 1/33000. Two novel variants, g.IVS11 + 17C > G and c.1311C > T, of unknown clinical significance were identified at low frequency.
CONCLUSION: This study highlighted the current underestimation of citrin deficiency and suggests the possible selective advantage of the p.Met1? allele.
Collapse
|
31
|
SLC25A13 gene analysis in citrin deficiency: sixteen novel mutations in East Asian patients, and the mutation distribution in a large pediatric cohort in China. PLoS One 2013; 8:e74544. [PMID: 24069319 PMCID: PMC3777997 DOI: 10.1371/journal.pone.0074544] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/02/2013] [Indexed: 12/19/2022] Open
Abstract
Background The human SLC25A13 gene encodes citrin, the liver-type mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), and SLC25A13 mutations cause citrin deficiency (CD), a disease entity that encompasses different age-dependant clinical phenotypes such as Adult-onset Citrullinemia Type II (CTLN2) and Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD). The analyses of SLC25A13 gene and its protein/mRNA products remain reliable tools for the definitive diagnoses of CD patients, and so far, the SLC25A13 mutation spectrum in Chinese CD patients has not been well-characterized yet. Methods and Results By means of direct DNA sequencing, cDNA cloning and SNP analyses, 16 novel pathogenic mutations, including 9 missense, 4 nonsense, 1 splice-site, 1 deletion and 1 large transposal insertion IVS4ins6kb (GenBank accession number KF425758), were identified in CTLN2 or NICCD patients from China, Japan and Malaysia, respectively, making the SLC25A13 variations worldwide reach the total number of 81. A large NICCD cohort of 116 Chinese cases was also established, and the 4 high-frequency mutations contributed a much larger proportion of the mutated alleles in the patients from south China than in those from the north (χ2 = 14.93, P<0.01), with the latitude of 30°N as the geographic dividing line in mainland China. Conclusions This paper further enriched the SLC25A13 variation spectrum worldwide, and formed a substantial contribution to the in-depth understanding of the genotypic feature of Chinese CD patients.
Collapse
|
32
|
Vitoria I, Dalmau J, Ribes C, Rausell D, García AM, López-Montiel J, Rubio V. Citrin deficiency in a Romanian child living in Spain highlights the worldwide distribution of this defect and illustrates the value of nutritional therapy. Mol Genet Metab 2013; 110:181-3. [PMID: 23835251 DOI: 10.1016/j.ymgme.2013.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 12/30/2022]
Abstract
We report citrin deficiency in a neonatal non-East-Asian patient, the ninth Caucasian reported with this disease. The association of intrahepatic cholestasis, galactosuria, very high alpha-fetoprotein and increased plasma and urine citrulline, tyrosine, methionine and threonine levels suggested citrin deficiency. Identification of a protein-truncating mutation (c.1078C>T; p.Arg360*) in the SLC25A13 gene confirmed the diagnosis. An immediate response to a high-protein, lactose-free, low-carbohydrate formula was observed. Our report illustrates the need for awareness on citrin deficiency in Western countries.
Collapse
Affiliation(s)
- Isidro Vitoria
- Nutrition and Metabolopathies Unit, Hospital La Fe, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
33
|
Wongkittichote P, Tungpradabkul S, Wattanasirichaigoon D, Jensen LT. Prediction of the functional effect of novel SLC25A13 variants using a S. cerevisiae model of AGC2 deficiency. J Inherit Metab Dis 2013; 36:821-30. [PMID: 23053473 DOI: 10.1007/s10545-012-9543-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 01/31/2023]
Abstract
AGC2, a member of the mitochondrial carrier protein family, is as an aspartate-glutamate carrier and is important for urea synthesis and the maintenance of the malate-aspartate shuttle. Mutations in SLC25A13, the gene encoding AGC2, result in two age dependent disorders: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and type II citrullinemia (CTLN2). The clinical features of CTLN2 are very similar to those of other urea cycle disorders making a clear diagnosis difficult. Analysis of the SLC25A13 gene sequence can provide a definitive diagnosis, however the predictive value of DNA sequencing requires that the disease association of variants be characterized. We utilized the yeast Saccharomyces cerevisiae lacking AGC1 as a model system to study the effect on the function of AGC2 variants and confirmed that this system is capable of distinguishing between AGC2 variants with normal (p.Pro632Leu) or impaired function (p.Gly437Glu, p.Gly531Asp, p.Thr546Met, p.Leu598Arg and p.Glu601Lys). Three novel AGC2 genetic variants, p.Met1? (c.2T>C), p.Pro502Leu (c.1505C>T), and p.Arg605Gln (c.1814G>A) were investigated and our analysis revealed that p.Pro502Leu and p.Arg605Gln substitutions in the AGC2 protein were without effect and these variants were fully functional. The p.Met1? mutant is capable of expressing a truncated p.Met1_Phe34del AGC2 variant, however this protein is not functional due to disruptions in a calcium binding EF hand as well as incorrect intracellular localization. Our study demonstrates that the characterization of AGC2 expressed in yeast cells is a powerful technique to investigate AGC2 variants, and this analysis should aid in establishing the disease association of novel variants.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
34
|
Zhang ZH, Lin WX, Deng M, Zhao XJ, Song YZ. Molecular analysis of SLC25A13 gene in human peripheral blood lymphocytes: Marked transcript diversity, and the feasibility of cDNA cloning as a diagnostic tool for citrin deficiency. Gene 2012; 511:227-34. [PMID: 23022256 DOI: 10.1016/j.gene.2012.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 12/29/2022]
Abstract
Human SLC25A13 gene encodes citrin, the liver-type aspartate-glutamate carrier isoform 2, and SLC25A13 mutations lead to citrin deficiency (CD). The definitive diagnosis of CD relies on SLC25A13 analysis, but conventional DNA analysis could not identify all SLC25A13 mutations. We investigated transcriptional features of SLC25A13 gene in peripheral blood lymphocytes (PBLs) from CD patients and healthy volunteers. SLC25A13 mutations were explored by PCR/LA-PCR, PCR-RFLP and direct sequencing. SLC25A13 cDNA was amplified by RT-PCR, cloned and then sequenced. All diagnoses of the CD patients were confirmed, including a heterozygote of g.2T>C and an unknown mutation yielding an aberrant transcript r.16_212dup. Twenty-eight alternative splice variants (ASVs) were identified from normal SLC25A13 alleles. Among them, r.213_328del took account for 53.7%, the normal transcript r.=, 16.6%, and the remaining 26 novel ASVs, collectively 29.3%, of all cDNA clones. Moreover, similar ASVs, all reflecting corresponsive mutations, were detected from the mutated alleles. These results indicated that the normal SLC25A13 transcript could be cloned, and the abundance of the ASV r.213_328del predicted the existence of a constructively novel protein isoform for this gene in human PBLs. And, the 26 novel ASVs, along with the novel aberrant transcript r.16_212dup and the SNP g.2T>C, enriched the transcript/variation spectrum of SLC25A13 gene in human beings. The findings in this paper, for the first time, uncovered the marked transcript diversity of SLC25A13 gene in human PBLs, and suggested that cDNA cloning analysis of this gene in human PBLs might be a feasible tool for CD molecular diagnosis.
Collapse
Affiliation(s)
- Zhan-Hui Zhang
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | | | | | | | | |
Collapse
|
35
|
Lin WX, Zhang ZH, Deng M, Cai XR, Song YZ. Multiple ovarian antral follicles in a preterm infant with neonatal intrahepatic cholestasis caused by citrin deficiency: A clinical, genetic and transcriptional analysis. Gene 2012; 505:269-75. [DOI: 10.1016/j.gene.2012.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/03/2012] [Accepted: 06/07/2012] [Indexed: 01/14/2023]
|