1
|
Maclean KN, Jiang H, Neill PD, Chanin RR, Hurt KJ, Orlicky DJ, Bottiglieri T, Roede JR, Stabler SP. Dysregulation of hepatic one-carbon metabolism in classical homocystinuria: Implications of redox-sensitive DHFR repression and tetrahydrofolate depletion for pathogenesis and treatment. FASEB J 2024; 38:e23795. [PMID: 38984928 DOI: 10.1096/fj.202302585r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Cystathionine beta-synthase-deficient homocystinuria (HCU) is a life-threatening disorder of sulfur metabolism. HCU can be treated by using betaine to lower tissue and plasma levels of homocysteine (Hcy). Here, we show that mice with severely elevated Hcy and potentially deficient in the folate species tetrahydrofolate (THF) exhibit a very limited response to betaine indicating that THF plays a critical role in treatment efficacy. Analysis of a mouse model of HCU revealed a 10-fold increase in hepatic levels of 5-methyl -THF and a 30-fold accumulation of formiminoglutamic acid, consistent with a paucity of THF. Neither of these metabolite accumulations were reversed or ameliorated by betaine treatment. Hepatic expression of the THF-generating enzyme dihydrofolate reductase (DHFR) was significantly repressed in HCU mice and expression was not increased by betaine treatment but appears to be sensitive to cellular redox status. Expression of the DHFR reaction partner thymidylate synthase was also repressed and metabolomic analysis detected widespread alteration of hepatic histidine and glutamine metabolism. Many individuals with HCU exhibit endothelial dysfunction. DHFR plays a key role in nitric oxide (NO) generation due to its role in regenerating oxidized tetrahydrobiopterin, and we observed a significant decrease in plasma NOx (NO2 + NO3) levels in HCU mice. Additional impairment of NO generation may also come from the HCU-mediated induction of the 20-hydroxyeicosatetraenoic acid generating cytochrome CYP4A. Collectively, our data shows that HCU induces dysfunctional one-carbon metabolism with the potential to both impair betaine treatment and contribute to multiple aspects of pathogenesis in this disease.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hua Jiang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Philip D Neill
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan R Chanin
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - K Joseph Hurt
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Sally P Stabler
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
2
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: Insights into disease and dysfunction networks. Life Sci 2021; 285:119943. [PMID: 34516992 DOI: 10.1016/j.lfs.2021.119943] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
3
|
Maclean KN, Jiang H, Phinney WN, Mclagan BM, Roede JR, Stabler SP. Derangement of hepatic polyamine, folate, and methionine cycle metabolism in cystathionine beta-synthase-deficient homocystinuria in the presence and absence of treatment: Possible implications for pathogenesis. Mol Genet Metab 2021; 132:128-138. [PMID: 33483253 DOI: 10.1016/j.ymgme.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
Cystathionine beta-synthase deficient homocystinuria (HCU) is a life-threatening disorder of sulfur metabolism. Our knowledge of the metabolic changes induced in HCU are based almost exclusively on data derived from plasma. In the present study, we present a comprehensive analysis on the effects of HCU upon the hepatic metabolites and enzyme expression levels of the methionine-folate cycles in a mouse model of HCU. HCU induced a 10-fold increase in hepatic total homocysteine and in contrast to plasma, this metabolite was only lowered by approximately 20% by betaine treatment indicating that this toxic metabolite remains unacceptably elevated. Hepatic methionine, S-adenosylmethionine, S-adenosylhomocysteine, N-acetlymethionine, N-formylmethionine, methionine sulfoxide, S-methylcysteine, serine, N-acetylserine, taurocyamine and N-acetyltaurine levels were also significantly increased by HCU while cysteine, N-acetylcysteine and hypotaurine were all significantly decreased. In terms of polyamine metabolism, HCU significantly decreased spermine and spermidine levels while increasing 5'-methylthioadenosine. Betaine treatment restored normal spermine and spermidine levels but further increased 5'-methylthioadenosine. HCU induced a 2-fold induction in expression of both S-adenosylhomocysteine hydrolase and methylenetetrahydrofolate reductase. Induction of this latter enzyme was accompanied by a 10-fold accumulation of its product, 5-methyl-tetrahydrofolate, with the potential to significantly perturb one‑carbon metabolism. Expression of the cytoplasmic isoform of serine hydroxymethyltransferase was unaffected by HCU but the mitochondrial isoform was repressed indicating differential regulation of one‑carbon metabolism in different sub-cellular compartments. All HCU-induced changes in enzyme expression were completely reversed by either betaine or taurine treatment. Collectively, our data show significant alterations of polyamine, folate and methionine cycle metabolism in HCU hepatic tissues that in some cases, differ significantly from those observed in plasma, and have the potential to contribute to multiple aspects of pathogenesis.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Departments of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Hua Jiang
- Departments of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Whitney N Phinney
- Medicine and University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bailey M Mclagan
- Departments of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - James R Roede
- Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sally P Stabler
- Medicine and University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Di Minno A, Anesi A, Chiesa M, Cirillo F, Colombo GI, Orsini RC, Capasso F, Morisco F, Fiorelli S, Eligini S, Cavalca V, Tremoli E, Porro B, Di Minno MND. Plasma phospholipid dysregulation in patients with cystathionine-β synthase deficiency. Nutr Metab Cardiovasc Dis 2020; 30:2286-2295. [PMID: 32912785 DOI: 10.1016/j.numecd.2020.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Patients with cystathionine β-synthase deficiency (CBSD) exhibit high circulating levels of homocysteine and enhanced lipid peroxidation. We have characterized the plasma lipidome in CBSD patients and related lipid abnormalities with reactions underlying enhanced homocysteine levels. METHODS AND RESULTS Using an ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry method, plasma lipids were determined with an untargeted lipidomics approach in 11 CBSD patients and 11 matched healthy subjects (CTRL). Compared to CTRL, CBSD patients had a higher medium and long-chain polyunsaturated fatty acids (PUFA) content in phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) species (p < 0.02), and depletion of phosphatidylcholine (PC; p = 0.02) and of lysophosphatidylcholine (LPC; p = 0.003) species containing docosahexaenoic acid (DHA), suggesting impaired phosphatidylethanolamine-N-methyltransferase (PEMT) activity. PEMT converts PE into PC using methyl group by S-adenosylmethionine (SAM) thus converted in S-adenosylhomocysteine (SAH). Whole blood SAM and SAH concentrations by liquid chromatography tandem mass spectrometry were 1.4-fold (p = 0.015) and 5.3-fold (p = 0.003) higher in CBSD patients than in CTRL. A positive correlation between SAM/SAH and PC/PE ratios (r = 0.520; p = 0.019) was found. CONCLUSIONS A novel biochemical abnormality in CBSD patients consisting in depletion of PC and LPC species containing DHA and accumulation of PUFA in PE and LPE species is revealed by this lipidomic approach. Changes in plasma SAM and SAH concentrations are associated with such phospholipid dysregulation. Given the key role of DHA in thrombosis prevention, depletion of PC species containing DHA in CBSD patients provides a new direction to understand the poor cardiovascular outcome of patients with homocystinuria.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Andrea Anesi
- Fondazione Edmund Mach Research and Innovation Centre, Food Quality and Nutrition Department, S. Michele all' Adige, Trento, Italy
| | | | - Ferdinando Cirillo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | | | - Roberta C Orsini
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Filomena Capasso
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Filomena Morisco
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | | | | | | | | | | | - Matteo N D Di Minno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| |
Collapse
|
5
|
Van Hove JLK, Freehauf CL, Ficicioglu C, Pena LDM, Moreau KL, Henthorn TK, Christians U, Jiang H, Cowan TM, Young SP, Hite M, Friederich MW, Stabler SP, Spector EB, Kronquist KE, Thomas JA, Emmett P, Harrington MJ, Pyle L, Creadon-Swindell G, Wempe MF, MacLean KN. Biomarkers of oxidative stress, inflammation, and vascular dysfunction in inherited cystathionine β-synthase deficient homocystinuria and the impact of taurine treatment in a phase 1/2 human clinical trial. J Inherit Metab Dis 2019; 42:424-437. [PMID: 30873612 DOI: 10.1002/jimd.12085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022]
Abstract
STUDY OBJECTIVE A phase 1/2 clinical trial was performed in individuals with cystathionine β synthase (CBS) deficient homocystinuria with aims to: (a) assess pharmacokinetics and safety of taurine therapy, (b) evaluate oxidative stress, inflammation, and vascular function in CBS deficiency, and (c) evaluate the impact of short-term taurine treatment. METHODS Individuals with pyridoxine-nonresponsive CBS deficiency with homocysteine >50 μM, without inflammatory disorder or on antioxidant therapy were enrolled. Biomarkers of oxidative stress and inflammation, endothelial function (brachial artery flow-mediated dilation [FMD]), and disease-related metabolites obtained at baseline were compared to normal values. While maintaining current treatment, patients were treated with 75 mg/kg taurine twice daily, and treatment response assessed after 4 hours and 4 days. RESULTS Fourteen patients (8-35 years; 8 males, 6 females) were enrolled with baseline homocysteine levels 161 ± 67 μM. The study found high-dose taurine to be safe when excluding preexisting hypertriglyceridemia. Taurine pharmacokinetics showed a rapid peak level returning to near normal levels at 12 hours, but had slow accumulation and elevated predosing levels after 4 days of treatment. Only a single parameter of oxidative stress, 2,3-dinor-8-isoprostaglandin-F2α, was elevated at baseline, with no elevated inflammatory parameters, and no change in FMD values overall. Taurine had no effect on any of these parameters. However, the effect of taurine was strongly related to pretreatment FMD values; and taurine significantly improved FMD in the subset of individuals with pretreatment FMD values <10% and in individuals with homocysteine levels >125 μM, pertinent to endothelial function. CONCLUSION Taurine improves endothelial function in CBS-deficient homocystinuria in patients with preexisting reduced function.
Collapse
Affiliation(s)
- Johan L K Van Hove
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Cynthia L Freehauf
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Can Ficicioglu
- Division of Human Genetics, The Children's Hospital Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Loren D M Pena
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina
| | - Kerrie L Moreau
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
- Geriatric Research and Education Center, Denver Veterans Administration Medical Center, Aurora, Colorado
| | - Thomas K Henthorn
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado, Aurora, Colorado
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Hua Jiang
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Tina M Cowan
- Department of Pathology, Stanford University, Stanford, California
| | - Sarah P Young
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina
| | - Michelle Hite
- Research Institute, Children's Hospital Colorado, Aurora, Colorado
| | - Marisa W Friederich
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Sally P Stabler
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Elaine B Spector
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Kathryn E Kronquist
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Janet A Thomas
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Peggy Emmett
- CTRC Core Laboratory, Children's Hospital Colorado, Aurora, Colorado
| | - Mary J Harrington
- CTRC Core Laboratory, Children's Hospital Colorado, Aurora, Colorado
| | - Laura Pyle
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colorado
| | | | - Michael F Wempe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado
| | - Kenneth N MacLean
- Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
6
|
Maclean KN, Jiang H, Phinney WN, Keating AK, Hurt KJ, Stabler SP. Taurine alleviates repression of betaine‐homocysteine S‐methyltransferase and significantly improves the efficacy of long‐term betaine treatment in a mouse model of cystathionine β‐synthase–deficient homocystinuria. FASEB J 2019; 33:6339-6353. [DOI: 10.1096/fj.201802069rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kenneth N. Maclean
- Department of PediatricsUniversity of Colorado School of Medicine Aurora Colorado USA
| | - Hua Jiang
- Department of PediatricsUniversity of Colorado School of Medicine Aurora Colorado USA
| | - Whitney N. Phinney
- Department of MedicineUniversity of Colorado School of Medicine Aurora Colorado USA
| | - Amy K. Keating
- Department of PediatricsUniversity of Colorado School of Medicine Aurora Colorado USA
| | - K. Joseph Hurt
- Department of Obstetrics and GynecologyUniversity of Colorado School of Medicine Aurora Colorado USA
| | - Sally P. Stabler
- Department of MedicineUniversity of Colorado School of Medicine Aurora Colorado USA
| |
Collapse
|
7
|
Al-Naimi MS, Hussien NR, Rasheed HA, Al-Kuraishy HM, Al-Gareeb AI. Levothyroxine improves Paraoxonase (PON-1) serum levels in patients with primary hypothyroidism: Case-control study. J Adv Pharm Technol Res 2018; 9:113-118. [PMID: 30338238 PMCID: PMC6174702 DOI: 10.4103/japtr.japtr_298_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary hypothyroidism is associated with oxidative stress and insufficient antioxidant capacity. This study was conducted to evaluate the effects of levothyroxine replacement therapy on paraoxonase 1 (PON-1) serum levels in a patients with primary hypothyroidism. Thirty-one patients with primary hypothyroidism compared to 20 healthy controls were recruited from. A venous blood sample were taken after an overnight fasting for biochemical parameters, before and after starting levothyroxine therapy (100 μ g/day) for 3 months duration. The biochemical variables were PON-1 serum levels, lipid profiles, triiodothyronine (T3), thyroxin (T4), and thyroid stimulating hormone (TSH) serum levels. Levothyroxine replacement therapy leads to a significant amelioration of thyroid functions, lipid profile, cardiometabolic measures P < 0.05 in patients with primary hypothyroidism. Levothyroxine leads to significant elevation in PON-1 serum levels from 188.42 ± 19.81 (U/mL) to 361.23 ± 33.62 (U/mL) P < 0.0001. This study concluded that levothyroxine replacement therapy significantly increases PON-1 serum levels in patients with primary hypothyroidism and attenuating hypothyroidism-induced oxidative stress.
Collapse
Affiliation(s)
- Marwa S Al-Naimi
- Department of Clinical Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Nawar R Hussien
- Department of Clinical Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Huda A Rasheed
- Department of Clinical Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic, Medical Faculty, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic, Medical Faculty, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| |
Collapse
|
8
|
Maclean KN, Jiang H, Aivazidis S, Kim E, Shearn CT, Harris PS, Petersen DR, Allen RH, Stabler SP, Roede JR. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism. FASEB J 2018; 32:1265-1280. [PMID: 29101223 DOI: 10.1096/fj.201700586r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cystathionine β-synthase-deficient homocystinuria (HCU) is a poorly understood, life-threatening inborn error of sulfur metabolism. Analysis of hepatic glutathione (GSH) metabolism in a mouse model of HCU demonstrated significant depletion of cysteine, GSH, and GSH disulfide independent of the block in trans-sulfuration compared with wild-type controls. HCU induced the expression of the catalytic and regulatory subunits of γ-glutamyl ligase, GSH synthase (GS), γ-glutamyl transpeptidase 1, 5-oxoprolinase (OPLAH), and the GSH-dependent methylglyoxal detoxification enzyme, glyoxalase-1. Multiple components of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant-response regulatory axis were induced without any detectable activation of Nrf2. Metabolomic analysis revealed the accumulation of multiple γ-glutamyl amino acids and that plasma ophthalmate levels could serve as a noninvasive marker for hepatic redox stress. Neither cysteine, nor betaine treatment was able to reverse the observed enzyme inductions. Taurine treatment normalized the expression levels of γ-glutamyl ligase C/M, GS, OPLAH, and glyoxalase-1, and reversed HCU-induced deficits in protein glutathionylation by acting to double GSH levels relative to controls. Collectively, our data indicate that the perturbation of the γ-glutamyl cycle could contribute to multiple sequelae in HCU and that taurine has significant therapeutic potential for both HCU and other diseases for which GSH depletion is a critical pathogenic factor.-Maclean, K. N., Jiang, H., Aivazidis, S., Kim, E., Shearn, C. T., Harris, P. S., Petersen, D. R., Allen, R. H., Stabler, S. P., Roede, J. R. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Hua Jiang
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Stefanos Aivazidis
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Eugene Kim
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Colin T Shearn
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Peter S Harris
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Robert H Allen
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Sally P Stabler
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| |
Collapse
|
9
|
Kruger WD. Cystathionine β-synthase deficiency: Of mice and men. Mol Genet Metab 2017; 121:199-205. [PMID: 28583326 PMCID: PMC5526210 DOI: 10.1016/j.ymgme.2017.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/28/2023]
Abstract
Cystathionine β-synthase (CBS) deficiency (Online Mendelian Inheritance in Man [OMIM] 236,200) is an autosomal recessive disorder that is caused by mutations in the CBS gene. It is the most common inborn error of sulfur metabolism and is the cause of classical homocystinuria, a condition characterized by very high levels of plasma total homocysteine and methionine. Although recognized as an inborn error of metabolism over 60years ago, these is still much we do not understand related to how this specific metabolic defect gives rise to its distinct phenotypes. To try and answer these questions, several groups have developed mouse models on CBS deficiency. In this article, we will review various mouse models of CBS deficiency and discuss how these mouse models compare to human CBS deficient patients.
Collapse
Affiliation(s)
- Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
10
|
Jacobs RL, Jiang H, Kennelly JP, Orlicky DJ, Allen RH, Stabler SP, Maclean KN. Cystathionine beta-synthase deficiency alters hepatic phospholipid and choline metabolism: Post-translational repression of phosphatidylethanolamine N-methyltransferase is a consequence rather than a cause of liver injury in homocystinuria. Mol Genet Metab 2017; 120:325-336. [PMID: 28291718 DOI: 10.1016/j.ymgme.2017.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/27/2022]
Abstract
Classical homocystinuria (HCU) due to inactivating mutation of cystathionine β-synthase (CBS) is a poorly understood life-threatening inborn error of sulfur metabolism. A previously described cbs-/- mouse model exhibits a semi-lethal phenotype due to neonatal liver failure. The transgenic HO mouse model of HCU exhibits only mild liver injury and recapitulates multiple aspects of the disease as it occurs in humans. Disruption of the methionine cycle in HCU has the potential to impact multiple aspect of phospholipid (PL) metabolism by disruption of both the Kennedy pathway and phosphatidylethanolamine N-methyltransferase (PEMT) mediated synthesis of phosphatidylcholine (PC). Comparative metabolomic analysis of HO mouse liver revealed decreased levels of choline, and choline phosphate indicating disruption of the Kennedy pathway. Alterations in the relative levels of multiple species of PL included significant increases in PL degradation products consistent with enhanced membrane PL turnover. A significant decrease in PC containing 20:4n6 which primarily formed by the methylation of phosphatidylethanolamine to PC was consistent with decreased flux through PEMT. Hepatic expression of PEMT in both the cbs-/- and HO models is post-translationally repressed with decreased levels of PEMT protein and activity that inversely-correlates with the scale of liver injury. Failure to induce further repression of PEMT in HO mice by increased homocysteine, methionine and S-adenosylhomocysteine or depletion of glutathione combined with examination of multiple homocysteine-independent models of liver injury indicated that repression of PEMT in HCU is a consequence rather than a cause of liver injury. Collectively, our data show significant alteration of a broad range of hepatic PL and choline metabolism in HCU with the potential to contribute to multiple aspects of pathogenesis in this disease.
Collapse
Affiliation(s)
- René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G2E1, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - Hua Jiang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John P Kennelly
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G2E1, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G2E1, Canada
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Robert H Allen
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sally P Stabler
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
The Search for Dietary Supplements to Elevate or Activate Circulating Paraoxonases. Int J Mol Sci 2017; 18:ijms18020416. [PMID: 28212288 PMCID: PMC5343950 DOI: 10.3390/ijms18020416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/31/2017] [Accepted: 02/10/2017] [Indexed: 12/16/2022] Open
Abstract
Low levels of paraoxonase 1 (PON1) have been associated with the development of several pathological conditions, whereas high levels have been shown to be anti-atherosclerotic in mouse models. These findings suggest that PON1 could be a good surrogate biomarker. The other members of the family, namely PON2 and PON3, the role of which has been much less studied, deserve more attention. This paper provides a systematic review of current evidence concerning dietary supplements in that regard. Preliminary studies indicate that the response to dietary supplements may have a nutrigenetic aspect that will need to be considered in large population studies or in clinical trials. A wide range of plant preparations have been found to have a positive action, with pomegranate and some of its components being the best characterized and Aronia melanocarpa one of the most active. Flavonoids are found in the composition of all active extracts, with catechins and genistein being the most promising agents for increasing PON1 activity. However, some caveats regarding the dose, length of treatment, bioavailability, and stability of these compounds in formulations still need to be addressed. Once these issues have been resolved, these compounds could be included as nutraceuticals and functional foods capable of increasing PON1 activity, thereby helping with the long-term prevention of atherosclerosis and other chronic ailments.
Collapse
|
12
|
Jiang H, Hurt KJ, Breen K, Stabler SP, Allen RH, Orlicky DJ, Maclean KN. Sex-specific dysregulation of cysteine oxidation and the methionine and folate cycles in female cystathionine gamma-lyase null mice: a serendipitous model of the methylfolate trap. Biol Open 2015; 4:1154-62. [PMID: 26276101 PMCID: PMC4582125 DOI: 10.1242/bio.013433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In addition to its role in the endogenous synthesis of cysteine, cystathionine gamma-lyase (CGL) is a major physiological source of the vasorelaxant hydrogen sulfide. Cgl null mice are potentially useful for studying the influence of this compound upon vascular tone and endothelial function. Here, we confirm a previous report that female Cgl null mice exhibit an approximate 45-fold increase in plasma total homocysteine compared to wild type controls. This level of homocysteine is approximately 3.5-fold higher than that observed in male Cgl null mice and is essentially equivalent to that observed in mouse models of cystathionine beta synthase deficient homocystinuria. Cgl null mice of both sexes exhibited decreased expression of methylenetetrahydrofolate reductase and cysteinesulfinate decarboxylase compared to WT controls. Female Cgl null mice exhibited a sex-specific induction of betaine homocysteine S-methyltransferase and methionine adenosyltransferase 1, alpha and a 70% decrease in methionine synthase expression accompanied by significantly decreased plasma methionine. Decreased plasma cysteine levels in female Cgl null mice were associated with sex-specific dysregulation of cysteine dioxygenase expression. Comparative histological assessment between cystathionine beta-synthase and Cgl null mice indicated that the therapeutic potential of cystathionine against liver injury merits possible further investigation. Collectively, our data demonstrates the importance of considering sex when investigating mouse models of inborn errors of metabolism and indicate that while female Cgl null mice are of questionable utility for studying the physiological role of hydrogen sulfide, they could serve as a useful model for studying the consequences of methionine synthase deficiency and the methylfolate trap.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - K Joseph Hurt
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kelsey Breen
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sally P Stabler
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Robert H Allen
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Vanzin CS, Mescka CP, Donida B, Hammerschimidt TG, Ribas GS, Kolling J, Scherer EB, Vilarinho L, Nogueira C, Coitinho AS, Wajner M, Wyse ATS, Vargas CR. Lipid, Oxidative and Inflammatory Profile and Alterations in the Enzymes Paraoxonase and Butyrylcholinesterase in Plasma of Patients with Homocystinuria Due CBS Deficiency: The Vitamin B12 and Folic Acid Importance. Cell Mol Neurobiol 2015; 35:899-911. [PMID: 25805165 PMCID: PMC11486249 DOI: 10.1007/s10571-015-0185-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Cystathionine-β-synthase (CBS) deficiency is the main cause of homocystinuria. Homocysteine (Hcy), methionine, and other metabolites of Hcy accumulate in the body of affected patients. Despite the fact that thromboembolism represents the major cause of morbidity in CBS-deficient patients, the mechanisms of cardiovascular alterations found in homocystinuria remain unclear. In this work, we evaluated the lipid and inflammatory profile, oxidative protein damage, and the activities of the enzymes paraoxonase (PON1) and butyrylcholinesterase (BuChE) in plasma of CBS-deficient patients at diagnosis and during the treatment (protein-restricted diet supplemented with pyridoxine, folic acid, betaine, and vitamin B12). We also investigated the effect of folic acid and vitamin B12 on these parameters. We found a significant decrease in HDL cholesterol and apolipoprotein A1 (ApoA-1) levels, as well as in PON1 activity in both untreated and treated CBS-deficient patients when compared to controls. BuChE activity and IL-6 levels were significantly increased in not treated patients. Furthermore, significant positive correlations between PON1 activity and sulphydryl groups and between IL-6 levels and carbonyl content were verified. Moreover, vitamin B12 was positively correlated with PON1 and ApoA-1 levels, while folic acid was inversely correlated with total Hcy concentration, demonstrating the importance of this treatment. Our results also demonstrated that CBS-deficient patients presented important alterations in biochemical parameters, possibly caused by the metabolites of Hcy, as well as by oxidative stress, and that the adequate adherence to the treatment is essential to revert or prevent these alterations.
Collapse
Affiliation(s)
- Camila Simioni Vanzin
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Caroline Paula Mescka
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Bruna Donida
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Porto Alegre, RS 90610-000 Brazil
| | - Tatiane Grazieli Hammerschimidt
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Graziela S. Ribas
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Janaína Kolling
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
| | - Emilene B. Scherer
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
| | - Laura Vilarinho
- Instituto Nacional de Saúde Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Célia Nogueira
- Instituto Nacional de Saúde Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Adriana Simon Coitinho
- Departamento de Microbiologa, Instituto de Ciências Básicas e da Saúde, Imunologia e Parasitologia da Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS 90050-170 Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Angela T. S. Wyse
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica da Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2700, Porto Alegre, RS 90035-000 Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Porto Alegre, RS 90610-000 Brazil
| |
Collapse
|
14
|
Suszyńska-Zajczyk J, Sikora M, Jakubowski H. Paraoxonase 1 deficiency and hyperhomocysteinemia alter the expression of mouse kidney proteins involved in renal disease. Mol Genet Metab 2014; 113:200-6. [PMID: 25069821 DOI: 10.1016/j.ymgme.2014.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/19/2023]
Abstract
SCOPE Hyperhomocysteinemia (HHcy) is associated with kidney disease and leads to atherosclerosis and thrombosis. Paraoxonase 1 (Pon1), a hydrolase that participates in homocysteine (Hcy) metabolism and is carried in the circulation on high-density lipoprotein, has also been linked to kidney disease and atherothrombosis. Pon1-knockout mice are susceptible to atherosclerosis and exhibit a kidney-associated phenotype, polyuria or urine dilution. We hypothesize that HHcy and Pon1 deficiency are toxic to kidney function because they impair metabolic pathways important for normal kidney homeostasis. METHODS AND RESULTS We examined changes in the mouse kidney proteome induced by Pon1 gene deletion and dietary HHcy, using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We found that the expression of ten mouse kidney proteins was altered by the Pon1(-/-) genotype or HHcy. Proteins involved in metabolism of lipid (ApoA-I), protein (Hspd1), carbohydrate (Pdhb, Fbp1-isoform2, Eno1), and energy (Ndufs8, Ldhd) were down-regulated. Proteins involved in lipid transport (Pebp1), oxidative stress response (Prdx2), and cellular detoxification (Glo1) were up-regulated. The kidney proteins altered by HHcy or Pon1 are also altered in renal disease. CONCLUSION Our findings suggest that excess Hcy is toxic because it deregulates the expression of proteins involved in diverse cellular processes-from lipid, protein, carbohydrate, and energy metabolisms to detoxification and antioxidant defenses-that are essential for normal kidney homeostasis. Dysregulation of these processes can account for the involvement of HHcy and reduced Pon1 in kidney disease. Our findings also show that Pon1 plays an important role in maintaining normal kidney homeostasis.
Collapse
Affiliation(s)
| | - Marta Sikora
- Institute of Bioorganic Chemistry, Poznań, Poland
| | - Hieronim Jakubowski
- Institute of Bioorganic Chemistry, Poznań, Poland; Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland; Department of Microbiology & Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA.
| |
Collapse
|
15
|
Jiang H, Stabler SP, Allen RH, Abman SH, Maclean KN. Altered hepatic sulfur metabolism in cystathionine β-synthase-deficient homocystinuria: regulatory role of taurine on competing cysteine oxidation pathways. FASEB J 2014; 28:4044-54. [PMID: 24891521 DOI: 10.1096/fj.14-253633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/19/2014] [Indexed: 01/23/2023]
Abstract
Cystathionine β-synthase-deficient homocystinuria (HCU) is a serious life-threatening inborn error of sulfur metabolism with poorly understood pathogenic mechanisms. We investigated the effect of HCU on hepatic cysteine oxidation in a transgenic mouse model of the disease. Cysteine dioxygenase (CDO) protein levels were 90% repressed without any change in mRNA levels. Cysteinesulfinic acid decarboxylase (CSAD) was induced at both the mRNA (8-fold) and protein (15-fold) levels. Cysteine supplementation normalized CDO protein levels without reversing the induction of CSAD. Regulatory changes in CDO and CSAD expression were proportional to homocysteine elevation, indicating a possible threshold effect. Hepatic and blood taurine levels in HCU animals were decreased by 21 and 35%, respectively, and normalized by cysteine supplementation. Expression of the cytoplasmic (GOT1) and mitochondrial (GOT2) isoforms of glutamic-oxaloacetic transaminase were repressed in HCU animals by 86 and 30%, respectively. HCU induced regulatory changes in CSAD, CDO, and GOT1 expression were normalized by taurine supplementation, indicating that cysteine is not the only sulfur compound that regulates hepatic cysteine oxidation. Collectively, our results indicate that HCU induces significant alterations of sulfur metabolism with the potential to contribute to pathogenesis and that cysteine and taurine have the potential to serve as adjunctive treatments in this disease.
Collapse
Affiliation(s)
| | - Sally P Stabler
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Robert H Allen
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | | | | |
Collapse
|
16
|
Eren E, Ellidag HY, Yılmaz A, Aydın O, Yılmaz N. Acute Phase Response: Implication in ST-segment Elevation Myocardial Infarction. Open Biochem J 2014; 8:44-51. [PMID: 24894970 PMCID: PMC4040932 DOI: 10.2174/1874091x01408010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 12/18/2022] Open
Abstract
We aimed to investigate the relation between serum inflammatory markers, 25OHvit-D3 and oxidative stress markers, namely paraoxonase1-arylesterase (PON1-ARE), total antioxidant status (TAS) and total oxidant status (TOS) in 30 male patients with ST-elevation myocardial infarction(STEMI) . There was negative correlation between tumor necrosis factor alpha and ARE; positive correlations between serum amyloid A(SAA) and oxidative stress index, SAA and TOS, 25OHvit-D3 and ARE. There was no statistically significant correlation between inflammation makers, oxidative stress markers and Gensini score. The main finding of our study was the tendency of inflammation markers, and oxidative stress markers, to change in relatively clear opposite directions in STEMI.
Collapse
Affiliation(s)
- Esin Eren
- Antalya Public Health Center of Ministry of Health, Antalya, Turkey
| | - Hamit Yasar Ellidag
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, Antalya, Turkey
| | - Akar Yılmaz
- Cardiology of Antalya Education and Research Hospital of Ministry of Health, Antalya, Turkey
| | - Ozgür Aydın
- Maternity and Children's Hospital, Batman, Turkey
| | - Necat Yılmaz
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, Antalya, Turkey
| |
Collapse
|