1
|
Dungu KHS, Hagen CM, Bækvad-Hansen M, Yakimov V, Buil Demur A, Carlsen EM, Vissing NH, Brink Henriksen T, Mogensen TH, Hougaard DM, Nygaard U, Bybjerg-Grauholm J. Proteomic profiling of neonatal herpes simplex virus infection on dried blood spots. COMMUNICATIONS MEDICINE 2024; 4:268. [PMID: 39695338 DOI: 10.1038/s43856-024-00711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Neonatal herpes simplex virus (HSV) infection is life-threatening, with a mortality of up to 70-80% when disseminated, often due to vague symptoms and delayed treatment. Neonatal screening using dried blood spot (DBS) samples is among the most impactful preventative health measures ever implemented, but screening for HSV has not been investigated. METHODS We investigated high throughput multiplexed proteomics on DBS samples collected on days 2-3 of life from a nationwide cohort of neonates with HSV infection (n = 53) and matched controls. We measured 2941 proteins using the Olink Explore 3072 panels and proximity extension assays, followed by differential protein expression by Analysis of Variance with post-hoc correction and functional annotation. RESULTS Here, we show distinct protein profiles in neonates with disseminated HSV disease, with differences in 20 proteins compared to controls. These proteins are associated with innate and adaptive immune responses and cytokine activation. CONCLUSIONS Our findings indicate the potential of neonatal screening for disseminated HSV disease to ensure early treatment and reduce the high mortality.
Collapse
Affiliation(s)
- Kia Hee Schultz Dungu
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Victor Yakimov
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Alfonso Buil Demur
- Mental Health Centre Sct. Hans, Capital Region of Denmark, Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emma Malchau Carlsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neonatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nadja Hawwa Vissing
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tine Brink Henriksen
- Department of Paediatrics & Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clincal Medicine, Aarhus University, Aarhus, Denmark
| | - Trine Hyrup Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Ulrikka Nygaard
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
2
|
Canning J, Strawbridge RJ, Miedzybrodzka Z, Marioni RE, Melbye M, Porteous DJ, Hurles ME, Sattar N, Sudlow CLM, Collins R, Padmanabhan S, Pell JP. Methods applied to neonatal dried blood spot samples for secondary research purposes: a scoping review. Crit Rev Clin Lab Sci 2024; 61:685-708. [PMID: 38855982 DOI: 10.1080/10408363.2024.2360996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
This scoping review aimed to synthesize the analytical techniques used and methodological limitations encountered when undertaking secondary research using residual neonatal dried blood spot (DBS) samples. Studies that used residual neonatal DBS samples for secondary research (i.e. research not related to newborn screening for inherited genetic and metabolic disorders) were identified from six electronic databases: Cochrane Library, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase, Medline, PubMed and Scopus. Inclusion was restricted to studies published from 1973 and written in or translated into English that reported the storage, extraction and testing of neonatal DBS samples. Sixty-seven studies were eligible for inclusion. Included studies were predominantly methodological in nature and measured various analytes, including nucleic acids, proteins, metabolites, environmental pollutants, markers of prenatal substance use and medications. Neonatal DBS samples were stored over a range of temperatures (ambient temperature, cold storage or frozen) and durations (two weeks to 40.5 years), both of which impacted the recovery of some analytes, particularly amino acids, antibodies and environmental pollutants. The size of DBS sample used and potential contamination were also cited as methodological limitations. Residual neonatal DBS samples retained by newborn screening programs are a promising resource for secondary research purposes, with many studies reporting the successful measurement of analytes even from neonatal DBS samples stored for long periods of time in suboptimal temperatures and conditions.
Collapse
Affiliation(s)
- Jordan Canning
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Rona J Strawbridge
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Division of Cardiovascular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Zosia Miedzybrodzka
- Department of Medical Genetics, Ashgrove House, NHS Grampian, Aberdeen, UK
- Medical Genetics Group, School of Medicine, Medical Sciences, Nutrition and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Riccardo E Marioni
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Mads Melbye
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Naveed Sattar
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Cathie L M Sudlow
- Usher Institute, University of Edinburgh, Edinburgh, UK
- Health Data Research UK, London, UK
| | - Rory Collins
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sandosh Padmanabhan
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jill P Pell
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
McMahon R, Hill C, Rudge J, Herbert B, Karsten E. Stability of inflammation markers in human blood collected using volumetric absorptive microsampling (VAMS) under typical laboratory storage temperatures. Cytokine 2023; 171:156355. [PMID: 37690424 DOI: 10.1016/j.cyto.2023.156355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Dried blood spots (DBS) collected on filter paper such as Guthrie cards are stored for years at room temperature. The assumption is that once dried, the samples remain stable and quantifiable indefinitely since the metabolites these were initially designed to measure, are known for their extended stability. The concentration of other blood proteins such as cytokines, however, are known to vary with storage even in liquid samples stored at -80 °C for extended periods of time. We sought to determine if cytokines are stable for up to 5 months when stored as a dried blood sample using volumetric absorptive microsampling (VAMS) devices. To test this, blood was collected from 4 healthy participants, spiked with recombinant cytokines, and collected into 30 µL VAMS devices. These prepared VAMS devices were stored at room temperature, 4 °C, or -20 °C for up to 5 months and matching VAMS liquid extracts were stored at -80 °C for the same period of time. At each timepoint, the samples were extracted from the VAMS devices and the extracts were analysed by Luminex® for quantification of up to 31 cytokines. These methods were also tested in a remote clinical study over a period of up to 8 months. Cytokine analysis revealed that room temperature, the current standard for DBS and VAMS storage, performed the poorest out of all storage temperatures with significant losses in 13/21 analytes compared to 4 °C at 5 months. Storage at 4 °C or colder performed well for the majority of analytes tested, however out of those, the optimal storage temperature differed for each analyte. There were a small number of analytes that performed poorly regardless of storage conditions and for fractalkine, this was found to be caused by inefficient recovery during extraction. Cytokine concentrations from finger-prick samples were also found to be much more variable that those in venous blood samples. Our results highlight the need to understand the stability of analytes of interest before committing to longitudinal collection and storage of samples in VAMS devices. These data give confidence that storage at 4 °C or colder was beneficial for cytokine stability. Wherein 25/31 cytokines were quantifiably stable at -20 °C when stored for 3 months and 17/21 were quantifiably stable after 5 months when stored at 4 °C.
Collapse
Affiliation(s)
- R McMahon
- Sangui Bio Pty Ltd, Sydney, Australia; The Kolling Institute, Sydney, Australia.
| | - C Hill
- Sangui Bio Pty Ltd, Sydney, Australia; The Kolling Institute, Sydney, Australia
| | - J Rudge
- Trajan Scientific and Medical (Neoteryx), Australia
| | - B Herbert
- Sangui Bio Pty Ltd, Sydney, Australia; The Kolling Institute, Sydney, Australia
| | - E Karsten
- Sangui Bio Pty Ltd, Sydney, Australia; The Kolling Institute, Sydney, Australia; University of Sydney, Australia
| |
Collapse
|
4
|
McFarlin BK, Bridgeman EA, Vingren JL, Hill DW. Dry blood spot samples to monitor immune-associated mRNA expression in intervention studies: Impact of Baker's yeast beta glucan. Methods 2023; 219:39-47. [PMID: 37741562 DOI: 10.1016/j.ymeth.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Monitoring immunological response to physical stressors in a field setting is challenging because existing methods require a laboratory visit and traditional blood collection via venipuncture. The purpose of this study was to determine if our optimized dry blood spot (DBS) methodology yields sufficient total RNA to quantify the effect of Baker's Yeast Beta Glucan supplementation (BYBG; Wellmune; 250 mg/d) on post-exercise mRNA expression. Participants had venous DBS samples collected prior to (PRE), and immediately (POST), 2 (2H), and 4 (4H) hrs after completion of a 90 min run/walk trial in a hot, humid environment. Total RNA extracted from DBS was analyzed using a 574-plex Human Immunology mRNA panel (Nanostring). BYBG supplementation was associated with the increased expression of 12 mRNAs (LTB4R, PML, PRFM1, TNFRSF14, LCK, MYD88, STAT3, CCR1, TNFSF10, LILRB3, MME, and STAT6) and decreased expression of 4 mRNAs (MAP4K1, IKBKG, CD5, and IL4R) across all post-exercise time points. In addition to individually changed mRNA targets, we found eleven immune-response pathways that were significantly enriched by BYBG following exercise (TNF Family signaling, immunometabolism, oxidative stress, toll-like receptor (TLR) signaling, Treg differentiation, autophagy, chemokine signaling, complement system, Th2 differentiation, cytokine signaling, and innate immune). The present approach showed that DBS samples can be used to yield useful information about mRNA biomarkers in an intervention study. We have found that BYBG supplementation induces changes at the mRNA level that support the immune system and reduce susceptibility to opportunistic infection (i.e., upper respiratory tract infection) and facilitate improved physical recovery from exercise. Future studies may look to use DBS sampling for testing other nutritional, health, or medical interventions.
Collapse
Affiliation(s)
- Brian K McFarlin
- University of North Texas, Applied Physiology Laboratory, Dept. of KHPR (Kinesiology, Health Promotion, and Recreation), United States; University of North Texas, Dept. of Biological Sciences, United States.
| | - Elizabeth A Bridgeman
- University of North Texas, Applied Physiology Laboratory, Dept. of KHPR (Kinesiology, Health Promotion, and Recreation), United States; University of North Texas, Dept. of Biological Sciences, United States
| | - Jakob L Vingren
- University of North Texas, Applied Physiology Laboratory, Dept. of KHPR (Kinesiology, Health Promotion, and Recreation), United States; University of North Texas, Dept. of Biological Sciences, United States
| | - David W Hill
- University of North Texas, Applied Physiology Laboratory, Dept. of KHPR (Kinesiology, Health Promotion, and Recreation), United States
| |
Collapse
|
5
|
Morgunova A, Ibrahim P, Chen GG, Coury SM, Turecki G, Meaney MJ, Gifuni A, Gotlib IH, Nagy C, Ho TC, Flores C. Preparation and processing of dried blood spots for microRNA sequencing. Biol Methods Protoc 2023; 8:bpad020. [PMID: 37901452 PMCID: PMC10603595 DOI: 10.1093/biomethods/bpad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Dried blood spots (DBS) are biological samples commonly collected from newborns and in geographic areas distanced from laboratory settings for the purposes of disease testing and identification. MicroRNAs (miRNAs)-small non-coding RNAs that regulate gene activity at the post-transcriptional level-are emerging as critical markers and mediators of disease, including cancer, infectious diseases, and mental disorders. This protocol describes optimized procedural steps for utilizing DBS as a reliable source of biological material for obtaining peripheral miRNA expression profiles. We outline key practices, such as the method of DBS rehydration that maximizes RNA extraction yield, and the use of degenerate oligonucleotide adapters to mitigate ligase-dependent biases that are associated with small RNA sequencing. The standardization of miRNA readout from DBS offers numerous benefits: cost-effectiveness in sample collection and processing, enhanced reliability and consistency of miRNA profiling, and minimal invasiveness that facilitates repeated testing and retention of participants. The use of DBS-based miRNA sequencing is a promising method to investigate disease mechanisms and to advance personalized medicine.
Collapse
Affiliation(s)
- Alice Morgunova
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Pascal Ibrahim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
| | - Gary Gang Chen
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
| | - Saché M Coury
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
- Department of Psychology, University of California, Los Angeles, CA 90095, United States
| | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3A 2B4, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore City 138632, Singapore
| | - Anthony Gifuni
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Corina Nagy
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Tiffany C Ho
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
- Department of Psychology, University of California, Los Angeles, CA 90095, United States
| | - Cecilia Flores
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
6
|
Munch TN, Hedley PL, Hagen CM, Bækvad-Hansen M, Geller F, Bybjerg-Grauholm J, Nordentoft M, Børglum AD, Werge TM, Melbye M, Hougaard DM, Larsen LA, Christensen ST, Christiansen M. The genetic background of hydrocephalus in a population-based cohort: implication of ciliary involvement. Brain Commun 2023; 5:fcad004. [PMID: 36694575 PMCID: PMC9866251 DOI: 10.1093/braincomms/fcad004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/04/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Hydrocephalus is one of the most common congenital disorders of the central nervous system and often displays psychiatric co-morbidities, in particular autism spectrum disorder. The disease mechanisms behind hydrocephalus are complex and not well understood, but some association with dysfunctional cilia in the brain ventricles and subarachnoid space has been indicated. A better understanding of the genetic aetiology of hydrocephalus, including the role of ciliopathies, may bring insights into a potentially shared genetic aetiology. In this population-based case-cohort study, we, for the first time, investigated variants of postulated hydrocephalus candidate genes. Using these data, we aimed to investigate potential involvement of the ciliome in hydrocephalus and describe genotype-phenotype associations with an autism spectrum disorder. One-hundred and twenty-one hydrocephalus candidate genes were screened in a whole-exome-sequenced sub-cohort of the Lundbeck Foundation Initiative for Integrative Psychiatric Research study, comprising 72 hydrocephalus patients and 4181 background population controls. Candidate genes containing high-impact variants of interest were systematically evaluated for their involvement in ciliary function and an autism spectrum disorder. The median age at diagnosis for the hydrocephalus patients was 0 years (range 0-27 years), the median age at analysis was 22 years (11-35 years), and 70.5% were males. The median age for controls was 18 years (range 11-26 years) and 53.3% were males. Fifty-two putative hydrocephalus-associated variants in 34 genes were identified in 42 patients (58.3%). In hydrocephalus cases, we found increased, but not significant, enrichment of high-impact protein altering variants (odds ratio 1.51, 95% confidence interval 0.92-2.51, P = 0.096), which was driven by a significant enrichment of rare protein truncating variants (odds ratio 2.71, 95% confidence interval 1.17-5.58, P = 0.011). Fourteen of the genes with high-impact variants are part of the ciliome, whereas another six genes affect cilia-dependent processes during neurogenesis. Furthermore, 15 of the 34 genes with high-impact variants and three of eight genes with protein truncating variants were associated with an autism spectrum disorder. Because symptoms of other diseases may be neglected or masked by the hydrocephalus-associated symptoms, we suggest that patients with congenital hydrocephalus undergo clinical genetic assessment with respect to ciliopathies and an autism spectrum disorder. Our results point to the significance of hydrocephalus as a ciliary disease in some cases. Future studies in brain ciliopathies may not only reveal new insights into hydrocephalus but also, brain disease in the broadest sense, given the essential role of cilia in neurodevelopment.
Collapse
Affiliation(s)
- Tina N Munch
- Correspondence to: Tina Nørgaard Munch, MD Associate Professor, Department of Neurosurgery 6031 Copenhagen University Hospital, Inge Lehmanns Vej 6 DK-2100 Copenhagen Ø, Denmark E-mail:
| | - Paula L Hedley
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Brazen Bio, Los Angeles, 90502 CA, USA
| | - Christian M Hagen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Merete Nordentoft
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Mental Health Centre, Capital Region of Denmark, 2900 Hellerup, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Center for Genomics and Personalized Medicine, Aarhus University, DK-8000 Aarhus, Denmark,Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Thomas M Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Mental Health Centre, Capital Region of Denmark, 2900 Hellerup, Denmark
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo 0473, Norway,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Department of Biomedical Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
7
|
The genomic impact of kindness to self vs. others: A randomized controlled trial. Brain Behav Immun 2022; 106:40-48. [PMID: 35905861 DOI: 10.1016/j.bbi.2022.07.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Prosocial behavior has been linked to improved physical health, but the biological mechanisms involved remain unclear. This study tested whether a 4-week kindness intervention could reduce expression of a stress-related immune response gene signature known as the Conserved Transcriptional Response to Adversity (CTRA). METHODS In a diverse sample of community adults (N = 182), study participants were randomly assigned to perform 3 kind acts for other people, to perform 3 kind acts for themselves, or to list daily activities (control), on one day per week over 4 weeks. CTRA gene expression was measured by RNA sequencing of dried blood spots (DBS) collected at baseline and 5 weeks later (1 week after completing study assignments). Participants' descriptions of their kind acts were coded for protocol adherence and act content. RESULTS Participants who were randomized to perform kind acts for others showed significant reductions in CTRA gene expression relative to controls. Participants who were randomized to perform kind acts for themselves also showed significant reductions in CTRA gene expression relative to controls, but this pattern emerged only for those who failed to perform the requested self-kind acts (protocol non-adherent). Those who fully adhered to the self-kindness protocol showed no change in CTRA gene expression and did not differ from controls. Act content analyses implicated self-stress-reducing behavior in the paradoxical effects of self-kindness and the physical presence of others in the effects of prosocial behavior. CONCLUSIONS Prosocial engagement-doing something kind for others rather than oneself-reduces CTRA gene expression. The nature of kind acts and their intended recipient plays a key role in shaping the genomic impact of kindness.
Collapse
|
8
|
Allaway D, Alexander JE, Carvell-Miller LJ, Reynolds RM, Winder CL, Weber RJM, Lloyd GR, Southam AD, Dunn WB. Suitability of Dried Blood Spots for Accelerating Veterinary Biobank Collections and Identifying Metabolomics Biomarkers With Minimal Resources. Front Vet Sci 2022; 9:887163. [PMID: 35812865 PMCID: PMC9258959 DOI: 10.3389/fvets.2022.887163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Biomarker discovery using biobank samples collected from veterinary clinics would deliver insights into the diverse population of pets and accelerate diagnostic development. The acquisition, preparation, processing, and storage of biofluid samples in sufficient volumes and at a quality suitable for later analysis with most suitable discovery methods remain challenging. Metabolomics analysis is a valuable approach to detect health/disease phenotypes. Pre-processing changes during preparation of plasma/serum samples may induce variability that may be overcome using dried blood spots (DBSs). We report a proof of principle study by metabolite fingerprinting applying UHPLC-MS of plasma and DBSs acquired from healthy adult dogs and cats (age range 1–9 years), representing each of 4 dog breeds (Labrador retriever, Beagle, Petit Basset Griffon Vendeen, and Norfolk terrier) and the British domestic shorthair cat (n = 10 per group). Blood samples (20 and 40 μL) for DBSs were loaded onto filter paper, air-dried at room temperature (3 h), and sealed and stored (4°C for ~72 h) prior to storage at −80°C. Plasma from the same blood draw (250 μL) was prepared and stored at −80°C within 1 h of sampling. Metabolite fingerprinting of the DBSs and plasma produced similar numbers of metabolite features that had similar abilities to discriminate between biological classes and correctly assign blinded samples. These provide evidence that DBSs, sampled in a manner amenable to application in in-clinic/in-field processing, are a suitable sample for biomarker discovery using UHPLC-MS metabolomics. Further, given appropriate owner consent, the volumes tested (20–40 μL) make the acquisition of remnant blood from blood samples drawn for other reasons available for biobanking and other research activities. Together, this makes possible large-scale biobanking of veterinary samples, gaining sufficient material sooner and enabling quicker identification of biomarkers of interest.
Collapse
Affiliation(s)
- David Allaway
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
- *Correspondence: David Allaway
| | - Janet E. Alexander
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
| | - Laura J. Carvell-Miller
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
| | - Rhiannon M. Reynolds
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
| | - Catherine L. Winder
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ralf J. M. Weber
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Gavin R. Lloyd
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D. Southam
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Warwick B. Dunn
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Pan X, Muk T, Ren S, Nguyen DN, Shen RL, Gao F, Sangild PT. Blood transcriptomic markers of necrotizing enterocolitis in preterm pigs. Pediatr Res 2022; 91:1113-1120. [PMID: 34112973 DOI: 10.1038/s41390-021-01605-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC), a severe gut disorder in preterm infants, is difficult to predict due to poor specificity and sensitivity of clinical signs and biomarkers. Using preterm piglets as a model, we hypothesized that early development of NEC affects blood gene expression, potentially related to early systemic immune responses. METHODS A retrospective analysis of clinical, tissue, and blood data was performed on 129 formula-fed piglets with NEC diagnosis at necropsy on day 5. Subgroups of NEC (n = 20) and control piglets (CON, n = 19) were analyzed for whole-blood transcriptome. RESULTS Preterm piglets had variable NEC lesions, especially in the colon region, without severe clinical signs (e.g. normal growth, activity, hematology, digestion, few piglets with bloody stools). Transcriptome analysis showed 344 differentially expressed genes (DEGs) between NEC and CON piglets. Validation experiment showed that AOAH, ARG2, FKBP5, PAK2, and STAT3 were among the genes affected by severe lesions on day 5, when analyzed in whole blood and in dried blood spots (DBS). CONCLUSION Whole-blood gene expressions may be affected in preterm pigs before clinical signs of NEC get severe. Blood gene expression analysis, potentially using DBS samples, is a novel tool to help identify new early biomarkers of NEC. IMPACT Preterm pig model was used to investigate if blood transcriptomics could be used to identify new early blood biomarkers of NEC progression. Whole-blood transcriptome revealed upregulation of target genes in NEC cases when clinical symptoms are subtle, and mainly colon regions were affected. Differential NEC-associated gene expressions could be detected also in dried blood spots, potentially allowing easy collection of small blood volumes in infants.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tik Muk
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shuqiang Ren
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rene L Shen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fei Gao
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,H.C. Andersen Childrens Hospital, Odense University Hospital, University of Southern Denmark, Odense, Denmark. .,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
10
|
Carpentieri D, Colvard A, Petersen J, Marsh W, David-Dirgo V, Huentelman M, Pirrotte P, Sivakumaran TA. Mind the Quality Gap When Banking on Dry Blood Spots. Biopreserv Biobank 2021; 19:136-142. [PMID: 33567235 DOI: 10.1089/bio.2020.0131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dry blood spots (DBS) offer many advantages over other blood banking protocols due to the reduction of time and equipment needed for collection and the ease of processing, storage, and shipment. In addition, the sample size makes it a very attractive method when considering the banking of small pediatric samples. On that note, the Centers for Disease Control and Prevention (CDC) preanalytical standards for DBS are commonly used in the worldwide mass spectrometry-based inborn errors of metabolism screening programs. However, these guidelines may not apply for analytes and protocols not included in these programs. In fact, the availability of leftover samples and the ongoing interest in protocols outside this scenario are providing us with new DBS biobanking insights. Herein, we review the literature for indicators that should be considered in the design of prospective fit for purpose DBS biobanks, especially for those focused mostly on pediatric and OMIC platforms.
Collapse
Affiliation(s)
- David Carpentieri
- Department of Pathology and Laboratory Medicine, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Amber Colvard
- Department of Pathology, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Jackie Petersen
- Department of Pathology, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - William Marsh
- Department of Biorepository, Mayo Clinic, Phoenix, Arizona, USA
| | - Victoria David-Dirgo
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Matt Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - T A Sivakumaran
- Department of Pathology, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| |
Collapse
|
11
|
Jia E, Zhou Y, Shi H, Pan M, Zhao X, Ge Q. Effects of brain tissue section processing and storage time on gene expression. Anal Chim Acta 2021; 1142:38-47. [PMID: 33280702 DOI: 10.1016/j.aca.2020.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
The pre-processing of samples is important factors that affect the results of the RNA-sequencing (RNA-seq) data. However, the effects of frozen sections storage conditions on the integrity of RNA and sequencing results haven't been reported. The study of frozen section protection schemes can provide reliable experimental results for single-cell and spatial transcriptome sequencing. In this study, RNA was isolated to be studied for RNA from brain section at different temperatures (RT: room temperature, -20 °C) and storage time (0 h, 2 h, 4 h, 8 h, 12 h, 16 h, 24 h, 7day, 3week, 6month). The stability of reference genes was validated using reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that the storage at room temperature significantly affected RNA integrity number (RIN), and the RIN value was lower with the prolongation of storage, while the storage at -20 °C exerted less effect on the RIN value. Cresyl violet staining for brain tissue sections had little effect on RNA integrity. 1925, 899 and 3390 differential expression genes (DEGs) were screened at 2 h, 4 h and 8 h at room temperature, respectively. A total of 892, 478 and 619 genes were shown to be differentially expressed at -20 °C for 7d, 3w and 6 m, respectively. Among them, the expression of glycoprotein m6a (Gpm6a), calmodulin 1 (Calm1), calmodulin 1 (Calm2), thymosin, beta 4, X chromosome (Tmsb4x), ribosomal protein S21 (Rps21) and so on were correlated with RNA quality. According to the expression stability of 4 reference genes (Actb: beta-actin; Gapdh: glyceraldehyde-3-phosphate dehydrogenase; 18S: 18S ribosomal; Hprt1: hypoxanthine phosphoribosyltransferase 1), 18S is the most stable reference gene in the brain. In conclusion, the storage temperature and time of frozen sections have significant effects on RNA integrity and sequencing results. But there are still some genes that are stable and not affected by worsening of overall RNA integrity ie the decrease of RIN value. In addition, 1% cresyl violet staining can protect RNA.
Collapse
Affiliation(s)
- Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huajuan Shi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing, 210097, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
12
|
Protti M, Mandrioli R, Mercolini L. Quantitative microsampling for bioanalytical applications related to the SARS-CoV-2 pandemic: Usefulness, benefits and pitfalls. J Pharm Biomed Anal 2020; 191:113597. [PMID: 32927419 PMCID: PMC7456588 DOI: 10.1016/j.jpba.2020.113597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
The multiple pathological effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and its total novelty, mean that currently a lot of diagnostic and therapeutic tools, established and tentative alike, are needed to treat patients in a timely, effective way. In order to make these tools more reliable, faster and more feasible, biological fluid microsampling techniques could provide many advantages. In this review, the most important microsampling techniques are considered (dried matrix spots, volumetric absorptive microsampling, microfluidics and capillary microsampling, solid phase microextraction) and their respective advantages and disadvantages laid out. Moreover, currently available microsampling applications of interest for SARS-CoV-2 therapy are described, in order to make them as much widely known as possible, hopefully providing useful information to researchers and clinicians alike.
Collapse
Affiliation(s)
- Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
13
|
Abstract
Next generation DNA sequencing (NGS) has the potential to improve the diagnostic and prognostic utility of newborn screening programmes. This study assesses the feasibility of automating NGS on dried blood spot (DBS) DNA in a United Kingdom National Health Service (UK NHS) laboratory. An NGS panel targeting the entire coding sequence of five genes relevant to disorders currently screened for in newborns in the UK was validated on DBS DNA. An automated process for DNA extraction, NGS and bioinformatics analysis was developed. The process was tested on DBS to determine feasibility, turnaround time and cost. The analytical sensitivity of the assay was 100% and analytical specificity was 99.96%, with a mean 99.5% concordance of variant calls between DBS and venous blood samples in regions with ≥30× coverage (96.8% across all regions; all variant calls were single nucleotide variants (SNVs), with indel performance not assessed). The pipeline enabled processing of up to 1000 samples a week with a turnaround time of four days from receipt of sample to reporting. This study concluded that it is feasible to automate targeted NGS on routine DBS samples in a UK NHS laboratory setting, but it may not currently be cost effective as a first line test.
Collapse
|
14
|
Lim MD. Dried Blood Spots for Global Health Diagnostics and Surveillance: Opportunities and Challenges. Am J Trop Med Hyg 2018; 99:256-265. [PMID: 29968557 PMCID: PMC6090344 DOI: 10.4269/ajtmh.17-0889] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/02/2018] [Indexed: 12/28/2022] Open
Abstract
There is increasing interest in using dried blood spot (DBS) cards to extend the reach of global health and disease surveillance programs to hard-to-reach populations. Conceptually, DBS offers a cost-effective solution for multiple use cases by simplifying logistics for collecting, preserving, and transporting blood specimens in settings with minimal infrastructure. This review describes methods to determine both the reliability of DBS-based bioanalysis for a defined use case and the optimal conditions that minimize pre-analytical sources of data variability. Examples by the newborn screening, drug development, and global health communities are provided in this review of published literature. Sources of variability are linked in most cases, emphasizing the importance of field-to-laboratory standard operating procedures that are evidence based and consider both stability and efficiency of recovery for a specified analyte in defining the type of DBS card, accessories, handling procedures, and storage conditions. Also included in this review are reports where DBS was determined to not be feasible because of technology limitations or physiological properties of a targeted analyte.
Collapse
Affiliation(s)
- Mark D. Lim
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, Washington
| |
Collapse
|
15
|
Reust MJ, Lee MH, Xiang J, Zhang W, Xu D, Batson T, Zhang T, Downs JA, Dupnik KM. Dried Blood Spot RNA Transcriptomes Correlate with Transcriptomes Derived from Whole Blood RNA. Am J Trop Med Hyg 2018; 98:1541-1546. [PMID: 29512483 PMCID: PMC5953367 DOI: 10.4269/ajtmh.17-0653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/14/2018] [Indexed: 01/14/2023] Open
Abstract
Obtaining RNA from clinical samples collected in resource-limited settings can be costly and challenging. The goals of this study were to 1) optimize messenger RNA extraction from dried blood spots (DBS) and 2) determine how transcriptomes generated from DBS RNA compared with RNA isolated from blood collected in Tempus tubes. We studied paired samples collected from eight adults in rural Tanzania. Venous blood was collected on Whatman 903 Protein Saver cards and in tubes with RNA preservation solution. Our optimal DBS RNA extraction used 8 × 3-mm DBS punches as the starting material, bead beater disruption at maximum speed for 60 seconds, extraction with Illustra RNAspin Mini RNA Isolation kit, and purification with Zymo RNA Concentrator kit. Spearman correlations of normalized gene counts in DBS versus whole blood ranged from 0.887 to 0.941. Bland-Altman plots did not show a trend toward over- or under-counting at any gene size. We report a method to obtain sufficient RNA from DBS to generate a transcriptome. The DBS transcriptome gene counts correlated well with whole blood transcriptome gene counts. Dried blood spots for transcriptome studies could be an option when field conditions preclude appropriate collection, storage, or transport of whole blood for RNA studies.
Collapse
Affiliation(s)
- Mary J. Reust
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Myung Hee Lee
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York
| | - Wei Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York
| | - Dong Xu
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York
| | - Tatiana Batson
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York
| | | | | |
Collapse
|
16
|
Pedersen CB, Bybjerg-Grauholm J, Pedersen MG, Grove J, Agerbo E, Bækvad-Hansen M, Poulsen JB, Hansen CS, McGrath JJ, Als TD, Goldstein JI, Neale BM, Daly MJ, Hougaard DM, Mors O, Nordentoft M, Børglum AD, Werge T, Mortensen PB. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol Psychiatry 2018; 23:6-14. [PMID: 28924187 PMCID: PMC5754466 DOI: 10.1038/mp.2017.196] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022]
Abstract
The Integrative Psychiatric Research (iPSYCH) consortium has established a large Danish population-based Case-Cohort sample (iPSYCH2012) aimed at unravelling the genetic and environmental architecture of severe mental disorders. The iPSYCH2012 sample is nested within the entire Danish population born between 1981 and 2005, including 1 472 762 persons. This paper introduces the iPSYCH2012 sample and outlines key future research directions. Cases were identified as persons with schizophrenia (N=3540), autism (N=16 146), attention-deficit/hyperactivity disorder (N=18 726) and affective disorder (N=26 380), of which 1928 had bipolar affective disorder. Controls were randomly sampled individuals (N=30 000). Within the sample of 86 189 individuals, a total of 57 377 individuals had at least one major mental disorder. DNA was extracted from the neonatal dried blood spot samples obtained from the Danish Neonatal Screening Biobank and genotyped using the Illumina PsychChip. Genotyping was successful for 90% of the sample. The assessments of exome sequencing, methylation profiling, metabolome profiling, vitamin-D, inflammatory and neurotrophic factors are in progress. For each individual, the iPSYCH2012 sample also includes longitudinal information on health, prescribed medicine, social and socioeconomic information, and analogous information among relatives. To the best of our knowledge, the iPSYCH2012 sample is the largest and most comprehensive data source for the combined study of genetic and environmental aetiologies of severe mental disorders.
Collapse
Affiliation(s)
- C B Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus V, Denmark,Centre for Integrated Register-Based Research, CIRRAU, Aarhus University, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Fuglesangs Allé 4, Aarhus 8210, Denmark. E-mail:
| | - J Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - M G Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus V, Denmark,Centre for Integrated Register-Based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - J Grove
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Centre for Integrative Sequencing, Department of Biomedicine and iSEQ, Aarhus University, Aarhus, Denmark,BiRC-Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - E Agerbo
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus V, Denmark,Centre for Integrated Register-Based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - M Bækvad-Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - J B Poulsen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - C S Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - J J McGrath
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus V, Denmark,Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - T D Als
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Centre for Integrative Sequencing, Department of Biomedicine and iSEQ, Aarhus University, Aarhus, Denmark
| | - J I Goldstein
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - B M Neale
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - M J Daly
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - D M Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - O Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - M Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Mental Health Centre Copenhagen, Capital Region of Denmark, Copenhagen University Hospital, Copenhagen, Denmark
| | - A D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Centre for Integrative Sequencing, Department of Biomedicine and iSEQ, Aarhus University, Aarhus, Denmark
| | - T Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,Mental Health Centre Sct. Hans, Capital Region of Denmark, Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
| | - P B Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark,National Centre for Register-Based Research, Business and Social Sciences, Aarhus University, Aarhus V, Denmark,Centre for Integrated Register-Based Research, CIRRAU, Aarhus University, Aarhus, Denmark,Centre for Integrative Sequencing, Department of Biomedicine and iSEQ, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Reilly J, Gallagher L, Chen JL, Leader G, Shen S. Bio-collections in autism research. Mol Autism 2017; 8:34. [PMID: 28702161 PMCID: PMC5504648 DOI: 10.1186/s13229-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with diverse clinical manifestations and symptoms. In the last 10 years, there have been significant advances in understanding the genetic basis for ASD, critically supported through the establishment of ASD bio-collections and application in research. Here, we summarise a selection of major ASD bio-collections and their associated findings. Collectively, these include mapping ASD candidate genes, assessing the nature and frequency of gene mutations and their association with ASD clinical subgroups, insights into related molecular pathways such as the synapses, chromatin remodelling, transcription and ASD-related brain regions. We also briefly review emerging studies on the use of induced pluripotent stem cells (iPSCs) to potentially model ASD in culture. These provide deeper insight into ASD progression during development and could generate human cell models for drug screening. Finally, we provide perspectives concerning the utilities of ASD bio-collections and limitations, and highlight considerations in setting up a new bio-collection for ASD research.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute and Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital Street, Dublin 8, Ireland
| | - June L. Chen
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062 China
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
18
|
Bybjerg-Grauholm J, Hagen CM, Khoo SK, Johannesen ML, Hansen CS, Bækvad-Hansen M, Christiansen M, Hougaard DM, Hollegaard MV. RNA sequencing of archived neonatal dried blood spots. Mol Genet Metab Rep 2016; 10:33-37. [PMID: 28053876 PMCID: PMC5198792 DOI: 10.1016/j.ymgmr.2016.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 01/25/2023] Open
Abstract
Neonatal dried blood spots (DBS) are routinely collected on standard Guthrie cards for all-comprising national newborn screening programs for inborn errors of metabolism, hypothyroidism and other diseases. In Denmark, the Guthrie cards are stored at − 20 °C in the Danish Neonatal Screening Biobank and each sample is linked to elaborate social and medical registries. This provides a unique biospecimen repository to enable large population research at a perinatal level. Here, we demonstrate the feasibility to obtain gene expression data from DBS using next-generation RNA sequencing (RNA-seq). RNA-seq was performed on five males and five females. Sequencing results have an average of > 30 million reads per sample. 26,799 annotated features can be identified with 64% features detectable without fragments per kilobase of transcript per million mapped reads (FPKM) cutoff; number of detectable features dropped to 18% when FPKM ≥ 1. Sex can be discriminated using blood-based sex-specific gene set identified by the Genotype-Tissue Expression consortium. Here, we demonstrate the feasibility to acquire biologically-relevant gene expression from DBS using RNA-seq which provide a new avenue to investigate perinatal diseases in a high throughput manner.
Collapse
Affiliation(s)
- Jonas Bybjerg-Grauholm
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Christian Munch Hagen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Grand Rapids, MI 49503, USA
| | - Maria Louise Johannesen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Christine Søholm Hansen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Marie Bækvad-Hansen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Michael Christiansen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Department of Biomedicine, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - David Michael Hougaard
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Mads V Hollegaard
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen DK-2300, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| |
Collapse
|
19
|
Ho NT, Busik JV, Resau JH, Paneth N, Khoo SK. Effect of storage time on gene expression data acquired from unfrozen archived newborn blood spots. Mol Genet Metab 2016; 119:207-213. [PMID: 27553879 PMCID: PMC5083152 DOI: 10.1016/j.ymgme.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 01/11/2023]
Abstract
Unfrozen archived newborn blood spots (NBS) have been shown to retain sufficient messenger RNA (mRNA) for gene expression profiling. However, the effect of storage time at ambient temperature for NBS samples in relation to the quality of gene expression data is relatively unknown. Here, we evaluated mRNA expression from quantitative real-time PCR (qRT-PCR) and microarray data obtained from NBS samples stored at ambient temperature to determine the effect of storage time on the quality of gene expression. These data were generated in a previous case-control study examining NBS in 53 children with cerebral palsy (CP) and 53 matched controls. NBS sample storage period ranged from 3 to 16years at ambient temperature. We found persistently low RNA integrity numbers (RIN=2.3±0.71) and 28S/18S rRNA ratios (~0) across NBS samples for all storage periods. In both qRT-PCR and microarray data, the expression of three common housekeeping genes-beta cytoskeletal actin (ACTB), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and peptidylprolyl isomerase A (PPIA)-decreased with increased storage time. Median values of each microarray probe intensity at log2 scale also decreased over time. After eight years of storage, probe intensity values were largely reduced to background intensity levels. Of 21,500 genes tested, 89% significantly decreased in signal intensity, with 13,551, 10,730, and 9925 genes detected within 5years, > 5 to <10years, and >10years of storage, respectively. We also examined the expression of two gender-specific genes (X inactivation-specific transcript, XIST and lysine-specific demethylase 5D, KDM5D) and seven gene sets representing the inflammatory, hypoxic, coagulative, and thyroidal pathways hypothesized to be related to CP risk to determine the effect of storage time on the detection of these biologically relevant genes. We found the gender-specific genes and CP-related gene sets detectable in all storage periods, but exhibited differential expression (between male vs. female or CP vs. control) only within the first six years of storage. We concluded that gene expression data quality deteriorates in unfrozen archived NBS over time and that differential gene expression profiling and analysis is recommended for those NBS samples collected and stored within six years at ambient temperature.
Collapse
Affiliation(s)
- Nhan T Ho
- Department of Epidemiology & Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - James H Resau
- Graduate School, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Nigel Paneth
- Department of Epidemiology & Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA; Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA.
| |
Collapse
|