1
|
Sung J, Kim I, Im M, Ahn YJ, Kim SM, Jang JH, Park HD, Jeon TY, Ko KR, Park SJ, Lee JH, Kim EY, Cheon CK, Kang E, Moon JE, Sohn YB, Lin HY, Chuang CK, Lin SP, Cho SY. Long-term outcomes of enzyme replacement therapy from a large cohort of Korean patients with mucopolysaccharidosis IVA (Morquio A syndrome). Mol Genet Metab Rep 2025; 42:101189. [PMID: 39897469 PMCID: PMC11783393 DOI: 10.1016/j.ymgmr.2025.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Mucopolysaccharidosis (MPS) IVA (Morquio A syndrome) is an autosomal recessive lysosomal storage disorder caused by a mutation affecting the enzyme N-acetylgalactosamine-6-sulfatase (EC 3.1.6.4, GALNS). Enzyme replacement therapy (ERT) has been shown to improve physical performance, quality of life, and respiratory function in patients with MPS IVA; however, owing to the rarity of MPS IVA, data on Korean patient characteristics are limited. This retrospective study reports clinical, radiographic, biochemical, and molecular findings, and analyzes long-term clinical outcomes, from the largest cohort of Korean patients with MPS IVA in a single center. The analysis included 17 patients from 14 families (58.8 % females; median [range] age at diagnosis 5.2 [1.8-33.7] years). The majority of patients (64.7 %) were classified as having a severe phenotype, 23 % had an intermediate phenotype, and 11.8 % had an attenuated phenotype. Skeletal manifestations and radiologic abnormalities at initial diagnosis included gait abnormality (35.3 %), short stature (23.5 %), chest deformity (23.5 %), scoliosis (17.6 %), kyphosis (11.8 %), dysmorphic face (6 %), hip pain (6 %), and leg deformity (6 %). Twelve different GALNS mutations were identified. Patients received ERT for a median (range) 7.4 years (3.0-12.1). Twelve patients reached final adult height, and all patients with the severe/intermediate phenotype had short stature (<3rd percentile). Hemiepiphysiodesis was the most common surgical intervention among patients with the severe/intermediate phenotype. Drug-related adverse events (urticaria, rash, and anaphylaxis) were reported in four patients but were managed with antihistamines or desensitization. At follow-up, patients experienced improvements in functional independence measure score, ejection fraction, and the 6-min walk test compared with the pre-treatment baseline. This study provides real-world evidence for long-term stabilization of functional independence, endurance, and respiratory function among patients with MPS IVA treated with ERT, with no new safety concerns identified.
Collapse
Affiliation(s)
- Juyoung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Insung Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Minji Im
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon Ji Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang-Mi Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Yeon Jeon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Rae Ko
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Jun Park
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jun Hwa Lee
- Department of Pediatrics, Samsung Changwon Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Eun Young Kim
- Department of Pediatrics, Chosun University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chong Kun Cheon
- Department of Pediatrics, Pusan National University Children's Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Eungu Kang
- Department of Pediatrics, Korea University Ansan Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung-Eun Moon
- Department of Pediatrics, Kyungpook National University Hospital, Republic of Korea
| | - Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Basol M, Ersoz‐Gulseven E, Ozaktas H, Kalyoncu S, Utine CA, Cakan‐Akdogan G. Loss of carbohydrate sulfotransferase 6 function leads to macular corneal dystrophy phenotypes and skeletal defects in zebrafish. FEBS J 2025; 292:373-390. [PMID: 39642091 PMCID: PMC11734872 DOI: 10.1111/febs.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024]
Abstract
The carbohydrate sulfotransferase 6 (chst6) gene is linked to macular corneal dystrophy (MCD), a rare disease that leads to bilateral blindness due to the accumulation of opaque aggregates in the corneal stroma. chst6 encodes for a keratan sulfate proteoglycan (KSPG) specific sulfotransferase. MCD patients lose sulfated KSPGs (cKS) in the cornea and the serum. The significance of serum cKS loss has not been understood. Zebrafish cornea structure is similar to that of humans and it contains high levels of sulfated cKS in the stroma. Here, zebrafish chst6 is shown to be expressed in the cornea and head structures of the embryos. An animal model of MCD is developed by generating chst6 mutant animals with CRISPR/Cas9-mediated gene editing. The dramatic decrease in cKS epitopes in the mutants was shown with ELISA and immunofluorescence. Morphological defects or alterations of jaw cartilage were detected in a minor fraction of the mutant larvae. Loss of cKS epitopes and morphological defects was fully rescued with wild-type chst6. Mutant adult zebrafish displayed all clinical manifestations of MCD, while a fraction also displayed jaw and skeleton defects. Opaque accumulations formed in the eye, which were alcian blue positive. Loss of cKS in the corneal stroma and a decrease in corneal thickness were shown. Interestingly, alteration of transforming growth factor beta-induced (BIGH3) expression which was not described in patients was also observed. This is the first report of an MCD model in a genetically tractable organism, providing a preclinical model and insight into the importance of KSPG sulfation for proper skeletal morphogenesis.
Collapse
Affiliation(s)
- Merve Basol
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | | | - Helin Ozaktas
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | | | - Canan Asli Utine
- Izmir Biomedicine and Genome CenterTurkey
- Department of Ophthalmology, Faculty of MedicineDokuz Eylul UniversityIzmirTurkey
| | - Gulcin Cakan‐Akdogan
- Izmir Biomedicine and Genome CenterTurkey
- Department of Medical Biology, Faculty of MedicineDokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
3
|
Celik B, Rintz E, Sansanwal N, Khan S, Bigger B, Tomatsu S. Lentiviral Vector-Mediated Ex Vivo Hematopoietic Stem Cell Gene Therapy for Mucopolysaccharidosis IVA Murine Model. Hum Gene Ther 2024; 35:917-937. [PMID: 39446675 DOI: 10.1089/hum.2024.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by a mutation in the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) gene resulting in progressive systemic skeletal dysplasia. There is currently no effective treatment available for this skeletal condition. Thus, the development of a new therapy stands as an unmet challenge in reversing or alleviating the progression of the disease. Our research, which could be a game-changer, hypothesizes that ex vivo lentiviral (LV) gene therapy (GT) could produce the supraphysiological level of active GALNS enzyme by hematopoietic stem cells (HSCs) transduced with LVs carrying the native GALNS gene under two different promoters (CBh and COL2A1), impacting bone and cartilage abnormalities in MPS IVA. We conditioned newborn knock-out (Galns-/-) MPS IVA mice with busulfan and intravenously transplanted LV-modified HSCs isolated from the bone marrow of Galns-/- donor mice. Transplanted mice were autopsied at 16 weeks, and tissues were collected to assess the therapeutic efficacy of modified HSCs in MPS IVA mice. Although HSC-LV-CBh-hGALNS provided a higher GALNS enzyme activity in plasma, HSC-LV-COL2A1-hGALNS stably corrected heart and bone abnormalities better under a low level of GALNS enzyme. Our findings suggest that ex vivo LV-GT may potentially treat MPS IVA.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| | - Estera Rintz
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Nidhi Sansanwal
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| | - Shaukat Khan
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| | - Brian Bigger
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Shunji Tomatsu
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| |
Collapse
|
4
|
Khan SA, Nidhi F, Leal AF, Celik B, Herreño-Pachón AM, Saikia S, Benincore-Flórez E, Ago Y, Tomatsu S. Glycosaminoglycans in mucopolysaccharidoses and other disorders. Adv Clin Chem 2024; 122:1-52. [PMID: 39111960 DOI: 10.1016/bs.acc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Glycosaminoglycans (GAGs) are sulfated polysaccharides comprising repeating disaccharides, uronic acid (or galactose) and hexosamines, including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate. Hyaluronan is an exception in the GAG family because it is a non-sulfated polysaccharide. Lysosomal enzymes are crucial for the stepwise degradation of GAGs to provide a normal function of tissues and extracellular matrix (ECM). The deficiency of one or more lysosomal enzyme(s) results in the accumulation of undegraded GAGs, causing cell, tissue, and organ dysfunction. Accumulation of GAGs in various tissues and ECM results in secretion into the circulation and then excretion in urine. GAGs are biomarkers of certain metabolic disorders, such as mucopolysaccharidoses (MPS) and mucolipidoses. GAGs are also elevated in patients with various conditions such as respiratory and renal disorders, fatty acid metabolism disorders, viral infections, vomiting disorders, liver disorders, epilepsy, hypoglycemia, myopathy, developmental disorders, hyperCKemia, heart disease, acidosis, and encephalopathy. MPS are a group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade GAGs in the lysosome. Eight types of MPS are categorized based on lack or defect in one of twelve specific lysosomal enzymes and are described as MPS I through MPS X (excluding MPS V and VIII). Clinical features vary with the type of MPS and clinical severity of the disease. This chapter addresses the historical overview, synthesis, degradation, distribution, biological role, and method for measurement of GAGs.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours Children's Health, Wilmington, DE, United States
| | - Fnu Nidhi
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | - Andrés Felipe Leal
- Nemours Children's Health, Wilmington, DE, United States; Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Betul Celik
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Sampurna Saikia
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Yasuhiko Ago
- Nemours Children's Health, Wilmington, DE, United States
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
5
|
AlSayed M, Arafa D, Al-Khawajha H, Afqi M, Al-Sanna'a N, Sunbul R, Faden M. Consensus-based expert recommendations on the management of MPS IVa and VI in Saudi Arabia. Orphanet J Rare Dis 2024; 19:269. [PMID: 39020431 PMCID: PMC11253461 DOI: 10.1186/s13023-024-03237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Mucopolysaccharidosis type IVa (Morquio A syndrome) and mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome) are rare inherited lysosomal storage diseases associated with significant functional impairment and a wide spectrum of debilitating clinical manifestations. These conditions are thought to have higher-than-average prevalence rates in Saudi Arabia due to high rates of consanguineous marriage in the country. There are several unmet needs associated with the management of these diseases in Saudi Arabia. MAIN BODY The aim of this manuscript is to contextualize unmet management needs and provide recommendations to optimize diagnosis, multidisciplinary care delivery, and local data generation in this disease area. An expert panel was assembled comprising seven consultant geneticists from across Saudi Arabia. The Delphi methodology was used to obtain a consensus on statements relating to several aspects of mucopolysaccharidosis types IVa and VI. A consensus was reached for all statements by means of an online, anonymized voting system. The consensus statements pertain to screening and diagnosis, management approaches, including recommendations pertaining to enzyme replacement therapy, and local data generation. CONCLUSION The consensus statements presented provide specific recommendations to improve diagnostic and treatment approaches, promote multidisciplinary care and data sharing, and optimize the overall management of these rare inherited diseases in Saudi Arabia.
Collapse
Affiliation(s)
- Moeenaldeen AlSayed
- Department of Medical Genomics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
| | - Dia Arafa
- Consultant Pediatrician and Medical Genetics, Maternity and Children Hospital, Makkah, Saudi Arabia
| | - Huda Al-Khawajha
- Consultant Pediatrician & Medical Genetics, Maternity and Children Hospital, Al-Ahsa, Saudi Arabia
| | - Manal Afqi
- Clinical Genetics and Metabolic Disorders, Consultant Pediatrician, Maternity and Children Hospital, Madinah, Saudi Arabia
| | - Nouriya Al-Sanna'a
- Clinical Geneticist, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Rawda Sunbul
- Consultant Pediatrician and Medical Genetics, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Maha Faden
- Genetic Unit, Maternity and Children Hospital, Consultant Pediatrician, Clinical Genetics - Metabolic and Skeletal Dysplasia, King Saud Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Rintz E, Banacki M, Ziemian M, Kobus B, Wegrzyn G. Causes of death in mucopolysaccharidoses. Mol Genet Metab 2024; 142:108507. [PMID: 38815294 DOI: 10.1016/j.ymgme.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Mucopolysaccharidoses are inherited metabolic diseases caused by mutations in genes encoding enzymes required for degradation of glycosaminoglycans. A lack or severe impairment of activity of these enzymes cause accumulation of GAGs which is the primary biochemical defect. Depending on the kind of the deficient enzyme, there are 12 types and subtypes of MPS distinguished. Despite the common primary metabolic deficit (inefficient GAG degradation), the course and symptoms of various MPS types can be different, though majority of the diseases from the group are characterized by severe symptoms and significantly shortened live span. Here, we analysed the frequency of specific, direct causes of death of patients with different MPS types, the subject which was not investigated comprehensively to date. We examined a total of 1317 cases of death among MPS patients, including 393 cases of MPS I, 418 cases of MPS II, 232 cases of MPS III, 45 cases of MPS IV, 208 cases of MPS VI, and 22 cases of MPS VII. Our analyses indicated that the most frequent causes of death differ significantly between MPS types, with cardiovascular and respiratory failures being predominant in MPS I, MPS II, and MPS VI, neurological deficits in MPS III, respiratory issues in MPS IV, and hydrops fetalis in MPS VII. Results of such studies suggest what specific clinical problems should be considered with the highest priority in specific MPS types, apart from attempts to correct the primary causes of the diseases, to improve the quality of life of patients and to prolong their lives.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland.
| | - Marcin Banacki
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Maja Ziemian
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Barbara Kobus
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| |
Collapse
|
7
|
Pimentel-Vera LN, Rodríguez-López A, Espejo-Mojica AJ, Ramírez AM, Cardona C, Reyes LH, Tomatsu S, Jaroentomeechai T, DeLisa MP, Sánchez OF, Alméciga-Díaz CJ. Novel human recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in a glyco-engineered Escherichia coli strain. Heliyon 2024; 10:e32555. [PMID: 38952373 PMCID: PMC11215262 DOI: 10.1016/j.heliyon.2024.e32555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), resulting in the accumulation of keratan sulfate (KS) and chondroitin-6-sulfate (C6S). Previously, it was reported the production of an active human recombinant GALNS (rGALNS) in E. coli BL21(DE3). However, this recombinant enzyme was not taken up by HEK293 cells or MPS IVA skin fibroblasts. Here, we leveraged a glyco-engineered E. coli strain to produce a recombinant human GALNS bearing the eukaryotic trimannosyl core N-glycan, Man3GlcNAc2 (rGALNSoptGly). The N-glycosylated GALNS was produced at 100 mL and 1.65 L scales, purified and characterized with respect to pH stability, enzyme kinetic parameters, cell uptake, and KS clearance. The results showed that the addition of trimannosyl core N-glycans enhanced both protein stability and substrate affinity. rGALNSoptGly was capture through a mannose receptor-mediated process. This enzyme was delivered to the lysosome, where it reduced KS storage in human MPS IVA fibroblasts. This study demonstrates the potential of a glyco-engineered E. coli for producing a fully functional GALNS enzyme. It may offer an economic approach for the biosynthesis of a therapeutic glycoprotein that could prove useful for MPS IVA treatment. This strategy could be extended to other lysosomal enzymes that rely on the presence of mannose N-glycans for cell uptake.
Collapse
Affiliation(s)
- Luisa N. Pimentel-Vera
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Dogma Biotech, Bogotá, D.C., 110111, Colombia
| | - Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Dogma Biotech, Bogotá, D.C., 110111, Colombia
| | - Aura María Ramírez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| | - Carolina Cardona
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada GIBGA, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, Bogotá, D.C., Colombia
| | - Luis H. Reyes
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, D.C., Colombia
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE, 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, 19144, USA
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Oscar F. Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| |
Collapse
|
8
|
Rintz E, Celik B, Fnu N, Herreño-Pachón AM, Khan S, Benincore-Flórez E, Tomatsu S. Molecular therapy and nucleic acid adeno-associated virus-based gene therapy delivering combinations of two growth-associated genes to MPS IVA mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102211. [PMID: 38831899 PMCID: PMC11145352 DOI: 10.1016/j.omtn.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is caused by a deficiency of the galactosamine (N-acetyl)-6-sulfatase (GALNS) enzyme responsible for the degradation of specific glycosaminoglycans (GAGs). The progressive accumulation of GAGs leads to various skeletal abnormalities (short stature, hypoplasia, tracheal obstruction) and several symptoms in other organs. To date, no treatment is effective for patients with bone abnormalities. To improve bone pathology, we propose a novel combination treatment with the adeno-associated virus (AAV) vectors expressing GALNS enzyme and a natriuretic peptide C (CNP; NPPC gene) as a growth-promoting agent for MPS IVA. In this study, an MPS IVA mouse model was treated with an AAV vector expressing GALNS combined with another AAV vector expressing NPPC gene, followed for 12 weeks. After the combination therapy, bone growth in mice was induced with increased enzyme activity in tissues (bone, liver, heart, lung) and plasma. Moreover, there were significant changes in bone morphology in CNP-treated mice with increased CNP activity in plasma. Delivering combinations of CNP and GALNS gene therapies enhanced bone growth in MPS IVA mice more than in GALNS gene therapy alone. Enzyme expression therapy alone fails to reach the bone growth region; our results indicate that combining it with CNP offers a potential alternative.
Collapse
Affiliation(s)
- Estera Rintz
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Betul Celik
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nidhi Fnu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Angélica María Herreño-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shaukat Khan
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | | | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
9
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
10
|
Li P, Wang D, Lu W, He X, Hu J, Yun H, Zhao C, Yang L, Jie Q, Luo Z. Targeting FGFR3 signaling and drug repurposing for the treatment of SLC26A2-related chondrodysplasia in mouse model. J Orthop Translat 2024; 44:88-101. [PMID: 38282752 PMCID: PMC10818158 DOI: 10.1016/j.jot.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/18/2023] [Accepted: 09/20/2023] [Indexed: 01/30/2024] Open
Abstract
Background Mutations in Slc26a2 cause a spectrum of autosomal-recessive chondrodysplasia with a significant and negligible influence on the quality of life. It has been reported that Slc26a2 deficiency triggers the ATF6 branch of the UPR, which may, in turn, activate the negative regulator of the FGFR3 signaling pathway. However, the correlation between the deletion of Slc26a2 and the augmentation of downstream phosphorylation of FGFR3 has not been investigated in vivo. Methods First, we constructed Slc26a2 and Fgfr3 double knockout mouse lines and observed gross views of the born mice and histological staining of the tibial growth plates. The second approach was to construct tamoxifen-inducible Cre-ERT2 mouse models to replicate SLC26A2-related non-lethal dysplastic conditions. Pharmacological intervention was performed by administering the FGFR3 inhibitor NVP-BGJ398. The effect of NVP-BGJ398 on chondrocytes was assessed by Alcian blue staining, proliferation, apoptosis, and chondrocyte-specific markers and then verified by western blotting for variations in the downstream markers of FGFR3. The growth process was detected using X-rays, micro-CT examination, histomorphometry staining of growth plates, and immunofluorescence. Results Genetic ablation of Fgfr3 in embryonic Slc26a2-deficient chondrocytes slightly attenuated chondrodysplasia. Subsequently, in the constructed mild dysplasia model, we found that postnatal intervention with Fgfr3 gene in Slc26a2-deficient chondrocytes partially alleviated chondrodysplasia. In chondrocyte assays, NVP-BGJ398 suppressed the defective phenotype of Slc26a2-deficient chondrocytes and restored the phosphorylation downstream of FGFR3 in a concentration-dependent manner. In addition, in vivo experiments showed significant alleviation of impaired chondrocyte differentiation, and micro-CT analysis showed a clear improvement in trabecular bone microarchitectural parameters. Conclusion Our results suggested that inhibition of FGFR3 signaling pathway overactivation and NVP-BGJ398 has promising therapeutic implications for the development of SLC26A2-related skeletal diseases in humans. The translational potential of this article Our data provide genetic and pharmacological evidence that targeting FGFR3 signaling via NVP-BGJ398 could be a route for the treatment of SLC26A2-associated skeletal disorders, which promisingly advances translational applications and therapeutic development.
Collapse
Affiliation(s)
- Pan Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weiguang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin He
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jingyan Hu
- Department of Biology, Northwestern University, Xi'an, China
| | - Haitao Yun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chengxiang Zhao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Jie
- Department of Orthopedic Surgery, HongHui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
11
|
Nilsson J, Persson A, Vorontsov E, Nikpour M, Noborn F, Larson G, Blomqvist M. A glycomic workflow for LC-MS/MS analysis of urine glycosaminoglycan biomarkers in mucopolysaccharidoses. Glycoconj J 2023; 40:523-540. [PMID: 37462780 PMCID: PMC10638189 DOI: 10.1007/s10719-023-10128-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 11/11/2023]
Abstract
In recent years, several rational designed therapies have been developed for treatment of mucopolysaccharidoses (MPS), a group of inherited metabolic disorders in which glycosaminoglycans (GAGs) are accumulated in various tissues and organs. Thus, improved disease-specific biomarkers for diagnosis and monitoring treatment efficacy are of paramount importance. Specific non-reducing end GAG structures (GAG-NREs) have become promising biomarkers for MPS, as the compositions of the GAG-NREs depend on the nature of the lysosomal enzyme deficiency, thereby creating a specific pattern for each subgroup. However, there is yet no straightforward clinical laboratory platform which can assay all MPS-related GAG-NREs in one single analysis. Here, we developed and applied a GAG domain mapping approach for analyses of urine samples of ten MPS patients with various MPS diagnoses and corresponding aged-matched controls. We describe a nano-LC-MS/MS method of GAG-NRE profiling, utilizing 2-aminobenzamide reductive amination labeling to improve the sensitivity and the chromatographic resolution. Diagnostic urinary GAG-NREs were identified for MPS types IH/IS, II, IIIc, IVa and VI, corroborating GAG-NRE as biomarkers for these known enzyme deficiencies. Furthermore, a significant reduction of diagnostic urinary GAG-NREs in MPS IH (n = 2) and MPS VI (n = 1) patients under treatment was demonstrated. We argue that this straightforward glycomic workflow, designed for the clinical analysis of MPS-related GAG-NREs in one single analysis, will be of value for expanding the use of GAG-NREs as biomarkers for MPS diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE41390, Sweden.
| | - Andrea Persson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Present Address: Genovis AB, Lund, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE41390, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, SE41345, Sweden
| | - Maria Blomqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, SE41345, Sweden.
| |
Collapse
|
12
|
Rintz E, Herreño-Pachón AM, Celik B, Nidhi F, Khan S, Benincore-Flórez E, Tomatsu S. Bone Growth Induction in Mucopolysaccharidosis IVA Mouse. Int J Mol Sci 2023; 24:9890. [PMID: 37373036 PMCID: PMC10298227 DOI: 10.3390/ijms24129890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is caused by a deficiency of the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) enzyme, leading to the accumulation of glycosaminoglycans (GAG), keratan sulfate (KS) and chondroitin-6-sulfate (C6S), mainly in cartilage and bone. This lysosomal storage disorder (LSD) is characterized by severe systemic skeletal dysplasia. To this date, none of the treatment options for the MPS IVA patients correct bone pathology. Enzyme replacement therapy with elosulfase alpha provides a limited impact on bone growth and skeletal lesions in MPS IVA patients. To improve bone pathology, we propose a novel gene therapy with a small peptide as a growth-promoting agent for MPS IVA. A small molecule in this peptide family has been found to exert biological actions over the cardiovascular system. This work shows that an AAV vector expressing a C-type natriuretic (CNP) peptide induces bone growth in the MPS IVA mouse model. Histopathological analysis showed the induction of chondrocyte proliferation. CNP peptide also changed the pattern of GAG levels in bone and liver. These results suggest the potential for CNP peptide to be used as a treatment in MPS IVA patients.
Collapse
Affiliation(s)
- Estera Rintz
- Nemours Children’s Health, Wilmington, DE 19803, USA; (E.R.); (A.M.H.-P.); (B.C.); (F.N.); (S.K.); (E.B.-F.)
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Angélica María Herreño-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA; (E.R.); (A.M.H.-P.); (B.C.); (F.N.); (S.K.); (E.B.-F.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Betul Celik
- Nemours Children’s Health, Wilmington, DE 19803, USA; (E.R.); (A.M.H.-P.); (B.C.); (F.N.); (S.K.); (E.B.-F.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Fnu Nidhi
- Nemours Children’s Health, Wilmington, DE 19803, USA; (E.R.); (A.M.H.-P.); (B.C.); (F.N.); (S.K.); (E.B.-F.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shaukat Khan
- Nemours Children’s Health, Wilmington, DE 19803, USA; (E.R.); (A.M.H.-P.); (B.C.); (F.N.); (S.K.); (E.B.-F.)
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Eliana Benincore-Flórez
- Nemours Children’s Health, Wilmington, DE 19803, USA; (E.R.); (A.M.H.-P.); (B.C.); (F.N.); (S.K.); (E.B.-F.)
| | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA; (E.R.); (A.M.H.-P.); (B.C.); (F.N.); (S.K.); (E.B.-F.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
13
|
Leal AF, Alméciga-Díaz CJ. Efficient CRISPR/Cas9 nickase-mediated genome editing in an in vitro model of mucopolysaccharidosis IVA. Gene Ther 2023; 30:107-114. [PMID: 35581402 DOI: 10.1038/s41434-022-00344-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 01/03/2023]
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder (LSD) caused by mutations in gene encoding for GALNS enzyme. Lack of GALNS activity leads to the accumulation of glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate. Although enzyme replacement therapy has been approved since 2014 for MPS IVA, still there is an unmet medical need to have improved therapies for this disorder. CRISPR/Cas9-based gene therapy has been tested for several LSDs with encouraging findings, but to date it has not been assayed on MPS IVA. In this work, we validated for the first time the use of CRISPR/Cas9, using a Cas9 nickase, for the knock-in of an expression cassette containing GALNS cDNA in an in vitro model of MPS IVA. The results showed the successful homologous recombination of the expression cassette into the AAVS1 locus, as well as a long-term increase in GALNS activity reaching up to 40% of wild-type levels. We also observed normalization of lysosomal mass, total GAGs, and oxidative stress, which are some of the major findings regarding the pathophysiological events in MPS IVA. These results represent a proof-of-concept of the use of CRISPR/Cas9 nickase strategy for the development of a novel therapeutic alternative for MPS IVA.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia.
| |
Collapse
|
14
|
Vashakmadze ND, Zhurkova NV, Mikhaylova LK, Smirnova VY, Revunenkov GV. Clinical Characteristics of a Patient with Mucopolysaccharidosis Type IVA (Morquio Syndrome). CURRENT PEDIATRICS 2023. [DOI: 10.15690/vsp.v21i6s.2499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mucopolysaccharidosis (MPS) type IVA (Morquio syndrome) is a hereditary lysosomal storage disease caused by deficiency of N-acetylglucosamine-6-sulfate sulfatase. This enzyme deficiency leads to specific glycosaminoglycans (keratan sulfate and chondroitin-6-sulfate) accumulation mainly in the bone and cartilage tissues, as well as in the cardiovascular, respiratory systems, and visual systems. Patients with MPS IVA look healthy at birth, however, they develop typical spine deformities (kyphoscoliosis), pectus carinatum, wrists hypermobility with decreased muscle strength and loss of fine motor skills, valgus deformation of lower limbs during the first years of life. Pathological changes in cardiovascular and respiratory systems, visual and acoustic analyzers can be revealed. Early diagnosis of the disease is crucial for timely initiation of enzyme replacement therapy. Thus, low incidence of the disease and its heterogeneous clinical picture complicates diagnosis. Consequently, patients with MAS IVA often become severely disabled as early as adolescence. Patients with severe form and without treatment die before the age of 30 due to complications of respiratory system diseases, valvular heart apparatus involvement, and cervical myelopathy.
Collapse
Affiliation(s)
- N. D. Vashakmadze
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | - N. V. Zhurkova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Research Centre for Medical Genetics
| | - L. K. Mikhaylova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - V. Ya. Smirnova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - G. V. Revunenkov
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| |
Collapse
|
15
|
Gonzalez EA, Nader H, Siebert M, Suarez DA, Alméciga-Díaz CJ, Baldo G. Genome Editing Tools for Lysosomal Storage Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:127-155. [PMID: 37486520 DOI: 10.1007/978-3-031-33325-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Genome editing has multiple applications in the biomedical field. They can be used to modify genomes at specific locations, being able to either delete, reduce, or even enhance gene transcription and protein expression. Here, we summarize applications of genome editing used in the field of lysosomal disorders. We focus on the development of cell lines for study of disease pathogenesis, drug discovery, and pathogenicity of specific variants. Furthermore, we highlight the main studies that use gene editing as a gene therapy platform for these disorders, both in preclinical and clinical studies. We conclude that gene editing has been able to change quickly the scenario of these disorders, allowing the development of new therapies and improving the knowledge on disease pathogenesis. Should they confirm their hype, the first gene editing-based products for lysosomal disorders could be available in the next years.
Collapse
Affiliation(s)
- Esteban Alberto Gonzalez
- Cell, Tissue and Gene Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helena Nader
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Marina Siebert
- Postgraduate Program in Sciences of Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Basic Research and Advanced Investigations in Neurosciences Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Guilherme Baldo
- Cell, Tissue and Gene Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Piechnik M, Amendum PC, Sawamoto K, Stapleton M, Khan S, Fnu N, Álvarez V, Pachon AMH, Danos O, Bruder JT, Karumuthil-Melethil S, Tomatsu S. Sex Difference Leads to Differential Gene Expression Patterns and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine Model Receiving AAV8 Gene Therapy. Int J Mol Sci 2022; 23:ijms232012693. [PMID: 36293546 PMCID: PMC9604118 DOI: 10.3390/ijms232012693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer. We aim to investigate sex differences in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS IVA). MPS IVA mice, treated with different AAV vectors expressing human N-acetylgalactosamine 6-sulfate sulfatase (GALNS), demonstrated a more robust antibody response in female mice resulting in subsequent decreased GALNS enzyme activity and less therapeutic efficacy in tissue pathology relative to male mice. Under thyroxine-binding globulin promoter, neutralizing antibody titers in female mice were approximately 4.6-fold higher than in male mice, with GALNS enzyme activity levels approximately 6.8-fold lower. Overall, male mice treated with AAV-based gene therapy showed pathological improvement in the femur and tibial growth plates, ligaments, and articular cartilage as determined by contrasting differences in pathology scores compared to females. Cardiac histology revealed a failure to normalize vacuolation in females, in contrast, to complete correction in male mice. These findings promote the need for further determination of sex-based differences in response to AAV-mediated gene therapy related to developing treatments for MPS IVA.
Collapse
Affiliation(s)
- Matthew Piechnik
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paige C. Amendum
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kazuki Sawamoto
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Molly Stapleton
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Shaukat Khan
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Nidhi Fnu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Victor Álvarez
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | | | | | | | - Subha Karumuthil-Melethil
- REGENXBIO Inc., Rockville, MD 20850, USA
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pediatrics, Shimane University, Izumo 693-8501, Shimane, Japan
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| |
Collapse
|
17
|
Kim SM, Noh ES, Park JH, Park HD, Lee SY, Jang JH, Cho SY. A novel splicing variant in GALNS in mucopolysaccharidosis IVA and the necessity of re-evaluating primer sequences. Ann Hum Genet 2022; 86:361-368. [PMID: 36000290 DOI: 10.1111/ahg.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA; Morquio syndrome type A) is an autosomal recessive disorder caused by defects in the lysosomal hydrolase N-acetylgalactosamine-6-sulfatase (GALNS) gene, leading to progressive systemic skeletal dysplasia. Early diagnosis and early intervention with enzyme replacement therapy are crucial for improving outcomes in these patients. However, a relatively high number of patients are genetically undiagnosed due to high allelic heterogeneity and the absence of robust functional evidence for most variants of the GALNS gene. Herein, we report a novel intronic variant identified with RNA analysis and an allele dropout (ADO) event caused by a common benign variant in the primer-binding site in a Korean boy with MPS IVA. A 28-month-old boy presented with pectus carinatum, kyphoscoliosis, and joint hypermobility with multiple skeletal dysplasia involving the vertebrae and hip joint. Total urinary glycosaminoglycans were elevated with a predominant keratan sulfate fraction, and GALNS (EC 3.1.6.4) activity was significantly decreased in leukocytes. Sanger sequencing was performed; however, only one heterozygous intronic variant with uncertain clinical significance, c.566+3A > T (p.(?)), was identified. As the patient exhibited clinical and biochemical features of MPS IVA, we conducted whole genome sequencing (WGS) of the patient and his family to clarify the molecular diagnosis. WGS revealed a compound heterozygous genotype, c.1019G > A (p.(Gly340Asp)) and c.566+3A > T (p.(?)), in the GALNS gene. On mRNA sequencing, c.566+3A > T, was confirmed to cause exon 5 skipping and a premature stop codon. With subsequent investigation, we discovered that the variant, c.1019G > A, was undetected on initial sequencing because of ADO due to a common benign variant (rs3859024:G > C) at the primer annealing location. We present a novel intronic variant with a splicing defect in the GALNS gene and suggest that clinicians review primer sequences in cases not diagnosed on Sanger sequencing before progressing to diagnostic steps such as WGS.
Collapse
Affiliation(s)
- Sang-Mi Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eu Seon Noh
- Department of Pediatrics, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Ho Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Clinical Genomics Center, Samsung Medical Center, Seoul, Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Yoon Cho
- Department of Pediatrics, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Lee CL, Chuang CK, Syu YM, Chiu HC, Tu YR, Lo YT, Chang YH, Lin HY, Lin SP. Efficacy of Intravenous Elosulfase Alfa for Mucopolysaccharidosis Type IVA: A Systematic Review and Meta-Analysis. J Pers Med 2022; 12:1338. [PMID: 36013287 PMCID: PMC9409773 DOI: 10.3390/jpm12081338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA or Morquio A), a lysosomal storage disease with an autosomal recessive inherited pattern, is induced by GALNS gene mutations causing deficiency in N-acetylgalactosamine-6-sulfatase activity (GALNS; EC 3.1.6.4). Currently, intravenous (IV) enzyme replacement therapy (ERT) with elosulfase alfa is employed for treating MPS IVA patients. A systematic literature review was conducted to evaluate the efficacy and safety of IV elosulfase alfa for MPS IVA by searching the National Center for Biotechnology Information, U.S. National Library of Medicine National Institutes of Health (PubMed), Excerpta Medica dataBASE, and Cochrane Library databases, limited to clinical trials. Four cohort studies and two randomized controlled trials, with a total of 550 participants (327 on ERT treatment versus 223 on placebo treatment), satisfied the inclusion criteria. Pooled analysis of proportions and confidence intervals were also utilized to systematically review clinical cohort studies and trials. Per the pooled proportions analysis, the difference in means of urinary keratan sulfate (uKS), 6-min walk test, 3-min stair climb test, self-care MPS-Health Assessment Questionnaire, caregiver assistance and mobility, forced vital capacity, the first second of forced expiration, and maximal voluntary ventilation between the ERT and placebo treatment groups were -0.260, -0.102, -0.182, -0.360, -0.408, -0.587, -0.293, -0.311, and -0.213, respectively. Based on the currently available data, our meta-analysis showed that there is uKS, physical performance, quality of life, and respiratory function improvements with ERT in MPS IVA patients. It is optimal to start ERT after diagnosis.
Collapse
Grants
- MMH-E-111-13, MMH-E-110-16, MMH-E-109-16, MMH-E-108-16, MMH-MM-10801, and MMH-107-82 Mackay Memorial Hospital
- MOST-111-2811-B-195-001, MOST-111-2811-B-195-002, MOST-111-2314-B-195-017, MOST-110-2314-B-195-010-MY3, MOST-110-2314-B-195-014, MOST-110-2314-B-195-029, MOST-109-2314-B-195-024, MOST-108-2314-B-195-012, and MOST-108-2314-B-195-014 Ministry of Science and Technology
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, New Taipei City 25245, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
- College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yu-Min Syu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 22021, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Yuan-Rong Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, New Taipei City 25245, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| |
Collapse
|
19
|
Sohn YB, Rogers C, Stallworth J, Cooley Coleman JA, Buch L, Jozwiak E, Johnson JA, Wood T, Harmatz P, Pollard L, Louie RJ. RNA analysis of the GALNS transcript reveals novel pathogenic mechanisms associated with Morquio syndrome A. Mol Genet Metab Rep 2022; 31:100875. [PMID: 35782621 PMCID: PMC9248232 DOI: 10.1016/j.ymgmr.2022.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Morquio syndrome A (Mucopolysaccharidosis IVA, MPS IVA) is an autosomal recessive lysosomal storage disorder caused by deficiency of N-acetyl-galactosamine-6-sulfatase (GALNS) which catabolizes the glycosaminoglycans (GAG), keratan sulfate and chondroitin-6-sulfate. Homozygous or compound heterozygous pathogenic variants in the GALNS result in the deficiency of the enzyme and consequent GAG accumulations. DNA sequence and copy number analysis of the GALNS coding region fails to identify biallelic causative pathogenic variants in up to 15% of patients with Morquio syndrome A. RNA transcript analysis was performed to identify pathogenic alterations in two unrelated families with Morquio syndrome A in whom a single heterozygous or no pathogenic alteration was detected by standard analysis of the GALNS gene. RNA sequencing and quantitative expression analysis identified the overabundance of an aberrant GALNS transcript isoform and a reduction of the clinically relevant isoform (NM_000512.4) in the Morquio syndrome A patients from both families. The aberrant isoform (ENST00000568613.1) was produced by alternative splicing and contained intronic sequence that was likely a cryptic exon predicted to result in a reading frame shift and generation of a premature termination codon. These findings indicated that the aberrant splicing is likely the novel molecular defect in our patients. RNA transcript analysis could be useful to identify pathogenic alterations and increase the yield of molecular diagnosis in patients with Morquio syndrome A whose genetic variants are not found by standard sequencing or gene dosage analysis.
Collapse
Affiliation(s)
- Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
- Corresponding author at: Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea.
| | | | | | | | - Laura Buch
- Greenwood Genetic Center, Greenwood, SC, USA
| | - Erin Jozwiak
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Jo Ann Johnson
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Tim Wood
- Section of Genetics and Metabolism, University of Colorado/Children's Hospital of Colorado, Aurora, CO, USA
| | - Paul Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | | | | |
Collapse
|
20
|
Wiesinger AM, Bigger B, Giugliani R, Scarpa M, Moser T, Lampe C, Kampmann C, Lagler FB. The Inflammation in the Cytopathology of Patients With Mucopolysaccharidoses- Immunomodulatory Drugs as an Approach to Therapy. Front Pharmacol 2022; 13:863667. [PMID: 35645812 PMCID: PMC9136158 DOI: 10.3389/fphar.2022.863667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS. Thus, we aim to set the foundation for a rational repurposing of the discussed molecules to minimize the clinical unmet needs still remaining despite enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- *Correspondence: Anna-Maria Wiesinger,
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, HCPA, UFRGS, Porto Alegre, Brazil
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Department of Child and Adolescent Medicine, Center of Rare Diseases, University Hospitals Giessen/Marburg, Giessen, Germany
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, Mainz, Germany
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
| |
Collapse
|
21
|
Magner M, Almássy Z, Gucev Z, Kieć-Wilk B, Plaiasu V, Tylki-Szymańska A, Zafeiriou D, Zaganas I, Lampe C. Consensus statement on enzyme replacement therapy for mucopolysaccharidosis IVA in Central and South-Eastern European countries. Orphanet J Rare Dis 2022; 17:190. [PMID: 35538504 PMCID: PMC9092811 DOI: 10.1186/s13023-022-02332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis IVA (MPS IVA), or Morquio A syndrome, is a rare inherited metabolic disorder caused by deficiency of the lysosomal enzyme N-acetylgalactosamine-6-sulfatase. A progressive systemic skeletal chondrodysplasia, leading to significant morbidity and reduced life expectancy is the main clinical feature of this multisystemic disease. Although enzyme replacement therapy with elosulfase alfa is established in Europe, the rarity of disease and other factors still set hurdles in having patients treated in some countries. Aim of this statement is to provide evidence-based guidance for the enzyme replacement treatment of Morquio A patients, harmonizing recommendations from published guidelines with the real-life clinical practice in the Central and South-Eastern European region. PARTICIPANTS The Consensus Group, convened by 8 Steering Committee (SC) members from 7 Central and South-Eastern European countries, consisted of a multidisciplinary group of 17 experts in the management of MPS in Central and South-Eastern Europe. CONSENSUS PROCESS The SC met in a first virtual meeting with an external scientific coordinator, to discuss on clinical issues to be analyzed in guidance statements. Statements were developed by the scientific coordinator, evaluated by the SC members in a first modified-Delphi voting and adapted accordingly, to be submitted to the widest audience in the Consensus Conference. Following discussion and further modifications, all participants contributed to a second round of modified-Delphi voting. RESULTS Nine of ten statements, concerning general guidelines for management of MPS IVA patients and specific recommendations for treatment, received final consensus. CONCLUSIONS European guidelines and evidence-based recommendations for Morquio A patients should be considered in the real life of Central and South-Eastern European countries and adapted to unique clinical practice approaches and criteria for patients' access to treatment and reimbursement in the region.
Collapse
Affiliation(s)
- Martin Magner
- Department of Paediatrics and Inherited Metabolic Disorders, General University Hospital and First Faculty of Medicine, Charles University, KPDPM 1. LF UK a VFN v Praze, Ke Karlovu 2, 128 08, Prague, Czech Republic.
| | - Zsuzsanna Almássy
- Department of Toxicology and Metabolic Diseases, Heim Pal National Pediatric Institute, Budapest, Hungary
| | - Zoran Gucev
- University Children's Hospital, Skopje, North Macedonia
| | - Beata Kieć-Wilk
- Unit of Rare Metabolic Diseases, Department of Metabolic Diseases, Jagiellonian University Medical College, University Hospital, Krakow, Poland
| | - Vasilica Plaiasu
- Regional Centre of Medical Genetics, INSMC Alessandrescu-Rusescu, Bucharest, Romania
| | - Anna Tylki-Szymańska
- Department of Pediatric Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dimitrios Zafeiriou
- First Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Ioannis Zaganas
- Neurogenetics Laboratory, Neurology Department, University Hospital of Heraklion, University of Crete, Heraklion, Greece
| | - Christina Lampe
- Department of Child Neurology, Epileptology and Social Pediatrics, Centre for Rare Diseases, University of Giessen, Giessen, Germany
| |
Collapse
|
22
|
Montavon B, Winter LE, Gan Q, Arasteh A, Montaño AM. Mucopolysaccharidosis Type IVA: Extracellular Matrix Biomarkers in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:829111. [PMID: 35620518 PMCID: PMC9127057 DOI: 10.3389/fcvm.2022.829111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (CVD) in Mucopolysaccharidosis Type IVA (Morquio A), signified by valvular disease and cardiac hypertrophy, is the second leading cause of death and remains untouched by current therapies. Enzyme replacement therapy (ERT) is the gold-standard treatment for MPS disorders including Morquio A. Early administration of ERT improves outcomes of patients from childhood to adulthood while posing new challenges including prognosis of CVD and ERT's negligible effect on cardiovascular health. Thus, having accurate biomarkers for CVD could be critical. Here we show that cathepsin S (CTSS) and elastin (ELN) can be used as biomarkers of extracellular matrix remodeling in Morquio A disease. We found in a cohort of 54 treatment naïve Morquio A patients and 74 normal controls that CTSS shows promising attributes as a biomarker in young Morquio A children. On the other hand, ELN shows promising attributes as a biomarker in adolescent and adult Morquio A. Plasma/urine keratan sulfate (KS), and urinary glycosaminoglycan (GAG) levels were significantly higher in Morquio A patients (p < 0.001) which decreased with age of patients. CTSS levels did not correlate with patients' phenotypic severity but differed significantly between patients (median range 5.45-8.52 ng/mL) and normal controls (median range 9.61-15.9 ng/mL; p < 0.001). We also studied α -2-macroglobulin (A2M), C-reactive protein (CRP), and circulating vascular cell adhesion molecule-1 (sVCAM-1) in a subset of samples to understand the relation between ECM biomarkers and the severity of CVD in Morquio A patients. Our experiments revealed that CRP and sVCAM-1 levels were lower in Morquio A patients compared to normal controls. We also observed a strong inverse correlation between urine/plasma KS and CRP (p = 0.013 and p = 0.022, respectively) in Morquio A patients as well as a moderate correlation between sVCAM-1 and CTSS in Morquio A patients at all ages (p = 0.03). As the first study to date investigating CTSS and ELN levels in Morquio A patients and in the normal population, our results establish a starting point for more elaborate studies in larger populations to understand how CTSS and ELN levels correlate with Morquio A severity.
Collapse
Affiliation(s)
- Brittany Montavon
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Linda E. Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | | | - Adriana M. Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
23
|
Lee CL, Chuang CK, Chiu HC, Tu RY, Lo YT, Chang YH, Lin SP, Lin HY. Clinical Utility of Elosulfase Alfa in the Treatment of Morquio A Syndrome. Drug Des Devel Ther 2022; 16:143-154. [PMID: 35046639 PMCID: PMC8759989 DOI: 10.2147/dddt.s219433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA or Morquio A) is an autosomal recessive disorder and is one of the lysosomal storage diseases. Patients with MPS IVA have a striking skeletal phenotype but normal intellect. The phenotypic continuum of MPS IVA ranges from severe and rapid progress to mild and slow progress. The diagnosis of MPS IVA is usually suspected based on abnormal bone findings and dysplasia on physical examination and radiographic investigation in the preschool years. In the past, only supportive care was available. Due to the early and severe skeletal abnormalities, the orthopedic specialist was usually the main care provider. However, patients need aggressive monitoring and management of their systemic disease. Therefore, they need an interdisciplinary team for their care, comprising medical geneticists, cardiologists, pulmonary specialists, gastroenterologists, otolaryngologists, audiologists, and ophthalmologists. After the US Food and Drug Administration approved elosulfase alfa in 2014, patients older than 5 years could benefit from this treatment. Clinical trials showed clinically meaningful improvements with once-a-week intravenous dosing (2.0 mg/kg per week), significantly improving the 6min walk test, the 3min stair climb test, and respiratory function when compared with placebo. Elosulfase alfa is well-tolerated, and there is a good response indicated by decreasing urine glycosaminoglycans.
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ru-Yi Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan,Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan,Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan,Correspondence: Shuan-Pei Lin; Hsiang-Yu Lin Department of Pediatrics, MacKay Memorial Hospital, No. 92, Sec. 2, Chung-Shan North Road, Taipei, 10449, TaiwanTel +886-2-2543-3535 ext. 3090; +886-2-2543-3535 ext. 3089Fax +886-2-2543-3642 Email ;
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan,Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan,Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
Wood SR, Bigger BW. Delivering gene therapy for mucopolysaccharide diseases. Front Mol Biosci 2022; 9:965089. [PMID: 36172050 PMCID: PMC9511407 DOI: 10.3389/fmolb.2022.965089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Mucopolysaccharide diseases are a group of paediatric inherited lysosomal storage diseases that are caused by enzyme deficiencies, leading to a build-up of glycosaminoglycans (GAGs) throughout the body. Patients have severely shortened lifespans with a wide range of symptoms including inflammation, bone and joint, cardiac, respiratory and neurological disease. Current treatment approaches for MPS disorders revolve around two main strategies. Enzyme replacement therapy (ERT) is efficacious in treating somatic symptoms but its effect is limited for neurological functions. Haematopoietic stem cell transplant (HSCT) has the potential to cross the BBB through monocyte trafficking, however delivered enzyme doses limit its use almost exclusively to MPSI Hurler. Gene therapy is an emerging therapeutic strategy for the treatment of MPS disease. In this review, we will discuss the various vectors that are being utilised for gene therapy in MPS as well as some of the most recent gene-editing approaches undergoing pre-clinical and clinical development.
Collapse
|
25
|
Bertolin J, Sánchez V, Ribera A, Jaén ML, Garcia M, Pujol A, Sánchez X, Muñoz S, Marcó S, Pérez J, Elias G, León X, Roca C, Jimenez V, Otaegui P, Mulero F, Navarro M, Ruberte J, Bosch F. Treatment of skeletal and non-skeletal alterations of Mucopolysaccharidosis type IVA by AAV-mediated gene therapy. Nat Commun 2021; 12:5343. [PMID: 34504088 PMCID: PMC8429698 DOI: 10.1038/s41467-021-25697-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Mucopolysaccharidosis type IVA (MPSIVA) or Morquio A disease, a lysosomal storage disorder, is caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency, resulting in keratan sulfate (KS) and chondroitin-6-sulfate accumulation. Patients develop severe skeletal dysplasia, early cartilage deterioration and life-threatening heart and tracheal complications. There is no cure and enzyme replacement therapy cannot correct skeletal abnormalities. Here, using CRISPR/Cas9 technology, we generate the first MPSIVA rat model recapitulating all skeletal and non-skeletal alterations experienced by patients. Treatment of MPSIVA rats with adeno-associated viral vector serotype 9 encoding Galns (AAV9-Galns) results in widespread transduction of bones, cartilage and peripheral tissues. This led to long-term (1 year) increase of GALNS activity and whole-body correction of KS levels, thus preventing body size reduction and severe alterations of bones, teeth, joints, trachea and heart. This study demonstrates the potential of AAV9-Galns gene therapy to correct the disabling MPSIVA pathology, providing strong rationale for future clinical translation to MPSIVA patients.
Collapse
Affiliation(s)
- Joan Bertolin
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Víctor Sánchez
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Ribera
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Maria Luisa Jaén
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Sánchez
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sara Marcó
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jennifer Pérez
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gemma Elias
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier León
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carles Roca
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Pedro Otaegui
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marc Navarro
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Bellaterra, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
26
|
Zanetti A, D'Avanzo F, AlSayed M, Brusius-Facchin AC, Chien YH, Giugliani R, Izzo E, Kasper DC, Lin HY, Lin SP, Pollard L, Singh A, Tonin R, Wood T, Morrone A, Tomanin R. Molecular basis of mucopolysaccharidosis IVA (Morquio A syndrome): A review and classification of GALNS gene variants and reporting of 68 novel variants. Hum Mutat 2021; 42:1384-1398. [PMID: 34387910 PMCID: PMC9291100 DOI: 10.1002/humu.24270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 12/18/2022]
Abstract
Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) is a rare autosomal recessive lysosomal storage disorder caused by mutations in the N‐acetylgalactosamine‐6‐sulfatase (GALNS) gene. We collected, analyzed, and uniformly summarized all published GALNS gene variants, thus updating the previous mutation review (published in 2014). In addition, new variants were communicated by seven reference laboratories in Europe, the Middle East, Latin America, Asia, and the United States. All data were analyzed to determine common alleles, geographic distribution, level of homozygosity, and genotype‐phenotype correlation. Moreover, variants were classified according to their pathogenicity as suggested by ACMG. Including those previously published, we assembled 446 unique variants, among which 68 were novel, from 1190 subjects (including newborn screening positive subjects). Variants' distribution was missense (65.0%), followed by nonsense (8.1%), splicing (7.2%), small frameshift deletions(del)/insertions(ins) (7.0%), intronic (4.0%), and large del/ins and complex rearrangements (3.8%). Half (50.4%) of the subjects were homozygous, 37.1% were compound heterozygous, and 10.7% had only one variant detected. The novel variants underwent in silico analysis to evaluate their pathogenicity. All variants were submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) to make them publicly available. Mutation updates are essential for the correct molecular diagnoses, genetic counseling, prenatal and preimplantation diagnosis, and disease management.
Collapse
Affiliation(s)
- Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Francesca D'Avanzo
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Moeenaldeen AlSayed
- King Faisal Specialist Hospital and Research Centre, Faculty of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Roberto Giugliani
- Department of Genetics/UFRGS, Medical Genetics Service/HCPA, DR BRASIL Research Group/HCPA, and INAGEMP, Porto Alegre, Brazil
| | - Emanuela Izzo
- BioMarin Pharmaceutical Inc., Novato, California, USA
| | | | - Hsiang-Yu Lin
- Division of Genetics and Metabolism, Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shuan-Pei Lin
- Division of Genetics and Metabolism, Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Laura Pollard
- Biochemical Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | - Rodolfo Tonin
- Molecular and Cell Biology Laboratory, Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Florence, Italy.,Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Tim Wood
- Biochemical Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Amelia Morrone
- Molecular and Cell Biology Laboratory, Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital, Florence, Italy.,Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
27
|
Arunkumar N, Vu DC, Khan S, Kobayashi H, Ngoc Can TB, Oguni T, Watanabe J, Tanaka M, Yamaguchi S, Taketani T, Ago Y, Ohnishi H, Saikia S, Álvarez JV, Tomatsu S. Diagnosis of Mucopolysaccharidoses and Mucolipidosis by Assaying Multiplex Enzymes and Glycosaminoglycans. Diagnostics (Basel) 2021; 11:1347. [PMID: 34441282 PMCID: PMC8394749 DOI: 10.3390/diagnostics11081347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Mucopolysaccharidoses (MPS) and mucolipidosis (ML II/III) are a group of lysosomal storage disorders (LSDs) that occur due to a dysfunction of the lysosomal hydrolases responsible for the catabolism of glycosaminoglycans (GAGs). However, ML is caused by a deficiency of the enzyme uridine-diphosphate N-acetylglucosamine:lysosomal-enzyme-N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase, EC2.7.8.17), which tags lysosomal enzymes with a mannose 6-phosphate (M6P) marker for transport to the lysosome. A timely diagnosis of MPS and ML can lead to appropriate therapeutic options for patients. To improve the accuracy of diagnosis for MPS and ML in a high-risk population, we propose a combination method based on known biomarkers, enzyme activities, and specific GAGs. We measured five lysosomal enzymes (α-L-iduronidase (MPS I), iduronate-2-sulfatase (MPS II), α-N-acetylglucosaminidase (MPS IIIB), N-acetylglucosamine-6-sulfatase (MPS IVA), and N-acetylglucosamine-4-sulfatase (MPS VI)) and five GAGs (two kinds of heparan sulfate (HS), dermatan sulfate (DS), and two kinds of keratan sulfate (KS)) in dried blood samples (DBS) to diagnose suspected MPS patients by five-plex enzyme and simultaneous five GAGs assays. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) for both assays. These combined assays were tested for 43 patients with suspected MPS and 103 normal control subjects. We diagnosed two MPS I, thirteen MPS II, one MPS IIIB, three MPS IVA, two MPS VI, and six ML patients with this combined method, where enzymes, GAGs, and clinical manifestations were compatible. The remaining 16 patients were not diagnosed with MPS or ML. The five-plex enzyme assay successfully identified MPS patients from controls. Patients with MPS I, MPS II, and MPS IIIB had significantly elevated HS and DS levels in DBS. Compared to age-matched controls, patients with ML and MPS had significantly elevated mono-sulfated KS and di-sulfated KS levels. The results indicated that the combination method could distinguish these affected patients with MPS or ML from healthy controls. Overall, this study has shown that this combined method is effective and can be implemented in larger populations, including newborn screening.
Collapse
Affiliation(s)
- Nivethitha Arunkumar
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (N.A.); (S.K.); (S.S.); (J.V.Á.)
- College of Health Sciences, University of Delaware, Newark, DE 19803, USA
| | - Dung Chi Vu
- Department of Endocrinology, Metabolism, and Genetics, Center for Rare Disease and Newborn Screening, National Children’s Hospital, Lathanh, Dongda, Hanoi 18/879, Vietnam; (D.C.V.); (T.B.N.C.)
| | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (N.A.); (S.K.); (S.S.); (J.V.Á.)
| | - Hironori Kobayashi
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (H.K.); (S.Y.); (T.T.)
| | - Thi Bich Ngoc Can
- Department of Endocrinology, Metabolism, and Genetics, Center for Rare Disease and Newborn Screening, National Children’s Hospital, Lathanh, Dongda, Hanoi 18/879, Vietnam; (D.C.V.); (T.B.N.C.)
| | - Tsubasa Oguni
- Clinical Laboratory Division, Shimane University Hospital, Izumo 693-8501, Japan;
| | - Jun Watanabe
- Shimadzu Corporation, Kyoto 604-8442, Japan; (J.W.); (M.T.)
| | - Misa Tanaka
- Shimadzu Corporation, Kyoto 604-8442, Japan; (J.W.); (M.T.)
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (H.K.); (S.Y.); (T.T.)
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (H.K.); (S.Y.); (T.T.)
| | - Yasuhiko Ago
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan; (Y.A.); (H.O.)
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan; (Y.A.); (H.O.)
| | - Sampurna Saikia
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (N.A.); (S.K.); (S.S.); (J.V.Á.)
- College of Health Sciences, University of Delaware, Newark, DE 19803, USA
| | - José V. Álvarez
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (N.A.); (S.K.); (S.S.); (J.V.Á.)
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (N.A.); (S.K.); (S.S.); (J.V.Á.)
- College of Health Sciences, University of Delaware, Newark, DE 19803, USA
- Department of Endocrinology, Metabolism, and Genetics, Center for Rare Disease and Newborn Screening, National Children’s Hospital, Lathanh, Dongda, Hanoi 18/879, Vietnam; (D.C.V.); (T.B.N.C.)
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan; (Y.A.); (H.O.)
| |
Collapse
|
28
|
Stockler‐Ipsiroglu S, Yazdanpanah N, Yazdanpanah M, Moisa Popurs M, Yuskiv N, Schmitz Ferreira Santos ML, Ae Kim C, Fischinger Moura de Souza C, Marques Lourenço C, Steiner CE, Federhen A, Giugliani L, Bastos Pereira DM, Durán‐Carabali LE, Giugliani R. Morquio-like dysostosis multiplex presenting with neuronopathic features is a distinct GLB1-related phenotype. JIMD Rep 2021; 60:23-31. [PMID: 34258138 PMCID: PMC8260481 DOI: 10.1002/jmd2.12211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Morquio B disease (MBD) is a distinct GLB1-related dysostosis multiplex presenting a mild phenocopy of GALNS-related Morquio A disease. Previously reported cases from European countries carry the W273L variant on at least one GLB1 allele and exhibit a pure skeletal phenotype (pure MBD). Only a minority of MBD cases have been described with additional neuronopathic findings (MBD plus). OBJECTIVES AND METHODS With the aim to further describe patterns of MBD-related dysostosis multiplex, we analyzed clinical, biochemical, and genetic features in 17 cases with GLB1-related dysostosis multiplex living and diagnosed in Brazil. RESULTS About 14 of the 17 individuals had three or more skeletal findings characteristic of Morquio syndrome. Two had no additional neuronopathic features (pure MBD) and 12 exhibited additional neuronopathic features (MBD plus). Three of the 17 cases had mild dysostosis without distinct features of MBD. Seven of the 12 MBD plus patients had signs of spinal cord compression (SCC), as a result of progressive spinal vertebral dysostosis. There was an age-dependent increase in the number of skeletal findings and in the severity of growth impairment. GLB1 mutation analysis was completed in 10 of the 14 MBD patients. T500A occurred in compound heterozygosity in 8 of the 19 alleles. CONCLUSION Our study extends the phenotypic spectrum of GLB1-related conditions by describing a cohort of patients with MBD and GM1-gangliosidosis (MBD plus). Targeting the progressive nature of the skeletal manifestations in the development of new therapies for GLB1-related conditions is warranted.
Collapse
Affiliation(s)
- Sylvia Stockler‐Ipsiroglu
- Department of PediatricsUniversity of British ColumbiaVancouverCanada
- Division of Biochemical GeneticsBC Children's HospitalVancouverCanada
- BC Children's Hospital Research InstituteVancouverCanada
| | - Nahid Yazdanpanah
- Department of PediatricsUniversity of British ColumbiaVancouverCanada
| | | | - Marioara Moisa Popurs
- Department of PediatricsUniversity of British ColumbiaVancouverCanada
- Division of Biochemical GeneticsBC Children's HospitalVancouverCanada
| | - Nataliya Yuskiv
- Department of PediatricsUniversity of British ColumbiaVancouverCanada
- Division of Biochemical GeneticsBC Children's HospitalVancouverCanada
| | | | - Chong Ae Kim
- Instituto da Criança, Faculdade de Medicina, USPSão PauloBrazil
| | | | | | | | | | | | | | | | - Roberto Giugliani
- Serviço de Genética Médica, HCPAPorto AlegreBrazil
- Departamento de GenéticaUFRGSPorto AlegreBrazil
- Programa de Pós‐Graduação em Genética e Biologia Molecular, UFRGSPorto AlegreBrazil
- INAGEMPPorto AlegreBrazil
- DR BRASIL, HCPAPorto AlegreBrazil
| |
Collapse
|
29
|
Plasma Proteomic Analysis in Morquio A Disease. Int J Mol Sci 2021; 22:ijms22116165. [PMID: 34200496 PMCID: PMC8201332 DOI: 10.3390/ijms22116165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal disease caused by mutations in the gene encoding the enzymeN-acetylgalactosamine-6-sulfate sulfatase (GALNS), and is characterized by systemic skeletal dysplasia due to excessive storage of keratan sulfate (KS) and chondroitin-6-sulfate in chondrocytes. Although improvements in the activity of daily living and endurance tests have been achieved with enzyme replacement therapy (ERT) with recombinant human GALNS, recovery of bone lesions and bone growth in MPS IVA has not been demonstrated to date. Moreover, no correlation has been described between therapeutic efficacy and urine levels of KS, which accumulates in MPS IVA patients. The objective of this study was to assess the validity of potential biomarkers proposed by other authors and to identify new biomarkers. To identify candidate biomarkers of this disease, we analyzed plasma samples from healthy controls (n=6) and from untreated (n=8) and ERT-treated (n=5, sampled before and after treatment) MPS IVA patients using both qualitative and quantitative proteomics analyses. The qualitative proteomics approach analyzed the proteomic profile of the different study groups. In the quantitative analysis, we identified/quantified 215 proteins after comparing healthy control untreated, ERT-treated MPSIVA patients. We selected a group of proteins that were dysregulated in MPS IVA patients. We identified four potential protein biomarkers, all of which may influence bone and cartilage metabolism: fetuin-A, vitronectin, alpha-1antitrypsin, and clusterin. Further studies of cartilage and bone samples from MPS IVA patients will be required to verify the validity of these proteins as potential biomarkers of MPS IVA.
Collapse
|
30
|
Tracheal narrowing in children and adults with mucopolysaccharidosis type IVA: evaluation with computed tomography angiography. Pediatr Radiol 2021; 51:1202-1213. [PMID: 33608742 DOI: 10.1007/s00247-020-04946-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/21/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Mucopolysaccharidosis type IVA (MPS IVA) is characterized by progressive skeletal dysplasia and respiratory issues with difficult airway management during anesthesia. OBJECTIVE To characterize tracheal abnormalities in children and adults with MPS IVA including interplay of the trachea, vasculature, bones and thyroid at the thoracic inlet. MATERIALS AND METHODS Computed tomography (CT) angiograms of the chest were analyzed for trachea shape, narrowing and deviation at the thoracic inlet, course of vasculature, bone alignment and thyroid location. The tracheal cross-sectional area was measured at the cervical, thoracic inlet and intrathoracic levels. RESULTS Thirty-seven patients (mean age: 18.1 years) were included. The mean tracheal cross-sectional area narrowing at the thoracic inlet was 63.9% (range: -2.1-96%), with a trend for increased tracheal narrowing in older children. The trachea was commonly deviated rightward posterior (22/37, 59%). T- or W-shaped tracheas had two times greater tracheal narrowing than D- or U-shaped tracheas (P<0.05). The brachiocephalic artery was tortuous in 35/37 (95%) with direct impingement on the trachea in 24/37 (65%). No correlation was observed between bony thoracic inlet diameter and tracheal narrowing. The thyroid was located in the thoracic inlet in 28/37 (76%) cases, significantly associated with tracheal narrowing (P=0.016). CONCLUSION Narrowing, deviation and abnormal shape of the trachea at the thoracic inlet are common in children and adults with MPS IVA, with a trend toward increased narrowing with advancing age in children. A W- or T-shaped trachea is associated with focal tracheal narrowing. Crowding of the thoracic inlet, due to vascular tortuosity and thyroid position, appears to play a major role.
Collapse
|
31
|
Caciotti A, Cellai L, Tonin R, Mei D, Procopio E, Di Rocco M, Andaloro A, Antuzzi D, Rampazzo A, Rigoldi M, Forni G, la Marca G, Guerrini R, Morrone A. Morquio B disease: From pathophysiology towards diagnosis. Mol Genet Metab 2021; 132:180-188. [PMID: 33558080 DOI: 10.1016/j.ymgme.2021.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
Morquio B disease is an attenuated phenotype within the spectrum of beta galactosidase (GLB1) deficiencies. It is characterised by dysostosis multiplex, ligament laxity, mildly coarse facies and heart valve defects due to keratan sulphate accumulation, predominantly in the cartilage. Morquio B patients have normal neurological development, setting them apart from those with the more severe GM1 gangliosidosis. Morquio B disease, with an incidence of 1:250.000 to 1:1.000.000 live births, is very rare. Here we report the clinical-biochemical data of nine patients. High amounts of keratan sulfate were detected using LC-MS/MS in the patients' urinary samples, while electrophoresis, the standard procedure of qualitative glycosaminoglycans analysis, failed to identify this metabolite in any of the patients' samples. We performed molecular analyses at gene, gene expression and protein expression levels, for both isoforms of the GLB1 gene, lysosomal GLB1, and the cell-surface expressed Elastin Binding Protein. We characterised three novel GLB1 mutations [c.75 + 2 T > G, c.575A > G (p.Tyr192Cys) and c.2030 T > G (p.Val677Gly)] identified in three heterozygous patients. We also set up a copy number variation assay by quantitative PCR to evaluate the presence of deletions/ insertions in the GLB1 gene. We propose a diagnostic plan, setting out the specific clinical- biochemical and molecular features of Morquio B, in order to avoid misdiagnoses and improve patients' management.
Collapse
Affiliation(s)
- Anna Caciotti
- Molecular and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories, Neuroscience Department, A. Meyer Children's Hospital, Florence, Italy
| | - Lucrezia Cellai
- Molecular and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories, Neuroscience Department, A. Meyer Children's Hospital, Florence, Italy
| | - Rodolfo Tonin
- Molecular and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories, Neuroscience Department, A. Meyer Children's Hospital, Florence, Italy
| | - Davide Mei
- Neurogenetics, Paediatric Neurology Unit and Laboratories, Neuroscience Department, A. Meyer Children's Hospital, Florence, Italy
| | - Elena Procopio
- Metabolic and Muscular Unit, A. Meyer Children's Hospital, Florence, Italy
| | - Maja Di Rocco
- Unit of Rare Diseases, Dept of Pediatrics, IRCCS G. Gaslini, Genoa, Italy
| | - Antonio Andaloro
- Unit of Rare Diseases, Dept of Pediatrics, IRCCS G. Gaslini, Genoa, Italy
| | - Daniela Antuzzi
- Pediatric Clinic, Catholic University of "Sacro Cuore", Policlinico "Gemelli", Rome, Italy
| | | | - Miriam Rigoldi
- Mario Negri Institute for Pharmacological Research, IRCCS, Clinical Research Center for Rare Diseases "Aldo e Cele Daccò", Bergamo, Italy
| | - Giulia Forni
- Newborn Screening, Biochemistry and Pharmacology Laboratory, A. Meyer Children's Hospital, Florence, Italy
| | - Giancarlo la Marca
- Newborn Screening, Biochemistry and Pharmacology Laboratory, A. Meyer Children's Hospital, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Renzo Guerrini
- Molecular and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories, Neuroscience Department, A. Meyer Children's Hospital, Florence, Italy; Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Italy
| | - Amelia Morrone
- Molecular and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories, Neuroscience Department, A. Meyer Children's Hospital, Florence, Italy; Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Italy.
| |
Collapse
|
32
|
Evaluation of HIV-1 derived lentiviral vectors as transductors of Mucopolysaccharidosis type IV a fibroblasts. Gene 2021; 780:145527. [PMID: 33636292 DOI: 10.1016/j.gene.2021.145527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal storage disease produced by the deficiency of the N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme, leading to glycosaminoglycans (GAGs) accumulation. Since currently available treatments remain limited and unspecific, novel therapeutic approaches are essential for the disease treatment. In an attempt to reduce treatment limitations, gene therapy rises as a more effective and specific alternative. We present in this study the delivery assessment of GALNS and sulfatase-modifying factor 1 (SUMF1) genes via HIV-1 derived lentiviral vectors into fibroblasts from MPS IVA patients. After transduction, we determined GALNS enzymatic activity, lysosomal mass change, and autophagy pathway impairment. Additionally, we computationally assessed the effect of mutations over the enzyme-substrate interaction and phenotypic effects. The results showed that the co-transduction of MPS IVA fibroblasts with GALNS and SUMF1 cDNAs led to a significant increase in GALNS enzyme activity and a reduction of lysosomal mass. We show that patient-specific differences in cellular response are directly associated with the set of mutations on each patient. Lastly, we present new evidence supporting autophagy impairment in MPS IVA due to the presence and changes in autophagy proteins in treated MPS IVA fibroblasts. Our results offer new evidence that demonstrate the potential of lentiviral vectors as a strategy to correct GALNS deficiency.
Collapse
|
33
|
Broomfield AA, Padidela R, Wilkinson S. Pulmonary Manifestations of Endocrine and Metabolic Diseases in Children. Pediatr Clin North Am 2021; 68:81-102. [PMID: 33228944 DOI: 10.1016/j.pcl.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Advances in technology, methodology, and deep phenotyping are increasingly driving the understanding of the pathologic basis of disease. Improvements in patient identification and treatment are impacting survival. This is true in endocrinology and inborn errors of metabolism, where disease-modifying therapies are developing. Inherent to this evolution is the increasing awareness of the respiratory manifestations of these rare diseases. This review updates clinicians, stratifying diseases spirometerically; pulmonary hypertension and diseases with a predisposition to recurrent pulmonary infection are discussed. This division is artificial; many diseases have multiple pathologic effects on respiration. This review does not cover the impact of obesity.
Collapse
Affiliation(s)
- Alexander A Broomfield
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart Wilkinson
- Respiratory Department Royal Manchester Children's Hospital, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
34
|
Ge Z, Mao J, Shen H, Xu Y, Fu H, Zhang W, Li D. Clinical and genetic characteristics of concomitant Mucopolysaccharidosis type IVA and neurogenic bladder in children: two case reports and literature review. BMC Pediatr 2021; 21:18. [PMID: 33407246 PMCID: PMC7786925 DOI: 10.1186/s12887-020-02484-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/20/2020] [Indexed: 12/30/2022] Open
Abstract
Background Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is a rare autosomal recessive lysosomal storage disorder. Up to now, reports on the clinical characteristics of MPS IVA mainly focused on patients with progressive bone dysplasia and multiple organ damage, while the effects of this disorder on neurogenic bladder have not been reported. Therefore, the aim of the present study is to report two cases of nocturnal enuresis finally diagnosed as neurogenic bladder in MPS IVA. Case presentation Both children were characterized by the presence of pectus carinatum, kyphoscoliosis, nocturnal enuresis, urinary incontinence, normal intelligence, and loss of strength in the legs, diagnosed as neurogenic bladder in association with MPS IVA through the analysis of the clinical characteristics, enzyme activity and genetic testing. In addition, the terminator codon mutation c.1567T > G (p.X523E) and a novel missense mutation c.575A > G (p.E192G) were found in the coding region of the GALNS gene of the 1st patient, while the missense mutation c.488C > A (p.P163H) was found in the coding region of the GALNS gene of the 2nd patient. Conclusions Neurogenic bladder may occur in patients with MPS IVA after spinal cord injury. It is necessary to screen for the diagnosis of MPS IVA in patients with atypical enuresis and skeletal abnormalities through the analysis of the clinical characteristics, enzyme activity and genetic testing.
Collapse
Affiliation(s)
- Zhuhui Ge
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, China.,Department of Pediatrics, the Frist Hospital of Ninghai, 142 Taoyuan Middle Road, Ninghai County, Zhejiang Province, China
| | - Jianhua Mao
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, China.
| | - Huijun Shen
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, China
| | - Yu Xu
- Department of Hematology, the People's Hospital of Ruian, 108 Wansong Road, Rui 'an City, Zhejiang Province, China
| | - Haidong Fu
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, China
| | - Weiwei Zhang
- Department of Pediatrics, the Frist Hospital of Ninghai, 142 Taoyuan Middle Road, Ninghai County, Zhejiang Province, China
| | - Dongyan Li
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, China
| |
Collapse
|
35
|
Álvarez VJ, Bravo SB, Chantada-Vazquez MP, Colón C, De Castro MJ, Morales M, Vitoria I, Tomatsu S, Otero-Espinar FJ, Couce ML. Characterization of New Proteomic Biomarker Candidates in Mucopolysaccharidosis Type IVA. Int J Mol Sci 2020; 22:ijms22010226. [PMID: 33379360 PMCID: PMC7795692 DOI: 10.3390/ijms22010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. Skeletal dysplasia and the related clinical features of MPS IVA are caused by disruption of the cartilage and its extracellular matrix, leading to a growth imbalance. Enzyme replacement therapy (ERT) with recombinant human GALNS has yielded positive results in activity of daily living and endurance tests. However, no data have demonstrated improvements in bone lesions and bone grow thin MPS IVA after ERT, and there is no correlation between therapeutic efficacy and urine levels of keratan sulfate, which accumulates in MPS IVA patients. Using qualitative and quantitative proteomics approaches, we analyzed leukocyte samples from healthy controls (n = 6) and from untreated (n = 5) and ERT-treated (n = 8, sampled before and after treatment) MPS IVA patients to identify potential biomarkers of disease. Out of 690 proteins identified in leukocytes, we selected a group of proteins that were dysregulated in MPS IVA patients with ERT. From these, we identified four potential protein biomarkers, all of which may influence bone and cartilage metabolism: lactotransferrin, coronin 1A, neutral alpha-glucosidase AB, and vitronectin. Further studies of cartilage and bone alterations in MPS IVA will be required to verify the validity of these proteins as potential biomarkers of MPS IVA.
Collapse
Affiliation(s)
- Víctor J. Álvarez
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. du Pont Hospital for Children, 1600 Rockland Road., Wilmington, DE 19803, USA;
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (S.B.B.); (M.P.C.-V.)
| | - Maria Pilar Chantada-Vazquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (S.B.B.); (M.P.C.-V.)
| | - Cristóbal Colón
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
| | - María J. De Castro
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
| | - Montserrat Morales
- Minority Diseases Unit Hospital Universitario12 de Octubre, 28041 Madrid, Spain;
| | - Isidro Vitoria
- Nutrition and Metabolophaties Unit, Hospital Universitario La Fe, 46026 Valencia, Spain;
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. du Pont Hospital for Children, 1600 Rockland Road., Wilmington, DE 19803, USA;
| | - Francisco J. Otero-Espinar
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - María L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
- Correspondence: or ; Tel.: +34-981-951-100
| |
Collapse
|
36
|
Erazo-Narváez AF, Muñoz-Vidal JM, Rodríguez-Vélez GH, Acosta-Aragón MA. Clinical outcomes in elderly patients with Morquio a syndrome receiving enzyme replacement therapy - experience in a Colombian center. Mol Genet Metab Rep 2020; 25:100679. [PMID: 33304816 PMCID: PMC7718482 DOI: 10.1016/j.ymgmr.2020.100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Mucopolysaccharidosis type IV A (MPS IVA) or Morquio A syndrome is an autosomal recessive lysosomal storage disease caused by GALNS gene mutations that lead to a deficiency of the N-acetylgalactosamine-6-sulfate sulfatase enzyme and the accumulation of two glycosaminoglycans in cell lysosomes, namely, chondroitin and keratan sulfate. OBJECTIVE To present two female patients with Morquio A syndrome in their late adult years (over 50 years of age) with a classical phenotype, treated with enzyme replacement therapy; and to present a summary of the natural history and the characteristics of the disease, and the benefit of comprehensive management. MATERIALS AND METHODS Descriptive clinical study before and after the treatment with enzyme replacement therapy as part of the comprehensive management of MPS IVA. RESULTS Enzyme replacement therapy with elosulfase alfa was effective, with an adequate safety profile in these two patients, showing evidence of sustained improvement in terms of endurance and gait patterns. CONCLUSION We present two cases of MPS IVA, with longer survival than reported previously in classical phenotypes associated with this disease condition. There is a paucity of reports of similar cases in the literature. We believe that the clinical heterogeneity of the disease manifesting with the classical phenotype, together with comprehensive management, have played a role in the survival of these two patients. Therapy with elosulfase alfa as part of comprehensive management has been crucial; we suspect a clinical response and infer a better quality of life and reduced burden for the caregiver, supporting its use in older patients.
Collapse
Affiliation(s)
| | | | - Guillermo Hernando Rodríguez-Vélez
- Universidad del Cauca, School of Exact, Natural and Education Sciences, Physical Education Recreation and Sports Department, Popayán, Colombia
| | - María Amparo Acosta-Aragón
- Universidad del Cauca, School of Health Sciences, Pediatrics Department, Popayán, Colombia
- Hospital Universitario San José, Pediatrics Department, Popayán, Colombia
| |
Collapse
|
37
|
Sawamoto K, Karumuthil-Melethil S, Khan S, Stapleton M, Bruder JT, Danos O, Tomatsu S. Liver-Targeted AAV8 Gene Therapy Ameliorates Skeletal and Cardiovascular Pathology in a Mucopolysaccharidosis IVA Murine Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:50-61. [PMID: 32577432 PMCID: PMC7301175 DOI: 10.1016/j.omtm.2020.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is due to the deficiency of GALNS (N-acetylgalactosamine 6-sulfate sulfatase) and is characterized by systemic skeletal dysplasia. We have evaluated adeno-associated virus 8 (AAV8) vectors expressing different forms of human GALNS under a liver-specific promoter. The vectors were delivered intravenously into 4-week-old MPS IVA knockout (KO) and immune tolerant (MTOL) mice at a dose of 5 × 1013 genome copies (GC)/kg. These mice were monitored for 12 weeks post-injection. GALNS enzyme activity was elevated significantly in plasma of all treated mice at 2 weeks post-injection. The activity observed was 4- to 19-fold higher than that in wild-type mice and was maintained throughout the monitoring period. Treatment with AAV vectors resulted in a reduction of keratan sulfate (KS) levels in plasma to normal levels 2 weeks post-injection, which were maintained until necropsy. Both vectors reduced the storage in articular cartilage, ligaments, and meniscus surrounding articular cartilage and growth plate region as well as heart muscle and valves. Our results suggest that the continuous presence of high levels of circulating enzyme increases the penetration into bone and heart and reduces the KS level, thereby improving storage in these regions. The current data support a strategy for developing a novel treatment to address the bone and heart disease in MPS IVA using AAV gene therapy.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
| | | | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
| | - Molly Stapleton
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
| | | | - Olivier Danos
- REGENXBIO, Rockville, MD 20850, USA
- Corresponding author: Olivier Danos, PhD, REGENXBIO, 9600 Blackwell Road, Suite 210, Rockville, MD 20850, USA.
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19899-0269, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA
- Corresponding author: Shunji Tomatsu, MD, PhD, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19899-0269, USA.
| |
Collapse
|
38
|
Wang Z, Xu Y, Jiang E, Wang J, Tomatsu S, Shen K. Pathophysiology of Hip Disorders in Patients with Mucopolysaccharidosis IVA. Diagnostics (Basel) 2020; 10:E264. [PMID: 32365519 PMCID: PMC7277472 DOI: 10.3390/diagnostics10050264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/12/2023] Open
Abstract
Patients with mucopolysaccharidoses IVA (MPS IVA) have a progressive accumulation of the specific glycosaminoglycans (GAGs): chondroitin-6-sulfate (C6S) and keratan sulfate (KS), leading to the degeneration of the cartilage matrix and its connective tissue perturbing the regular microarchitecture of cartilage and successively distorting bone ossification and growth. Impaired cartilage quality and poor bone mineralization lead to serious hip disorders in MPS IVA patients. Although hip dysplasia is seen widely in musculoskeletal abnormality of this disorder, the pathophysiology of the hip bone and cartilage morphology in these patients remains unclear. Until now, no systemic study of the hip joints in MPS IVA has been reported by using the combined images of plain film radiographs (PFR) and Magnetic Resonance Imaging (MRI). This study aimed to assess the bony and cartilaginous features of hip joints and to explore the potentially related factors of femoral head osteonecrosis (FHN) and hip subluxation/dislocation in patients with MPS IVA. Hip joints in MPS IVA patients were retrospectively reviewed, based on the findings of PFR and MRI data from 2014 to 2019. Demographic information was also collected and analyzed with imaging measurements. A total of 19 patients (eight boys and 11 girls) were recruited, and 38 hip joints in these patients were examined. Eleven patients (57.9%) had FHN. FHN patients were statistically compared with those without FHN. Correlations between cartilaginous femoral head coverage (CFHC) and acetabular index (AI), cartilaginous AI (CAI), or neck-shaft angle (NSA) were investigated in patients with hip subluxation or dislocation. The greater cartilaginous coverage of the hips than their osseous inherency was observed. Significant correlation was observed between CFHC and AI (r =-0.351, p = 0.049) or CAI (r =-0.381, p = 0.032). Severe subluxations or dislocations were more likely to be present in those with more dysplastic bony and cartilaginous hips. In conclusion, our study provides the first systemic description of bony and cartilaginous characteristics in the hip morphology of MPS IVA patients. We have demonstrated that plain radiography alone leads to a misunderstanding of hip morphology and that MRI measurements with PFR are an essential tool to evaluate the 'true' characterization of hips for MPS IVA patients.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yunlan Xu
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Enze Jiang
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jianmin Wang
- Department of Hematology/Oncology, Shanghai Children’s Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shunji Tomatsu
- Departments of Orthopedics and BioMedical, Skeletal Dysplasia, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kaiying Shen
- Department of Pediatric Orthopedics, Shanghai Children’s Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
39
|
Fibrous histiocytoma/dermatofibroma in children: the same as adults? Hum Pathol 2020; 99:107-115. [PMID: 32246988 DOI: 10.1016/j.humpath.2020.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022]
Abstract
Fibrous histiocytoma (FH) or dermatofibroma is a common cutaneous lesion mostly seen in adults and rare in the first two years of life. Two hundred sixty-seven patients younger than 18 years with a diagnosis of FH or dermatomyofibroma, a lesion with morphologic overlap with FH, were identified from the files of a single institution, with only 13 (4.8%) occurring in patients younger than 5 years. Ten patients had either underlying neurologic, autoimmune, or metabolic disorders or a family history of autoimmune conditions. Histologic review of hematoxylin and eosin staining and immunostaining on 75 FHs and dermatomyofibroma in 70 patients showed the following results: 33 classic FHs, 8 classic FHs characterized by a peculiar retiform morphology with thin fascicles of elongated cells forming a network reminiscent of the eruptive variant of FH, 19 deep/cellular variants, 5 aneurysmal variants, 3 lipidized variants (including two lesions in a patient affected by mucopolysaccharidosis IV), 3 dermatomyofibromas, and 4 isolated cases of hemosiderotic, granular cell atypical, and epithelioid FH. Immunostaining for factor XIIIa highlighted a dense network of dendritic cells in FH, which was significantly reduced in the FH with retiform morphology. Smooth muscle actin staining was positive in a high percentage of FHs (85.3%). The current series demonstrates that FH in children may show unique clinical and morphologic features. The retiform pattern with decreased dendritic cells found in congenital lesions and in two older patients with lesions in two locations might have a different pathogenesis, probably related to an altered immune response in very young patients.
Collapse
|
40
|
Puentes-Tellez MA, Lerma-Barbosa PA, Garzón-Jaramillo RG, Suarez DA, Espejo-Mojica AJ, Guevara JM, Echeverri OY, Solano-Galarza D, Uribe-Ardila A, Alméciga-Díaz CJ. A perspective on research, diagnosis, and management of lysosomal storage disorders in Colombia. Heliyon 2020; 6:e03635. [PMID: 32258481 PMCID: PMC7113438 DOI: 10.1016/j.heliyon.2020.e03635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/21/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of about 50 inborn errors of metabolism characterized by the lysosomal accumulation of partially or non-degraded molecules due to mutations in proteins involved in the degradation of macromolecules, transport, lysosomal biogenesis or modulators of lysosomal environment. Significant advances have been achieved in the diagnosis, management, and treatment of LSDs patients. In terms of approved therapies, these include enzyme replacement therapy (ERT), substrate reduction therapy, hematopoietic stem cell transplantation, and pharmacological chaperone therapy. In this review, we summarize the Colombian experience in LSDs thorough the evidence published. We identified 113 articles published between 1995 and 2019 that included Colombian researchers or physicians, and which were mainly focused in Mucopolysaccharidoses, Pompe disease, Gaucher disease, Fabry disease, and Tay-Sachs and Sandhoff diseases. Most of these articles focused on basic research, clinical cases, and mutation reports. Noteworthy, implementation of the enzyme assay in dried blood samples, led to a 5-fold increase in the identification of LSD patients, suggesting that these disorders still remain undiagnosed in the country. We consider that the information presented in this review will contribute to the knowledge of a broad spectrum of LSDs in Colombia and will also contribute to the development of public policies and the identification of research opportunities.
Collapse
Affiliation(s)
- María Alejandra Puentes-Tellez
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Paula Andrea Lerma-Barbosa
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Diego A. Suarez
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Angela J. Espejo-Mojica
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Johana M. Guevara
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Olga Yaneth Echeverri
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Daniela Solano-Galarza
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Alfredo Uribe-Ardila
- Research Center in Biochemistry, Universidad de los Andes, Bogotá D.C., Colombia
| | - Carlos J. Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
41
|
Solano M, Fainboim A, Politei J, Porras-Hurtado GL, Martins AM, Souza CFM, Koch FM, Amartino H, Satizábal JM, Horovitz DDG, Medeiros PFV, Honjo RS, Lourenço CM. Enzyme replacement therapy interruption in patients with Mucopolysaccharidoses: Recommendations for distinct scenarios in Latin America. Mol Genet Metab Rep 2020; 23:100572. [PMID: 32140416 PMCID: PMC7047015 DOI: 10.1016/j.ymgmr.2020.100572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders, leading to the progressive accumulation of glycosaminoglycans (GAGs) and the subsequent compromising of tissues and organ malfunction. Although incurable, most types of MPS can be treated with enzyme replacement therapy (ERT), an approach that has had positive effects on the natural clinical evolution and which impact has been extensively investigated. Unfortunately, to date, there is relatively little data regarding the effects of ERT interruption, especially in Latin America, where such interruption may be frequent due to a variety of issues (for instance, difficulties involving logistics, reimbursement and/or payment withdrawal). Method A group of medical professionals from Latin America with experience in Genetics, Pediatrics and Neurology held an Advisory Board Meeting in the city of São Paulo, in October 2018, to discuss the issue of ERT interruptions in the region and recommendations health care professionals on how to deal with these interruptions and better assess the therapeutic effects of ERT. Conclusion Recommendations provided by the experts may support physicians in dealing with the most common reasons for ERT interruptions in Latin America. Most importantly, recommendations for data collection at specific timepoints (at baseline, throughout the treatment and during the interruption period of ERT and after its resumption) can significantly improve the collection of real world evidence on the effects of ERT and its interruptions, supporting health care professionals and policy makers in the decision making regarding the provision of these therapies for MPS patients. Positive impact of ERT is reported in MPS patients, but the effects of its interruption is overlooked. In Latin America, ERT interruption is not infrequent. A systematic evaluation the worsening of MPS progression is vital. The proposed structured data collection would help to evaluate patients and generate real word data. We encourage studies and experts discussions for a better understand the value of ERT for MPS patients in Latin America.
Collapse
Affiliation(s)
| | - Alejandro Fainboim
- Polivalent Day Hospital, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Juan Politei
- Laboratorio de Neuroquímica Dr. N. A. Chamoles, Fundación para el Estudio de Enfermedades Neurometabólicas (FESEN), Buenos Aires, Argentina
| | | | - Ana Maria Martins
- Reference Center of Metabolic Inborn Errors, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Hernan Amartino
- Servicio de Neurología Infantil y Clinica de Mucopolisacaridosis y transtornos relacionados, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Jose Maria Satizábal
- Department of Physiological Sciences, School of Basic Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Dafne D G Horovitz
- Medical Genetics Department, National Institute of Women, Children and Adolescents Health Fernandes Figueira/Fiocruz, Rio de Janeiro, Brazil
| | - Paula F V Medeiros
- Unidade Acadêmica de Medicina, Hospital Universitário Alcides Carneiro, Universidade Federal de Campina Grande, Brazil
| | - Rachel S Honjo
- Genetics Unit, Instituto da Criança do Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Charles M Lourenço
- Faculdade de Medicina, Centro Universitario Estácio de Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
42
|
Sawamoto K, Álvarez González JV, Piechnik M, Otero FJ, Couce ML, Suzuki Y, Tomatsu S. Mucopolysaccharidosis IVA: Diagnosis, Treatment, and Management. Int J Mol Sci 2020; 21:E1517. [PMID: 32102177 PMCID: PMC7073202 DOI: 10.3390/ijms21041517] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA, or Morquio syndrome type A) is an inherited metabolic lysosomal disease caused by the deficiency of the N-acetylglucosamine-6-sulfate sulfatase enzyme. The deficiency of this enzyme accumulates the specific glycosaminoglycans (GAG), keratan sulfate, and chondroitin-6-sulfate mainly in bone, cartilage, and its extracellular matrix. GAG accumulation in these lesions leads to unique skeletal dysplasia in MPS IVA patients. Clinical, radiographic, and biochemical tests are needed to complete the diagnosis of MPS IVA since some clinical characteristics in MPS IVA are overlapped with other disorders. Early and accurate diagnosis is vital to optimizing patient management, which provides a better quality of life and prolonged life-time in MPS IVA patients. Currently, enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available for patients with MPS IVA. However, ERT and HSCT do not have enough impact on bone and cartilage lesions in patients with MPS IVA. Penetrating the deficient enzyme into an avascular lesion remains an unmet challenge, and several innovative therapies are under development in a preclinical study. In this review article, we comprehensively describe the current diagnosis, treatment, and management for MPS IVA. We also illustrate developing future therapies focused on the improvement of skeletal dysplasia in MPS IVA.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
| | | | - Matthew Piechnik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
- University of Delaware, Newark, DE 19716, USA
| | - Francisco J. Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Maria L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics and Pediatrics Neonatology Service, Metabolic Unit, IDIS, CIBERER, MetabERN, University Clinic Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Yasuyuki Suzuki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan;
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (K.S.); (J.V.Á.G.); (M.P.)
- University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan;
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
43
|
A Case Report of a Japanese Boy with Morquio A Syndrome: Effects of Enzyme Replacement Therapy Initiated at the Age of 24 Months. Int J Mol Sci 2020; 21:ijms21030989. [PMID: 32024277 PMCID: PMC7037301 DOI: 10.3390/ijms21030989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Morquio A syndrome, mucopolysaccharidosis type IVA (MPS IVA), is a lysosomal storage disorder caused by the deficient activity of N-acetylgalactosamine-6-sulfatase (GalNac6S), due to alterations in the GALNS gene. This disorder results in marked abnormalities in bones and connective tissues, and affects multiple organs. Here, we describe the clinical course of a Japanese boy with MPS IVA who began enzyme replacement therapy (ERT) at the age of 24 months. Patient: the patient presented for kyphosis treatment at 22 months of age. An X-ray examination revealed dysostosis multiplex. Uronic acids were elevated in the urine and the keratan sulfate (KS) fraction was predominant. The leukocyte GalNac6S enzyme activity was extremely low. The patient exhibited the c.463G > A (p.Gly155Arg) mutation in GALNS. Based on these findings, his disease was diagnosed as classical (severe) Morquio A syndrome. An elosulfase alfa infusion was initiated at the age of 24 months. The patient’s body height improved from −2.5 standard deviation (SD) to −2 SD and his physical activity increased during the first 9 months on ERT. However, he gradually developed paralysis in the lower legs with declining growth velocity, which required cervical decompression surgery in the second year of the ERT. The mild mitral regurgitation, serous otitis media, and mild hearing loss did not progress during treatment. Conclusion: early initiation of the elosulfase alfa to our patient showed good effects on the visceral system and muscle strength, while its effect on bones appeared limited. Careful observation is necessary to ensure timely surgical intervention for skeletal disorders associated with neurological symptoms. Centralized and multidisciplinary management is essential to improve the prognosis of pediatric patients with MPS IVA.
Collapse
|
44
|
Zhou J, Lin J, Leung WT, Wang L. A basic understanding of mucopolysaccharidosis: Incidence, clinical features, diagnosis, and management. Intractable Rare Dis Res 2020; 9:1-9. [PMID: 32201668 PMCID: PMC7062595 DOI: 10.5582/irdr.2020.01011] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of rare lysosomal storage diseases (LSD) with multi-organic and severe symptoms. MPS occur worldwide in various forms though have relative a low incidence. The prevalent type of MPS varies among different continents, indicating that it may be associated with region and ethnic background. Undegraded glycosaminoglycans (GAGs) induced by deficiency of enzymes are the primary cause of MPS. Clinical features differ depending on the specific enzyme deficiency including coarse facial features, cognitive retardation, hepatosplenomegaly, hernias, kyphoscoliosis, corneal clouding, etc. Symptoms of different types are usually similar especially MPS I and II, but may have distinguishable features such as severe neurological problems in MPS III and hydrops fetails in MPS VII. These clinical features contribute to diagnosis, but early and precisely diagnosis in the asymptomatic stage is imperative for better outcomes. Novel approaches including urinary and blood GAG test, enzyme assay and gene test help to diagnose MPS and to determine its subtype. Hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT) are conventional treatment for MPS, but are not effective at treating all MPS. Newer threatments, such as advanced ERT, gene therapy and substrate reduction therapy (SRT), improve therpeutic efficacy. In this review, we update information on the clinical manifestations, diagnosis, and treatment of the different forms of this disease in the hopes of stimulating further interest in MPS.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Lin
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wing Ting Leung
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
- Address correspondence to:Ling Wang, Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China. E-mail:
| |
Collapse
|
45
|
Coordinated approach to spinal and tracheal reconstruction in a patient with morquio syndrome. Int J Pediatr Otorhinolaryngol 2020; 128:109721. [PMID: 31639621 DOI: 10.1016/j.ijporl.2019.109721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/06/2023]
Abstract
Morquio syndrome (Mucopolysaccharidosis IVA) is an autosomal recessive lysosomal storage disease with manifestations ranging from mild to severe phenotype. Mechanical spinal cord injury and airway insufficiency are major causes of mortality. A 17-year-old male patient with severe Morquio syndrome presented with cervical and upper thoracic spinal stenosis with spinal cord myelopathy, and progressive severe tracheal stenosis. Coordinated care among otolaryngology, orthopedic surgery, neurosurgery, anesthesiology, cardiovascular surgery, radiology, and pulmonology teams facilitated the successful planning and execution of two major surgical interventions in rapid succession. This is the first description of a successful coordinated spine and airway repair in the literature.
Collapse
|
46
|
Losada Díaz JC, Cepeda del Castillo J, Rodriguez-López EA, Alméciga-Díaz CJ. Advances in the Development of Pharmacological Chaperones for the Mucopolysaccharidoses. Int J Mol Sci 2019; 21:ijms21010232. [PMID: 31905715 PMCID: PMC6981736 DOI: 10.3390/ijms21010232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a group of 11 lysosomal storage diseases (LSDs) produced by mutations in the enzymes involved in the lysosomal catabolism of glycosaminoglycans. Most of the mutations affecting these enzymes may lead to changes in processing, folding, glycosylation, pH stability, protein aggregation, and defective transport to the lysosomes. It this sense, it has been proposed that the use of small molecules, called pharmacological chaperones (PCs), can restore the folding, trafficking, and biological activity of mutated enzymes. PCs have the advantages of wide tissue distribution, potential oral administration, lower production cost, and fewer issues of immunogenicity than enzyme replacement therapy. In this paper, we will review the advances in the identification and characterization of PCs for the MPS. These molecules have been described for MPS II, IVA, and IVB, showing a mutation-dependent enhancement of the mutated enzymes. Although the results show the potential of this strategy, further studies should focus in the development of disease-specific cellular models that allow a proper screening and evaluation of PCs. In addition, in vivo evaluation, both pre-clinical and clinical, should be performed, before they can become a real therapeutic strategy for the treatment of MPS patients.
Collapse
Affiliation(s)
- Juan Camilo Losada Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
| | - Jacobo Cepeda del Castillo
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
| | - Edwin Alexander Rodriguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
- Correspondence: ; Tel.: +57-1-3208320 (ext. 4140); Fax: +57-1-3208320 (ext. 4099)
| |
Collapse
|
47
|
Abumansour IS, Yuskiv N, Paschke E, Stockler-Ipsiroglu S. Morquio-B disease: Clinical and genetic characteristics of a distinct GLB1-related dysostosis multiplex. JIMD Rep 2019; 51:30-44. [PMID: 32071837 PMCID: PMC7012745 DOI: 10.1002/jmd2.12065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023] Open
Abstract
Background Morquio-B disease (MBD) is a distinct GLB1-related dysostosis multiplex involving the trabecular parts of long bones and spine, presenting a mild phenocopy of GALNS-related Morquio-A disease. Methods We analyzed 63 (n = 62 published) cases with MBD to describe their clinical, biochemical and genetic features. Results Forty-one of 51 cases with informative clinical data had pure MBD including progressive growth impairment, kyphoscoliosis, coxa/genua valga, joint laxity, platyspondyly, odontoid hypoplasia. Ten of 51 had MBD plus neuronopathic manifestations including intellectual/developmental/speech delay, spasticity, ataxia dystonia. Corneal clouding, cardiac valve pathology, hepatosplenomegaly, spinal cord compression were infrequent and atlantooccipital dislocation, cardiomyopathy and cherry red spot were never reported. Urinary glycosaminoglycan and oligosaccharide excretion was consistently abnormal. Keratan sulphate-derived oligosaccharides were only detected using LC-MS/MS-based methods. Residual β-galactosidase activities measured against synthetic substrates were 0%-17%.Among 28 GLB1 variants, W273 L (34/94 alleles) and T500A (11/94 alleles) occurred most frequently. W273L was invariably associated with pure MBD. Pure MBD also was reported in a case homozygous for R201H, and in the majority of cases carrying the T500A variant. Homozygous Y333C and G438E were associated with MBD plus neuronopathic manifestations. T82M, R201H, and H281Y, observed in seven alleles, previously have been found sensitive to experimental chaperones. Conclusion Data provide a basis for future systematic collection of clinical, biochemical, morphologic, and genetic data of this ultra-rare condition.
Collapse
Affiliation(s)
- Iman S Abumansour
- Division of Biochemical Genetics BC Children's Hospital Vancouver British Columbia Canada.,Department of Pediatrics University of British Columbia Vancouver British Columbia Canada.,Department of Medical Genetics, Faculty of Medicine Umm Al-qura University Makkah Saudi Arabia
| | - Nataliya Yuskiv
- Division of Biochemical Genetics BC Children's Hospital Vancouver British Columbia Canada.,Department of Pediatrics University of British Columbia Vancouver British Columbia Canada
| | - Eduard Paschke
- Department of Pediatrics Medical University of Graz Graz Austria
| | - Sylvia Stockler-Ipsiroglu
- Division of Biochemical Genetics BC Children's Hospital Vancouver British Columbia Canada.,Department of Pediatrics University of British Columbia Vancouver British Columbia Canada.,BC-Children's Hospital Research Institute Vancouver British Columbia Canada
| |
Collapse
|
48
|
Enzyme replacement therapy for mucopolysaccharidoses; past, present, and future. J Hum Genet 2019; 64:1153-1171. [PMID: 31455839 DOI: 10.1038/s10038-019-0662-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders, which lack an enzyme corresponding to the specific type of MPS. Enzyme replacement therapy (ERT) has been the standard therapeutic option for some types of MPS because of the ability to start immediate treatment with feasibility and safety and to improve prognosis. There are several disadvantages for current ERT, such as limited impact to the brain and avascular cartilage, weekly or biweekly infusions lasting 4-5 h, the immune response against the infused enzyme, a short half-life, and the high cost. Clinical studies of ERT have shown limited efficacy in preventing or resolving progression in neurological, cardiovascular, and skeletal diseases. One focus is to penetrate the avascular cartilage area to at least stabilize, if not reverse, musculoskeletal diseases. Although early intervention in some types of MPS has shown improvements in the severity of skeletal dysplasia and stunted growth, this limits the desired effect of ameliorating musculoskeletal disease progression to young MPS patients. Novel ERT strategies are under development to reach the brain: (1) utilizing a fusion protein with monoclonal antibody to target a receptor on the BBB, (2) using a protein complex from plant lectin, glycan, or insulin-like growth factor 2, and (3) direct infusion across the BBB. As for MPS IVA and VI, bone-targeting ERT will be an alternative to improve therapeutic efficacy in bone and cartilage. This review summarizes the effect and limitations on current ERT for MPS and describes the new technology to overcome the obstacles of conventional ERT.
Collapse
|
49
|
Respiratory complications of metabolic disease in the paediatric population: A review of presentation, diagnosis and therapeutic options. Paediatr Respir Rev 2019; 32:55-65. [PMID: 31101546 DOI: 10.1016/j.prrv.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Inborn errors of metabolism (IEMs) whilst individually rare, as a group constitute a field which is increasingly demands on pulmonologists. With the advent of new therapies such as enzyme replacement and gene therapy, early diagnosis and treatment of these conditions can impact on long term outcome, making their timely recognition and appropriate investigation increasingly important. Conversely, with improved treatment, survival of these patients is increasing, with the emergence of previously unknown respiratory phenotypes. It is thus important that pulmonologists are aware of and appropriately monitor and manage these complications. This review aims to highlight the respiratory manifestations which can occur. It isdivided into conditions resulting primarily in obstructive airway and lung disease, restrictive lung disease such as interstitial lung disease or pulmonary alveolar proteinosis and pulmonary hypertension, whilst acknowledging that some diseases have the potential to cause all three. The review focuses on general phenotypes of IEMs, their known respiratory complications and the basic metabolic investigations which should be performed where an IEM is suspected.
Collapse
|
50
|
Álvarez JV, Herrero Filgueira C, González ADLF, Colón Mejeras C, Beiras Iglesias A, Tomatsu S, Blanco Méndez J, Luzardo Álvarez A, Couce ML, Otero Espinar FJ. Enzyme-Loaded Gel Core Nanostructured Lipid Carriers to Improve Treatment of Lysosomal Storage Diseases: Formulation and In Vitro Cellular Studies of Elosulfase Alfa-Loaded Systems. Pharmaceutics 2019; 11:pharmaceutics11100522. [PMID: 31614479 PMCID: PMC6835858 DOI: 10.3390/pharmaceutics11100522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Mucopolysaccharidosis IVA (Morquio A) is a rare inherited metabolic disease caused by deficiency of the lysosomal enzyme N-acetylgalatosamine-6-sulfate-sulfatase (GALNS). Until now, treatments employed included hematopoietic stem cell transplantation and enzyme replacement therapy (ERT); the latter being the most commonly used to treat mucopolysaccharidoses, but with serious disadvantages due to rapid degradation and clearance. The purpose of this study was to develop and evaluate the potential of nanostructured lipid carriers (NLCs) by encapsulating elosulfase alfa and preserving its enzyme activity, leading to enhancement of its biological effect in chondrocyte cells. A pegylated elosulfase alfa-loaded NLC was characterized in terms of size, ζ potential, structural lipid composition (DSC and XRD), morphology (TEM microscopy), and stability in human plasma. The final formulation was freeze-dried by selecting the appropriate cryoprotective agent. Viability assays confirmed that NLCs were non-cytotoxic to human fibroblasts. Imaging techniques (confocal and TEM) were used to assess the cellular uptake of NLCs loaded with elosulfase alfa. This study provides evidence that the encapsulated drug exhibits enzyme activity inside the cells. Overall, this study provides a new approach regarding NLCs as a promising delivery system for the encapsulation of elosulfase alfa or other enzymes and the preservation of its activity and stability to be used in enzymatic replacement therapy (ERT).
Collapse
Affiliation(s)
- J. Víctor Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy. Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain; (J.V.Á.); (J.B.M.)
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road,Wilmington, DE 19803, USA;
| | - Carolina Herrero Filgueira
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- Nasasbiotech, S.L., Canton Grande 3, 15003 A Coruña, Spain;
| | | | - Cristóbal Colón Mejeras
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| | - Andrés Beiras Iglesias
- Department of Morphological Sciences, School of Medicine, Hospital Clínico Universitario de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road,Wilmington, DE 19803, USA;
| | - José Blanco Méndez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy. Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain; (J.V.Á.); (J.B.M.)
| | - Asteria Luzardo Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, 27002 Lugo, Spain
- Correspondence: (A.L.Á.); (M.L.C.); (F.J.O.E.); Tel.: +34-981563100 (ext. 24142 (A.L.Á.); ext. 14878 (F.J.O.E.)); +34-981951134 (M.L.C.)
| | - María Luz Couce
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
- Correspondence: (A.L.Á.); (M.L.C.); (F.J.O.E.); Tel.: +34-981563100 (ext. 24142 (A.L.Á.); ext. 14878 (F.J.O.E.)); +34-981951134 (M.L.C.)
| | - Francisco J. Otero Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy. Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain; (J.V.Á.); (J.B.M.)
- Correspondence: (A.L.Á.); (M.L.C.); (F.J.O.E.); Tel.: +34-981563100 (ext. 24142 (A.L.Á.); ext. 14878 (F.J.O.E.)); +34-981951134 (M.L.C.)
| |
Collapse
|