1
|
MacGowan J, Cardenas M, Williams MK. Fold-and-fuse neurulation in zebrafish requires vangl2. Dev Biol 2025; 524:55-68. [PMID: 40334836 DOI: 10.1016/j.ydbio.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Shaping of the future brain and spinal cord during neurulation is an essential component of early vertebrate development. In amniote embryos, primary neurulation occurs through a "fold-and-fuse" mechanism by which the edges of the neural plate fuse into the hollow neural tube. Failure of neural fold fusion results in neural tube defects (NTDs), which are among the most devastating and common congenital anomalies worldwide. Unlike amniotes, the zebrafish neural tube develops largely via formation of a solid neural keel that later cavitates to form a midline lumen. Although many aspects of primary neurulation are conserved in zebrafish, including neural fold zippering, it was not clear how well these events resemble analogous processes in amniote embryos. Here, we demonstrate that despite outward differences, zebrafish anterior neurulation closely resembles that of mammals. For the first time in zebrafish embryos, we directly observe enclosure of a lumen by the bilateral neural folds, which fuse by zippering between at least two distinct closure sites. Both the apical constriction that elevates the neural folds and the zippering that fuses them coincide with apical Myosin enrichment. We further show that embryos lacking vangl2, a core planar cell polarity and NTD risk gene, exhibit delayed and abnormal neural fold fusion that fails to enclose a lumen. These defects can also be observed in fixed embryos, enabling their detection without live imaging. Together, our data provide direct evidence for fold-and-fuse neurulation in zebrafish and its disruption upon loss of an NTD risk gene, highlighting the deep conservation of primary neurulation across vertebrates.
Collapse
Affiliation(s)
- Jacalyn MacGowan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mara Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Margot Kossmann Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
MacGowan J, Cardenas M, Williams MK. Fold-and-fuse neurulation in zebrafish requires Vangl2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.09.566412. [PMID: 37986956 PMCID: PMC10659374 DOI: 10.1101/2023.11.09.566412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Shaping of the future brain and spinal cord during neurulation is an essential component of early vertebrate development. In amniote embryos, primary neurulation occurs through a "fold-and-fuse" mechanism by which the edges of the neural plate fuse into the hollow neural tube. Failure of neural fold fusion results in neural tube defects (NTDs), which are among the most devastating and common congenital anomalies worldwide. Unlike amniotes, the zebrafish neural tube develops largely via formation of a solid neural keel that later cavitates to form a midline lumen. Although many aspects of primary neurulation are conserved in zebrafish, including neural fold zippering, it was not clear how well these events resemble analogous processes in amniote embryos. Here, we demonstrate that despite outward differences, zebrafish anterior neurulation closely resembles that of mammals. For the first time in zebrafish embryos, we directly observe enclosure of a lumen by the bilateral neural folds, which fuse by zippering between at least two distinct closure sites. Both the apical constriction that elevates the neural folds and the zippering that fuses them coincide with apical Myosin enrichment. We further show that embryos lacking vangl2, a core planar cell polarity and NTD risk gene, exhibit delayed and abnormal neural fold fusion that fails to enclose a lumen. These defects can also be observed in fixed embryos, enabling their detection without live imaging. Together, our data provide direct evidence for fold-and-fuse neurulation in zebrafish and its disruption upon loss of an NTD risk gene, highlighting the deep conservation of primary neurulation across vertebrates.
Collapse
Affiliation(s)
- Jacalyn MacGowan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Mara Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Margot Kossmann Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Alhalwani AY, Baqar R, Algadaani R, Bamallem H, Alamoudi R, Jambi S, Abd El Razek Mady W, Sannan NS, Anwar Khan M. Investigating Neutrophil-to-Lymphocyte and C-Reactive Protein-to-Albumin Ratios in Type 2 Diabetic Patients with Dry Eye Disease. Ocul Immunol Inflamm 2024; 32:925-931. [PMID: 36637884 DOI: 10.1080/09273948.2022.2152698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Patients with Diabetes mellitus (DM) are at risk of developing dry eye disease (DED). We investigated routine laboratory parameters in patients with type 2 DM (T2D) and T2D-DED to identify potential inflammatory markers. METHODS A retrospective study of 241 randomly selected patients (30 DED non-diabetic, 120 T2D, and 91 with T2D-DED). The neutrophil-to-lymphocyte ratios (NLR), CRP-to-albumin ratios (CAR), and the glycosylated haemoglobin A1c (HbA1c) results were correlated between groups. RESULTS The NLR and HbA1c were significantly higher in the T2D-DED group (p≤0.001 and 0.0001, respectively) when compared with T2D and DED non-diabetic groups. CAR was insignificantly high in the three groups (p=0.192). A positive correlation was identified between CAR and NLR in T2D-DED patients (p= 0.008). CONCLUSION In T2D-DED patients, NLR was significantly high and positively correlate with CAR. These results predicate diabetes with dry eye complications, and biomarker-mediated inflammation may have important roles in DED pathogenesis.
Collapse
Affiliation(s)
- Amani Y Alhalwani
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Biomedical Research, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Rawan Baqar
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Rawan Algadaani
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Hala Bamallem
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Rwzan Alamoudi
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Shatha Jambi
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Wessam Abd El Razek Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naif S Sannan
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Biomedical Research, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Muhammed Anwar Khan
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Ma YL, Kong CY, Guo Z, Wang MY, Wang P, Liu FY, Yang D, Yang Z, Tang QZ. Semaglutide ameliorates cardiac remodeling in male mice by optimizing energy substrate utilization through the Creb5/NR4a1 axis. Nat Commun 2024; 15:4757. [PMID: 38834564 PMCID: PMC11150406 DOI: 10.1038/s41467-024-48970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Semaglutide, a glucagon-like peptide-1 receptor agonist, is clinically used as a glucose-lowering and weight loss medication due to its effects on energy metabolism. In heart failure, energy production is impaired due to altered mitochondrial function and increased glycolysis. However, the impact of semaglutide on cardiomyocyte metabolism under pressure overload remains unclear. Here we demonstrate that semaglutide improves cardiac function and reduces hypertrophy and fibrosis in a mouse model of pressure overload-induced heart failure. Semaglutide preserves mitochondrial structure and function under chronic stress. Metabolomics reveals that semaglutide reduces mitochondrial damage, lipid accumulation, and ATP deficiency by promoting pyruvate entry into the tricarboxylic acid cycle and increasing fatty acid oxidation. Transcriptional analysis shows that semaglutide regulates myocardial energy metabolism through the Creb5/NR4a1 axis in the PI3K/AKT pathway, reducing NR4a1 expression and its translocation to mitochondria. NR4a1 knockdown ameliorates mitochondrial dysfunction and abnormal glucose and lipid metabolism in the heart. These findings suggest that semaglutide may be a therapeutic agent for improving cardiac remodeling by modulating energy metabolism.
Collapse
Affiliation(s)
- Yu-Lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| |
Collapse
|
5
|
Feng X, Ye Y, Zhang J, Zhang Y, Zhao S, Mak JCW, Otomo N, Zhao Z, Niu Y, Yonezawa Y, Li G, Lin M, Li X, Cheung PWH, Xu K, Takeda K, Wang S, Xie J, Kotani T, Choi VNT, Song YQ, Yang Y, Luk KDK, Lee KS, Li Z, Li PS, Leung CYH, Lin X, Wang X, Qiu G, DISCO (Deciphering disorders Involving Scoliosis and COmorbidities) study group, Watanabe K, Japanese Early Onset Scoliosis Research Group, Wu Z, Posey JE, Ikegawa S, Lupski JR, Cheung JPY, Zhang TJ, Gao B, Wu N. Core planar cell polarity genes VANGL1 and VANGL2 in predisposition to congenital vertebral malformations. Proc Natl Acad Sci U S A 2024; 121:e2310283121. [PMID: 38669183 PMCID: PMC11067467 DOI: 10.1073/pnas.2310283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Xin Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yongyu Ye
- Department of Orthopedic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou510080, China
| | - Jianan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan250012, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Judith C. W. Mak
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nao Otomo
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Zhengye Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Yoshiro Yonezawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Guozhuang Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Mao Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Prudence Wing Hang Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Kazuki Takeda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Junjie Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Vanessa N. T. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Keith Dip Kei Luk
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kin Shing Lee
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ziquan Li
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Pik Shan Li
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Connie Y. H. Leung
- Center for Comparative Medicine Research, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | | | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo160-8582, Japan
| | | | - Zhihong Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo108-8639, Japan
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston77030, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston77030, TX
- Texas Children’s Hospital, Houston77030, TX
- Department of Pediatrics, Baylor College of Medicine, Houston77030, TX
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518009, China
- Centre for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, all at Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing100730, China
- Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing100730, China
| |
Collapse
|
6
|
Stegmann JD, Kalanithy JC, Dworschak GC, Ishorst N, Mingardo E, Lopes FM, Ho YM, Grote P, Lindenberg TT, Yilmaz Ö, Channab K, Seltzsam S, Shril S, Hildebrandt F, Boschann F, Heinen A, Jolly A, Myers K, McBride K, Bekheirnia MR, Bekheirnia N, Scala M, Morleo M, Nigro V, Torella A, Pinelli M, Capra V, Accogli A, Maitz S, Spano A, Olson RJ, Klee EW, Lanpher BC, Jang SS, Chae JH, Steinbauer P, Rieder D, Janecke AR, Vodopiutz J, Vogel I, Blechingberg J, Cohen JL, Riley K, Klee V, Walsh LE, Begemann M, Elbracht M, Eggermann T, Stoppe A, Stuurman K, van Slegtenhorst M, Barakat TS, Mulhern MS, Sands TT, Cytrynbaum C, Weksberg R, Isidori F, Pippucci T, Severi G, Montanari F, Kruer MC, Bakhtiari S, Darvish H, Reutter H, Hagelueken G, Geyer M, Woolf AS, Posey JE, Lupski JR, Odermatt B, Hilger AC. Bi-allelic variants in CELSR3 are implicated in central nervous system and urinary tract anomalies. NPJ Genom Med 2024; 9:18. [PMID: 38429302 PMCID: PMC10907620 DOI: 10.1038/s41525-024-00398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.
Collapse
Affiliation(s)
- Jil D Stegmann
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany.
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany.
| | - Jeshurun C Kalanithy
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Gabriel C Dworschak
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
- Department of Neuropediatrics, University Hospital Bonn, Bonn, 53127, Germany
| | - Nina Ishorst
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Enrico Mingardo
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Yee Mang Ho
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Phillip Grote
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Tobias T Lindenberg
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Öznur Yilmaz
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Khadija Channab
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Steve Seltzsam
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - André Heinen
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angad Jolly
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Myers
- Center for Cardiovascular Research, Nationwide Children's Hospital, Department of Pediatrics, Ohio State University, Columbus, OH, USA
| | - Kim McBride
- Center for Cardiovascular Research, Nationwide Children's Hospital, Department of Pediatrics, Ohio State University, Columbus, OH, USA
| | - Mir Reza Bekheirnia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Renal Service, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Nasim Bekheirnia
- Department of Pediatrics, Renal Service, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132, Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Manuela Morleo
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Vincenzo Nigro
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Annalaura Torella
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Gaslini, Genoa, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Silvia Maitz
- Medical Genetics Service, Oncology Department of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | | | - Rory J Olson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Genomics Medicine, Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Philipp Steinbauer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090, Vienna, Austria
| | - Ida Vogel
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jenny Blechingberg
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jennifer L Cohen
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kacie Riley
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Victoria Klee
- Pediatric Neurology, Riley Hospital for Children Indiana University Health, Indianapolis, IN, USA
| | - Laurence E Walsh
- Pediatric Neurology, Riley Hospital for Children Indiana University Health, Indianapolis, IN, USA
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Arzu Stoppe
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Kyra Stuurman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maureen S Mulhern
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Tristan T Sands
- Division of Child Neurology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Cheryl Cytrynbaum
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Federica Isidori
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Severi
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Montanari
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Heiko Reutter
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Division Neonatology and Pediatric Intensive Care, Department of Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jennifer E Posey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - Benjamin Odermatt
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Alina C Hilger
- Department of Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, 91054, Germany.
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, 91054, Erlangen, Germany.
| |
Collapse
|
7
|
Oxman E, Li H, Wang HY, Zohn IE. Identification and functional analysis of rare HECTD1 missense variants in human neural tube defects. Hum Genet 2024; 143:263-277. [PMID: 38451291 PMCID: PMC11043113 DOI: 10.1007/s00439-024-02647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 03/08/2024]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased extracellular heat shock protein 90 (eHSP90) secretion to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with NTDs in humans.
Collapse
Affiliation(s)
- Elias Oxman
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA
| | - Huili Li
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Hong-Yan Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Irene E Zohn
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA.
| |
Collapse
|
8
|
Oxman E, Li H, Wang HY, Zohn I. Identification and Functional Analysis of Rare HECTD1 Missense Variants in Human Neural Tube Defects. RESEARCH SQUARE 2024:rs.3.rs-3794712. [PMID: 38260607 PMCID: PMC10802691 DOI: 10.21203/rs.3.rs-3794712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased secretion of extracellular heat shock protein 90 (eHSP90) to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with human disease and suggest that sequence variation in HECTD1 may play a role in the etiology of human NTDs.
Collapse
Affiliation(s)
| | - Huili Li
- University of Colorado at Boulder
| | | | | |
Collapse
|
9
|
Ye Y, Zhang J, Feng X, Chen C, Chang Y, Qiu G, Wu Z, Zhang TJ, Gao B, Wu N. Exploring the association between congenital vertebral malformations and neural tube defects. J Med Genet 2023; 60:1146-1152. [PMID: 37775263 DOI: 10.1136/jmg-2023-109501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
Congenital vertebral malformations (CVMs) and neural tube defects (NTDs) are common birth defects affecting the spine and nervous system, respectively, due to defects in somitogenesis and neurulation. Somitogenesis and neurulation rely on factors secreted from neighbouring tissues and the integrity of the axial structure. Crucial signalling pathways like Wnt, Notch and planar cell polarity regulate somitogenesis and neurulation with significant crosstalk. While previous studies suggest an association between CVMs and NTDs, the exact mechanism underlying this relationship remains unclear. In this review, we explore embryonic development, signalling pathways and clinical phenotypes involved in the association between CVMs and NTDs. Moreover, we provide a summary of syndromes that exhibit occurrences of both CVMs and NTDs. We aim to provide insights into the potential mechanisms underlying the association between CVMs and NTDs, thereby facilitating clinical diagnosis and management of these anomalies.
Collapse
Affiliation(s)
- Yongyu Ye
- Department of Orthopedic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Zhang
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chong Chen
- Department of Orthopedic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yunbing Chang
- Department of Orthopedic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Nan Wu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| |
Collapse
|
10
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
11
|
Functional interaction between Vangl2 and N-cadherin regulates planar cell polarization of the developing neural tube and cochlear sensory epithelium. Sci Rep 2023; 13:3905. [PMID: 36890135 PMCID: PMC9995352 DOI: 10.1038/s41598-023-30213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Although the core constituents of the Wnt/planar cell polarity (PCP) signaling have been extensively studied, their downstream molecules and protein-protein interactions have not yet been fully elucidated. Here, we show genetic and molecular evidence that the PCP factor, Vangl2, functionally interacts with the cell-cell adhesion molecule, N-cadherin (also known as Cdh2), for typical PCP-dependent neural development. Vangl2 and N-cadherin physically interact in the neural plates undergoing convergent extension. Unlike monogenic heterozygotes, digenic heterozygous mice with Vangl2 and Cdh2 mutants exhibited defects in neural tube closure and cochlear hair cell orientation. Despite this genetic interaction, neuroepithelial cells derived from the digenic heterozygotes did not show additive changes from the monogenic heterozygotes of Vangl2 in the RhoA-ROCK-Mypt1 and c-Jun N-terminal kinase (JNK)-Jun pathways of Wnt/PCP signaling. Thus, cooperation between Vangl2 and N-cadherin is at least partly via direct molecular interaction; it is essential for the planar polarized development of neural tissues but not significantly associated with RhoA or JNK pathways.
Collapse
|
12
|
Zhang S, Liu Y, Wang M, Ponikwicka-Tyszko D, Ma W, Krentowska A, Kowalska I, Huhtaniemi I, Wolczynski S, Rahman NA, Li X. Role and mechanism of miR-335-5p in the pathogenesis and treatment of polycystic ovary syndrome. Transl Res 2023; 252:64-78. [PMID: 35931409 DOI: 10.1016/j.trsl.2022.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder of unknown etiology that occurs in women of reproductive age. Despite being considered to affect up to one-fifth of women in this cohort, the condition lacks generally accepted diagnostic biomarkers and options for targeted therapy. Hereby, we analyzed the diagnostic, therapeutic, and functional potential of a recently discovered miR-335-5p that was observed to be reduced in the follicular fluid (FF) of PCOS patients as compared with healthy women. We found miR-335-5p to be significantly decreased in the serum and FF samples of PCOS patients (n = 40) vs healthy women (n = 30), as well as in primary human granulosa cells (hGCs), and in 3 different hormonally induced PCOS-like murine models vs. wild-type (WT) mice. The level of circulating miR-335-5p was found to significantly correlate with the impaired endocrine and clinical features associated with PCOS in human patients. Ovarian intrabursal injection of the miR-335-5p antagomir in WT mice ovaries induced a PCOS-like reproductive phenotype. Treatment with the miR-335-5p agomir rescued the dihydrotestosterone-induced PCOS-phenotype in mice, thereby providing a functional link between miR-335-5p and PCOS. We identified SP1 as a miR-335-5p target gene by using the dual-luciferase reporter assay. Both the luciferase reporter assay and chromatin immunoprecipitation assay showed that SP1 bound to the promoter region of human CYP19A1 and inhibited its transcription. miR-335-5p increased the production of estradiol via the SP1/CYP19A1 axis in hGCs, thereby suggesting its mechanistic pathway of action. In conclusion, these results provide evidence that miR-335-5p may function as a mediator in the etiopathogenesis of PCOS, as well as has the potential as both a novel diagnostic biomarker and therapeutic target for PCOS.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yajing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Hainan Yazhou Bay Seed Lab
| | - Mingming Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Wenqiang Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Anna Krentowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Białystok, Bialystok, Poland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Slawomir Wolczynski
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, 15276, Poland
| | - Nafis A Rahman
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland; Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Hainan Yazhou Bay Seed Lab; Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Han X, Cao X, Aguiar-Pulido V, Yang W, Karki M, Ramirez PAP, Cabrera RM, Lin YL, Wlodarczyk BJ, Shaw GM, Ross ME, Zhang C, Finnell RH, Lei Y. CIC missense variants contribute to susceptibility for spina bifida. Hum Mutat 2022; 43:2021-2032. [PMID: 36054333 PMCID: PMC9772115 DOI: 10.1002/humu.24460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Neural tube defects (NTDs) are congenital malformations resulting from abnormal embryonic development of the brain, spine, or spinal column. The genetic etiology of human NTDs remains poorly understood despite intensive investigation. CIC, homolog of the Capicua transcription repressor, has been reported to interact with ataxin-1 (ATXN1) and participate in the pathogenesis of spinocerebellar ataxia type 1. Our previous study demonstrated that CIC loss of function (LoF) variants contributed to the cerebral folate deficiency syndrome by downregulating folate receptor 1 (FOLR1) expression. Given the importance of folate transport in neural tube formation, we hypothesized that CIC variants could contribute to increased risk for NTDs by depressing embryonic folate concentrations. In this study, we examined CIC variants from whole-genome sequencing (WGS) data of 140 isolated spina bifida cases and identified eight missense variants of CIC gene. We tested the pathogenicity of the observed variants through multiple in vitro experiments. We determined that CIC variants decreased the FOLR1 protein level and planar cell polarity (PCP) pathway signaling in a human cell line (HeLa). In a murine cell line (NIH3T3), CIC loss of function variants downregulated PCP signaling. Taken together, this study provides evidence supporting CIC as a risk gene for human NTD.
Collapse
Affiliation(s)
- Xiao Han
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Vanessa Aguiar-Pulido
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Computer Science, University of Miami, Coral
Gables, FL 33146, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Paula Andrea Pimienta Ramirez
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - M. Elizabeth Ross
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
- Departments of Molecular and Human Genetics and Medicine,
Baylor College of Medicine, Houston, TX 77031, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| |
Collapse
|
14
|
Nachtegael C, Gravel B, Dillen A, Smits G, Nowé A, Papadimitriou S, Lenaerts T. Scaling up oligogenic diseases research with OLIDA: the Oligogenic Diseases Database. Database (Oxford) 2022; 2022:6566807. [PMID: 35411390 PMCID: PMC9216476 DOI: 10.1093/database/baac023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022]
Abstract
Improving the understanding of the oligogenic nature of diseases requires access to high-quality, well-curated Findable, Accessible, Interoperable, Reusable (FAIR) data. Although first steps were taken with the development of the Digenic Diseases Database, leading to novel computational advancements to assist the field, these were also linked with a number of limitations, for instance, the ad hoc curation protocol and the inclusion of only digenic cases. The OLIgogenic diseases DAtabase (OLIDA) presents a novel, transparent and rigorous curation protocol, introducing a confidence scoring mechanism for the published oligogenic literature. The application of this protocol on the oligogenic literature generated a new repository containing 916 oligogenic variant combinations linked to 159 distinct diseases. Information extracted from the scientific literature is supplemented with current knowledge support obtained from public databases. Each entry is an oligogenic combination linked to a disease, labelled with a confidence score based on the level of genetic and functional evidence that supports its involvement in this disease. These scores allow users to assess the relevance and proof of pathogenicity of each oligogenic combination in the database, constituting markers for reporting improvements on disease-causing oligogenic variant combinations. OLIDA follows the FAIR principles, providing detailed documentation, easy data access through its application programming interface and website, use of unique identifiers and links to existing ontologies.
Collapse
Affiliation(s)
- Charlotte Nachtegael
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212, Brussels 1050, Belgium
| | - Barbara Gravel
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212, Brussels 1050, Belgium
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Arnau Dillen
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
- Human Physiology and Sports Physiotherapy research group, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Avenue Jean Joseph Crocq 15, Brussels 1020, Belgium
- Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, Brussels 1070, Belgium
| | - Ann Nowé
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212, Brussels 1050, Belgium
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Boulevard du Triomphe, CP 263, Brussels 1050, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212, Brussels 1050, Belgium
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| |
Collapse
|
15
|
Li J, Lin S, Wu J, Pei L, Shang X. OUP accepted manuscript. Int Health 2022; 15:299-308. [PMID: 35521756 PMCID: PMC10153556 DOI: 10.1093/inthealth/ihac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/15/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Maternal exposure to pesticides during early pregnancy is associated with increased risks of birth defects, while the association between maternal exposure to chemical fertilizer during pregnancy and the risk of birth defects remains unknown. METHODS Data were from a population-based birth defects surveillance system between 2007 and 2012 in Pingding County, Shanxi Province, northern China. A total of 14 074 births with 235 birth defects were used to estimate spatial clustering and correlations at the village level. A population-based case-control study of 157 cases with birth defects and 204 controls was performed to investigate the association between maternal chemical fertilizer exposure and the risk of birth defects by a two-level logistic model. RESULTS The total prevalence of birth defects between 2007 and 2012 was 167.0/10 000 births. The spatial analysis indicated a remarkable high-risk area of birth defects in the southeast of Pingding County and the use of chemical fertilizer was associated with the risk of birth defects at the village level. After adjusting for confounders at the individual level, mothers who live in villages with chemical fertilizer application ≥65 tons/y had an increased risk of birth defects (adjusted odds ratio 2.06 [95% confidence interval 1.23 to 3.46]) compared with those of <65 tons/y. CONCLUSIONS Our findings suggest that the risk of birth defects may be associated with the use of chemical fertilizer in rural northern China. The findings must be cautiously interpreted and need to be investigated on larger samples.
Collapse
Affiliation(s)
| | | | - Jilei Wu
- Institute of Population Research/China Center on Population Health and Development, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing,100871, China
| | - Lijun Pei
- Corresponding authors: Tel: +86 010-62751974; E-mail:
| | - Xuejun Shang
- Corresponding authors: Tel: +86 025-84815775; E-mail:
| |
Collapse
|
16
|
Aguiar-Pulido V, Wolujewicz P, Martinez-Fundichely A, Elhaik E, Thareja G, Abdel Aleem A, Chalhoub N, Cuykendall T, Al-Zamer J, Lei Y, El-Bashir H, Musser JM, Al-Kaabi A, Shaw GM, Khurana E, Suhre K, Mason CE, Elemento O, Finnell RH, Ross ME. Systems biology analysis of human genomes points to key pathways conferring spina bifida risk. Proc Natl Acad Sci U S A 2021; 118:e2106844118. [PMID: 34916285 PMCID: PMC8713748 DOI: 10.1073/pnas.2106844118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Spina bifida (SB) is a debilitating birth defect caused by multiple gene and environment interactions. Though SB shows non-Mendelian inheritance, genetic factors contribute to an estimated 70% of cases. Nevertheless, identifying human mutations conferring SB risk is challenging due to its relative rarity, genetic heterogeneity, incomplete penetrance, and environmental influences that hamper genome-wide association studies approaches to untargeted discovery. Thus, SB genetic studies may suffer from population substructure and/or selection bias introduced by typical candidate gene searches. We report a population based, ancestry-matched whole-genome sequence analysis of SB genetic predisposition using a systems biology strategy to interrogate 298 case-control subject genomes (149 pairs). Genes that were enriched in likely gene disrupting (LGD), rare protein-coding variants were subjected to machine learning analysis to identify genes in which LGD variants occur with a different frequency in cases versus controls and so discriminate between these groups. Those genes with high discriminatory potential for SB significantly enriched pathways pertaining to carbon metabolism, inflammation, innate immunity, cytoskeletal regulation, and essential transcriptional regulation consistent with their having impact on the pathogenesis of human SB. Additionally, an interrogation of conserved noncoding sequences identified robust variant enrichment in regulatory regions of several transcription factors critical to embryonic development. This genome-wide perspective offers an effective approach to the interrogation of coding and noncoding sequence variant contributions to rare complex genetic disorders.
Collapse
Affiliation(s)
- Vanessa Aguiar-Pulido
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Alexander Martinez-Fundichely
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
- His Royal Highness Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065
| | - Eran Elhaik
- Department of Biology, Lund University SE-221 00 Lund, Sweden
| | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Nader Chalhoub
- Department of Neurology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Tawny Cuykendall
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
- His Royal Highness Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065
| | - Jamel Al-Zamer
- Rehabilitation Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030
| | | | - James M Musser
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Abdulla Al-Kaabi
- Sidra Medical and Research Center, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Ekta Khurana
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
- His Royal Highness Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christopher E Mason
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
- His Royal Highness Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065
| | - Olivier Elemento
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
- His Royal Highness Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021
| | - Richard H Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021;
| |
Collapse
|
17
|
Finnell RH, Caiaffa CD, Kim SE, Lei Y, Steele J, Cao X, Tukeman G, Lin YL, Cabrera RM, Wlodarczyk BJ. Gene Environment Interactions in the Etiology of Neural Tube Defects. Front Genet 2021; 12:659612. [PMID: 34040637 PMCID: PMC8143787 DOI: 10.3389/fgene.2021.659612] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Human structural congenital malformations are the leading cause of infant mortality in the United States. Estimates from the United States Center for Disease Control and Prevention (CDC) determine that close to 3% of all United States newborns present with birth defects; the worldwide estimate approaches 6% of infants presenting with congenital anomalies. The scientific community has recognized for decades that the majority of birth defects have undetermined etiologies, although we propose that environmental agents interacting with inherited susceptibility genes are the major contributing factors. Neural tube defects (NTDs) are among the most prevalent human birth defects and as such, these malformations will be the primary focus of this review. NTDs result from failures in embryonic central nervous system development and are classified by their anatomical locations. Defects in the posterior portion of the neural tube are referred to as meningomyeloceles (spina bifida), while the more anterior defects are differentiated as anencephaly, encephalocele, or iniencephaly. Craniorachischisis involves a failure of the neural folds to elevate and thus disrupt the entire length of the neural tube. Worldwide NTDs have a prevalence of approximately 18.6 per 10,000 live births. It is widely believed that genetic factors are responsible for some 70% of NTDs, while the intrauterine environment tips the balance toward neurulation failure in at risk individuals. Despite aggressive educational campaigns to inform the public about folic acid supplementation and the benefits of providing mandatory folic acid food fortification in the United States, NTDs still affect up to 2,300 United States births annually and some 166,000 spina bifida patients currently live in the United States, more than half of whom are now adults. Within the context of this review, we will consider the role of maternal nutritional status (deficiency states involving B vitamins and one carbon analytes) and the potential modifiers of NTD risk beyond folic acid. There are several well-established human teratogens that contribute to the population burden of NTDs, including: industrial waste and pollutants [e.g., arsenic, pesticides, and polycyclic aromatic hydrocarbons (PAHs)], pharmaceuticals (e.g., anti-epileptic medications), and maternal hyperthermia during the first trimester. Animal models for these teratogens are described with attention focused on valproic acid (VPA; Depakote). Genetic interrogation of model systems involving VPA will be used as a model approach to discerning susceptibility factors that define the gene-environment interactions contributing to the etiology of NTDs.
Collapse
Affiliation(s)
- Richard H. Finnell
- Department of Molecular and Human Genetics and Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Carlo Donato Caiaffa
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Sung-Eun Kim
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - John Steele
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Xuanye Cao
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Gabriel Tukeman
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Ying Linda Lin
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Robert M. Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Bogdan J. Wlodarczyk
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
18
|
Ezan J, Moreau MM, Mamo TM, Shimbo M, Decroo M, Richter M, Peyroutou R, Rachel R, Tissir F, de Anda FC, Sans N, Montcouquiol M. Early loss of Scribble affects cortical development, interhemispheric connectivity and psychomotor activity. Sci Rep 2021; 11:9106. [PMID: 33907211 PMCID: PMC8079449 DOI: 10.1038/s41598-021-88147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/01/2021] [Indexed: 12/03/2022] Open
Abstract
Neurodevelopmental disorders arise from combined defects in processes including cell proliferation, differentiation, migration and commissure formation. The evolutionarily conserved tumor-suppressor protein Scribble (Scrib) serves as a nexus to transduce signals for the establishment of apicobasal and planar cell polarity during these processes. Human SCRIB gene mutations are associated with neural tube defects and this gene is located in the minimal critical region deleted in the rare Verheij syndrome. In this study, we generated brain-specific conditional cKO mouse mutants and assessed the impact of the Scrib deletion on brain morphogenesis and behavior. We showed that embryonic deletion of Scrib in the telencephalon leads to cortical thickness reduction (microcephaly) and partial corpus callosum and hippocampal commissure agenesis. We correlated these phenotypes with a disruption in various developmental mechanisms of corticogenesis including neurogenesis, neuronal migration and axonal connectivity. Finally, we show that Scrib cKO mice have psychomotor deficits such as locomotor activity impairment and memory alterations. Altogether, our results show that Scrib is essential for early brain development due to its role in several developmental cellular mechanisms that could underlie some of the deficits observed in complex neurodevelopmental pathologies.
Collapse
Affiliation(s)
- Jerome Ezan
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France.
| | - Maité M Moreau
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Tamrat M Mamo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Miki Shimbo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Maureen Decroo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Melanie Richter
- Germany Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronan Peyroutou
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Rivka Rachel
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Fadel Tissir
- Developmental Neurobiology Group, Institute of Neuroscience, University of Louvain, Avenue Mounier 73, Box B1.73.16, 1200, Brussels, Belgium
| | - Froylan Calderon de Anda
- Germany Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Sans
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Mireille Montcouquiol
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France.
| |
Collapse
|
19
|
Structural basis of the human Scribble-Vangl2 association in health and disease. Biochem J 2021; 478:1321-1332. [PMID: 33684218 PMCID: PMC8038854 DOI: 10.1042/bcj20200816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023]
Abstract
Scribble is a critical cell polarity regulator that has been shown to work as either an oncogene or tumor suppressor in a context dependent manner, and also impacts cell migration, tissue architecture and immunity. Mutations in Scribble lead to neural tube defects in mice and humans, which has been attributed to a loss of interaction with the planar cell polarity regulator Vangl2. We show that the Scribble PDZ domains 1, 2 and 3 are able to interact with the C-terminal PDZ binding motif of Vangl2 and have now determined crystal structures of these Scribble PDZ domains bound to the Vangl2 peptide. Mapping of mammalian neural tube defect mutations reveal that mutations located distal to the canonical PDZ domain ligand binding groove can not only ablate binding to Vangl2 but also disrupt binding to multiple other signaling regulators. Our findings suggest that PDZ-associated neural tube defect mutations in Scribble may not simply act in a Vangl2 dependent manner but as broad-spectrum loss of function mutants by disrupting the global Scribble-mediated interaction network.
Collapse
|
20
|
Galea GL, Maniou E, Edwards TJ, Marshall AR, Ampartzidis I, Greene NDE, Copp AJ. Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nat Commun 2021; 12:1159. [PMID: 33608529 PMCID: PMC7895924 DOI: 10.1038/s41467-021-21372-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves continue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Timothy J Edwards
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Ioakeim Ampartzidis
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
21
|
Au KS, Hebert L, Hillman P, Baker C, Brown MR, Kim DK, Soldano K, Garrett M, Ashley-Koch A, Lee S, Gleeson J, Hixson JE, Morrison AC, Northrup H. Human myelomeningocele risk and ultra-rare deleterious variants in genes associated with cilium, WNT-signaling, ECM, cytoskeleton and cell migration. Sci Rep 2021; 11:3639. [PMID: 33574475 PMCID: PMC7878900 DOI: 10.1038/s41598-021-83058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Myelomeningocele (MMC) affects one in 1000 newborns annually worldwide and each surviving child faces tremendous lifetime medical and caregiving burdens. Both genetic and environmental factors contribute to disease risk but the mechanism is unclear. This study examined 506 MMC subjects for ultra-rare deleterious variants (URDVs, absent in gnomAD v2.1.1 controls that have Combined Annotation Dependent Depletion score ≥ 20) in candidate genes either known to cause abnormal neural tube closure in animals or previously associated with human MMC in the current study cohort. Approximately 70% of the study subjects carried one to nine URDVs among 302 candidate genes. Half of the study subjects carried heterozygous URDVs in multiple genes involved in the structure and/or function of cilium, cytoskeleton, extracellular matrix, WNT signaling, and/or cell migration. Another 20% of the study subjects carried heterozygous URDVs in candidate genes associated with gene transcription regulation, folate metabolism, or glucose metabolism. Presence of URDVs in the candidate genes involving these biological function groups may elevate the risk of developing myelomeningocele in the study cohort.
Collapse
Affiliation(s)
- K S Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - L Hebert
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - P Hillman
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - C Baker
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - M R Brown
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - D-K Kim
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - K Soldano
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - M Garrett
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - A Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - S Lee
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J Gleeson
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - A C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - H Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
22
|
Moussa M, Papatsoris AG, Chakra MA, Fares Y, Dabboucy B, Dellis A. Perspectives on urological care in spina bifida patients. Intractable Rare Dis Res 2021; 10:1-10. [PMID: 33614369 PMCID: PMC7882087 DOI: 10.5582/irdr.2020.03077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/04/2020] [Accepted: 12/12/2020] [Indexed: 02/05/2023] Open
Abstract
Spina bifida (SB) is a neurogenetic disorder with a complex etiology that involves genetic and environmental factors. SB can occur in two major forms of open SB or SB aperta and closed SB or SB occulta. Myelomeningocele (MMC), the most common neural tube defects (NTDs), occurs in approximately 1 in 1,000 births. Considering non-genetic factors, diminished folate status is the best-known factor influencing NTD risk. The methylenetetrahydrofolate reductase (MTHFR) gene has been implicated as a risk factor for NTDs. The primary disorder in the pathogenesis of MMC is failed neural tube closure in the embryonic spinal region. The clinical manifestation of SB depends on clinical type and severity. SB can be detected in the second trimester using ultrasound which will reveal specific cranial signs. The management of MMC traditionally involves surgery within 48 h of birth. Prenatal repair of MMC is recommended for fetuses who meet maternal and fetal Management of Myelomeningocele Study (MOMS) specified criteria. Urological manifestations of SB include urinary incontinence, urolithiasis, sexual dysfunction, renal dysfunction, and urinary tract infection. Renal failure is among the most severe complications of SB. The most important role of the urologist is the management of neurogenic bladder. Medical management with clean intermittent catheterization and anticholinergic treatment is generally considered the gold standard of therapy. However, when this therapy fails surgical reconstruction become the only remaining option. This review will summarize the pathogenesis, risk factors, genetic contribution, diagnostic test, and management of SB. Lastly, the urologic outcomes and therapies are reviewed.
Collapse
Affiliation(s)
- Mohamad Moussa
- Urology Department, Zahraa Hospital, University Medical Center, Lebanese University, Beirut, Lebanon
| | - Athanasios G. Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mohamad Abou Chakra
- Department of Urology, Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Department of Neurosurgery, Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Baraa Dabboucy
- Department of Neurosurgery, Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - Athanasios Dellis
- Department of Urology/General Surgery, Areteion Hospital, Athens, Greece
| |
Collapse
|
23
|
Lee S, Gleeson JG. Closing in on Mechanisms of Open Neural Tube Defects. Trends Neurosci 2020; 43:519-532. [PMID: 32423763 PMCID: PMC7321880 DOI: 10.1016/j.tins.2020.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
Neural tube defects (NTDs) represent a failure of the neural plate to complete the developmental transition to a neural tube. NTDs are the most common birth anomaly of the CNS. Following mandatory folic acid fortification of dietary grains, a dramatic reduction in the incidence of NTDs was observed in areas where the policy was implemented, yet the genetic drivers of NTDs in humans, and the mechanisms by which folic acid prevents disease, remain disputed. Here, we discuss current understanding of human NTD genetics, recent advances regarding potential mechanisms by which folic acid might modify risk through effects on the epigenome and transcriptome, and new approaches to study refined phenotypes for a greater appreciation of the developmental and genetic causes of NTDs.
Collapse
Affiliation(s)
- Sangmoon Lee
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92025, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92025, USA.
| |
Collapse
|
24
|
Tian T, Lei Y, Chen Y, Guo Y, Jin L, Finnell RH, Wang L, Ren A. Rare copy number variations of planar cell polarity genes are associated with human neural tube defects. Neurogenetics 2020; 21:217-225. [PMID: 32388773 DOI: 10.1007/s10048-020-00613-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Select single-nucleotide variants in planar cell polarity (PCP) genes are associated with increased risk for neural tube defects (NTDs). However, whether copy number variants (CNVs) in PCP genes contribute to NTDs is unknown. Considering that CNVs are implicated in several human developmental disorders, we hypothesized that CNVs in PCP genes may be causative factors to human NTDs. DNA from umbilical cord tissues of NTD-affected fetuses and parental venous blood samples were collected. We performed a quantitative analysis of copy numbers of all exon regions in the VANGL1, VANGL2, CELSR1, SCRIB, DVL2, DVL3, and PTK7 genes using a CNVplex assay. Quantitative real-time PCR (qPCR) was carried out to confirm the results of CNV analysis. As a result, 16 CNVs were identified among the NTDs. Of these CNVs, 5 loci were identified in 11 NTD probands with CNVs involving DVL2 (exons 1-15), VANGL1 (exons 1-7, exon 8), and VANGL2 (exons 5-8, exons 7 and 8). One CNV (DVL2 exons 1-15) was a duplication and the remaining 15 CNVs were deletions. Eleven CNVs were confirmed by qPCR. One de novo CNV in VANGL1 and one DVL2 were detected from two cases. Compared with unaffected control populations in 1000 Genome, ExAC, MARRVEL, DGV, and dbVar databases, the frequencies of de novo deletion in VANGL1 (1.14%) and de novo duplication in DVL2 (0.57%) were significantly higher in our NTD subjects (p < 0.05). This study demonstrates that de novo CNVs in PCP genes, notably deletions in VANGL1 and gains in DVL2, could contribute to the risk of NTDs.
Collapse
Affiliation(s)
- Tian Tian
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yunping Lei
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yongyan Chen
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Yinnan Guo
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory for Reproductive Health; Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
25
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
26
|
Humphries AC, Narang S, Mlodzik M. Mutations associated with human neural tube defects display disrupted planar cell polarity in Drosophila. eLife 2020; 9:e53532. [PMID: 32234212 PMCID: PMC7180057 DOI: 10.7554/elife.53532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Planar cell polarity (PCP) and neural tube defects (NTDs) are linked, with a subset of NTD patients found to harbor mutations in PCP genes, but there is limited data on whether these mutations disrupt PCP signaling in vivo. The core PCP gene Van Gogh (Vang), Vangl1/2 in mammals, is the most specific for PCP. We thus addressed potential causality of NTD-associated Vangl1/2 mutations, from either mouse or human patients, in Drosophila allowing intricate analysis of the PCP pathway. Introducing the respective mammalian mutations into Drosophila Vang revealed defective phenotypic and functional behaviors, with changes to Vang localization, post-translational modification, and mechanistic function, such as its ability to interact with PCP effectors. Our findings provide mechanistic insight into how different mammalian mutations contribute to developmental disorders and strengthen the link between PCP and NTD. Importantly, analyses of the human mutations revealed that each is a causative factor for the associated NTD.
Collapse
Affiliation(s)
- Ashley C Humphries
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| | - Sonali Narang
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative BiologyNew YorkUnited States
- Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical SciencesNew YorkUnited States
| |
Collapse
|
27
|
Li C, Barton C, Henke K, Daane J, Treaster S, Caetano-Lopes J, Tanguay RL, Harris MP. celsr1a is essential for tissue homeostasis and onset of aging phenotypes in the zebrafish. eLife 2020; 9:50523. [PMID: 31985398 PMCID: PMC7010407 DOI: 10.7554/elife.50523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
The use of genetics has been invaluable in defining the complex mechanisms of aging and longevity. Zebrafish, while a prominent model for vertebrate development, have not been used systematically to address questions of how and why we age. In a mutagenesis screen focusing on late developmental phenotypes, we identified a new mutant that displays aging phenotypes at young adult stages. We find that the phenotypes are due to loss-of-function in the non-classical cadherin celsr1a. The premature aging is not associated with increased cellular senescence or telomere length but is a result of a failure to maintain progenitor cell populations. We show that celsr1a is essential for maintenance of stem cell progenitors in late stages. Caloric restriction can ameliorate celsr1a aging phenotypes. These data suggest that celsr1a function helps to mediate stem cell maintenance during maturation and homeostasis of tissues and thus regulates the onset or expressivity of aging phenotypes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Carrie Barton
- Department of Environmental and Molecular Toxicology, Oregon State University, Sinnhuber Aquatic Research Laboratory, Corvallis, United States
| | - Katrin Henke
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Jake Daane
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Stephen Treaster
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Joana Caetano-Lopes
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Sinnhuber Aquatic Research Laboratory, Corvallis, United States
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW An update is presented regarding neural tube defects (NTDs) including spina bifida and anencephaly, which are among the most common serious birth defects world-wide. Decades of research suggest that no single factor is responsible for neurulation failure, but rather NTDs arise from a complex interplay of disrupted gene regulatory networks, environmental influences and epigenetic regulation. A comprehensive understanding of these dynamics is critical to advance NTD research and prevention. RECENT FINDINGS Next-generation sequencing has ushered in a new era of genomic insight toward NTD pathophysiology, implicating novel gene associations with human NTD risk. Ongoing research is moving from a candidate gene approach toward genome-wide, systems-based investigations that are starting to uncover genetic and epigenetic complexities that underlie NTD manifestation. SUMMARY Neural tube closure is critical for the formation of the human brain and spinal cord. Broader, more all-inclusive perspectives are emerging to identify the genetic determinants of human NTDs.
Collapse
Affiliation(s)
- Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
29
|
Wang L, Ren A, Tian T, Li N, Cao X, Zhang P, Jin L, Li Z, Shen Y, Zhang B, Finnell RH, Lei Y. Whole-Exome Sequencing Identifies Damaging de novo Variants in Anencephalic Cases. Front Neurosci 2019; 13:1285. [PMID: 31849593 PMCID: PMC6896715 DOI: 10.3389/fnins.2019.01285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anencephaly is a lethal neural tube defect (NTD). Although variants in several genes have been implicated in the development of anencephaly, a more complete picture of variants in the genome, especially de novo variants (DNVs), remains unresolved. We aim to identify DNVs that play an important role in the development of anencephaly by performing whole-exome DNA sequencing (WES) of proband-parent trios. RESULTS A total of 13 DNVs were identified in 8 anencephaly trios by WES, including two loss of function (LoF) variants detected in pLI > 0.9 genes (SPHKAP, c.2629_2633del, and NCOR1, p.Y1907X). Damaging DNVs were identified in 61.5% (8/13) of the anencephalic cases. Independent validation was conducted in an additional 502 NTD cases. Gene inactivation using targeted morpholino antisense oligomers and rescue assays were conducted in zebrafish, and transfection expression in HEK293T cells. Four DNVs in four cases were identified and predicted to alter protein function, including p.R328Q in WD repeat domain phosphoinositide-interacting 1 (WIPI1). Three variants, p.G313R, p.T418M, and p.L406P, in the WIPI1 gene were identified from the independent replication cohort consisting of 502 cases. Functional analysis suggested that the wipi1 p.L406P and p.R328Q variants most likely displayed loss-of-function effects during embryonic development. CONCLUSION De novo damaging variants are the main culprit for majority of anencephalic cases. Missense variants in WIPI1 may play a role in the genetic etiology of anencephaly, and LoF variants in SPHKAP and NCOR1 may also contribute to anencephaly. These findings add to our existing understanding of the genetic mechanisms of NTD formation.
Collapse
Affiliation(s)
- Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tian Tian
- Institute of Reproductive and Child Health, National Health Commission Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Nan Li
- Institute of Reproductive and Child Health, National Health Commission Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Peng Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yan Shen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
30
|
Update on the Role of the Non-Canonical Wnt/Planar Cell Polarity Pathway in Neural Tube Defects. Cells 2019; 8:cells8101198. [PMID: 31590237 PMCID: PMC6829399 DOI: 10.3390/cells8101198] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Neural tube defects (NTDs), including spina bifida and anencephaly, represent the most severe and common malformations of the central nervous system affecting 0.7–3 per 1000 live births. They result from the failure of neural tube closure during the first few weeks of pregnancy. They have a complex etiology that implicate a large number of genetic and environmental factors that remain largely undetermined. Extensive studies in vertebrate models have strongly implicated the non-canonical Wnt/planar cell polarity (PCP) signaling pathway in the pathogenesis of NTDs. The defects in this pathway lead to a defective convergent extension that is a major morphogenetic process essential for neural tube elongation and subsequent closure. A large number of genetic studies in human NTDs have demonstrated an important role of PCP signaling in their etiology. However, the relative contribution of this pathway to this complex etiology awaits a better picture of the complete genetic architecture of these defects. The emergence of new genome technologies and bioinformatics pipelines, complemented with the powerful tool of animal models for variant interpretation as well as significant collaborative efforts, will help to dissect the complex genetics of NTDs. The ultimate goal is to develop better preventive and counseling strategies for families affected by these devastating conditions.
Collapse
|
31
|
Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat Rev Drug Discov 2019; 18:869-884. [PMID: 31462748 DOI: 10.1038/s41573-019-0039-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) - one of the five main families in the GPCR superfamily - have several atypical characteristics, including large, multi-domain N termini and a highly conserved region that can be autoproteolytically cleaved. Although GPCRs overall have well-established pharmacological tractability, currently no therapies that target any of the 33 members of the aGPCR family are either approved or in clinical trials. However, human genetics and preclinical research have strengthened the links between aGPCRs and disease in recent years. This, together with a greater understanding of their functional complexity, has led to growing interest in aGPCRs as drug targets. A framework for prioritizing aGPCR targets and supporting approaches to develop aGPCR modulators could therefore be valuable in harnessing the untapped therapeutic potential of this family. With this in mind, here we discuss the unique opportunities and challenges for drug discovery in modulating aGPCR functions, including target identification, target validation, assay development and safety considerations, using ADGRG1 as an illustrative example.
Collapse
|
32
|
Lei Y, Kim S, Chen Z, Cao X, Zhu H, Yang W, Shaw GM, Zheng Y, Zhang T, Wang H, Finnell RH. Variants identified in PTK7 associated with neural tube defects. Mol Genet Genomic Med 2019; 7:e00584. [PMID: 30689296 PMCID: PMC6465732 DOI: 10.1002/mgg3.584] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Variants in planar cell polarity (PCP) pathway genes have been repeatedly implicated in the pathogenesis of NTDs in both mouse models and in human cohorts. Mouse models indicate that the homogenous disruption of the Ptk7 gene, a PCP regulator, results in craniorachischisis; while embryos that are doubly heterozygous for Ptk7XST87 and Vangl2Lp mutations present with spina bifida. METHODS In this study, we initially sequenced exons of the human PTK7 gene in 192 spina bifida patients and 190 controls from a California population. A phase II validation study was performed in 343 Chinese NTD cohort. Functional assays including immunoblotting and immunoprecipitation were used to study identified variants effect on PTK7 function. RESULTS We identified three rare (MAF <0.001) missense heterozygous PTK7 variants (NM_001270398.1:c.581C>T, p.Arg630Ser and p.Tyr725Phe) in the spina bifida patients. In our functional analyses, p.Arg630Ser affected PTK7 mutant protein stability and increased interaction with Dvl2, while the p.Thr186Met variant decreased PTK7 interactions with Dvl2. No novel predicted-to-be-damaging variant or function-disrupted PTK7 variant was identified among the control subjects. We subsequently re-sequenced the PTK7 CDS region in 343 NTDs from China to validate the association between PTK7 and NTDs. The frequency of PTK7 rare missense variants in the Chinese NTD samples is significantly higher than in gnomAD controls. CONCLUSION Our study suggests that rare missense variants in PTK7 contribute to the genetic risk of NTDs.
Collapse
Affiliation(s)
- Yunping Lei
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
- Present address:
Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and MedicineBaylor College of MedicineHoustonTexas77030
| | - Sung‐Eun Kim
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
| | - Zhongzhong Chen
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and DevelopmentFudan UniversityShanghaiChina
| | - Xuanye Cao
- Departments of Molecular and Cellular Biology and MedicineBaylor College of MedicineHoustonTexas
| | - Huiping Zhu
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
- Present address:
Asuragen Inc.2150 Woodward St #100AustinTX78744
| | - Wei Yang
- Department of Pediatrics, Division of NeonatologyStanford University School of MedicineStanfordCalifornia
| | - Gary M. Shaw
- Department of Pediatrics, Division of NeonatologyStanford University School of MedicineStanfordCalifornia
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and DevelopmentFudan UniversityShanghaiChina
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijingChina
| | - Hong‐Yan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and DevelopmentFudan UniversityShanghaiChina
| | - Richard H. Finnell
- Department of Nutritional SciencesDell Pediatric Research Institute, University of Texas at Austin Dell Medical SchoolAustinTexas
- Collaborative Innovation Center for Genetics & Development, School of Life SciencesFudan UniversityShanghaiChina
| |
Collapse
|
33
|
Targeted panel sequencing establishes the implication of planar cell polarity pathway and involves new candidate genes in neural tube defect disorders. Hum Genet 2019; 138:363-374. [DOI: 10.1007/s00439-019-01993-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/26/2019] [Indexed: 01/18/2023]
|
34
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|