1
|
Zhang X, Du J, Wang P, Wang P, Liu Z, Yao Z, Zhao S, Xi H. Identification and genetic diversity analysis of broomrape in Xinjiang, China. Mol Biol Rep 2024; 51:326. [PMID: 38393610 PMCID: PMC10891240 DOI: 10.1007/s11033-023-09203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND As a holoparasitic weed, broomrape has seriously threatened the production of economically important crops, such as melon, watermelon, processed tomato, and sunflower, in Xinjiang in recent years. However, the distribution and genetic diversity of broomrape populations in Xinjiang are not clear at present, which hinders their prevention and control. The purpose of this study was to identify the main species and the genetic differentiation structure of the broomrape population in Xinjiang. METHODS AND RESULTS In the present study, 93 samples from different geographic regions of Xinjiang were collected to identify the species based on ITS and plastid rps2 regions, and the samples were also used to analyze the genetic diversity based on ISSR markers. The results showed that broomrape is not monophyletic in Xinjiang and consists of two major clades (Orobanche cf. aegyptiaca and O. cernua) and three subclades (O. cf. aegyptiaca var. tch, O. cf. aegyptiaca var. klz, and O. cernua.var. alt) based on phylogenetic analysis. Furthermore, the results of the genetic diversity analysis indicated that the average polymorphic information content and marker index were high values of 0.58 and 7.38, respectively, showing the efficiency of the ISSR markers in detecting polymorphism among the broomrape population studied. Additionally, the 11 selected primers produced 154 repeatable polymorphic bands, of which 150 were polymorphic. The genetic diversity of the samples was 37.19% within populations and 62.81% among the populations, indicating that the main genetic differentiation occurred among the populations. There was less gene exchange between populations, with a gene flow index (Nm) of 0.2961 (< 1). The UPGMA dendrogram indicated that most populations with similar geographical conditions and hosts were clustered first, and then all samples were separated into two major groups and seven subclusters. CONCLUSION The broomrapes are mainly O. cf. aegyptiaca and O. cernua in Xinjiang, which were separated into two major groups and seven subclusters based on ISSR markers. Our results provide a theoretical basis for breeding broomrape-resistant varieties.
Collapse
Affiliation(s)
- Xuekun Zhang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Juan Du
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Panpan Wang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Peng Wang
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Zheng Liu
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Zhaoqun Yao
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Sifeng Zhao
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Hui Xi
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
2
|
Wu L, Fan P, Zhou J, Li Y, Xu Z, Lin Y, Wang Y, Song J, Yao H. Gene Losses and Homology of the Chloroplast Genomes of Taxillus and Phacellaria Species. Genes (Basel) 2023; 14:genes14040943. [PMID: 37107701 PMCID: PMC10137875 DOI: 10.3390/genes14040943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Research on the chloroplast genome of parasitic plants is limited. In particular, the homology between the chloroplast genomes of parasitic and hyperparasitic plants has not been reported yet. In this study, three chloroplast genomes of Taxillus (Taxillus chinensis, Taxillus delavayi, and Taxillus thibetensis) and one chloroplast genome of Phacellaria (Phacellaria rigidula) were sequenced and analyzed, among which T. chinensis is the host of P. rigidula. The chloroplast genomes of the four species were 119,941-138,492 bp in length. Compared with the chloroplast genome of the autotrophic plant Nicotiana tabacum, all of the ndh genes, three ribosomal protein genes, three tRNA genes and the infA gene were lost in the three Taxillus species. Meanwhile, in P. rigidula, the trnV-UAC gene and the ycf15 gene were lost, and only one ndh gene (ndhB) existed. The results of homology analysis showed that the homology between P. rigidula and its host T. chinensis was low, indicating that P. rigidula grows on its host T. chinensis but they do not share the chloroplast genome. In addition, horizontal gene transfer was not found between P. rigidula and its host T. chinensis. Several candidate highly variable regions in the chloroplast genomes of Taxillus and Phacellaria species were selected for species identification study. Phylogenetic analysis revealed that the species of Taxillus and Scurrula were closely related and supported that Scurrula and Taxillus should be treated as congeneric, while species in Phacellaria had a close relationship with that in Viscum.
Collapse
Affiliation(s)
- Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Panhui Fan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianguo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yonghua Li
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530004, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yulin Lin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
3
|
Cao X, Xiao L, Zhang L, Chen M, Bian P, Ma Q, Chen S, He Q, Ma X, Yao Z, Zhao S. Phenotypic and histological analyses on the resistance of melon to Phelipanche aegyptiaca. FRONTIERS IN PLANT SCIENCE 2023; 14:1070319. [PMID: 37035047 PMCID: PMC10079939 DOI: 10.3389/fpls.2023.1070319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Melon (Cucumis melo L.) is an economically important crop in Xinjiang, China, but its production is constrained by the parasitic plant Phelipanche aegyptiaca that attaches to the roots of many crops and causes severe stunting and loss of yield. Rhizotron, pot, and field experiments were employed to evaluate the resistance of 27 melon cultivars to P. aegyptiaca. Then, the resistant and susceptible cultivars were inoculated with P. aegyptiaca from six populations to assess their resistance stability and broad spectrum. Further microscopic and histological analyses were used to clarify the resistance phenotypes and histological structure. The results showed that Huangpi 9818 and KR1326 were more resistant to P. aegyptiaca compared to other cultivars in the rhizotron, pot, and field experiments. In addition, compared to the susceptible cultivar K1076, Huangpi 9818 and KR1326 showed broad-spectrum resistance to six P. aegyptiaca populations. These two resistant cultivars had lower P. aegyptiaca biomass and fewer and smaller P. aegyptiaca attachments on their roots compared to susceptible cultivar K1076. KR1326 (resistant) and K1076 (susceptible) were selected to further study resistance phenotypes and mechanisms. Germination-inducing activity of root exudates and microscopic analysis showed that the resistance in KR1326 was not related to low induction of P. aegyptiaca germination. The tubercles of parasite on KR1326 were observed slightly brown at 14 days after inoculation (DAI), the necrosis and arrest of parasite development occurred at 23 DAI. Histological analysis of necrosis tubercles showed that the endophyte of parasite had reached host central cylinder, connected with host xylem, and accumulation of secretions and callose were detected in neighbouring cells. We concluded that KR1326 is an important melon cultivar for P. aegyptiaca resistance that could be used to expand the genetic basis of cultivated muskmelon for resistance to the parasite.
Collapse
Affiliation(s)
- Xiaolei Cao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Lifeng Xiao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China
| | - Lu Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China
| | - Meixiu Chen
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China
| | - Pengxuan Bian
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China
| | - Qianqian Ma
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China
| | - Siyu Chen
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China
| | - Quanlong He
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China
| | - Xinli Ma
- Hami Melon Research Center, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Zhaoqun Yao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China
| | - Sifeng Zhao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Cao X, Yao Z, Zhao S, Zhang L, Chen MX, Tian F. First Report of Phelipanche aegyptiaca on Plectranthus scutellarioides in Xinjiang, China. PLANT DISEASE 2022; 107:589. [PMID: 35771114 DOI: 10.1094/pdis-04-22-0755-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coleus (Plectranthus scutellarioides [L.] R.Br.[syn.: Solenostemon scutellarioides]) is a perennial plant in the Lamiaceae family. It produces variegated leaves of various colors. It is commonly cultivated as an ornamental plant or grown in commercial greenhouses (Garibaldi et al. 2019). Phelipanche aegyptiaca Pers. is a dicotyledonous holoparasitic flowering plant that parasitizes more than 30 food crops (e.g., tomato, sunflower, and chickpea), ornamental crops, and others in different parts of the world, causing heavy economic losses (Nosratti et al. 2020). In 2016 and 2017, broomrape was observed parasitizing coleus in the greenhouse (86° 3' 36" E, 44° 18' 36" N, 500 m elevation) in Shihezi, Xinjiang, China (Supplementary Figure 1A-D). A single coleus plant could be parasitized by average 6-10 broomrape plants, and 20% of coleus plants were infested. The infection was confirmed by verifying the attachment of the broomrape to the coleus root. The inflorescences of the broomrape were normal and healthy and produced germinable seeds (germination rate: 80-90%). The morphological characteristics of the coleus are shown in Supplementary Figures 6 and 7. The main botanical features of the broomrape are as follows: (i) stem 20.65±7.07 cm tall, erect, branched, frail, rather hairy, bulbous at the base with secondary roots; (ii) inflorescence usually many-flowered, lax and cylindrical; (iii) bracts 6.87±0.93 mm long, ovate to lanceolate; (iv) calyx 1.09±0.09 cm long, shortly campanulate; (v) corolla 3.38±0.19 cm long, erect to suberect, white at the base, blue-purple in the upper part, sparsely glandular-villous; (vi) stamens 4, filaments inserted 5-6 mm from the base of the corolla, 1.26±0.11 cm long, anthers with villous; (vii) pistil 2.9±0.15 cm long, ovary glabrous, style with short glandular hairs, stigma bilobed, white (Supplementary Figure 2) (Teimoury et al. 2012; Piwowarczyk et al. 2019). For molecular identification, total genomic DNA was extracted from the flowers of the broomrape (found parasitizing coleus plants), and the ribosomal protein S2 (rps2) and ribosomal DNA internal transcribed spacer (ITS) region were amplified by PCR using the primer pairs rps2F/rps2R, ITS1/ITS4 (Table 1) (Park et al. 2007; Anderson et al. 2004). Two sequences with 580 bp (ITS) and 443 bp (rps2) were obtained (GenBank accession No. MW811482 and MW883573). BLAST analysis showed that the ITS sequence was most similar (identity 100%) to P. aegyptiaca (KC811171) and the rps2 sequence (identity 99%) also matched that of P. aegyptiaca (KC814957). Phylogenetic analysis of the ITS regions and rps2 genes showed that broomrape was fallen into P. aegyptiaca groups (Supplementary Figure 3). Morphological and molecular findings strongly support the conclusion that the broomrape on coleus was P. aegyptiaca. In order to verify that coleus was a host of P. aegyptiaca, coleus seedlings were collected and moved to 1.5-L pots containing a mixture of compost-vermiculite-sand (1:1:1 v:v:v) and seeds of P. aegyptiaca harvested from the host coleus (50 mg of P. aegyptiaca seeds per 1 kg of the substrate). Another three coleus seedlings were transplanted into pots of the same size containing the same mixture as above without P. aegyptiaca seeds. These served as controls. After 90 days of inoculation, the leaves of the infected hosts were lighter in color than those of uninfected hosts (Supplementary Figures 4A, 6). The roots of coleus and P. aegyptiaca were carefully washed with water, and an average of 3-4 emerged broomrape shoots and 50-60 underground attachments were observed on coleus roots (Supplementary Figure 4B). P. aegyptiaca can develop normally in the root of the coleus plant, from germination through attachment to host roots and development of tubercles (Supplementary Figure 5 A-E). Longitudinal and transverse sections of the parasite and host roots at the tubercle stage revealed that the endophytic tissues of P. aegyptiaca had reached and connected to the host vascular bundle (Supplementary Figure 5F-I), confirming the normal biological development and function of P. aegyptiaca haustoria. To the best of our knowledge, this is the first report of P. aegyptiaca parasitizing coleus in Xinjiang, China. Coleus is a very widely cultivated horticultural ornamental plant, and it grows in the same environments favored by P. aegyptiaca; so, the plant can aid the transmission of P. aegyptiaca to previously clear regions. It is necessary to improve the management of coleus in places where P. aegyptiaca is prevalent so as to reduce its spread. References: Garibaldi, A., et al. 2019. Plant Dis. 104:590. https://doi.org/10.1094/PDIS-07-19-1399-PDN Crossref, ISI, Google Scholar Nosratti, I., et al. 2020. Weed Sci. 68:555-564. https://doi.org/10.1017/wsc.2020.61 Crossref, ISI, Google Scholar Teimoury, M., et al. 2012. Plant Dis. 96:1232. https://doi.org/10.1094/PDIS-01-12-0068-PDN Crossref, ISI, Google Scholar Piwowarczyk, R., et al. 2019. Phytotaxa. 386:001-106. https://doi.org/10.11646/phytotaxa.386.1.1 Crossref, ISI, Google Scholar Park, J. M., et al. 2007. Mol. Phylogenet. Evol. 43: 974-985. https://doi.org/10.1016/j.ympev.2006.10.011 Crossref, ISI, Google Scholar Anderson, I. C., et al. 2004. Environ. Microbiol. 6: 769-779. https://doi.org/10.1111/j.1462-2920.2004.00675.x Crossref, ISI, Google Scholar.
Collapse
Affiliation(s)
- Xiaolei Cao
- Shihezi University College of Agriculture, 117455, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China;
| | - Zhaoqun Yao
- Shihezi University College of Agriculture, 117455, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China;
| | - Sifeng Zhao
- Shihezi University College of Agriculture, 117455, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China;
| | - Lu Zhang
- Shihezi University College of Agriculture, 117455, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China;
| | - Mei Xiu Chen
- Shihezi University College of Agriculture, 117455, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China;
| | - Fang Tian
- Shihezi University College of Agriculture, 117455, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang, China;
| |
Collapse
|
5
|
Yousefi AR, Ahmadikhah A, Fotovat R, Rohani L, Soheily F, Uberti DL, Mastinu A. Molecular Characterization of a New Ecotype of Holoparasitic Plant Orobanche L. on Host Weed Xanthium spinosum L. PLANTS (BASEL, SWITZERLAND) 2022; 11:1406. [PMID: 35684179 PMCID: PMC9182829 DOI: 10.3390/plants11111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
A species of Orobanche was observed on spiny cocklebur (Xanthium spinosum) for the first time in Iran and tentatively was named IR-Iso.This study was conducted to make a phylogenetic analysis of the Orobanche using 5.8S rRNA region sequences, and also to better understand its sequence pattern. The full-length ITS1-ITS2 region of the new Orobanche isolate was PCR-amplified from the holoparasitic plant parasitizing X. spinosum. Sequences of the amplicons from the isolate were 100% identical but differed by 5.6-6.7% from most homologous GenBank accessions to 37.9% divergence from distant species. The analysis of the molecular variance showed that variation between-population (61.9%, SE = 0.04) was larger than within-population. Neighbor-joining analysis placed the Iranian isolate in the same clade as most of the Orobanche and Phelipanche species. The isolate was more closely related to Orobanche aegyptiaca (from China), and this was confirmed by using a structure analysis. However, complementary analyses showed that the Iranian isolate has a unique nucleotide substitution pattern, and hence it was considered as an ecotype of O. aegyptiaca (ecotype Alborzica). In this paper we report on the association between this new ecotype of Orobanche and X. spinosum.
Collapse
Affiliation(s)
- Ali Reza Yousefi
- Department of Plant Production & Genetics, University of Zanjan, Zanjan 45371, Iran; (R.F.); (L.R.); (F.S.)
| | - Asadollah Ahmadikhah
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 31587, Iran;
| | - Reza Fotovat
- Department of Plant Production & Genetics, University of Zanjan, Zanjan 45371, Iran; (R.F.); (L.R.); (F.S.)
| | - Leila Rohani
- Department of Plant Production & Genetics, University of Zanjan, Zanjan 45371, Iran; (R.F.); (L.R.); (F.S.)
| | - Foad Soheily
- Department of Plant Production & Genetics, University of Zanjan, Zanjan 45371, Iran; (R.F.); (L.R.); (F.S.)
| | - Daniela Letizia Uberti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| |
Collapse
|
6
|
Cao XL, Zhao SF, Yao ZQ, Dong X, Zhang L, Zhao QY. First Report of Cirsium arvense (Canada Thistle) as a New Host of Orobanche cumana in Xinjiang, China. PLANT DISEASE 2022; 106:PDIS04210773PDN. [PMID: 34798789 DOI: 10.1094/pdis-04-21-0773-pdn] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- X L Cao
- Key Laboratory at the Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College of Shihezi University, Shihezi, 832003, China
| | - S F Zhao
- Key Laboratory at the Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College of Shihezi University, Shihezi, 832003, China
| | - Z Q Yao
- Key Laboratory at the Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College of Shihezi University, Shihezi, 832003, China
| | - X Dong
- Key Laboratory at the Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College of Shihezi University, Shihezi, 832003, China
| | - L Zhang
- Key Laboratory at the Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College of Shihezi University, Shihezi, 832003, China
| | - Q Y Zhao
- Key Laboratory at the Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College of Shihezi University, Shihezi, 832003, China
| |
Collapse
|
7
|
Hedenäs L, Larsson P, Cronholm B, Bisang I. Evidence of horizontal gene transfer between land plant plastids has surprising conservation implications. ANNALS OF BOTANY 2021; 127:903-908. [PMID: 33608721 PMCID: PMC8225274 DOI: 10.1093/aob/mcab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/13/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Horizontal gene transfer (HGT) is an important evolutionary mechanism because it transfers genetic material that may code for traits or functions between species or genomes. It is frequent in mitochondrial and nuclear genomes but has not been demonstrated between plastid genomes of different green land plant species. METHODS We Sanger-sequenced the nuclear internal transcribed spacers (ITS1 and 2) and the plastid rpl16 G2 intron (rpl16). In five individuals with foreign rpl16 we also sequenced atpB-rbcL and trnLUAA-trnFGAA. KEY RESULTS We discovered 14 individuals of a moss species with typical nuclear ITSs but foreign plastid rpl16 from a species of a distant lineage. None of the individuals with three plastid markers sequenced contained all foreign markers, demonstrating the transfer of plastid fragments rather than the entire plastid genome, i.e. entire plastids were not transferred. The two lineages diverged 165-185 Myr BP. The extended time interval since lineage divergence suggests that the foreign rpl16 is more likely explained by HGT than by hybridization or incomplete lineage sorting. CONCLUSIONS We provide the first conclusive evidence of interspecific plastid-to-plastid HGT among land plants. Two aspects are critical: it occurred at several localities during the massive colonization of recently disturbed open habitats that were created by large-scale liming as a freshwater biodiversity conservation measure; and it involved mosses whose unique life cycle includes spores that first develop a filamentous protonema phase. We hypothesize that gene transfer is facilitated when protonema filaments of different species intermix intimately when colonizing disturbed early succession habitats.
Collapse
Affiliation(s)
- Lars Hedenäs
- Department of Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
- For correspondence. E-mail
| | - Petter Larsson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bodil Cronholm
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| | - Irene Bisang
- Department of Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| |
Collapse
|
8
|
Choi KS, Park S. Complete Plastid and Mitochondrial Genomes of Aeginetia indica Reveal Intracellular Gene Transfer (IGT), Horizontal Gene Transfer (HGT), and Cytoplasmic Male Sterility (CMS). Int J Mol Sci 2021; 22:6143. [PMID: 34200260 PMCID: PMC8201098 DOI: 10.3390/ijms22116143] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022] Open
Abstract
Orobanchaceae have become a model group for studies on the evolution of parasitic flowering plants, and Aeginetia indica, a holoparasitic plant, is a member of this family. In this study, we assembled the complete chloroplast and mitochondrial genomes of A. indica. The chloroplast and mitochondrial genomes were 56,381 bp and 401,628 bp long, respectively. The chloroplast genome of A. indica shows massive plastid genes and the loss of one IR (inverted repeat). A comparison of the A. indica chloroplast genome sequence with that of a previous study demonstrated that the two chloroplast genomes encode a similar number of proteins (except atpH) but differ greatly in length. The A. indica mitochondrial genome has 53 genes, including 35 protein-coding genes (34 native mitochondrial genes and one chloroplast gene), 15 tRNA (11 native mitochondrial genes and four chloroplast genes) genes, and three rRNA genes. Evidence for intracellular gene transfer (IGT) and horizontal gene transfer (HGT) was obtained for plastid and mitochondrial genomes. ψndhB and ψcemA in the A. indica mitogenome were transferred from the plastid genome of A. indica. The atpH gene in the plastid of A. indica was transferred from another plastid angiosperm plastid and the atpI gene in mitogenome A. indica was transferred from a host plant like Miscanthus siensis. Cox2 (orf43) encodes proteins containing a membrane domain, making ORF (Open Reading Frame) the most likely candidate gene for CMS development in A. indica.
Collapse
Affiliation(s)
- Kyoung-Su Choi
- Institute of Natural Science, Yeungnam Univiersity, Gyeongsan-si 38541, Gyeongbuk-do, Korea;
- Department of Life Sciences, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Korea
| | - Seonjoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Korea
| |
Collapse
|
9
|
Filip E, Skuza L. Horizontal Gene Transfer Involving Chloroplasts. Int J Mol Sci 2021; 22:ijms22094484. [PMID: 33923118 PMCID: PMC8123421 DOI: 10.3390/ijms22094484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
Horizontal gene transfer (HGT)- is defined as the acquisition of genetic material from another organism. However, recent findings indicate a possible role of HGT in the acquisition of traits with adaptive significance, suggesting that HGT is an important driving force in the evolution of eukaryotes as well as prokaryotes. It has been noted that, in eukaryotes, HGT is more prevalent than originally thought. Mitochondria and chloroplasts lost a large number of genes after their respective endosymbiotic events occurred. Even after this major content loss, organelle genomes still continue to lose their own genes. Many of these are subsequently acquired by intracellular gene transfer from the original plastid. The aim of our review was to elucidate the role of chloroplasts in the transfer of genes. This review also explores gene transfer involving mitochondrial and nuclear genomes, though recent studies indicate that chloroplast genomes are far more active in HGT as compared to these other two DNA-containing cellular compartments.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
- Correspondence:
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|
10
|
Krasylenko Y, Těšitel J, Ceccantini G, Oliveira-da-Silva M, Dvořák V, Steele D, Sosnovsky Y, Piwowarczyk R, Watson DM, Teixeira-Costa L. Parasites on parasites: hyper-, epi-, and autoparasitism among flowering plants. AMERICAN JOURNAL OF BOTANY 2021; 108:8-21. [PMID: 33403666 DOI: 10.1002/ajb2.1590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
All organisms engage in parasitic relations, as either parasites or hosts. Some species may even play both roles simultaneously. Among flowering plants, the most widespread form of parasitism is characterized by the development of an intrusive organ called the haustorium, which absorbs water and nutrients from the host. Despite this functionally unifying feature of parasitic plants, haustoria are not homologous structures; they have evolved 12 times independently. These plants represent ca. 1% of all extant flowering species and show a wide diversity of life histories. A great variety of plants may also serve as hosts, including other parasitic plants. This phenomenon of parasitic exploitation of another parasite, broadly known as hyper- or epiparasitism, is well described among bacteria, fungi, and animals, but remains poorly understood among plants. Here, we review empirical evidence of plant hyperparasitism, including variations of self-parasitism, discuss the diversity and ecological importance of these interactions, and suggest possible evolutionary mechanisms. Hyperparasitism may provide benefits in terms of improved nutrition and enhanced host-parasite compatibility if partners are related. Different forms of self-parasitism may facilitate nutrient sharing among and within parasitic plant individuals, while also offering potential for the evolution of hyperparasitism. Cases of hyperparasitic interactions between parasitic plants may affect the ecology of individual species and modulate their ecosystem impacts. Parasitic plant phenology and disperser feeding behavior are considered to play a major role in the occurrence of hyperparasitism, especially among mistletoes. There is also potential for hyperparasites to act as biological control agents of invasive primary parasitic host species.
Collapse
Affiliation(s)
- Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů, 27, 78371, Olomouc, Czech Republic
| | - Jakub Těšitel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Gregorio Ceccantini
- Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Mariana Oliveira-da-Silva
- Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Václav Dvořák
- Botanical Garden, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc, Czech Republic
| | - Daniel Steele
- Department of Plant Sciences, UC Davis, One Shields Avenue, Davis, CA, 95616
| | - Yevhen Sosnovsky
- Botanical Garden, Ivan Franko National University of Lviv, 44 Cheremshyna Str., 79014, Lviv, Ukraine
| | - Renata Piwowarczyk
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - David M Watson
- Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, 2640, Australia
| | - Luiza Teixeira-Costa
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA, 02138, USA
| |
Collapse
|
11
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
12
|
Li Y, Zhou JG, Chen XL, Cui YX, Xu ZC, Li YH, Song JY, Duan BZ, Yao H. Gene losses and partial deletion of small single-copy regions of the chloroplast genomes of two hemiparasitic Taxillus species. Sci Rep 2017; 7:12834. [PMID: 29026168 PMCID: PMC5638910 DOI: 10.1038/s41598-017-13401-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/22/2017] [Indexed: 11/17/2022] Open
Abstract
Numerous variations are known to occur in the chloroplast genomes of parasitic plants. We determined the complete chloroplast genome sequences of two hemiparasitic species, Taxillus chinensis and T. sutchuenensis, using Illumina and PacBio sequencing technologies. These species are the first members of the family Loranthaceae to be sequenced. The complete chloroplast genomes of T. chinensis and T. sutchuenensis comprise circular 121,363 and 122,562 bp-long molecules with quadripartite structures, respectively. Compared with the chloroplast genomes of Nicotiana tabacum and Osyris alba, all ndh genes as well as three ribosomal protein genes, seven tRNA genes, four ycf genes, and the infA gene of these two species have been lost. The results of the maximum likelihood and neighbor-joining phylogenetic trees strongly support the theory that Loranthaceae and Viscaceae are monophyletic clades. This research reveals the effect of a parasitic lifestyle on the chloroplast structure and genome content of T. chinensis and T. sutchuenensis, and enhances our understanding of the discrepancies in terms of assembly results between Illumina and PacBio.
Collapse
Affiliation(s)
- Ying Li
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jian-Guo Zhou
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xin-Lian Chen
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ying-Xian Cui
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zhi-Chao Xu
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yong-Hua Li
- Department of Pharmacy, Guangxi Traditional Chinese Medicine University, Nanning, 530200, Guangxi, China
| | - Jing-Yuan Song
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Bao-Zhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, Yunnan, China
| | - Hui Yao
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
13
|
Davis CC, Xi Z. Horizontal gene transfer in parasitic plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:14-19. [PMID: 26051213 DOI: 10.1016/j.pbi.2015.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Horizontal gene transfer (HGT) between species has been a major focus of plant evolutionary research during the past decade. Parasitic plants, which establish a direct connection with their hosts, have provided excellent examples of how these transfers are facilitated via the intimacy of this symbiosis. In particular, phylogenetic studies from diverse clades indicate that parasitic plants represent a rich system for studying this phenomenon. Here, HGT has been shown to be astonishingly high in the mitochondrial genome, and appreciable in the nuclear genome. Although explicit tests remain to be performed, some transgenes have been hypothesized to be functional in their recipient species, thus providing a new perspective on the evolution of novelty in parasitic plants.
Collapse
Affiliation(s)
- Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA.
| | - Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Ichihashi Y, Mutuku JM, Yoshida S, Shirasu K. Transcriptomics exposes the uniqueness of parasitic plants. Brief Funct Genomics 2015; 14:275-82. [PMID: 25700082 DOI: 10.1093/bfgp/elv001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parasitic plants have the ability to obtain nutrients directly from other plants, and several species are serious biological threats to agriculture by parasitizing crops of high economic importance. The uniqueness of parasitic plants is characterized by the presence of a multicellular organ called a haustorium, which facilitates plant-plant interactions, and shutting down or reducing their own photosynthesis. Current technical advances in next-generation sequencing and bioinformatics have allowed us to dissect the molecular mechanisms behind the uniqueness of parasitic plants at the genome-wide level. In this review, we summarize recent key findings mainly in transcriptomics that will give us insights into the future direction of parasitic plant research.
Collapse
|
15
|
Hristova E, Stoyanov K, Gevezova M, Denev I. Application of ISSR Methods in Studying Broomrape'S (Orobanchaceae) Biodiversity in Bulgaria. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Tsymbalyuk Z, Mosyakin S. Palynomorphology of species of Orobanche L. subgenus Orobanche L. (Orobanchaceae) in the flora of Ukraine. UKRAINIAN BOTANICAL JOURNAL 2013. [DOI: 10.15407/ukrbotj70.06.723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Tsymbalyuk Z, Mosyakin S. Palynomorphology of species of Orobanche L. subgenus Phelipanche (Pomel) Tzvelev (Orobanchaceae) in the flora of Ukraine. UKRAINIAN BOTANICAL JOURNAL 2013. [DOI: 10.15407/ukrbotj70.05.600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Gao C, Ren X, Mason AS, Liu H, Xiao M, Li J, Fu D. Horizontal gene transfer in plants. Funct Integr Genomics 2013; 14:23-9. [PMID: 24132513 DOI: 10.1007/s10142-013-0345-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/12/2023]
Abstract
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components.
Collapse
Affiliation(s)
- Caihua Gao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Frajman B, Carlón L, Kosachev P, Pedraja OS, Schneeweiss GM, Schönswetter P. Phylogenetic position and taxonomy of the enigmatic Orobanche krylowii (Orobanchaceae), a predominatly Asian species newly found in Albania (SE Europe). PHYTOTAXA 2013; 137. [PMID: 24363565 PMCID: PMC3868937 DOI: 10.11646/phytotaxa.137.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report on the occurrence of Orobanche krylowii in the Alpet Shqiptare (Prokletije, Albanian Alps) mountain range in northern Albania (Balkan Peninsula). The species was previously known only from eastern-most Europe (Volga-Kama River in Russia), more than 2500 km away, and from adjacent Siberia and Central Asia. We used morphological evidence as well as nuclear ribosomal ITS sequences to show that the Albanian population indeed belongs to O. krylowii and that its closest relative is the European O. lycoctoni, but not O. elatior as assumed in the past. Both Orobanche krylowii and O. lycoctoni parasitize Ranunculaceae (Thalictrum spp. and Aconitum lycoctonum, respectively). We provide an identification key and a taxonomic treatment for O. krylowii, and suggest the IUCN category CE (critically endangered) for the highly disjunct Albanian population.
Collapse
Affiliation(s)
- Božo Frajman
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; ,
| | - Luis Carlón
- Jardín Botánico Atlántico, Avenida del Jardín Botánico 2230, E-33394 Gijón (Asturias), Spain;
| | | | | | - Gerald M Schneeweiss
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria;
| | - Peter Schönswetter
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; ,
| |
Collapse
|
20
|
Affiliation(s)
- Peter Gahan
- Anatomy & Human Sciences; King's College London; London Bridge London SE1 1UL UK
| |
Collapse
|
21
|
Wijayawardena BK, Minchella DJ, DeWoody JA. Hosts, parasites, and horizontal gene transfer. Trends Parasitol 2013; 29:329-38. [DOI: 10.1016/j.pt.2013.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022]
|
22
|
Li X, Zhang TC, Qiao Q, Ren Z, Zhao J, Yonezawa T, Hasegawa M, Crabbe MJC, Li J, Zhong Y. Complete chloroplast genome sequence of holoparasite Cistanche deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron (Chenopodiaceae). PLoS One 2013; 8:e58747. [PMID: 23554920 PMCID: PMC3598846 DOI: 10.1371/journal.pone.0058747] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/05/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. PRINCIPAL FINDINGS/SIGNIFICANCE: Here we report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal gene transfer.
Collapse
Affiliation(s)
- Xi Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ti-Cao Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qin Qiao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhumei Ren
- College of Life Science and Technology, Shanxi University, Taiyuan, China
| | - Jiayuan Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Takahiro Yonezawa
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Masami Hasegawa
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - M. James C Crabbe
- Faculty of Creative Arts, Technologies and Science, Institute of Biomedical, Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
| | - Jianqiang Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (JL); (YZ)
| | - Yang Zhong
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institute of Biodiversity Science and Geobiology, Tibet University, Lhasa, China
- * E-mail: (JL); (YZ)
| |
Collapse
|
23
|
Zhang Y, Fernandez-Aparicio M, Wafula EK, Das M, Jiao Y, Wickett NJ, Honaas LA, Ralph PE, Wojciechowski MF, Timko MP, Yoder JI, Westwood JH, Depamphilis CW. Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species. BMC Evol Biol 2013; 13:48. [PMID: 23425243 PMCID: PMC3601976 DOI: 10.1186/1471-2148-13-48] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/04/2013] [Indexed: 11/29/2022] Open
Abstract
Background Parasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants and extract nutrients and water. As a result of their direct plant-plant connections with their host plant, parasitic plants have special opportunities for horizontal gene transfer, the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as recipients and donors of horizontal gene transfer (HGT), but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown. Results Here we show that a gene encoding albumin 1 KNOTTIN-like protein, closely related to the albumin 1 genes only known from papilionoid legumes, where they serve dual roles as food storage and insect toxin, was found in Phelipanche aegyptiaca and related parasitic species of family Orobanchaceae, and was likely acquired by a Phelipanche ancestor via HGT from a legume host based on phylogenetic analyses. The KNOTTINs are well known for their unique “disulfide through disulfide knot” structure and have been extensively studied in various contexts, including drug design. Genomic sequences from nine related parasite species were obtained, and 3D protein structure simulation tests and evolutionary constraint analyses were performed. The parasite gene we identified here retains the intron structure, six highly conserved cysteine residues necessary to form a KNOTTIN protein, and displays levels of purifying selection like those seen in legumes. The albumin 1 xenogene has evolved through >150 speciation events over ca. 16 million years, forming a small family of differentially expressed genes that may confer novel functions in the parasites. Moreover, further data show that a distantly related parasitic plant, Cuscuta, obtained two copies of albumin 1 KNOTTIN-like genes from legumes through a separate HGT event, suggesting that legume KNOTTIN structures have been repeatedly co-opted by parasitic plants. Conclusions The HGT-derived albumins in Phelipanche represent a novel example of how plants can acquire genes from other plants via HGT that then go on to duplicate, evolve, and retain the specialized features required to perform a unique host-derived function.
Collapse
Affiliation(s)
- Yeting Zhang
- Intercollege Graduate Program in Genetics, Institute of Molecular Evolutionary Genetics, Penn State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xi Z, Wang Y, Bradley RK, Sugumaran M, Marx CJ, Rest JS, Davis CC. Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genet 2013; 9:e1003265. [PMID: 23459037 PMCID: PMC3573108 DOI: 10.1371/journal.pgen.1003265] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT), especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae), whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%–41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria) and a species interaction (i.e., parasitism) where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms. Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT), especially in the mitochondrial genome. Here, using phylogenomic approaches, we demonstrate that as much as ∼40% of the mitochondrial genes in the parasitic plant species Rafflesiaceae are acquired from their hosts via HGT. These transgenes are likely functional in their recipient species and in some cases appear to have displaced native copies in the same genomic location. These results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in parasitic plants, HGT involving mitochondrial genes is substantially higher.
Collapse
Affiliation(s)
- Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
- Department of Ecology and Evolutionary Biology, School of Life Science, Fudan University, Shanghai, China
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - M. Sugumaran
- Rimba Ilmu Botanic Garden, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Christopher J. Marx
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Joshua S. Rest
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Charles C. Davis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Xi Z, Bradley RK, Wurdack KJ, Wong K, Sugumaran M, Bomblies K, Rest JS, Davis CC. Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics 2012; 13:227. [PMID: 22681756 PMCID: PMC3460754 DOI: 10.1186/1471-2164-13-227] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies have shown that plant genomes have potentially undergone rampant horizontal gene transfer (HGT). In plant parasitic systems HGT appears to be facilitated by the intimate physical association between the parasite and its host. HGT in these systems has been invoked when a DNA sequence obtained from a parasite is placed phylogenetically very near to its host rather than with its closest relatives. Studies of HGT in parasitic plants have relied largely on the fortuitous discovery of gene phylogenies that indicate HGT, and no broad systematic search for HGT has been undertaken in parasitic systems where it is most expected to occur. RESULTS We analyzed the transcriptomes of the holoparasite Rafflesia cantleyi Solms-Laubach and its obligate host Tetrastigma rafflesiae Miq. using phylogenomic approaches. Our analyses show that several dozen actively transcribed genes, most of which appear to be encoded in the nuclear genome, are likely of host origin. We also find that hundreds of vertically inherited genes (VGT) in this parasitic plant exhibit codon usage properties that are more similar to its host than to its closest relatives. CONCLUSIONS Our results establish for the first time a substantive number of HGTs in a plant host-parasite system. The elevated rate of unidirectional host-to- parasite gene transfer raises the possibility that HGTs may provide a fitness benefit to Rafflesia for maintaining these genes. Finally, a similar convergence in codon usage of VGTs has been shown in microbes with high HGT rates, which may help to explain the increase of HGTs in these parasitic plants.
Collapse
Affiliation(s)
- Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. PLANT MOLECULAR BIOLOGY 2011; 76:273-97. [PMID: 21424877 PMCID: PMC3104136 DOI: 10.1007/s11103-011-9762-4] [Citation(s) in RCA: 909] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Biogeography and Botanical Garden, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
27
|
Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 2010; 365:729-48. [PMID: 20124341 DOI: 10.1098/rstb.2009.0103] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
28
|
Koutroumpa FA, Lieutier F, Roux-Morabito G. Incorporation of mitochondrial fragments in the nuclear genome (Numts) of the longhorned beetleMonochamus galloprovincialis(Coleoptera, Cerambycidae). J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.2008.00492.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Westwood JH, Roney JK, Khatibi PA, Stromberg VK. RNA translocation between parasitic plants and their hosts. PEST MANAGEMENT SCIENCE 2009; 65:533-9. [PMID: 19253417 DOI: 10.1002/ps.1727] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent research indicates that RNA translocation occurs between certain parasitic plant species and their hosts. The movement of at least 27 mRNAs has been demonstrated between hosts and Cuscuta pentagona Engelm., with the largest proportion of these being regulatory genes. Movement of RNAi signals has been documented from hosts to the parasites Triphysaria versicolor (Frisch & CA Mey) and Orobanche aegyptiaca (Pers.), demonstrating that the regulation of genes in one species can be influenced by transfer of RNA signals through a parasitic association. This review considers the implications of these findings in light of present understanding of host-parasite connections and the growing body of evidence that RNAs are able to act as signal molecules that convey regulatory information in a cell- and tissue-specific manner. Together, this suggests that parasitic plants can exchange RNAs with their hosts, and that this may be part of the coordinated growth and development that occurs during the process of parasitism. This phenomenon offers promise for new insights into parasitic plants, and new opportunities for the control of parasitic weeds.
Collapse
Affiliation(s)
- James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061-0390, USA.
| | | | | | | |
Collapse
|
30
|
Keeling PJ. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids. Methods Mol Biol 2009; 532:501-515. [PMID: 19271204 DOI: 10.1007/978-1-60327-853-9_29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plastids are the organelles derived from a cyanobacterium through endosymbiosis. Unlike mitochondria, plastids are not found in all eukaryotes, but their evolution has an added layer of complexity since plastids have moved between eukaryotic lineages by secondary and tertiary endosymbiotic events. This complex history, together with the genetic integration between plastids and their host, has led to many opportunities for gene flow between phylogenetically distinct lineages. Some intracellular transfers do not lead to a protein functioning in a new environment, but many others do and the protein makeup of many plastids appears to have been influenced by exogenous sources as well. Here, different evolutionary sources and cellular destinations of gene flow that has affected the plastid lineage are reviewed. Most horizontal gene transfer (HGT) affecting the modern plastid has taken place via the host nucleus, in the form of genes for plastid-targeted proteins. The impact of this varies greatly from lineage to lineage, but in some cases such transfers can be as high as one fifth of analyzed genes. More rarely, genes have also been transferred to the plastid genome itself, and plastid genes have also been transferred to other non-plant, non-algal lineages. Overall, the proteome of many plastids has emerged as a mosaic of proteins from many sources, some from within the same cell (e.g., cytosolic genes or genes left over from the replacement of an earlier plastid), some from the plastid of other algal lineages, and some from completely unrelated sources.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Park JM, Manen JF, Colwell AE, Schneeweiss GM. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera. JOURNAL OF PLANT RESEARCH 2008; 121:365-76. [PMID: 18483784 DOI: 10.1007/s10265-008-0169-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 04/18/2008] [Indexed: 05/17/2023]
Abstract
The phylogenetic relationships of the non-photosynthetic Orobanche sensu lato (Orobanchaceae), which includes some of the economically most important parasitic weeds, remain insufficiently understood and controversial. This concerns both the phylogenetic relationships within the genus, in particular its monophyly or lack thereof, and the relationships to other holoparasitic genera such as Cistanche or Conopholis. Here we present the first comprehensive phylogenetic study of this group based on a region from the plastid genome (rps2 gene). Although substitution rates appear to be elevated compared to the photosynthetic members of Orobanchaceae, relationships among the major lineages Cistanche, Conopholis plus Epifagus, Boschniakia rossica (Cham. & Schltdl.) B. Fedtsch., B. himalaica Hook. f. & Thomson, B. hookeri Walp. plus B. strobilacea A. Gray, and Orobanche s. l. remain unresolved. Resolution within Orobanche, however, is much better. In agreement with morphological, cytological and other molecular phylogenetic evidence, five lineages, corresponding to the four traditionally recognised sections (Gymnocaulis, Myzorrhiza, Orobanche, Trionychon) and O. latisquama Reut. ex Boiss. (of sect. Orobanche), can be distinguished. A combined analysis of plastid rps2 and nuclear ITS sequences of the holoparasitic genera results in more resolved and better supported trees, although the relationships among Orobanche s. l., Cistanche, and the clade including the remaining genera is unresolved. Therefore, rps2 is a marker from the plastid genome that is well-suited to be used in combination with other already established nuclear markers for resolving generic relationships of Orobanche and related genera.
Collapse
Affiliation(s)
- Jeong-Mi Park
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | | | | | | |
Collapse
|