1
|
Lebreton E, Ertz D, Lücking R, Aptroot A, Carriconde F, Ah-Peng C, Huang JP, Chen KH, Stenger PL, Cáceres MEDS, van den Boom P, Sérusiaux E, Magain N. Global phylogeny of the family Gomphillaceae ( Ascomycota, Graphidales) sheds light on the origin, diversification and endemism in foliicolous lineages. IMA Fungus 2025; 16:e144194. [PMID: 40052070 PMCID: PMC11882023 DOI: 10.3897/imafungus.16.144194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 03/09/2025] Open
Abstract
Foliicolous lichens grow on living leaves of vascular plants. They are mostly found in tropical to subtropical or temperate rainforests. Many phenotype-based species are considered as pantropical or even sub-cosmopolitan, either attributed to old ages, having existed prior to continental breakups or long-distance dispersal. We built a much expanded, global phylogeny of Gomphillaceae, the most diverse group of leaf-dwelling lichenised fungi. Our sampling encompassed six major biodiversity hotspots: MIOI (Madagascar and the Indian Ocean Islands), the Caribbean, New Caledonia, the Colombian Chocó, Mesoamerica and the Atlantic coast of Brazil. It was based on multilocus sequence data (mtSSU rDNA, nuLSU rDNA and RPB1), including 2207 sequences of 1256 specimens. Species delimitation methods combined with a phenotype matrix identified 473 putative species. Amongst these, 104 are confirmed as described, 213 are classified as cryptic or near cryptic (hidden diversity), 100 represent new species to science (identified on the basis of phenotype) and 56 remain unidentified. Amongst the 104 species with a valid name, 40.5% are distributed across 2-5 continents (lichenogeographical regions) by applying the phenotype-based species concept. However, using the integrative approach to delineate species, this estimate is reduced to 9%. We estimate the global species richness of Gomphillaceae at 1,861-2,356 species. The timing of species-level divergences suggests that the current distribution of foliicolous lichens is shaped more by long-distance dispersal and rapid diversification than by vicariance. The origin of the family and major clades appears to be in the Neotropics, with subsequent numerous dispersal events. Our results support the separation of three major lineages, corresponding to the former families Asterothyriaceae, Gomphillaceae s.str. and Solorinellaceae, which should be recognised at the subfamily level.
Collapse
Affiliation(s)
- Elise Lebreton
- Biology, Evolution, Conservation, Inbios Research Center, University of Liège, Quartier Vallée 1, B-4000 Liège, BelgiumUniversity of LiègeLiègeBelgium
| | - Damien Ertz
- Department of Research, Meise Botanic Garden, B-1860 Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Service Général de l’Enseignement Supérieur et de la Recherche Scientifique, Fédération Wallonie-Bruxelles, B-1080 Bruxelles, BelgiumService Général de l’Enseignement Supérieur et de la Recherche Scientifique, Fédération Wallonie-BruxellesBruxellesBelgium
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, 14195 Berlin, GermanyFreie Universität BerlinBerlinGermany
| | - Andre Aptroot
- Laboratório de Botânica / Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, CEP 79070-900, Campo Grande, Mato Grosso do Sul, BrazilUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
| | - Fabian Carriconde
- Institut Agronomique néo-Calédonien (IAC), Équipe « Sol & Végétation » (SolVeg), 98800 Nouméa, New Caledonia (Fr)Institut Agronomique néo-Calédonien (IAC), Équipe « Sol & Végétation » (SolVeg)NouméaNew Caledonia (Fr)
| | - Claudine Ah-Peng
- UMR PVBMT, Université de La Réunion, Saint-Pierre, FranceMR PVBMT, Université de La RéunionSaint-PierreFrance
- OSU-R, Université de La Réunion, Saint-Denis, FranceOSU-R, Université de La RéunionSaint-DenisFrance
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, 11529, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Ko-Hsuan Chen
- Biodiversity Research Center, Academia Sinica, 11529, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Pierre-Louis Stenger
- Institut Agronomique néo-Calédonien (IAC), Équipe « Sol & Végétation » (SolVeg), 98800 Nouméa, New Caledonia (Fr)Institut Agronomique néo-Calédonien (IAC), Équipe « Sol & Végétation » (SolVeg)NouméaNew Caledonia (Fr)
- Omicsphere Analytics, 19 rue Philippe Maupas, 37250 Montbazon, FranceOmicsphere AnalyticsMontbazonFrance
| | - Marcela Eugenia da Silva Cáceres
- Departamento de Biologia, Universidade Federal de Sergipe, CEP 49107-230, São Cristóvão, Sergipe, BrazilUniversidade Federal de SergipeSão CristóvãoBrazil
| | - Pieter van den Boom
- Department of Research, Meise Botanic Garden, B-1860 Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Arafura 16, 5691JA, Son, NetherlandsUnaffiliatedSonNetherlands
| | - Emmanuël Sérusiaux
- Biology, Evolution, Conservation, Inbios Research Center, University of Liège, Quartier Vallée 1, B-4000 Liège, BelgiumUniversity of LiègeLiègeBelgium
| | - Nicolas Magain
- Biology, Evolution, Conservation, Inbios Research Center, University of Liège, Quartier Vallée 1, B-4000 Liège, BelgiumUniversity of LiègeLiègeBelgium
| |
Collapse
|
2
|
Amo de Paz G, Divakar PK, Crespo A, Lumbsch HT, Rico VJ. The First Miniature, Small Foliose, Brown Xanthoparmelia in the Northern Hemisphere. J Fungi (Basel) 2024; 10:603. [PMID: 39330363 PMCID: PMC11433398 DOI: 10.3390/jof10090603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
The genus Xanthoparmelia includes several subcrustose, squamulose, small foliose, and small subfruticose species, primarily in the Southern Hemisphere. Here, we report on the first small foliose species lacking usnic acid in the genus occurring in the Holarctic. The species has been previously known as Lecanora olivascens Nyl., but subsequent studies of the morphology, secondary chemistry, and molecular data of the nuITS rDNA indicate that this species instead belongs to Xanthoparmelia. Consequently, the new combination Xanthoparmelia olivascens (Nyl.) V.J. Rico and G. Amo is proposed, and an epitype is designated here. We discuss the unique presence of a subcrustose Xanthoparmelia species lacking cortical usnic acid in the Northern Hemisphere. This species fits phylogenetically into a clade that was previously only known from the Southern Hemisphere, and hence represents another example of N-S disjunction in lichenized fungi.
Collapse
Affiliation(s)
- Guillermo Amo de Paz
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Pradeep K Divakar
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Helge Thorsten Lumbsch
- Collections, Conservation and Research, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - Víctor J Rico
- Departamento de Farmacología, Farmacognosia y Botánica (U.D. Botánica), Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
3
|
Xu M, Liu Y, Möller E, LaGreca S, Moya P, Wang X, Timdal E, de Boer H, Barreno E, Wang L, Thüs H, Andrésson Ó, Magnússon KP, Ólafsdóttir ES, Heiðmarsson S. Mycobiont-specific primers facilitate the amplification of mitochondrial small subunit ribosomal DNA: a focus on the lichenized fungal genus Melanelia (Ascomycota, Parmeliaceae) in Iceland. MycoKeys 2023; 96:57-75. [PMID: 37252058 PMCID: PMC10210050 DOI: 10.3897/mycokeys.96.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/07/2023] [Indexed: 05/31/2023] Open
Abstract
The fungal mitochondrial small subunit (mtSSU) ribosomal DNA is one of the most commonly used loci for phylogenetic analysis of lichen-forming fungi, but their primer specificity to mycobionts has not been evaluated. The current study aimed to design mycobiont-specific mtSSU primers and highlights their utility with an example from the saxicolous lichen-forming fungal genus Melanelia Essl. in Iceland. The study found a 12.5% success rate (3 out of 24 specimens with good-quality mycobiont mtSSU sequences) using universal primers (i.e. mrSSU1 and mrSSU3R), not including off-target amplification of environmental fungi, e.g. Cladophialophoracarrionii and Lichenotheliaconvexa. New mycobiont-specific primers (mt-SSU-581-5' and mt-SSU-1345-3') were designed by targeting mycobiont-specific nucleotide sites in comparison with environmental fungal sequences, and assessed for mycobiont primer specificity using in silico PCR. The new mycobiont-specific mtSSU primers had a success rate of 91.7% (22 out of 24 specimens with good-quality mycobiont mtSSU sequences) on the studied Melanelia specimens. Additional testing confirmed the specificity and yielded amplicons from 79 specimens of other Parmeliaceae mycobiont lineages. This study highlights the effectiveness of designing mycobiont-specific primers for studies on lichen identification, barcoding and phylogenetics.
Collapse
Affiliation(s)
- Maonian Xu
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Yingkui Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, College of Life Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Erik Möller
- Natural History Museum, University of Oslo, NO-0318 Oslo, Norway
| | - Scott LaGreca
- Department of Biology, Duke University, NC 27708-0338 Durham, USA
| | - Patricia Moya
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva (ICBIBE), Dpto. Botánica, Facultat de Ciències Biològiques, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, València, Spain
| | - Xinyu Wang
- Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Einar Timdal
- Natural History Museum, University of Oslo, NO-0318 Oslo, Norway
| | - Hugo de Boer
- Natural History Museum, University of Oslo, NO-0318 Oslo, Norway
| | - Eva Barreno
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva (ICBIBE), Dpto. Botánica, Facultat de Ciències Biològiques, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, València, Spain
| | - Lisong Wang
- Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650204 Kunming, China
| | - Holger Thüs
- Botany Department, State Museum of Natural History Stuttgart, D-70191 Stuttgart, Germany
| | - Ólafur Andrésson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Kristinn Pétur Magnússon
- Faculty of Life and Environmental Sciences, University of Iceland, IS-102 Reykjavik, Iceland
- Faculty of Natural Resource Sciences, University of Akureyri, IS-600 Akureyri, Iceland
| | - Elín Soffia Ólafsdóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | | |
Collapse
|
4
|
Diversity and Host Relationships of the Mycoparasite Sepedonium (Hypocreales, Ascomycota) in Temperate Central Chile. Microorganisms 2021; 9:microorganisms9112261. [PMID: 34835387 PMCID: PMC8624339 DOI: 10.3390/microorganisms9112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/02/2022] Open
Abstract
We present the first major survey of regional diversity, distribution and host-association of Sepedonium. Whereas the rather scarce worldwide records of this mycoparasitic fungus suggested no specific distribution pattern of most species before, we provide new evidence of endemic and specific host-parasite guilds of Sepedonium in Southern South America, including the description of a new species. The corresponding inventory was performed in temperate central Chile. The regional landscape, a mosaic of exotic timber plantations and remnants of native Nothofagus forests, facilitates a unique combination of endemic and adventitious Boletales hosts. During a two-year survey, 35 Sepedonium strains were isolated and cultured from infected basidiomata of allochthonous Chalciporus piperatus, Paxillus involutus, Rhizopogon spp. and Suillus spp., as well as from the native Boletus loyita, B. loyo, B. putidus and Gastroboletus valdivianus. Taxonomic diagnosis included morphology of conidia and conidiophores, sequences of ITS, RPB2 and EF1 molecular markers and characteristics of in vitro cultures. Phylogenetic reconstructions were performed using Bayesian methods. Four Sepedonium species could be identified and characterized, viz.: S. ampullosporum, S. chrysospermum, S. laevigatum and the newly described species S. loyorum. The most frequent species on introduced Boletales was S. ampullosporum, followed by S. chrysospermum and S. laevigatum. S. loyorum sp. nov. was found exclusively on native boletacean hosts, separated from its closest relative S. chalcipori by micromorphological and molecular attributes. Species descriptions and identification keys are provided. Ecological and biogeographical aspects of endemic and allochthonous symbiotic units consisting of mycoparasite, ectomycorrhizal fungal host and respective mycorrhizal tree are discussed.
Collapse
|
5
|
Grewe F, Ametrano C, Widhelm TJ, Leavitt S, Distefano I, Polyiam W, Pizarro D, Wedin M, Crespo A, Divakar PK, Lumbsch HT. Using target enrichment sequencing to study the higher-level phylogeny of the largest lichen-forming fungi family: Parmeliaceae (Ascomycota). IMA Fungus 2020; 11:27. [PMID: 33317627 PMCID: PMC7734834 DOI: 10.1186/s43008-020-00051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/29/2020] [Indexed: 11/10/2022] Open
Abstract
Parmeliaceae is the largest family of lichen-forming fungi with a worldwide distribution. We used a target enrichment data set and a qualitative selection method for 250 out of 350 genes to infer the phylogeny of the major clades in this family including 81 taxa, with both subfamilies and all seven major clades previously recognized in the subfamily Parmelioideae. The reduced genome-scale data set was analyzed using concatenated-based Bayesian inference and two different Maximum Likelihood analyses, and a coalescent-based species tree method. The resulting topology was strongly supported with the majority of nodes being fully supported in all three concatenated-based analyses. The two subfamilies and each of the seven major clades in Parmelioideae were strongly supported as monophyletic. In addition, most backbone relationships in the topology were recovered with high nodal support. The genus Parmotrema was found to be polyphyletic and consequently, it is suggested to accept the genus Crespoa to accommodate the species previously placed in Parmotrema subgen. Crespoa. This study demonstrates the power of reduced genome-scale data sets to resolve phylogenetic relationships with high support. Due to lower costs, target enrichment methods provide a promising avenue for phylogenetic studies including larger taxonomic/specimen sampling than whole genome data would allow.
Collapse
Affiliation(s)
- Felix Grewe
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA.
| | - Claudio Ametrano
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| | - Todd J Widhelm
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| | - Steven Leavitt
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA
| | - Isabel Distefano
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| | - Wetchasart Polyiam
- Lichen Research Unit, Biology Department, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng 24 Road, Bangkok, 10240, Thailand
| | - David Pizarro
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Mats Wedin
- Department of Botany, Swedish Museum of Natural History, PO Box 50007, SE-104 05, Stockholm, Sweden
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Pradeep K Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - H Thorsten Lumbsch
- Science & Education, The Grainger Bioinformatics Center, Negaunee Integrative Research Center, Gantz Family Collections Center, and Pritzker Laboratory for Molecular Systematics, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, USA
| |
Collapse
|
6
|
A new species concept for the clinically relevant Mucor circinelloides complex. Persoonia - Molecular Phylogeny and Evolution of Fungi 2019; 44:67-97. [PMID: 33116336 PMCID: PMC7567969 DOI: 10.3767/persoonia.2020.44.03] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
Abstract
Mucor species are common soil fungi but also known as agents of human infections (mucormycosis) and used in food production and biotechnology. Mucor circinelloides is the Mucor species that is most frequently isolated from clinical sources. The taxonomy of Mucor circinelloides and its close relatives (Mucor circinelloides complex – MCC) is still based on morphology and mating behaviour. The aim of the present study was a revised taxonomy of the MCC using a polyphasic approach. Using a set of 100 strains molecular phylogenetic analysis of five markers (ITS, rpb1, tsr1, mcm7, and cfs, introduced here) were performed, combined with phenotypic studies, mating tests and the determination of the maximum growth temperatures. The multi-locus analyses revealed 16 phylogenetic species of which 14 showed distinct phenotypical traits and were recognised as discrete species. Five of these species are introduced as novel taxa: M. amethystinus sp. nov., M. atramentarius sp. nov., M. variicolumellatus sp. nov., M. pseudocircinelloides sp. nov., and M. pseudolusitanicus sp. nov. The former formae of M. circinelloides represent one or two separate species. In the MCC, the simple presence of well-shaped zygospores only indicates a close relation of both strains, but not necessarily conspecificity. Seven species of the MCC have been implemented in human infection: M. circinelloides, M. griseocyanus, M. janssenii, M. lusitanicus, M. ramosissimus, M. variicolumellatus, and M. velutinosus.
Collapse
|
7
|
Pogoda CS, Keepers KG, Nadiadi AY, Bailey DW, Lendemer JC, Tripp EA, Kane NC. Genome streamlining via complete loss of introns has occurred multiple times in lichenized fungal mitochondria. Ecol Evol 2019; 9:4245-4263. [PMID: 31016002 PMCID: PMC6467859 DOI: 10.1002/ece3.5056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
Reductions in genome size and complexity are a hallmark of obligate symbioses. The mitochondrial genome displays clear examples of these reductions, with the ancestral alpha-proteobacterial genome size and gene number having been reduced by orders of magnitude in most descendent modern mitochondrial genomes. Here, we examine patterns of mitochondrial evolution specifically looking at intron size, number, and position across 58 species from 21 genera of lichenized Ascomycete fungi, representing a broad range of fungal diversity and niches. Our results show that the cox1gene always contained the highest number of introns out of all the mitochondrial protein-coding genes, that high intron sequence similarity (>90%) can be maintained between different genera, and that lichens have undergone at least two instances of complete, genome-wide intron loss consistent with evidence for genome streamlining via loss of parasitic, noncoding DNA, in Phlyctis boliviensisand Graphis lineola. Notably, however, lichenized fungi have not only undergone intron loss but in some instances have expanded considerably in size due to intron proliferation (e.g., Alectoria fallacina and Parmotrema neotropicum), even between closely related sister species (e.g., Cladonia). These results shed light on the highly dynamic mitochondrial evolution that is occurring in lichens and suggest that these obligate symbiotic organisms are in some cases undergoing recent, broad-scale genome streamlining via loss of protein-coding genes as well as noncoding, parasitic DNA elements.
Collapse
Affiliation(s)
- Cloe S. Pogoda
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - Kyle G. Keepers
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - Arif Y. Nadiadi
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - Dustin W. Bailey
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| | - James C. Lendemer
- Institute of Systematic BotanyThe New York Botanical GardenBronxNew York
| | - Erin A. Tripp
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
- Museum of Natural HistoryUniversity of ColoradoBoulderColorado
| | - Nolan C. Kane
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColorado
| |
Collapse
|
8
|
Gerlach ADCL, Toprak Z, Naciri Y, Caviró EA, da Silveira RMB, Clerc P. New insights into the Usnea cornuta aggregate (Parmeliaceae, lichenized Ascomycota): Molecular analysis reveals high genetic diversity correlated with chemistry. Mol Phylogenet Evol 2019; 131:125-137. [DOI: 10.1016/j.ympev.2018.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023]
|
9
|
Mark K, Randlane T, Thor G, Hur JS, Obermayer W, Saag A. Lichen chemistry is concordant with multilocus gene genealogy in the genus Cetrelia (Parmeliaceae, Ascomycota). Fungal Biol 2018; 123:125-139. [PMID: 30709518 DOI: 10.1016/j.funbio.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/02/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022]
Abstract
The lichen genus Cetrelia represents a taxonomically interesting case where morphologically almost uniform populations differ considerably from each other chemically. Similar variation is not uncommon among lichenized fungi, but it is disputable whether such populations should be considered entities at the species level. Species boundaries in Cetrelia are traditionally delimited either as solely based on morphology or as combinations of morpho- and chemotypes. A dataset of four nuclear markers (ITS, IGS, Mcm7, RPB1) from 62 specimens, representing ten Cetrelia species, was analysed within Bayesian and maximum likelihood frameworks. Analyses recovered a well-resolved phylogeny where the traditional species generally were monophyletic, with the exception of Cetrelia chicitae and Cetrelia pseudolivetorum. Species delimitation analyses supported the distinction of 15 groups within the studied Cetrelia taxa, dividing three traditionally identified species into some species candidates. Chemotypes, distinguished according to the major medullary substance, clearly correlated with clades recovered within Cetrelia, while samples with the same reproductive mode were dispersed throughout the phylogenetic tree. Consequently, delimiting Cetrelia species based only on reproductive morphology is not supported phylogenetically. Character analyses suggest that chemical characters have been more consistent compared to reproductive mode and indicate that metabolite evolution in Cetrelia towards more complex substances is probable.
Collapse
Affiliation(s)
- Kristiina Mark
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia; Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Tiina Randlane
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia.
| | - Göran Thor
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, South Korea
| | | | - Andres Saag
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia
| |
Collapse
|
10
|
Grewe F, Lagostina E, Wu H, Printzen C, H. Thorsten Lumbsch. Population genomic analyses of RAD sequences resolves the phylogenetic relationship of the lichen-forming fungal species Usneaantarctica and Usneaaurantiacoatra. MycoKeys 2018; 43:91-113. [PMID: 30588165 PMCID: PMC6300515 DOI: 10.3897/mycokeys.43.29093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropogonoid species in the lichen-forming fungal genus Usnea exhibit great morphological variation that can be misleading for delimitation of species. We specifically focused on the species delimitation of two closely-related, predominantly Antarctic species differing in the reproductive mode and representing a so-called species pair: the asexual U.antarctica and the sexual U.aurantiacoatra. Previous studies have revealed contradicting results. While multi-locus studies based on DNA sequence data provided evidence that these two taxa might be conspecific, microsatellite data suggested they represent distinct lineages. By using RADseq, we generated thousands of homologous markers to build a robust phylogeny of the two species. Furthermore, we successfully implemented these data in fine-scale population genomic analyses such as DAPC and fineRADstructure. Both Usnea species are readily delimited in phylogenetic inferences and, therefore, the hypothesis that both species are conspecific was rejected. Population genomic analyses also strongly confirmed separated genomes and, additionally, showed different levels of co-ancestry and substructure within each species. Lower co-ancestry in the asexual U.antarctica than in the sexual U.aurantiacoatra may be derived from a wider distributional range of the former species. Our results demonstrate the utility of this RADseq method in tracing population dynamics of lichens in future analyses.
Collapse
Affiliation(s)
- Felix Grewe
- Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Elisa Lagostina
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| | - Huini Wu
- Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S First Avenue, Maywood, IL 60153, USA
| | - Christian Printzen
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| | - H. Thorsten Lumbsch
- Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
11
|
Meyer W, Irinyi L, Hoang MTV, Robert V, Garcia-Hermoso D, Desnos-Ollivier M, Yurayart C, Tsang CC, Lee CY, Woo PCY, Pchelin IM, Uhrlaß S, Nenoff P, Chindamporn A, Chen S, Hebert PDN, Sorrell TC. Database establishment for the secondary fungal DNA barcode translational elongation factor 1α ( TEF1α) 1. Genome 2018; 62:160-169. [PMID: 30465691 DOI: 10.1139/gen-2018-0083] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With new or emerging fungal infections, human and animal fungal pathogens are a growing threat worldwide. Current diagnostic tools are slow, non-specific at the species and subspecies levels, and require specific morphological expertise to accurately identify pathogens from pure cultures. DNA barcodes are easily amplified, universal, short species-specific DNA sequences, which enable rapid identification by comparison with a well-curated reference sequence collection. The primary fungal DNA barcode, ITS region, was introduced in 2012 and is now routinely used in diagnostic laboratories. However, the ITS region only accurately identifies around 75% of all medically relevant fungal species, which has prompted the development of a secondary barcode to increase the resolution power and suitability of DNA barcoding for fungal disease diagnostics. The translational elongation factor 1α (TEF1α) was selected in 2015 as a secondary fungal DNA barcode, but it has not been implemented into practice, due to the absence of a reference database. Here, we have established a quality-controlled reference database for the secondary barcode that together with the ISHAM-ITS database, forms the ISHAM barcode database, available online at http://its.mycologylab.org/ . We encourage the mycology community for active contributions.
Collapse
Affiliation(s)
- Wieland Meyer
- a Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney School of Medicine, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Laszlo Irinyi
- a Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney School of Medicine, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Minh Thuy Vi Hoang
- a Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney School of Medicine, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Vincent Robert
- b Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Dea Garcia-Hermoso
- c Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Molecular Mycology Unit, CNRS UMR2000, Paris, France
| | - Marie Desnos-Ollivier
- c Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Molecular Mycology Unit, CNRS UMR2000, Paris, France
| | - Chompoonek Yurayart
- d Mycology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,e Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chi-Ching Tsang
- f Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chun-Yi Lee
- f Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Patrick C Y Woo
- f Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ivan Mikhailovich Pchelin
- g Laboratory of Molecular Genetic Microbiology, Kashkin Research Institute of Medical Mycology, I.I. Mechnikov North-Western State Medical University, St Petersburg, Russia
| | - Silke Uhrlaß
- h Laboratory of Medical Microbiology, Partnership Dr. C. Krueger & Prof. Dr. P. Nenoff, Roetha OT Moelbis, Germany
| | - Pietro Nenoff
- h Laboratory of Medical Microbiology, Partnership Dr. C. Krueger & Prof. Dr. P. Nenoff, Roetha OT Moelbis, Germany
| | - Ariya Chindamporn
- d Mycology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sharon Chen
- a Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney School of Medicine, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead, NSW, Australia.,i Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, Westmead, NSW, Australia
| | - Paul D N Hebert
- j Department of Integrative Biology and Director of the Biodiversity Institute of Ontario at the University of Guelph, Guelph, ON, Canada
| | - Tania C Sorrell
- a Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney School of Medicine, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Westmead, NSW, Australia
| | | |
Collapse
|
12
|
Pizarro D, Divakar PK, Grewe F, Leavitt SD, Huang JP, Dal Grande F, Schmitt I, Wedin M, Crespo A, Lumbsch HT. Phylogenomic analysis of 2556 single-copy protein-coding genes resolves most evolutionary relationships for the major clades in the most diverse group of lichen-forming fungi. FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0407-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Three new species and one new combination of Gypsoplaca (lichenized Ascomycota) from the Hengduan Mountains in China. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Funk ER, Adams AN, Spotten SM, Van Hove RA, Whittington KT, Keepers KG, Pogoda CS, Lendemer JC, Tripp EA, Kane NC. The complete mitochondrial genomes of five lichenized fungi in the genus Usnea (Ascomycota: Parmeliaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:305-308. [PMID: 33474154 PMCID: PMC7800062 DOI: 10.1080/23802359.2018.1445485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Known colloquially as 'Old Man's Beard', Usnea is a genus of lichenized Ascomycete fungi characterized by having a fruticose growth form and cartilaginous central axis. The complete mitochondrial genomes of Usnea halei, U. mutabilis, U. subfusca, U. subgracilis, and U. subscabrosa were sequenced using Illumina data and then assembled de novo. These mitogenomes ranged in size from 52,486 bp (U. subfusca) to 94,464 bp (U. subgracilis). All were characterized by having high levels of intronic and intergenic variation, such as ORFs that encode proteins with homology to two homing endonuclease types, LAGLIDADG and GIY-YIG. Genes annotated within these mitogenomes include 14 protein-coding genes, the large and small ribosomal subunits (LSU and SSU), and 23-26 tRNAs. Notably, the atp9 gene was absent from each genome. Genomic synteny was highly conserved across the five species. Five conserved mitochondrial genes (nad2, nad4, cox1, cox2, and cox3) were used to infer a best estimate maximum likelihood phylogeny among these five Usnea and other relatives, which yielded relationships consistent with prior published phylogenies.
Collapse
Affiliation(s)
- Erik R Funk
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Alexander N Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Sarah M Spotten
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Roxanne A Van Hove
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Kristina T Whittington
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Kyle G Keepers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Cloe S Pogoda
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - James C Lendemer
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY, USA
| | - Erin A Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Museum of Natural History, University of Colorado, Boulder, CO, USA
| | - Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
15
|
Conserved genomic collinearity as a source of broadly applicable, fast evolving, markers to resolve species complexes: A case study using the lichen-forming genus Peltigera section Polydactylon. Mol Phylogenet Evol 2017; 117:10-29. [DOI: 10.1016/j.ympev.2017.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/10/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
|
16
|
Using a temporal phylogenetic method to harmonize family- and genus-level classification in the largest clade of lichen-forming fungi. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0379-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Sharma V, Salwal R. Molecular Markers and Their Use in Taxonomic Characterization of Trichoderma spp. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Abstract
ABSTRACT
Lichen symbioses comprise a fascinating relationship between algae and fungi. The lichen symbiotic lifestyle evolved early in the evolution of ascomycetes and is also known from a few basidiomycetes. The ascomycete lineages have diversified in the lichenized stage to give rise to a tremendous variety of morphologies. Their thalli are often internally complex and stratified for optimized integration of algal and fungal metabolisms. Thalli are frequently colonized by specific nonlichenized fungi and occasionally also by other lichens. Microscopy has revealed various ways these fungi interact with their hosts. Besides the morphologically recognizable diversity of the lichen mycobionts and lichenicolous (lichen-inhabiting) fungi, many other microorganisms including other fungi and bacterial communities are now detected in lichens by culture-dependent and culture-independent approaches. The application of multi-omics approaches, refined microscopic techniques, and physiological studies has added to our knowledge of lichens, not only about the taxa involved in the lichen interactions, but also about their functions.
Collapse
|
19
|
Fernández-Moriano C, González-Burgos E, Divakar PK, Crespo A, Gómez-Serranillos MP. Evaluation of the Antioxidant Capacities and Cytotoxic Effects of Ten Parmeliaceae Lichen Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:3169751. [PMID: 28074101 PMCID: PMC5203883 DOI: 10.1155/2016/3169751] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 01/15/2023]
Abstract
Parmeliaceae represents the largest and widespread family of lichens and includes species that attract much interest regarding pharmacological activities, due to their production of unique secondary metabolites. The current work aimed to investigate the in vitro antioxidant and cytotoxic activities of the methanol extracts of ten Parmeliaceae species, collected in different continents. Methanol extraction afforded high phenolic content in the extracts. The antioxidant activity displayed by lichens was evaluated through chemical assays, such as the ORAC (Oxygen Radical Absorbance Capacity) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities and the ferric reducing antioxidant power (FRAP). A moderately positive correlation was found between the phenolic content and the antioxidant properties for all the species: R: 0.7430 versus ORAC values, R: 0.7457 versus DPPH scavenging capacity, and R: 0.7056 versus FRAP reducing power. The methanol extract of Flavoparmelia euplecta exhibited the highest ORAC value, the extract of Myelochroa irrugans showed the maximum DPPH scavenging capacity, and Hypotrachyna cirrhata methanol extract demonstrated the highest reducing power. Further, the cytotoxic activity of the ten species was investigated on the human cancer cell lines HepG2 and MCF-7; Myelochroa irrugans exhibited the highest anticancer potential. The pharmacological activities shown here could be attributed to their phytochemical constituents.
Collapse
Affiliation(s)
- C. Fernández-Moriano
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - E. González-Burgos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - P. K. Divakar
- Department of Plant Biology II, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - A. Crespo
- Department of Plant Biology II, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - M. P. Gómez-Serranillos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
20
|
Limitations of Species Delimitation Based on Phylogenetic Analyses: A Case Study in the Hypogymnia hypotrypa Group (Parmeliaceae, Ascomycota). PLoS One 2016; 11:e0163664. [PMID: 27828951 PMCID: PMC5102465 DOI: 10.1371/journal.pone.0163664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022] Open
Abstract
Delimiting species boundaries among closely related lineages often requires a range of independent data sets and analytical approaches. Similar to other organismal groups, robust species circumscriptions in fungi are increasingly investigated within an empirical framework. Here we attempt to delimit species boundaries in a closely related clade of lichen-forming fungi endemic to Asia, the Hypogymnia hypotrypa group (Parmeliaceae). In the current classification, the Hypogymnia hypotrypa group includes two species: H. hypotrypa and H. flavida, which are separated based on distinctive reproductive modes, the former producing soredia but absent in the latter. We reexamined the relationship between these two species using phenotypic characters and molecular sequence data (ITS, GPD, and MCM7 sequences) to address species boundaries in this group. In addition to morphological investigations, we used Bayesian clustering to identify potential genetic groups in the H. hypotrypa/H. flavida clade. We also used a variety of empirical, sequence-based species delimitation approaches, including: the “Automatic Barcode Gap Discovery” (ABGD), the Poisson tree process model (PTP), the General Mixed Yule Coalescent (GMYC), and the multispecies coalescent approach BPP. Different species delimitation scenarios were compared using Bayes factors delimitation analysis, in addition to comparisons of pairwise genetic distances, pairwise fixation indices (FST). The majority of the species delimitation analyses implemented in this study failed to support H. hypotrypa and H. flavida as distinct lineages, as did the Bayesian clustering analysis. However, strong support for the evolutionary independence of H. hypotrypa and H. flavida was inferred using BPP and further supported by Bayes factor delimitation. In spite of rigorous morphological comparisons and a wide range of sequence-based approaches to delimit species, species boundaries in the H. hypotrypa group remain uncertain. This study reveals the potential limitations of relying on distinct reproductive strategies as diagnostic taxonomic characters for Hypogymnia and also the challenges of using popular sequence-based species delimitation methods in groups with recent diversification histories.
Collapse
|
21
|
Lumbsch HT, Kirika PM, Divakar PK, Crespo A, Mugambi G, Orock EA, Leavitt SD, Gatheri GW. Phylogenetic studies uncover a predominantly African lineage in a widely distributed lichen-forming fungal species. MycoKeys 2016. [DOI: 10.3897/mycokeys.14.8971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
22
|
Towards a revised generic classification of lecanoroid lichens (Lecanoraceae, Ascomycota) based on molecular, morphological and chemical evidence. FUNGAL DIVERS 2015. [DOI: 10.1007/s13225-015-0354-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Divakar PK, Crespo A, Wedin M, Leavitt SD, Hawksworth DL, Myllys L, McCune B, Randlane T, Bjerke JW, Ohmura Y, Schmitt I, Boluda CG, Alors D, Roca-Valiente B, Del-Prado R, Ruibal C, Buaruang K, Núñez-Zapata J, Amo de Paz G, Rico VJ, Molina MC, Elix JA, Esslinger TL, Tronstad IKK, Lindgren H, Ertz D, Gueidan C, Saag L, Mark K, Singh G, Dal Grande F, Parnmen S, Beck A, Benatti MN, Blanchon D, Candan M, Clerc P, Goward T, Grube M, Hodkinson BP, Hur JS, Kantvilas G, Kirika PM, Lendemer J, Mattsson JE, Messuti MI, Miadlikowska J, Nelsen M, Ohlson JI, Pérez-Ortega S, Saag A, Sipman HJM, Sohrabi M, Thell A, Thor G, Truong C, Yahr R, Upreti DK, Cubas P, Lumbsch HT. Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. THE NEW PHYTOLOGIST 2015; 208:1217-1226. [PMID: 26299211 DOI: 10.1111/nph.13553] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi. In all cases, the independent origins occurred c. 24 million yr ago. Further, we show that the Paleocene, Eocene and Oligocene were key periods when diversification of major lineages within Parmeliaceae occurred, with subsequent radiations occurring primarily during the Oligocene and Miocene. Our phylogenetic hypothesis supports the independent origin of lichenicolous fungi associated with climatic shifts at the Oligocene-Miocene boundary. Moreover, diversification bursts at different times may be crucial factors driving the diversification of Parmeliaceae. Additionally, our study provides novel insight into evolutionary relationships in this large and diverse family of lichen-forming ascomycetes.
Collapse
Affiliation(s)
- Pradeep K Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Mats Wedin
- Department of Botany, Swedish Museum of Natural History, PO Box 50007, SE-104 05, Stockholm, Sweden
| | - Steven D Leavitt
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| | - David L Hawksworth
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Leena Myllys
- Botanical Museum, Finnish Museum of Natural History, University of Helsinki, PO Box 7, Helsinki, FI-00014, Finland
| | - Bruce McCune
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331-2902, USA
| | - Tiina Randlane
- Institute of Ecology & Earth Sciences, University of Tartu, Lai Street 38, Tartu, 51005, Estonia
| | - Jarle W Bjerke
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, NO-9296, Tromsø, Norway
| | - Yoshihito Ohmura
- National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Imke Schmitt
- Biodiversity and Climate Research Centre BiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, Max-von-Laue-Str. 13, 85 D-60438, Frankfurt, Germany
| | - Carlos G Boluda
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - David Alors
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Beatriz Roca-Valiente
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Ruth Del-Prado
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Constantino Ruibal
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Kawinnat Buaruang
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Jano Núñez-Zapata
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Guillermo Amo de Paz
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Víctor J Rico
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - M Carmen Molina
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, c/ Tulipón s/n., 28933, Móstoles, Madrid, Spain
| | - John A Elix
- Research School of Chemistry, Australian National University, Building 137, Canberra, ACT, 2601, Australia
| | - Theodore L Esslinger
- Department of Biological Sciences Dept. 2715, North Dakota State University, PO Box 6050, Fargo, ND, 58108-6050, USA
| | - Inger Kristin K Tronstad
- Tromsø University Museum, University of Tromsø - The Arctic University of Norway, PO Box 6050, Langnes, NO-9037, Tromsø, Norway
| | - Hanna Lindgren
- Botanical Museum, Finnish Museum of Natural History, University of Helsinki, PO Box 7, Helsinki, FI-00014, Finland
| | - Damien Ertz
- Department of Bryophytes-Thallophytes, Domaine de Bouchout, National Botanic Garden of Belgium, 1860, Meise, Belgium
| | - Cécile Gueidan
- Department of Botany, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Lauri Saag
- Institute of Ecology & Earth Sciences, University of Tartu, Lai Street 38, Tartu, 51005, Estonia
| | - Kristiina Mark
- Institute of Ecology & Earth Sciences, University of Tartu, Lai Street 38, Tartu, 51005, Estonia
| | - Garima Singh
- Biodiversity and Climate Research Centre BiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Biodiversity and Climate Research Centre BiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Sittiporn Parnmen
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
- Department of Medical Sciences, Ministry of Public Health, Tivanon Road, Nonthaburi, 11000, Thailand
| | - Andreas Beck
- Department of Lichenology and Bryology, Botanische Staatssammlung, Menzinger Str. 67 D-80638, München, Germany
| | - Michel Navarro Benatti
- Instituto de Botânica, Núcleo de Pesquisa em Micologia, Caixa Postal 68041, 04045-972, São Paulo, SP, Brazil
| | - Dan Blanchon
- Biodiversity and Animal Welfare Research Group, Department of Natural Sciences, Unitec Institute of Technology, Private Bag 92025, Auckland, 1142, New Zealand
| | - Mehmet Candan
- Department of Biology, Faculty of Science, Anadolu University, EskiŞehir, Turkey
| | - Philippe Clerc
- Conservatoire et Jardin botaniques de la Ville de Genève, CP 60, 1292, Chambésy, Switzerland
| | - Trevor Goward
- UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Martin Grube
- Institute of Plant Sciences, Karl-Franzens-University Graz, Holteigasse 6, 8010, Graz, Austria
| | - Brendan P Hodkinson
- Grice Lab, Department of Dermatology, University of Pennsylvania, BRB 1046A, 421 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, 540-742, Korea
| | | | - Paul M Kirika
- Botany Department, National Museums of Kenya, PO Box 45166-00100, Nairobi, Kenya
| | - James Lendemer
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY, 10458-5126, USA
| | - Jan-Eric Mattsson
- School of Life Sciences, Södertörn University, SE-141 89, Huddinge, Sweden
| | - María Inés Messuti
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) - CONICET, Universidad del Comahue, Quintral 1250, 8400, Sán Carlos de Bariloche, Río Negro, Argentina
| | | | - Matthew Nelsen
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| | - Jan I Ohlson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, SE-104 05, Stockholm, Sweden
| | - Sergio Pérez-Ortega
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, c/ Serrano 115, E-28006, Madrid, Spain
| | - Andres Saag
- Institute of Ecology & Earth Sciences, University of Tartu, Lai Street 38, Tartu, 51005, Estonia
| | - Harrie J M Sipman
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195, Berlin, Germany
| | - Mohammad Sohrabi
- Iranian Research Organization for Science and Technology (IROST), 15815-115, Tehran, Iran
| | - Arne Thell
- Biologal Museum, Lund University, Box 117, SE-22100, Lund, Sweden
| | - Göran Thor
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, SE-750 07, Uppsala, Sweden
| | - Camille Truong
- Conservatoire et Jardin botaniques de la Ville de Genève, CP 60, 1292, Chambésy, Switzerland
| | - Rebecca Yahr
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Dalip K Upreti
- National Botanical Research Institute (CSIR), Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Paloma Cubas
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - H Thorsten Lumbsch
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|
24
|
Lindgren H, Diederich P, Goward T, Myllys L. The phylogenetic analysis of fungi associated with lichenized ascomycete genus Bryoria reveals new lineages in the Tremellales including a new species Tremella huuskonenii hyperparasitic on Phacopsis huuskonenii. Fungal Biol 2015; 119:844-56. [DOI: 10.1016/j.funbio.2015.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 11/25/2022]
|
25
|
A Tale of Two Hyper-diversities: Diversification dynamics of the two largest families of lichenized fungi. Sci Rep 2015; 5:10028. [PMID: 25944223 PMCID: PMC4421861 DOI: 10.1038/srep10028] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/26/2015] [Indexed: 11/08/2022] Open
Abstract
Renewed interests in macroevolutionary dynamics have led to the proliferation of studies on diversification processes in large taxonomic groups, such as angiosperms, mammals, and birds. However, such a study has yet to be conducted in lichenized fungi--an extremely successful and diverse group of fungi. Analysing the most comprehensive time-calibrated phylogenies with a new analytical method, we illustrated drastically different diversification dynamics between two hyper-diverse families of lichenized fungi, Graphidaceae and Parmeliaceae, which represent more than a fourth of the total species diversity of lichenized fungi. Despite adopting a similar nutrition mode and having a similar number of species, Graphidaceae exhibited a lower speciation rate, while Parmeliaceae showed a sharp increase in speciation rate that corresponded with the aridification during the Oligocene-Miocene transition, suggesting their adaptive radiation into a novel arid habitat.
Collapse
|
26
|
Singh G, Dal Grande F, Divakar PK, Otte J, Leavitt SD, Szczepanska K, Crespo A, Rico VJ, Aptroot A, Cáceres MEDS, Lumbsch HT, Schmitt I. Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus Protoparmelia (Lecanorales, Ascomycota). PLoS One 2015; 10:e0124625. [PMID: 25932996 PMCID: PMC4416777 DOI: 10.1371/journal.pone.0124625] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Species recognition in lichen-forming fungi has been a challenge because of unsettled species concepts, few taxonomically relevant traits, and limitations of traditionally used morphological and chemical characters for identifying closely related species. Here we analyze species diversity in the cosmopolitan genus Protoparmelia s.l. The ~25 described species in this group occur across diverse habitats from the boreal -arctic/alpine to the tropics, but their relationship to each other remains unexplored. In this study, we inferred the phylogeny of 18 species currently assigned to this genus based on 160 specimens and six markers: mtSSU, nuLSU, ITS, RPB1, MCM7, and TSR1. We assessed the circumscription of species-level lineages in Protoparmelia s. str. using two coalescent-based species delimitation methods – BP&P and spedeSTEM. Our results suggest the presence of a tropical and an extra-tropical lineage, and eleven previously unrecognized distinct species-level lineages in Protoparmelia s. str. Several cryptic lineages were discovered as compared to phenotype-based species delimitation. Many of the putative species are supported by geographic evidence.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, Grüneburgplatz 1, 60323, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- * E-mail: (GS); (IS)
| | - Francesco Dal Grande
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Pradeep K. Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramon y Cajal s/n, E-28040, Madrid, Spain
| | - Jürgen Otte
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Steven D. Leavitt
- Science & Education, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, United States of America
| | - Katarzyna Szczepanska
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wroclaw, Poland
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramon y Cajal s/n, E-28040, Madrid, Spain
| | - Víctor J. Rico
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramon y Cajal s/n, E-28040, Madrid, Spain
| | - André Aptroot
- Advice Bureau for Bryology and Lichenology Herbarium, Soest, The Netherlands
| | | | - H. Thorsten Lumbsch
- Science & Education, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, United States of America
| | - Imke Schmitt
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, Grüneburgplatz 1, 60323, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- * E-mail: (GS); (IS)
| |
Collapse
|
27
|
Irinyi L, Lackner M, de Hoog GS, Meyer W. DNA barcoding of fungi causing infections in humans and animals. Fungal Biol 2015; 120:125-36. [PMID: 26781368 DOI: 10.1016/j.funbio.2015.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022]
Abstract
Correct species identification is becoming increasingly important in clinical diagnostics. Till now, many mycological laboratories rely on conventional phenotypic identification. But this is slow and strongly operator-dependent. Therefore, to improve the quality of pathogen identification, rapid, reliable, and objective identification methods are essential. One of the most encouraging approaches is molecular barcoding using the internal transcribed spacer (ITS) of the rDNA, which is rapid, easily achievable, accurate, and applicable directly from clinical specimens. It relies on the comparison of a single ITS sequence with a curated reference database. The International Society for Human and Animal Mycology (ISHAM) working group for DNA barcoding has recently established such a database, focusing on the majority of human and animal pathogenic fungi (ISHAM-ITS, freely accessible at http://www.isham.org/ or directly from http://its.mycologylab.org). For some fungi the use of secondary barcodes may be necessary.
Collapse
Affiliation(s)
- Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, NSW, Australia
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - G Sybren de Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, 3508 AD, The Netherlands
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Millennium Institute, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Irinyi L, Serena C, Garcia-Hermoso D, Arabatzis M, Desnos-Ollivier M, Vu D, Cardinali G, Arthur I, Normand AC, Giraldo A, da Cunha KC, Sandoval-Denis M, Hendrickx M, Nishikaku AS, de Azevedo Melo AS, Merseguel KB, Khan A, Parente Rocha JA, Sampaio P, da Silva Briones MR, e Ferreira RC, de Medeiros Muniz M, Castañón-Olivares LR, Estrada-Barcenas D, Cassagne C, Mary C, Duan SY, Kong F, Sun AY, Zeng X, Zhao Z, Gantois N, Botterel F, Robbertse B, Schoch C, Gams W, Ellis D, Halliday C, Chen S, Sorrell TC, Piarroux R, Colombo AL, Pais C, de Hoog S, Zancopé-Oliveira RM, Taylor ML, Toriello C, de Almeida Soares CM, Delhaes L, Stubbe D, Dromer F, Ranque S, Guarro J, Cano-Lira JF, Robert V, Velegraki A, Meyer W. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database--the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 2015; 53:313-37. [PMID: 25802363 DOI: 10.1093/mmy/myv008] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022] Open
Abstract
Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org/ and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens.
Collapse
Affiliation(s)
- Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Bioscurity, University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | - Carolina Serena
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Bioscurity, University of Sydney, Westmead Millennium Institute, Sydney, Australia Unitat de Recerca, Hospital Joan XXIII, Institut de Investigacio Sanitaria Rovira I Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Dea Garcia-Hermoso
- Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit; CNRS URA3012, Paris, France
| | - Michael Arabatzis
- Mycology Research Laboratory, Department of Microbiology, Medical School, the University of Athens Hellenic Collection of Pathogenic Fungi (UOA/HCPF), National and Kapodistrian University of Athens, Athens, Greece
| | - Marie Desnos-Ollivier
- Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit; CNRS URA3012, Paris, France
| | - Duong Vu
- CBS-KNAW, Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences-Università degli Studi di Perugia, Perugia, Italy
| | - Ian Arthur
- Mycology Laboratory, Department of Microbiology and Infectious Diseases, PathWest Laboratory Medicine WA, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Anne-Cécile Normand
- Parasitology - Mycology, APHM, CHU Timone-Adultes, Marseille, France; Aix-Marseille University, UMR MD3 IP-TPT, Marseille, France
| | - Alejandra Giraldo
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Keith Cassia da Cunha
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Marcelo Sandoval-Denis
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Marijke Hendrickx
- BCCM/IHEM, Biomedical fungi and yeasts collection, Scientific Institute of Public Health, Brussels, Belgium
| | - Angela Satie Nishikaku
- Laboratório Especial de Micologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Analy Salles de Azevedo Melo
- Laboratório Especial de Micologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Aziza Khan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Bioscurity, University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | - Juliana Alves Parente Rocha
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Goiânia, Goiás, Brazil
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA), Biology Department, School of Sciences, University of Minho, Braga, Portugal
| | - Marcelo Ribeiro da Silva Briones
- Laboratório de Genômica e Biocomplexidade Evolutiva, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renata Carmona e Ferreira
- Laboratório de Genômica e Biocomplexidade Evolutiva, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mauro de Medeiros Muniz
- Instituto de Pesquisa Clínica Evandro Chagas (IPEC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Laura Rosio Castañón-Olivares
- Facultad de Medicina, Departamento de Microbiología y Parasitología (Unidad de Micología), Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Daniel Estrada-Barcenas
- Facultad de Medicina, Departamento de Microbiología y Parasitología (Unidad de Micología), Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carole Cassagne
- Parasitology - Mycology, APHM, CHU Timone-Adultes, Marseille, France; Aix-Marseille University, UMR MD3 IP-TPT, Marseille, France
| | - Charles Mary
- Parasitology - Mycology, APHM, CHU Timone-Adultes, Marseille, France; Aix-Marseille University, UMR MD3 IP-TPT, Marseille, France
| | - Shu Yao Duan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Bioscurity, University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW, Australia
| | - Annie Ying Sun
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia; Robinson Institute, University of Adelaide, Adelaide, SA, Australia
| | - Xianyu Zeng
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW, Australia
| | - Zuotao Zhao
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW, Australia
| | - Nausicaa Gantois
- BDEEP-EA4547, CIIL, Institut Pasteur de Lille, CHU de Lille, Université de Lille2, Lille, France
| | - Françoise Botterel
- Unité de Parasitologie - Mycologie, Dynamyc Team, CHU Henri Mondor, AP-HP, Créteil, France
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Conrad Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Walter Gams
- CBS-KNAW, Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - David Ellis
- Mycology and Infectious Diseases, SA Pathology, University of Adelaide, Adelaide, SA, Australia
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW, Australia
| | - Sharon Chen
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Bioscurity, University of Sydney, Westmead Millennium Institute, Sydney, Australia Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW, Australia
| | - Tania C Sorrell
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Bioscurity, University of Sydney, Westmead Millennium Institute, Sydney, Australia
| | - Renaud Piarroux
- Parasitology - Mycology, APHM, CHU Timone-Adultes, Marseille, France; Aix-Marseille University, UMR MD3 IP-TPT, Marseille, France
| | - Arnaldo L Colombo
- Laboratório Especial de Micologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Célia Pais
- Centre of Molecular and Environmental Biology (CBMA), Biology Department, School of Sciences, University of Minho, Braga, Portugal
| | - Sybren de Hoog
- CBS-KNAW, Fungal Biodiversity Centre, Utrecht, The Netherlands
| | | | - Maria Lucia Taylor
- Facultad de Medicina, Departamento de Microbiología y Parasitología (Unidad de Micología), Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Conchita Toriello
- Facultad de Medicina, Departamento de Microbiología y Parasitología (Unidad de Micología), Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Célia Maria de Almeida Soares
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Goiânia, Goiás, Brazil
| | - Laurence Delhaes
- BDEEP-EA4547, CIIL, Institut Pasteur de Lille, CHU de Lille, Université de Lille2, Lille, France
| | - Dirk Stubbe
- BCCM/IHEM, Biomedical fungi and yeasts collection, Scientific Institute of Public Health, Brussels, Belgium
| | - Françoise Dromer
- Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit; CNRS URA3012, Paris, France
| | - Stéphane Ranque
- Parasitology - Mycology, APHM, CHU Timone-Adultes, Marseille, France; Aix-Marseille University, UMR MD3 IP-TPT, Marseille, France
| | - Josep Guarro
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Jose F Cano-Lira
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Vincent Robert
- CBS-KNAW, Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Aristea Velegraki
- Mycology Research Laboratory, Department of Microbiology, Medical School, the University of Athens Hellenic Collection of Pathogenic Fungi (UOA/HCPF), National and Kapodistrian University of Athens, Athens, Greece
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Bioscurity, University of Sydney, Westmead Millennium Institute, Sydney, Australia
| |
Collapse
|
29
|
Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafellner J, Hofstetter V, Gueidan C, Otálora MAG, Hodkinson B, Kukwa M, Lücking R, Björk C, Sipman HJM, Burgaz AR, Thell A, Passo A, Myllys L, Goward T, Fernández-Brime S, Hestmark G, Lendemer J, Lumbsch HT, Schmull M, Schoch CL, Sérusiaux E, Maddison DR, Arnold AE, Lutzoni F, Stenroos S. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol 2014; 79:132-68. [PMID: 24747130 PMCID: PMC4185256 DOI: 10.1016/j.ympev.2014.04.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 03/02/2014] [Accepted: 04/02/2014] [Indexed: 11/28/2022]
Abstract
The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, 'Candelariomycetidae'). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module ("Hypha") of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach.
Collapse
Affiliation(s)
| | - Frank Kauff
- FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Filip Högnabba
- Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland
| | - Jeffrey C Oliver
- Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA
| | - Katalin Molnár
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Emily Fraker
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Ester Gaya
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Josef Hafellner
- Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria
| | | | - Cécile Gueidan
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | | | | | - Martin Kukwa
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Robert Lücking
- Science and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - Curtis Björk
- UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Harrie J M Sipman
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Königin-Luise-Strasse 6-8, D-14195 Berlin, Germany
| | - Ana Rosa Burgaz
- Departamento de Biologı́a Vegetal I, Facultad de CC. Biológicas, Universidad Complutense de Madrid, E-28040-Madrid, Spain
| | - Arne Thell
- Botanical Museum, Lund University, Box 117, SE-221 00 Lund, Sweden
| | - Alfredo Passo
- BioLiq Laboratorio de Bioindicadores y Liquenología, Centro Regional Universitario Bariloche, INIBIOMA, Universidad Nacional del Comahue, Bariloche, 8400RN, Argentina
| | - Leena Myllys
- Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland
| | - Trevor Goward
- UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Samantha Fernández-Brime
- Department of Plant Biology (Botany Unit), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Geir Hestmark
- CEES, Department of Biosciences, University of Oslo, PB 1066 Blindern, 0315 Oslo, Norway
| | - James Lendemer
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126, USA
| | - H Thorsten Lumbsch
- Science and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - Michaela Schmull
- Harvard University Herbaria, Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Conrad L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, MD 20892-6510, USA
| | - Emmanuël Sérusiaux
- Evolution and Conservation Biology, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium
| | - David R Maddison
- Center for Genome Research and Biocomputing, Oregon State University, 3021 Agriculture and Life Sciences Building, Corvallis, OR 97331-7303, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, The University of Arizona, 1140 E. South Campus Drive, Forbes 303, Tucson, AZ 85721, USA
| | - François Lutzoni
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Soili Stenroos
- Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland
| |
Collapse
|
30
|
Lumbsch HT, Parnmen S, Kraichak E, Papong KB, Lücking R. High frequency of character transformations is phylogenetically structured within the lichenized fungal family Graphidaceae (Ascomycota: Ostropales). SYST BIODIVERS 2014. [DOI: 10.1080/14772000.2014.905506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Millanes AM, Truong C, Westberg M, Diederich P, Wedin M. Host switching promotes diversity in host-specialized mycoparasitic fungi: uncoupled evolution in the Biatoropsis-usnea system. Evolution 2014; 68:1576-93. [PMID: 24495034 DOI: 10.1111/evo.12374] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/24/2014] [Indexed: 12/15/2022]
Abstract
Fungal mycoparasitism-fungi parasitizing other fungi-is a common lifestyle in some basal lineages of the basidiomycetes, particularly within the Tremellales. Relatively nonaggressive mycoparasitic fungi of this group are in general highly host specific, suggesting cospeciation as a plausible speciation mode in these associations. Species delimitation in the Tremellales is often challenging because morphological characters are scant. Host specificity is therefore a great aid to discriminate between species but appropriate species delimitation methods that account for actual diversity are needed to identify both specialist and generalist taxa and avoid inflating or underestimating diversity. We use the Biatoropsis-Usnea system to study factors inducing parasite diversification. We employ morphological, ecological, and molecular data-methods including genealogical concordance phylogenetic species recognition (GCPSR) and the general mixed Yule-coalescent (GMYC) model-to assess the diversity of fungi currently assigned to Biatoropsis usnearum. The degree of cospeciation in this association is assessed with two cophylogeny analysis tools (ParaFit and Jane 4.0). Biatoropsis constitutes a species complex formed by at least seven different independent lineages and host switching is a prominent force driving speciation, particularly in host specialists. Combining ITS and nLSU is recommended as barcode system in tremellalean fungi.
Collapse
Affiliation(s)
- Ana M Millanes
- Departamento de Biología y Geología, Universidad Rey Juan Carlos, E-28933 Móstoles, Spain.
| | | | | | | | | |
Collapse
|
32
|
Leavitt SD, Lumbsch HT, Stenroos S, Clair LLS. Pleistocene speciation in North American lichenized fungi and the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS One 2013; 8:e85240. [PMID: 24386465 PMCID: PMC3873437 DOI: 10.1371/journal.pone.0085240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/24/2013] [Indexed: 12/04/2022] Open
Abstract
Pleistocene climatic fluctuations influenced patterns of genetic variation and promoted speciation across a wide range of species groups. Lichens are commonly found in habitats that were directly impacted by glacial cycles; however, the role of Pleistocene climate in driving speciation in most lichen symbionts remains unclear. This uncertainty is due in part to limitations in our ability to accurately recognize independently evolving lichen-forming fungal lineages and a lack of relevant fossil calibrations. Using a coalescent-based species tree approach, we estimated divergence times for two sister clades in the genus Xanthoparmelia (Parmeliaceae) restricted to western North America. We assessed the influence of two different species circumscription scenarios and various locus-specific rates of molecular evolution on divergence estimates. Species circumscriptions were validated using the program BP&P. although speciation was generally supported in both scenarios, divergence times differed between traditional species circumscriptions and those based on genetic data, with more recent estimates resulting from the former. Similarly, rates of evolution for different loci resulted in variable divergence time estimates. However, our results unambiguously indicate that diversification in the sampled Xanthoparmelia clades occurred during the Pleistocene. Our study highlights the potential impact of ambiguous species circumscriptions and uncertain rates of molecular evolution on estimating divergence times within a multilocus species tree framework.
Collapse
Affiliation(s)
- Steven D. Leavitt
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America
- Science & Education, The Field Museum, Chicago, Illinois, United States of America
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, Utah, United States of America
- * E-mail:
| | - H. Thorsten Lumbsch
- Science & Education, The Field Museum, Chicago, Illinois, United States of America
| | - Soili Stenroos
- Botanical Museum, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Larry L. St. Clair
- Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
33
|
Divakar PK, Kauff F, Crespo A, Leavitt SD, Lumbsch HT. Understanding phenotypical character evolution in parmelioid lichenized fungi (Parmeliaceae, Ascomycota). PLoS One 2013; 8:e83115. [PMID: 24312438 PMCID: PMC3843734 DOI: 10.1371/journal.pone.0083115] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
Parmelioid lichens form a species-rich group of predominantly foliose and fruticose lichenized fungi encompassing a broad range of morphological and chemical diversity. Using a multilocus approach, we reconstructed a phylogeny including 323 OTUs of parmelioid lichens and employed ancestral character reconstruction methods to understand the phenotypical evolution within this speciose group of lichen-forming fungi. Specifically, we were interested in the evolution of growth form, epicortex structure, and cortical chemistry. Since previous studies have shown that results may differ depending on the reconstruction method used, here we employed both maximum-parsimony and maximum-likelihood approaches to reconstruct ancestral character states. We have also implemented binary and multistate coding of characters and performed parallel analyses with both coding types to assess for potential coding-based biases. We reconstructed the ancestral states for nine well-supported major clades in the parmelioid group, two higher-level sister groups and the ancestral character state for all parmelioid lichens. We found that different methods for coding phenotypical characters and different ancestral character state reconstruction methods mostly resulted in identical reconstructions but yield conflicting inferences of ancestral states, in some cases. However, we found support for the ancestor of parmelioid lichens having been a foliose lichen with a non-pored epicortex and pseudocyphellae. Our data suggest that some traits exhibit patterns of evolution consistent with adaptive radiation.
Collapse
Affiliation(s)
- Pradeep K. Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Frank Kauff
- FB Biologie, Molecular Phylogenetics, TU Kaiserslautern, Kaiserslautern, Germany
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Steven D. Leavitt
- Science & Education, The Field Museum, Chicago, Illinois, United States of America
| | - H. Thorsten Lumbsch
- Science & Education, The Field Museum, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
34
|
The sister-group relationships of the largest family of lichenized fungi, Parmeliaceae (Lecanorales, Ascomycota). Fungal Biol 2013; 117:715-21. [DOI: 10.1016/j.funbio.2013.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 11/23/2022]
|
35
|
DNA barcoding of brown Parmeliae (Parmeliaceae) species: a molecular approach for accurate specimen identification, emphasizing species in Greenland. ORG DIVERS EVOL 2013. [DOI: 10.1007/s13127-013-0147-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Truong C, Divakar PK, Yahr R, Crespo A, Clerc P. Testing the use of ITS rDNA and protein-coding genes in the generic and species delimitation of the lichen genus Usnea (Parmeliaceae, Ascomycota). Mol Phylogenet Evol 2013; 68:357-72. [DOI: 10.1016/j.ympev.2013.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 02/01/2013] [Accepted: 04/02/2013] [Indexed: 12/31/2022]
|
37
|
Third World List of Cetrarioid Lichens — in a New Databased Form, with Amended Phylogenetic and Type Information. CRYPTOGAMIE MYCOL 2013. [DOI: 10.7872/crym.v34.iss1.2013.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Leavitt SD, Esslinger TL, Spribille T, Divakar PK, Thorsten Lumbsch H. Multilocus phylogeny of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota): Insights on diversity, distributions, and a comparison of species tree and concatenated topologies. Mol Phylogenet Evol 2013; 66:138-52. [DOI: 10.1016/j.ympev.2012.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 08/31/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
|
39
|
Leavitt SD, Esslinger TL, Lumbsch HT. Neogene-dominated diversification in neotropical montane lichens: dating divergence events in the lichen-forming fungal genus Oropogon (Parmeliaceae). AMERICAN JOURNAL OF BOTANY 2012; 99:1764-1777. [PMID: 23092994 DOI: 10.3732/ajb.1200146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY Diversification in neotropical regions has been attributed to both Tertiary geological events and Pleistocene climatic fluctuations. However, the timing and processes driving speciation in these regions remain unexplored in many important groups. Here, we address the timing of diversification in the neotropical lichenized fungal genus Oropogon (Ascomycota) and assess traditional species boundaries. METHODS We analyzed sequence data from three loci to assess phenotypically circumscribed Oropogon species from the Oaxacan Highlands, Mexico. We provide a comparison of dated divergence estimates between concatenated gene trees and a calibrated multilocus species-tree using substitution rates for two DNA regions. We also compare estimates from a data set excluding ambiguously aligned regions and a data set including the hyper-variable regions in two ribosomal markers. KEY RESULTS Phylogenetic reconstructions were characterized by well-supported monophyletic clades corresponding to traditionally circumscribed species, with the exception of a single taxon. Divergence estimates indicate that most diversification of the sampled Oropogon species occurred throughout the Oligocene and Miocene, although diversification of a single closely related clade appears to have occurred during the late Pliocene and into the Pleistocene. Divergence estimates calculated from a data set with ambiguously aligned regions removed were much more recent than those from the full data set. CONCLUSIONS Overall, our analyses place the majority of divergence events of Oropogon species from the Oaxacan Highlands within the Neogene and provide strong evidence that climatic changes during the Pleistocene were not a major factor driving speciation in the lichenized genus Oropogon in neotropical highlands.
Collapse
Affiliation(s)
- Steven D Leavitt
- The Field Museum, Department of Botany, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA. sleavitt@fi eldmuseum.org
| | | | | |
Collapse
|
40
|
Leavitt SD, Esslinger TL, Divakar PK, Lumbsch HT. Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions. BMC Evol Biol 2012; 12:176. [PMID: 22963132 PMCID: PMC3499221 DOI: 10.1186/1471-2148-12-176] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/30/2012] [Indexed: 01/22/2023] Open
Abstract
Background Factors promoting diversification in lichen symbioses remain largely unexplored. While Pleistocene events have been important for driving diversification and affecting distributions in many groups, recent estimates suggest that major radiations within some genera in the largest clade of macrolichens (Parmeliaceae, Ascomycota) vastly predate the Pleistocene. To better understand the temporal placement and sequence of diversification events in lichens, we estimated divergence times in a common lichen-forming fungal genus, Melanohalea, in the Northern Hemisphere. Divergence times were estimated using both concatenated gene tree and coalescent-based multilocus species tree approaches to assess the temporal context of major radiation events within Melanohalea. In order to complement our understanding of processes impacting genetic differentiation, we also evaluated the effects of Pleistocene glacial cycles on population demographics of distinct Melanohalea lineages, differing in reproductive strategies. Results We found that divergence estimates, from both concatenated gene tree and coalescent-based multilocus species tree approaches, suggest that diversification within Melanohalea occurred predominantly during the Miocene and Pliocene, although estimated of divergence times differed by up to 8.3 million years between the two methods. These results indicate that, in some cases, taxonomically diagnostic characters may be maintained among divergent lineages for millions of years. In other cases, similar phenotypic characters among non-sister taxa, including reproductive strategies, suggest the potential for convergent evolution due to similar selective pressures among distinct lineages. Our analyses provide evidence of population expansions predating the last glacial maximum in the sampled lineages. These results suggest that Pleistocene glaciations were not inherently unfavorable or restrictive for some Melanohalea species, albeit with apparently different demographic histories between sexually and vegetatively reproducing lineages. Conclusions Our results contribute to the understanding of how major changes during the Miocene and Pliocene have been important in promoting diversification within common lichen-forming fungi in the northern Hemisphere. Additionally, we provide evidence that glacial oscillations have influenced current population structure of broadly distributed lichenized fungal species throughout the Holarctic.
Collapse
|
41
|
Schmitt I, Otte J, Parnmen S, Sadowska-Deś A, Luecking R, Lumbsch T. A new circumscription of the genus Varicellaria (Pertusariales, Ascomycota). MycoKeys 2012. [DOI: 10.3897/mycokeys.4.3545] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
de Paz GA, Cubas P, Crespo A, Elix JA, Lumbsch HT. Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). PLoS One 2012; 7:e39683. [PMID: 22745810 PMCID: PMC3379998 DOI: 10.1371/journal.pone.0039683] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022] Open
Abstract
In traditional morphology-based concepts many species of lichenized fungi have world-wide distributions. Molecular data have revolutionized the species delimitation in lichens and have demonstrated that we underestimated the diversity of these organisms. The aim of this study is to explore the phylogeography and the evolutionary patterns of the Xanthoparmelia pulla group, a widespread group of one of largest genera of macrolichens. We used a dated phylogeny based on nuITS and nuLSU rDNA sequences and performed an ancestral range reconstruction to understand the processes and explain their current distribution, dating the divergence of the major lineages in the group. An inferred age of radiation of parmelioid lichens and the age of a Parmelia fossil were used as the calibration points for the phylogeny. The results show that many species of the X. pulla group as currently delimited are polyphyletic and five major lineages correlate with their geographical distribution and the biosynthetic pathways of secondary metabolites. South Africa is the area where the X. pulla group radiated during the Miocene times, and currently is the region with the highest genetic, morphological and chemical diversity. From this center of radiation the different lineages migrated by long-distance dispersal to others areas, where secondary radiations developed. The ancestral range reconstruction also detected that a secondary lineage migrated from Australia to South America via long-distance dispersal and subsequent continental radiation.
Collapse
Affiliation(s)
- Guillermo Amo de Paz
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Paloma Cubas
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - John A. Elix
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - H. Thorsten Lumbsch
- Department of Botany, The Field Museum, Chicago, Illinois, United States of America
| |
Collapse
|
43
|
Amo de Paz G, Cubas P, Divakar PK, Lumbsch HT, Crespo A. Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS One 2011; 6:e28161. [PMID: 22174775 PMCID: PMC3234259 DOI: 10.1371/journal.pone.0028161] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022] Open
Abstract
There is a long-standing debate on the extent of vicariance and long-distance dispersal events to explain the current distribution of organisms, especially in those with small diaspores potentially prone to long-distance dispersal. Age estimates of clades play a crucial role in evaluating the impact of these processes. The aim of this study is to understand the evolutionary history of the largest clade of macrolichens, the parmelioid lichens (Parmeliaceae, Lecanoromycetes, Ascomycota) by dating the origin of the group and its major lineages. They have a worldwide distribution with centers of distribution in the Neo- and Paleotropics, and semi-arid subtropical regions of the Southern Hemisphere. Phylogenetic analyses were performed using DNA sequences of nuLSU and mtSSU rDNA, and the protein-coding RPB1 gene. The three DNA regions had different evolutionary rates: RPB1 gave a rate two to four times higher than nuLSU and mtSSU. Divergence times of the major clades were estimated with partitioned BEAST analyses allowing different rates for each DNA region and using a relaxed clock model. Three calibrations points were used to date the tree: an inferred age at the stem of Lecanoromycetes, and two dated fossils: Parmelia in the parmelioid group, and Alectoria. Palaeoclimatic conditions and the palaeogeological area cladogram were compared to the dated phylogeny of parmelioid. The parmelioid group diversified around the K/T boundary, and the major clades diverged during the Eocene and Oligocene. The radiation of the genera occurred through globally changing climatic condition of the early Oligocene, Miocene and early Pliocene. The estimated divergence times are consistent with long-distance dispersal events being the major factor to explain the biogeographical distribution patterns of Southern Hemisphere parmelioids, especially for Africa-Australia disjunctions, because the sequential break-up of Gondwana started much earlier than the origin of these clades. However, our data cannot reject vicariance to explain South America-Australia disjunctions.
Collapse
Affiliation(s)
- Guillermo Amo de Paz
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Paloma Cubas
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Pradeep K. Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - H. Thorsten Lumbsch
- Department of Botany, The Field Museum, Chicago, Illinois, United States of America
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
44
|
Leavitt SD, Johnson LA, Goward T, St. Clair LL. Species delimitation in taxonomically difficult lichen-forming fungi: An example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Mol Phylogenet Evol 2011; 60:317-32. [DOI: 10.1016/j.ympev.2011.05.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 01/03/2023]
|
45
|
Complex patterns of speciation in cosmopolitan “rock posy” lichens – Discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Mol Phylogenet Evol 2011; 59:587-602. [DOI: 10.1016/j.ympev.2011.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/16/2010] [Accepted: 03/17/2011] [Indexed: 11/19/2022]
|
46
|
Millanes AM, Diederich P, Ekman S, Wedin M. Phylogeny and character evolution in the jelly fungi (Tremellomycetes, Basidiomycota, Fungi). Mol Phylogenet Evol 2011; 61:12-28. [PMID: 21664282 DOI: 10.1016/j.ympev.2011.05.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 01/28/2023]
Abstract
The Tremellomycetes (Agaricomycotina, Basidiomycota, Fungi) are a nutritionally heterogeneous group comprising saprotrophs, animal parasites, and fungicolous species (fungal-inhabiting, including lichen-inhabiting). The relationships of many species, particularly those with a lichenicolous habit, have never been investigated by molecular methods. We present a phylogeny of the Tremellomycetes based on three nuclear DNA ribosomal markers (nSSU, 5.8S and nLSU), representing all main taxonomic groups and life forms, including lichenicolous taxa. The Cystofilobasidiales, Filobasidiales, Holtermanniales, and Tremellales (including the Trichosporonales) are recovered as monophyletic, but this is not the case for the Tremellomycetes. We suggest, however, that the Cystofilobasidiales tentatively continue to be included in the Tremellomycetes. As currently circumscribed, the Filobasidiaceae, Sirobasidiaceae, Syzygosporaceae and Tremellaceae are non-monophyletic. Cuniculitremaceae, Sirobasidiaceae and Tetragoniomycetaceae are nested within Tremellaceae. The lichenicolous species currently included within the Tremellomycetes belong in this group, distributed across the Filobasidiales and Tremellales. Lichen-inhabiting taxa do not form a monophyletic group; they are distributed in several clades and sometimes intermixed with taxa of other nutritional habits. Character state reconstruction indicates that two morphological traits claimed to characterize groups in the Tremellomycetes (the basidium habit and basidium septation) are highly homoplastic. Comparative phylogenetic methods suggest that the transitions between single and catenulate basidia in the Tremellales are consistent with a punctuational model of evolution whereas basidium septation is likely to have evolved under a graduational model in the clade comprising the Holtermanniales, Filobasidiales, and Tremellales.
Collapse
Affiliation(s)
- Ana M Millanes
- Departamento de Biología y Geología, Universidad Rey Juan Carlos, E-28933 Móstoles, Spain.
| | | | | | | |
Collapse
|
47
|
Leavitt SD, Johnson L, St Clair LL. Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus Xanthoparmelia (Parmeliaceae, Ascomycota) in western North America. AMERICAN JOURNAL OF BOTANY 2011; 98:175-188. [PMID: 21613107 DOI: 10.3732/ajb.1000230] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Accurate species delimitation is important for understanding the diversification of biota and has critical implications for ecological and conservation studies. However, a growing body of evidence indicates that morphology-based species circumspection in lichenized fungi misrepresents fungal diversity. The foliose lichen genus Xanthoparmelia includes over 800 species displaying a complex array of morphological and secondary metabolite diversity. METHODS We used a multifaceted approach, applying phylogenetic, population genetic, and genealogical analyses to delimit species in a single well-supported monophyletic clade containing 10 morphologically and chemically diverse Xanthoparmelia species in western North America. Sequence data from four ribosomal and two low-copy, protein-coding markers, along with chemical and morphological data were used to assess species diversity. KEY RESULTS We found that traditionally circumscribed species are not supported by molecular data. Rather, all sampled taxa were better represented by three polymorphic population clusters. Our results suggest that secondary metabolite variation may have limited utility in diagnosing lineages within this group, while identified populations clusters did not reflect major phylogeographic or ecological patterns. CONCLUSIONS In contrast to studies revealing previously undiscovered fungal lineages masked within lichen species circumscribed by traditional morphological and chemical concepts, the present study suggests that species diversity has been overestimated in the species-rich genus Xanthoparmelia.
Collapse
Affiliation(s)
- Steven D Leavitt
- Department of Biology and the M. L. Bean Life Science Museum, 401 WIDB, Brigham Young University, Provo, Utah 84602, USA.
| | | | | |
Collapse
|
48
|
Barbosa SB, Machado SR, Marcelli MP. Thallus anatomy of Canoparmelia texana (Parmeliaceae, lichenized Ascomycota). BIOTA NEOTROPICA 2010. [DOI: 10.1590/s1676-06032010000300016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conventional techniques for structural studies under light microscope and scanning electron microscope were employed to describe the histology of thallus in Canoparmelia texana, a lichen with wide distribution in open environments and fairly common in the cerrados and urban areas of Brazil. This study describes a new type of cortical organization for the family Parmeliaceae, in C. texana the upper cortex is lacunar, showing a large quantity of small intercellular spaces or lacunae. The anatomical features including medulla thickness, hyphal orientation pattern, rhizines thickness and crystals inclusions have an important adaptive role for the success of C. texana in Brazilian cerrado, a savanna-like ecosystem.
Collapse
|
49
|
Del-Prado R, Cubas P, Lumbsch HT, Divakar PK, Blanco O, de Paz GA, Molina MC, Crespo A. Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Mol Phylogenet Evol 2010; 56:125-33. [DOI: 10.1016/j.ympev.2010.04.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 11/17/2022]
|
50
|
Crespo A, Ferencova Z, Pérez-Ortega S, Elix JA, Divakar PK. Austroparmelina, a new Australasian lineage in parmelioid lichens (Parmeliaceae, Ascomycota). SYST BIODIVERS 2010. [DOI: 10.1080/14772001003738320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|