1
|
Myers EA, Rautsaw RM, Borja M, Jones J, Grünwald CI, Holding ML, Grazziotin FG, Parkinson CL. Phylogenomic Discordance is Driven by Wide-Spread Introgression and Incomplete Lineage Sorting During Rapid Species Diversification Within Rattlesnakes (Viperidae: Crotalus and Sistrurus). Syst Biol 2024; 73:722-741. [PMID: 38695290 PMCID: PMC11906154 DOI: 10.1093/sysbio/syae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 08/11/2024] Open
Abstract
-Phylogenomics allows us to uncover the historical signal of evolutionary processes through time and estimate phylogenetic networks accounting for these signals. Insight from genome-wide data further allows us to pinpoint the contributions to phylogenetic signal from hybridization, introgression, and ancestral polymorphism across the genome. Here, we focus on how these processes have contributed to phylogenetic discordance among rattlesnakes (genera Crotalus and Sistrurus), a group for which there are numerous conflicting phylogenetic hypotheses based on a diverse array of molecular datasets and analytical methods. We address the instability of the rattlesnake phylogeny using genomic data generated from transcriptomes sampled from nearly all known species. These genomic data, analyzed with coalescent and network-based approaches, reveal numerous instances of rapid speciation where individual gene trees conflict with the species tree. Moreover, the evolutionary history of rattlesnakes is dominated by incomplete speciation and frequent hybridization, both of which have likely influenced past interpretations of phylogeny. We present a new framework in which the evolutionary relationships of this group can only be understood in light of genome-wide data and network-based analytical methods. Our data suggest that network radiations, like those seen within the rattlesnakes, can only be understood in a phylogenomic context, necessitating similar approaches in our attempts to understand evolutionary history in other rapidly radiating species.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - Jason Jones
- Herp.mx A.C. C.P. 28989, Villa de Álvarez, Colima, Mexico
| | - Christoph I Grünwald
- Herp.mx A.C. C.P. 28989, Villa de Álvarez, Colima, Mexico
- Biodiversa A.C., Avenida de la Ribera #203, C.P. 45900, Chapala, Jalisco, Mexico
| | - Matthew L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, Avenida Vital Brasil, São Paulo, 05503-900, Brazil
| | | |
Collapse
|
2
|
Carrasco PA, Koch C, Grazziotin FG, Venegas PJ, Chaparro JC, Scrocchi GJ, Salazar-Valenzuela D, Leynaud GC, Mattoni CI. Total-evidence phylogeny and evolutionary morphology of New World pitvipers (Serpentes: Viperidae: Crotalinae). Cladistics 2023; 39:71-100. [PMID: 36701490 DOI: 10.1111/cla.12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 01/27/2023] Open
Abstract
Crotalines (pitvipers) in the Americas are distributed from southern Canada to southern Argentina, and are represented by 13 genera and 163 species that constitute a monophyletic group. Their phylogenetic relationships have been assessed mostly based on DNA sequences, while morphological data have scarcely been used for phylogenetic inquiry. We present a total-evidence phylogeny of New World pitvipers, the most taxon/character comprehensive phylogeny to date. Our analysis includes all genera, morphological data from external morphology, cranial osteology and hemipenial morphology, and DNA sequences from mitochondrial and nuclear genes. We performed analyses with parsimony as an optimality criterion, using different schemes for character weighting. We evaluated the contribution of the different sources of characters to the phylogeny through analyses of reduced datasets and calculation of weighted homoplasy and retention indexes. We performed a morphological character analysis to identify synapomorphies for the main clades. In terms of biogeography, our results support a single colonization event of the Americas by pitvipers, and a cladogenetic event into a Neotropical clade and a North American/Neotropical clade. The results also shed light on the previously unstable position of some taxa, although they could not sufficiently resolve the position of Bothrops lojanus, which may lead to the paraphyly of either Bothrops or Bothrocophias. The morphological character analyses demonstrated that an important phylogenetic signal is contained in characters related to head scalation, the jaws and the dorsum of the skull, and allowed us to detect morphological convergences in external morphology associated with arboreality.
Collapse
Affiliation(s)
- Paola A Carrasco
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, Córdoba, 5000, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Rondeau, 798, Córdoba, 5000, Argentina
| | - Claudia Koch
- Leibniz Institute for the Analysis of Biodiversity Change/Zoologisches Forschungsinstitute und Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo, SP, Brazil
| | - Pablo J Venegas
- Instituto Peruano de Herpetología, Salazar Bondy 136, Santiago de Surco 15038, Lima, Peru.,Rainforest Partnership, 4005 Guadalupe St, Austin, TX, 78751, USA
| | - Juan C Chaparro
- Museo de Biodiversidad del Perú, Urbanización Mariscal Gamarra A-61, Zona 2, Cusco, Peru.,Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Paraninfo Universitario (Plaza de Armas s/n), Cusco, Peru
| | - Gustavo J Scrocchi
- UEL-CONICET and Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, EC170301, Quito, Ecuador
| | - Gerardo C Leynaud
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, Córdoba, 5000, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Rondeau, 798, Córdoba, 5000, Argentina
| | - Camilo I Mattoni
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, Córdoba, 5000, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Diversidad y Ecología Animal (IDEA-CONICET), Rondeau, 798, Córdoba, 5000, Argentina
| |
Collapse
|
3
|
Grabowsky ER, Saviola AJ, Alvarado-Díaz J, Mascareñas AQ, Hansen KC, Yates JR, Mackessy SP. Montane Rattlesnakes in México: Venoms of Crotalus tancitarensis and Related Species within the Crotalus intermedius Group. Toxins (Basel) 2023; 15:72. [PMID: 36668891 PMCID: PMC9867100 DOI: 10.3390/toxins15010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The Crotalus intermedius group is a clade of rattlesnakes consisting of several species adapted to a high elevation habitat, primarily in México. Crotalus tancitarensis was previously classified as C. intermedius, until individuals occurring on Cerro Tancítaro in Michoacán, México, were reevaluated and classified as a new species (C. tancitarensis) based on scale pattern and geographic location. This study aimed to characterize the venom of C. tancitarensis and compare the venom profile to those of other species within the Crotalus intermedius group using gel electrophoresis, biochemical assays, reverse-phase high performance liquid chromatography, mass spectrometry, and lethal toxicity (LD50) assays. Results show that the venom profiles of species within the Crotalus intermedius group are similar, but with distinct differences in phospholipase A2 (PLA2), metalloproteinase PI (SVMP PI), and kallikrein-like serine proteinase (SVSP) activity and relative abundance. Proteomic analysis indicated that the highland forms produce venoms with 50-60 protein isoforms and a composition typical of type I rattlesnake venoms (abundant SVMPs, lack of presynaptic PLA2-based neurotoxins), as well as a diversity of typical Crotalus venom components such as serine proteinases, PLA2s, C-type lectins, and less abundant toxins (LAAOs, CRiSPs, etc.). The overall venom profile of C. tancitarensis appears most similar to C. transversus, which is consistent with a previous mitochondrial DNA analysis of the Crotalus intermedius group. These rattlesnakes of the Mexican highlands represent a radiation of high elevation specialists, and in spite of divergence of species in these Sky Island habitats, venom composition of species analyzed here has remained relatively conserved. The majority of protein family isoforms are conserved in all members of the clade, and as seen in other more broadly distributed rattlesnake species, differences in their venoms are largely due to relative concentrations of specific components.
Collapse
Affiliation(s)
- Emily R. Grabowsky
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Javier Alvarado-Díaz
- INIRENA (Instituto de Investigaciones sobre los Recursos Naturales), Morelia CP 58330, Michoacán, Mexico
| | | | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John R. Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen P. Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| |
Collapse
|
4
|
Biogeography of terrestrial vertebrates and its conservation implications in a transitional region in western Mexico. PLoS One 2022; 17:e0267589. [PMID: 35930545 PMCID: PMC9355201 DOI: 10.1371/journal.pone.0267589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
Conservation biogeography, which applies principles, theories, and analyses of biodiversity distribution patterns to address conservation challenges, can provide valuable insight and guidance to policy making for protection of biodiversity at multiple scales. The temperate and tropical ecosystems of the Nearctic-Neotropical transition in the small western state of Colima, Mexico, support a mosaic of remarkably diverse fauna and flora and provide a rare opportunity to determine spatial distribution patterns of terrestrial vertebrate species, assess human-induced threats, and identify potential conservation strategies. We analyzed the spatial distribution patterns and correlated them with the current land cover and extent of the protected areas. Despite its limited geographic extension, 29% (866) of all vertebrates, and almost a quarter of both endemic and threatened species in Mexico, live in Colima. Our analysis identified clear high-richness concentration sites (i.e., “hotspots”) coincident for all groups and that elevation and both temperate and tropical ecosystems composition exert significant influence on richness patterns. Furthermore, current species´ distribution also showed significant correlation with natural and disturbed landcover. Significant hotspots for all species groups coincided poorly with the limited protected areas in the state (only 3.8%). The current state of natural land cover (less than 16%) in the state, coupled with its remarkable biological importance, highlights the need for further complementary conservation efforts including expansion and creation of new protected areas, significant restoration efforts and other conservation measures to maintain this uniquely biogeographic and biological diverse region of the country.
Collapse
|
5
|
Cisneros-Bernal AY, Rodríguez-Gómez F, Flores-Villela O, Fujita MK, Velasco JA, Fernández JA. Phylogeography supports lineage divergence for an endemic rattlesnake ( Crotalus ravus) of the Neotropical montane forest in the Trans-Mexican Volcanic Belt. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The formation of the Trans-Mexican Volcanic Belt (TMVB) and Pleistocene climatic fluctuations have been shown to influence the diversification of lineages and species distributed throughout central Mexico. In some taxa, however, evidence of lineage diversification is not easily recognized, as often is the case in reptiles. Here we present a phylogeographic study on a Mexican endemic rattlesnake species (Crotalus ravus), with the aim of understanding how distinct lineages are distributed across the TMVB. Genetic (mtDNA) and genomic (ddRADseq) data were generated from samples across the species’ range to evaluate phylogeographic structure, estimate phylogenetic relationships and divergence times, and perform environmental niche modeling (ENM). Both datasets recover strong phylogeographic structuring of two distinct lineages on an east-west axis, with an estimated Pleistocene divergence (~1.47 Myr). The ENM suggest that the distribution of the two lineages experienced expansion and reduction events throughout recent evolutionary time. We attribute the diversification of C. ravus lineages to geological events associated with the formation of the TMVB, as well as Quaternary climate changes, both of which have been previously recognized in co-distributed taxa in the TMVB. This work emphasizes the existence of cryptic diversification processes in a morphologically conserved species distributed in a region of complex climatic and orogenic heterogeneity.
Collapse
Affiliation(s)
- Antonio Yolocalli Cisneros-Bernal
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México , Circuito de los Posgrados S/N, coyoacán, 04510, Mexico City , Mexico
- Departamento de Biología Evolutiva, Universidad Nacional Autónoma de México, Mexico City , Circuito exterior, Ciudad Universitaria, Coyoacán, 04510 Mexico
- Totlok, A.C., Cerro del Agua, Integración Latinoamericana , Coyoacán, 04350, Mexico City , Mexico
| | - Flor Rodríguez-Gómez
- Departamento de Ingeniería Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara , Blvd. Marcelino García Barragán 44430, Gadalajara, Jalisco , Mexico
| | - Oscar Flores-Villela
- Departamento de Biología Evolutiva, Universidad Nacional Autónoma de México, Mexico City , Circuito exterior, Ciudad Universitaria, Coyoacán, 04510 Mexico
| | - Matthew K Fujita
- Department of Biology, The University of Texas at Arlington , 501 S. Nedderman Drive 337 Life Science, Arlington, TX 76010-0498 , USA
| | - Julián A Velasco
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Investigación Científica s/n, Ciudad Universitaria , Coyoacán, 04510 Mexico City , Mexico
| | - Jesús A Fernández
- Departamento de Recursos Naturales, Universidad Autónoma de Chihuahua , Periférico Francisco R. Almada km 1, Zootecnia 31415 Chihuahua , Mexico
| |
Collapse
|
6
|
Muñoz-Mora VH, Suárez-Atilano M, Maltagliati F, Ramírez-Corona F, Carbajal-Saucedo A, Percino-Daniel R, Langeneck J, D’Addario M, Sunny A. A tale about vipers’ tails: phylogeography of black-tailed rattlesnakes. HERPETOZOA 2022. [DOI: 10.3897/herpetozoa.35.e84297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The phylogenetic relationships among black-tailed rattlesnakes remain poorly understood and some authors indicated that the diversity of this group has been underestimated and additional analyses are required to clarify the biogeographic patterns throughout its distribution in Mexico. Therefore, the aim of this study was to elucidate the phylogenetic relationships among black-tailed rattlesnakes across their range, identifying relative divergence times among the main clades and reconstructing the biogeographical history of the group. Three partial mitochondrial genes (ND4, cytb and ATPase6) and one nuclear gene (RAG1) were sequenced to infer the phylogenetic relationships, through the maximum likelihood and Bayesian inference-based methods; demographic history reconstruction was investigated through Bayesian Skyline plot analysis and the ancestral area reconstruction was carried out considering a Bayesian framework. We found strong evidence that the black-tailed rattlesnakes’ group is composed of six clades, which is in agreement with subspecies previously reported. Divergence time estimation indicated that the origin of the C. molossus group could be traced to the middle of the Miocene (~7.71 Mya). Ancestral area reconstruction indicated that early divergence events occurred in Central Mexico, probably related to the geological dynamics of the Trans-Mexican Volcanic Belt. The lineage C. m. oaxacus is the basal member of the C. molossus group. Furthermore, the combination of geological events and changes in Quaternary vegetation may have contributed to the divergence of C. molossus clades. Our results suggest several clades within C. molossus complex could be potentially recognized as separate species.
Collapse
|
7
|
Roldán-Padrón O, Cruz-Pérez MS, Castro-Guillén JL, García-Arredondo JA, Mendiola-Olaya E, Saldaña-Gutiérrez C, Herrera-Paniagua P, Blanco-Labra A, García-Gasca T. Hybridization between Crotalus aquilus and Crotalus polystictus Species: A Comparison of Their Venom Toxicity and Enzymatic Activities. BIOLOGY 2022; 11:661. [PMID: 35625389 PMCID: PMC9138290 DOI: 10.3390/biology11050661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
Hybridization is defined as the interbreeding of individuals from two populations distinguishable by one or more heritable characteristics. Snake hybridization represents an interesting opportunity to analyze variability and how genetics affect the venom components between parents and hybrids. Snake venoms exhibit a high degree of variability related to biological and biogeographical factors. The aim of this work is to analyze the protein patterns and enzymatic activity of some of the main hemotoxic enzymes in snake venoms, such as serine proteases (trypsin-like, chymotrypsin-like, and elastase-like), metalloproteases, hyaluronidases, and phospholipase A2. The lethal dose of 50 (LD50) of venom from the Crotalus aquilus (Cabf) and Crotalus polystictus (Cpbm) parents and their hybrids in captivity was determined, and phenetic analysis is also conducted, which showed a high similarity between the hybrids and C. polystictus. The protein banding patterns and enzymatic activity analyze by zymography resulted in a combination of proteins from the parental venoms in the hybrids, with variability among them. In some cases, the enzymatic activity is higher in the hybrids with a lower LD50 than in the parents, indicating higher toxicity. These data show the variability among snake venoms and suggest that hybridization is an important factor in changes in protein concentration, peptide variability, and enzymatic activity that affect toxicity and lethality.
Collapse
Affiliation(s)
- Octavio Roldán-Padrón
- Laboratorio de Biología Celular y Molecuar, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Qro, Mexico; (O.R.-P.); (M.S.C.-P.); (C.S.-G.); (P.H.-P.)
| | - Martha Sandra Cruz-Pérez
- Laboratorio de Biología Celular y Molecuar, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Qro, Mexico; (O.R.-P.); (M.S.C.-P.); (C.S.-G.); (P.H.-P.)
| | - José Luis Castro-Guillén
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Gto, Mexico; (J.L.C.-G.); (E.M.-O.)
| | - José Alejandro García-Arredondo
- Laboratorio de Química Medicinal, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, Queretaro 76010, Qro, Mexico;
| | - Elizabeth Mendiola-Olaya
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Gto, Mexico; (J.L.C.-G.); (E.M.-O.)
| | - Carlos Saldaña-Gutiérrez
- Laboratorio de Biología Celular y Molecuar, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Qro, Mexico; (O.R.-P.); (M.S.C.-P.); (C.S.-G.); (P.H.-P.)
| | - Patricia Herrera-Paniagua
- Laboratorio de Biología Celular y Molecuar, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Qro, Mexico; (O.R.-P.); (M.S.C.-P.); (C.S.-G.); (P.H.-P.)
| | - Alejandro Blanco-Labra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Gto, Mexico; (J.L.C.-G.); (E.M.-O.)
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecuar, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Queretaro 76230, Qro, Mexico; (O.R.-P.); (M.S.C.-P.); (C.S.-G.); (P.H.-P.)
| |
Collapse
|
8
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Hallas JM, Parchman TL, Feldman CR. Phylogenomic analyses resolve relationships among garter snakes (Thamnophis: Natricinae: Colubridae) and elucidate biogeographic history and morphological evolution. Mol Phylogenet Evol 2021; 167:107374. [PMID: 34896619 DOI: 10.1016/j.ympev.2021.107374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
Garter snakes (Thamnophis) are a successful group of natricines endemic to North America. They have become important natural models for ecological and evolutionary research, yet prior efforts to resolve phylogenetic relationships have resulted in conflicting topologies and weak support for certain relationships. Here, we use genomic data generated with a reduced representation double-digest RADseq approach to reassess evolutionary relationships across Thamnophis. We then use the resulting phylogeny to better understand how biogeography and feeding ecology have influenced lineage diversification and morphological evolution. We recovered highly congruent and strongly supported topologies from maximum likelihood and Bayesian analyses, but some discordance with a multispecies coalescent approach. All phylogenomic estimates split Thamnophis into two clades largely defined by northern and southern North American species. Divergence time estimates and biogeographic analyses indicate a mid-Miocene origin of Thamnophis in Mexico. In addition, historic vicariant events thought to explain biogeographic patterns in other lineages (e.g., Isthmus of Tehuantepec, Rocky Mountain Range, and Trans-Mexican Volcanic Belt) appear to have influenced patterns of diversification in Thamnophis as well. Analyses of morphological traits associated with feeding ecology showed moderate to strong phylogenetic signal. Nevertheless, phylogenetic ANOVA suggested significant differences in certain cranial morphologies between aquatic specialists and garter snakes that are terrestrial-aquatic generalists, independent of evolutionary history. Our new estimate of Thamnophis phylogeny yields an improved understanding of the biogeographic history and morphological evolution of garter snakes, and provides a robust framework for future research on these snakes.
Collapse
Affiliation(s)
- Joshua M Hallas
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557-0314, USA; Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557-0314, USA.
| | - Thomas L Parchman
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557-0314, USA; Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557-0314, USA
| | - Chris R Feldman
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557-0314, USA; Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557-0314, USA
| |
Collapse
|
10
|
Population genetic and genomic analyses of Western Massasauga (Sistrurus tergeminus ssp.): implications for subspecies delimitation and conservation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01420-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Myers EA. Genome-wide data reveal extensive gene flow during the diversification of the western rattlesnakes (Viperidae: Crotalinae: Crotalus). Mol Phylogenet Evol 2021; 165:107313. [PMID: 34537323 DOI: 10.1016/j.ympev.2021.107313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022]
Abstract
Hybridization and introgression are important, but often overlooked processes when inferring phylogenies. When these processes are not accounted for and a strictly diverging phylogenetic model is applied to groups with a history of hybridization, phylogenetic inference and parameter estimation can be inaccurate. Recent developments in phylogenetic network approaches coupled with the increasing availability of genomic data allow inferences of reticulate evolutionary histories across the tree of life. The western rattlesnake species group (C. viridis species complex, C. mitchellii species complex, C. scutulutas, and C. tigris) is an iconic snake lineage that is widespread across western North America. This group is composed of several species complexes with unclear species limits, likely the result of ongoing gene flow among nascent lineages. Here I generate reduced representation genomic data and test for a history of reticulation within this group. I demonstrate that all species have undergone hybridization with at least one other lineage, suggesting introgression is widespread in this group. Topologies differ between phylogenies estimated under the multispecies coalescent and multispecies network coalescent methods, indicating that gene flow has obscured phylogenetic relationships within this group. These past introgression events are predominantly restricted to species that co-occur geographically. However, within species that have a history of introgression, this signature is detected regardless of specimen sampling across geography. Overall, my results suggest the accumulation of reproductive isolating barriers occurs slowly in rattlesnakes which likely leads to the difficulty in delimiting species, furthermore, the results of this study have implications for trait evolution in this group.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Herpetology, American Museum of Natural History, New York, NY, USA; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| |
Collapse
|
12
|
Warm Springs Are Associated with Early Births in Three Montane Rattlesnake Species. J HERPETOL 2021. [DOI: 10.1670/20-075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Seneci L, Zdenek CN, Bourke LA, Cochran C, Sánchez EE, Neri-Castro E, Bénard-Valle M, Alagón A, Frank N, Fry BG. A symphony of destruction: Dynamic differential fibrinogenolytic toxicity by rattlesnake (Crotalus and Sistrurus) venoms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109034. [PMID: 33766656 PMCID: PMC8162888 DOI: 10.1016/j.cbpc.2021.109034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022]
Abstract
What factors influence the evolution of a heavily selected functional trait in a diverse clade? This study adopts rattlesnakes as a model group to investigate the evolutionary history of venom coagulotoxicity in the wider context of phylogenetics, natural history, and biology. Venom-induced clotting of human plasma and fibrinogen was determined and mapped onto the rattlesnake phylogenetic tree to reconstruct the evolution of coagulotoxicity across the group. Our results indicate that venom phenotype is often independent of phylogenetic relationships in rattlesnakes, suggesting the importance of diet and/or other environmental variables in driving venom evolution. Moreover, the striking inter- and intraspecific variability in venom activity on human blood highlights the considerable variability faced by physicians treating envenomation. This study is the most comprehensive effort to date to describe and characterize the evolutionary and biological aspects of coagulotoxins in rattlesnake venom. Further research at finer taxonomic levels is recommended to elucidate patterns of variation within species and lineages.
Collapse
Affiliation(s)
- Lorenzo Seneci
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Institute of Biology Leiden (IBL), Leiden University, 2333 BE Leiden, the Netherlands
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lachlan A Bourke
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Department of Chemistry, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Melisa Bénard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
14
|
Pucca MB, Bernarde PS, Rocha AM, Viana PF, Farias RES, Cerni FA, Oliveira IS, Ferreira IG, Sandri EA, Sachett J, Wen FH, Sampaio V, Laustsen AH, Sartim MA, Monteiro WM. Crotalus Durissus Ruruima: Current Knowledge on Natural History, Medical Importance, and Clinical Toxinology. Front Immunol 2021; 12:659515. [PMID: 34168642 PMCID: PMC8219050 DOI: 10.3389/fimmu.2021.659515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Crotalus durissus ruruima is a rattlesnake subspecies mainly found in Roraima, the northernmost state of Brazil. Envenomings caused by this subspecies lead to severe clinical manifestations (e.g. respiratory muscle paralysis, rhabdomyolysis, and acute renal failure) that can lead to the victim’s death. In this review, we comprehensively describe C. d. ruruima biology and the challenges this subspecies poses for human health, including morphology, distribution, epidemiology, venom cocktail, clinical envenoming, and the current and future specific treatment of envenomings by this snake. Moreover, this review presents maps of the distribution of the snake subspecies and evidence that this species is responsible for some of the most severe envenomings in the country and causes the highest lethality rates. Finally, we also discuss the efficacy of the Brazilian horse-derived antivenoms to treat C. d. ruruima envenomings in Roraima state.
Collapse
Affiliation(s)
- Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Paulo Sérgio Bernarde
- Laboratório de Herpetologia, Centro Multidisciplinar, Universidade Federal do Acre, Cruzeiro do Sul, Brazil
| | | | - Patrik F Viana
- National Institute of Amazonian Research, Biodiversity Coordination, Laboratory of Animal Genetics, Manaus, Brazil
| | - Raimundo Erasmo Souza Farias
- National Institute of Amazonian Research, Biodiversity Coordination, Laboratory of Animal Genetics, Manaus, Brazil
| | - Felipe A Cerni
- Medical School, Federal University of Roraima, Boa Vista, Brazil.,Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliseu A Sandri
- Insikiram Institute of Indigenous Higher Studies, Federal University of Roraima, Boa Vista, Brazil
| | - Jacqueline Sachett
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Brazil.,Department of Teaching and Research, Alfredo da Matta Foundation, Manaus, Brazil
| | - Fan Hui Wen
- Antivenom Production Section, Butantan Institute, São Paulo, Brazil
| | - Vanderson Sampaio
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marco A Sartim
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil.,Institute of Biological Sciences, Amazonas Federal University, Manaus, Brazil
| | - Wuelton M Monteiro
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Brazil.,Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| |
Collapse
|
15
|
Holding ML, Strickland JL, Rautsaw RM, Hofmann EP, Mason AJ, Hogan MP, Nystrom GS, Ellsworth SA, Colston TJ, Borja M, Castañeda-Gaytán G, Grünwald CI, Jones JM, Freitas-de-Sousa LA, Viala VL, Margres MJ, Hingst-Zaher E, Junqueira-de-Azevedo ILM, Moura-da-Silva AM, Grazziotin FG, Gibbs HL, Rokyta DR, Parkinson CL. Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proc Natl Acad Sci U S A 2021; 118:e2015579118. [PMID: 33875585 PMCID: PMC8092465 DOI: 10.1073/pnas.2015579118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear. We tested alternative hypotheses linking venom complexity and ecological sources of selection from diet in the largest clade of front-fanged venomous snakes in North America: the rattlesnakes, copperheads, cantils, and cottonmouths. We generated independent transcriptomic and proteomic measures of venom complexity and collated several natural history studies to quantify dietary variation. We then constructed genome-scale phylogenies for these snakes for comparative analyses. Strikingly, prey phylogenetic diversity was more strongly correlated to venom complexity than was overall prey species diversity, specifically implicating prey species' divergence, rather than the number of lineages alone, in the evolution of complexity. Prey phylogenetic diversity further predicted transcriptomic complexity of three of the four largest gene families in viper venom, showing that complexity evolution is a concerted response among many independent gene families. We suggest that the phylogenetic diversity of prey measures functionally relevant divergence in the targets of venom, a claim supported by sequence diversity in the coagulation cascade targets of venom. Our results support the general concept that the diversity of species in an ecological community is more important than their overall number in determining evolutionary patterns in predator trait complexity.
Collapse
Affiliation(s)
- Matthew L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634;
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Erich P Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Timothy J Colston
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | | | - Jason M Jones
- HERP.MX A.C., Villa del Álvarez, Colima 28973, Mexico
| | | | - Vincent Louis Viala
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil
- Center of Toxins, Immune-Response and Cell Signaling, São Paulo 05503-900, Brazil
| | - Mark J Margres
- Department of Biological Sciences, Clemson University, Clemson, SC 29634
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | | | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo 05503-900, Brazil
- Center of Toxins, Immune-Response and Cell Signaling, São Paulo 05503-900, Brazil
| | - Ana M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo 05503-900, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040, Brazil
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634;
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634
| |
Collapse
|
16
|
Seneci L, Zdenek CN, Chowdhury A, Rodrigues CFB, Neri-Castro E, Bénard-Valle M, Alagón A, Fry BG. A Clot Twist: Extreme Variation in Coagulotoxicity Mechanisms in Mexican Neotropical Rattlesnake Venoms. Front Immunol 2021; 12:612846. [PMID: 33815366 PMCID: PMC8011430 DOI: 10.3389/fimmu.2021.612846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Rattlesnakes are a diverse clade of pit vipers (snake family Viperidae, subfamily Crotalinae) that consists of numerous medically significant species. We used validated in vitro assays measuring venom-induced clotting time and strength of any clots formed in human plasma and fibrinogen to assess the coagulotoxic activity of the four medically relevant Mexican rattlesnake species Crotalus culminatus, C. mictlantecuhtli, C. molossus, and C. tzabcan. We report the first evidence of true procoagulant activity by Neotropical rattlesnake venom in Crotalus culminatus. This species presented a strong ontogenetic coagulotoxicity dichotomy: neonates were strongly procoagulant via Factor X activation, whereas adults were pseudo-procoagulant in that they converted fibrinogen into weak, unstable fibrin clots that rapidly broke down, thereby likely contributing to net anticoagulation through fibrinogen depletion. The other species did not activate clotting factors or display an ontogenetic dichotomy, but depleted fibrinogen levels by cleaving fibrinogen either in a destructive (non-clotting) manner or via a pseudo-procoagulant mechanism. We also assessed the neutralization of these venoms by available antivenom and enzyme-inhibitors to provide knowledge for the design of evidence-based treatment strategies for envenomated patients. One of the most frequently used Mexican antivenoms (Bioclon Antivipmyn®) failed to neutralize the potent procoagulant toxic action of neonate C. culminatus venom, highlighting limitations in snakebite treatment for this species. However, the metalloprotease inhibitor Prinomastat substantially thwarted the procoagulant venom activity, while 2,3-dimercapto-1-propanesulfonic acid (DMPS) was much less effective. These results confirm that venom-induced Factor X activation (a procoagulant action) is driven by metalloproteases, while also suggesting Prinomastat as a more promising potential adjunct treatment than DMPS for this species (with the caveat that in vivo studies are necessary to confirm this potential clinical use). Conversely, the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) inhibited the direct fibrinogen cleaving actions of C. mictlantecuhtli venom, thereby revealing that the pseudo-procoagulant action is driven by kallikrein-type serine proteases. Thus, this differential ontogenetic variation in coagulotoxicity patterns poses intriguing questions. Our results underscore the need for further research into Mexican rattlesnake venom activity, and also highlights potential limitations of current antivenom treatments.
Collapse
Affiliation(s)
- Lorenzo Seneci
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Institute of Biology Leiden (IBL), Leiden University, Leiden, Netherlands
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Caroline F B Rodrigues
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.,Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Mexico
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
17
|
Grabowsky ER, Mackessy SP. Predator-prey interactions and venom composition in a high elevation lizard specialist, Crotalus pricei (Twin-spotted Rattlesnake). Toxicon 2019; 170:29-40. [DOI: 10.1016/j.toxicon.2019.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 01/31/2023]
|
18
|
Jadin RC, Mihaljevic JR, Orlofske SA. Do New World pitvipers "scale-down" at high elevations? Macroecological patterns of scale characters and body size. Ecol Evol 2019; 9:9362-9375. [PMID: 31463027 PMCID: PMC6706185 DOI: 10.1002/ece3.5486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/02/2019] [Indexed: 11/30/2022] Open
Abstract
Bergmann's rule describes the macroecological pattern of increasing body size in response to higher latitudes and elevations. This pattern is extensively documented in endothermic vertebrates, within and among species; however, studies involving ectotherms are less common and suggest no consistent pattern for amphibians and reptiles. Moreover, adaptive traits, such as epidermal features like scales, have not been widely examined in conjunction with Bergmann's rule, even though these traits affect physiological processes, such as thermoregulation, which are hypothesized as underlying mechanisms for the pattern. Here, we investigate how scale characters correlate with elevation among 122 New World pitviper species, representing 15 genera. We found a contra-Bergmann's pattern, where body size is smaller at higher elevations. This pattern was mainly driven by the presence of small-bodied clades at high elevations and large-bodied clades at low elevations, emphasizing the importance of taxonomic scope in studying macroecological patterns. Within a subset of speciose clades, we found that only Crotalus demonstrated a significant negative relationship between body size and elevation, perhaps because of its wide elevational range. In addition, we found a positive correlation between scale counts and body size but no independent effect of elevation on scale numbers. Our study increases our knowledge of Bergmann's rule in reptiles by specifically examining characters of squamation and suggests a need to reexamine macroecological patterns for this group.
Collapse
Affiliation(s)
- Robert C. Jadin
- Department of BiologyUniversity of Wisconsin Eau ClaireEau ClaireWIUSA
| | - Joseph R. Mihaljevic
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZUSA
| | - Sarah A. Orlofske
- Department of BiologyUniversity of Wisconsin Stevens PointStevens PointWIUSA
| |
Collapse
|
19
|
Blair C, Bryson RW, Linkem CW, Lazcano D, Klicka J, McCormack JE. Cryptic diversity in the Mexican highlands: Thousands of UCE loci help illuminate phylogenetic relationships, species limits and divergence times of montane rattlesnakes (Viperidae: Crotalus). Mol Ecol Resour 2018; 19:349-365. [PMID: 30565862 DOI: 10.1111/1755-0998.12970] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 01/28/2023]
Abstract
With the continued adoption of genome-scale data in evolutionary biology comes the challenge of adequately harnessing the information to make accurate phylogenetic inferences. Coalescent-based methods of species tree inference have become common, and concatenation has been shown in simulation to perform well, particularly when levels of incomplete lineage sorting are low. However, simulation conditions are often overly simplistic, leaving empiricists with uncertainty regarding analytical tools. We use a large ultraconserved element data set (>3,000 loci) from rattlesnakes of the Crotalus triseriatus group to delimit lineages and estimate species trees using concatenation and several coalescent-based methods. Unpartitioned and partitioned maximum likelihood and Bayesian analysis of the concatenated matrix yield a topology identical to coalescent analysis of a subset of the data in bpp. ASTRAL analysis on a subset of the more variable loci also results in a tree consistent with concatenation and bpp, whereas the SVDquartets phylogeny differs at additional nodes. The size of the concatenated matrix has a strong effect on species tree inference using SVDquartets, warranting additional investigation on optimal data characteristics for this method. Species delimitation analyses suggest up to 16 unique lineages may be present within the C. triseriatus group, with divergences occurring during the Neogene and Quaternary. Network analyses suggest hybridization within the group is relatively rare. Altogether, our results reaffirm the Mexican highlands as a biodiversity hotspot and suggest that coalescent-based species tree inference on data subsets can provide a strongly supported species tree consistent with concatenation of all loci with a large amount of missing data.
Collapse
Affiliation(s)
- Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, Brooklyn, New York.,Biology PhD Program, CUNY Graduate Center, New York, New York
| | - Robert W Bryson
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington.,Moore Laboratory of Zoology, Occidental College, Los Angeles, California
| | - Charles W Linkem
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington
| | - David Lazcano
- Laboratorio de Herpetología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - John Klicka
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California
| |
Collapse
|
20
|
Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (Crotalus scutulatus). Sci Rep 2018; 8:17622. [PMID: 30514908 PMCID: PMC6279745 DOI: 10.1038/s41598-018-35810-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/09/2018] [Indexed: 01/20/2023] Open
Abstract
Snake venoms represent an enriched system for investigating the evolutionary processes that lead to complex and dynamic trophic adaptations. It has long been hypothesized that natural selection may drive geographic variation in venom composition, yet previous studies have lacked the population genetic context to examine these patterns. We leverage range-wide sampling of Mojave Rattlesnakes (Crotalus scutulatus) and use a combination of venom, morphological, phylogenetic, population genetic, and environmental data to characterize the striking dichotomy of neurotoxic (Type A) and hemorrhagic (Type B) venoms throughout the range of this species. We find that three of the four previously identified major lineages within C. scutulatus possess a combination of Type A, Type B, and a ‘mixed’ Type A + B venom phenotypes, and that fixation of the two main venom phenotypes occurs on a more fine geographic scale than previously appreciated. We also find that Type A + B individuals occur in regions of inferred introgression, and that this mixed phenotype is comparatively rare. Our results support strong directional local selection leading to fixation of alternative venom phenotypes on a fine geographic scale, and are inconsistent with balancing selection to maintain both phenotypes within a single population. Our comparisons to biotic and abiotic factors further indicate that venom phenotype correlates with fang morphology and climatic variables. We hypothesize that links to fang morphology may be indicative of co-evolution of venom and other trophic adaptations, and that climatic variables may be linked to prey distributions and/or physiology, which in turn impose selection pressures on snake venoms.
Collapse
|
21
|
|
22
|
Durban J, Sasa M, Calvete JJ. Venom gland transcriptomics and microRNA profiling of juvenile and adult yellow-bellied sea snake, Hydrophis platurus, from Playa del Coco (Guanacaste, Costa Rica). Toxicon 2018; 153:96-105. [DOI: 10.1016/j.toxicon.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023]
|
23
|
Schield DR, Adams RH, Card DC, Corbin AB, Jezkova T, Hales NR, Meik JM, Perry BW, Spencer CL, Smith LL, García GC, Bouzid NM, Strickland JL, Parkinson CL, Borja M, Castañeda-Gaytán G, Bryson RW, Flores-Villela OA, Mackessy SP, Castoe TA. Cryptic genetic diversity, population structure, and gene flow in the Mojave rattlesnake (Crotalus scutulatus). Mol Phylogenet Evol 2018; 127:669-681. [DOI: 10.1016/j.ympev.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
|
24
|
Venom Ontogeny in the Mexican Lance-Headed Rattlesnake ( Crotalus polystictus). Toxins (Basel) 2018; 10:toxins10070271. [PMID: 29970805 PMCID: PMC6070973 DOI: 10.3390/toxins10070271] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022] Open
Abstract
As trophic adaptations, rattlesnake venoms can vary in composition depending on several intrinsic and extrinsic factors. Ontogenetic changes in venom composition have been documented for numerous species, but little is known of the potential age-related changes in many rattlesnake species found in México. In the current study, venom samples collected from adult and neonate Crotalus polystictus from Estado de México were subjected to enzymatic and electrophoretic analyses, toxicity assays (LD50), and MALDI-TOF mass spectrometry, and a pooled sample of adult venom was analyzed by shotgun proteomics. Electrophoretic profiles of adult males and females were quite similar, and only minor sex-based variation was noted. However, distinct differences were observed between venoms from adult females and their neonate offspring. Several prominent bands, including P-I and P-III snake venom metalloproteinases (SVMPs) and disintegrins (confirmed by MS/MS) were present in adult venoms and absent/greatly reduced in neonate venoms. Age-dependent differences in SVMP, kallikrein-like, phospholipase A2 (PLA2), and L-amino acid oxidase (LAAO) activity levels were confirmed by enzymatic activity assays, and like many other rattlesnake species, venoms from adult snakes have higher SVMP activity than neonate venoms. Conversely, PLA2 activity was approximately 2.5 × greater in venoms from neonates, likely contributing to the increased toxicity (neonate venom LD50 = 4.5 μg/g) towards non-Swiss albino mice when compared to adult venoms (LD50 = 5.5 μg/g). Thrombin-like (TLE) and phosphodiesterase activities did not vary significantly with age. A significant effect of sex (between adult male and adult female venoms) was also observed for SVMP, TLE, and LAAO activities. Analysis of pooled adult venom by LC-MS/MS identified 14 toxin protein families, dominated by bradykinin-inhibitory peptides, SVMPs (P-I, P-II and P-III), disintegrins, PLA2s, C-type-lectins, CRiSPs, serine proteinases, and LAAOs (96% of total venom proteins). Neonate and adult C. polystictus in this population consume almost exclusively mammals, suggesting that age-based differences in composition are related to physical differences in prey (e.g., surface-to-volume ratio differences) rather than taxonomic differences between prey. Venoms from adult C. polystictus fit a Type I pattern (high SVMP activity, lower toxicity), which is characteristic of many larger-bodied rattlesnakes of North America.
Collapse
|
25
|
Meyer ALS, Wiens JJ. Estimating diversification rates for higher taxa: BAMM can give problematic estimates of rates and rate shifts. Evolution 2017; 72:39-53. [DOI: 10.1111/evo.13378] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Andreas L. S. Meyer
- Graduate Program in Zoology Universidade Federal do Paraná Curitiba Paraná 81531 Brazil
- Department of Ecology and Evolution University of Arizona Tucson Arizona 85721
| | - John J. Wiens
- Department of Ecology and Evolution University of Arizona Tucson Arizona 85721
| |
Collapse
|
26
|
Saviola AJ, Gandara AJ, Bryson RW, Mackessy SP. Venom phenotypes of the Rock Rattlesnake ( Crotalus lepidus ) and the Ridge-nosed Rattlesnake ( Crotalus willardi ) from México and the United States. Toxicon 2017; 138:119-129. [DOI: 10.1016/j.toxicon.2017.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022]
|
27
|
Durban J, Sanz L, Trevisan-Silva D, Neri-Castro E, Alagón A, Calvete JJ. Integrated Venomics and Venom Gland Transcriptome Analysis of Juvenile and Adult Mexican Rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus Revealed miRNA-modulated Ontogenetic Shifts. J Proteome Res 2017; 16:3370-3390. [PMID: 28731347 DOI: 10.1021/acs.jproteome.7b00414] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adult rattlesnakes within genus Crotalus express one of two distinct venom phenotypes, type I (hemorrhagic) and type II (neurotoxic). In Costa Rican Central American rattlesnake, ontogenetic changes in the concentration of miRNAs modulate venom type II to type I transition. Venomics and venom gland transcriptome analyses showed that adult C. simus and C. tzabcan expressed intermediate patterns between type II and type I venoms, whereas C. culminatus had a canonical type I venom. Neonate/juvenile and adult Mexican rattlesnakes showed notable inter- and intraspecific variability in the number, type, abundance and ontogenetic shifts of the transcriptional and translational venom gland activities. These results support a role for miRNAs in the ontogenetic venom compositional changes in the three congeneric Mexican rattlesnakes. It is worth noting the finding of dual-action miRNAs, which silence the translation of neurotoxic heterodimeric PLA2 crotoxin and acidic PLA2 mRNAs while simultaneously up-regulating SVMP-targeting mRNAs. Dual transcriptional regulation potentially explains the existence of mutually exclusive crotoxin-rich (type-II) and SVMP-rich (type-I) venom phenotypic dichotomy among rattlesnakes. Our results support the hypothesis that alterations of the distribution of miRNAs, modulating the translational activity of venom gland toxin-encoding mRNAs in response to an external cue, may contribute to the mechanism generating adaptive venom variability.
Collapse
Affiliation(s)
- Jordi Durban
- Instituto de Biomedicina de Valencia , Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain
| | - Libia Sanz
- Instituto de Biomedicina de Valencia , Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain
| | - Dilza Trevisan-Silva
- Instituto de Biomedicina de Valencia , Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain.,Department of Cell Biology, Federal University of Paraná , Jardim das Américas, Curitiba, Paraná, Brazil
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos, México
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos, México
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia , Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
28
|
Licona-Vera Y, Ornelas JF. The conquering of North America: dated phylogenetic and biogeographic inference of migratory behavior in bee hummingbirds. BMC Evol Biol 2017; 17:126. [PMID: 28583078 PMCID: PMC5460336 DOI: 10.1186/s12862-017-0980-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Geographical and temporal patterns of diversification in bee hummingbirds (Mellisugini) were assessed with respect to the evolution of migration, critical for colonization of North America. We generated a dated multilocus phylogeny of the Mellisugini based on a dense sampling using Bayesian inference, maximum-likelihood and maximum parsimony methods, and reconstructed the ancestral states of distributional areas in a Bayesian framework and migratory behavior using maximum parsimony, maximum-likelihood and re-rooting methods. RESULTS All phylogenetic analyses confirmed monophyly of the Mellisugini and the inclusion of Atthis, Calothorax, Doricha, Eulidia, Mellisuga, Microstilbon, Myrmia, Tilmatura, and Thaumastura. Mellisugini consists of two clades: (1) South American species (including Tilmatura dupontii), and (2) species distributed in North and Central America and the Caribbean islands. The second clade consists of four subclades: Mexican (Calothorax, Doricha) and Caribbean (Archilochus, Calliphlox, Mellisuga) sheartails, Calypte, and Selasphorus (incl. Atthis). Coalescent-based dating places the origin of the Mellisugini in the mid-to-late Miocene, with crown ages of most subclades in the early Pliocene, and subsequent species splits in the Pleistocene. Bee hummingbirds reached western North America by the end of the Miocene and the ancestral mellisuginid (bee hummingbirds) was reconstructed as sedentary, with four independent gains of migratory behavior during the evolution of the Mellisugini. CONCLUSIONS Early colonization of North America and subsequent evolution of migration best explained biogeographic and diversification patterns within the Mellisugini. The repeated evolution of long-distance migration by different lineages was critical for the colonization of North America, contributing to the radiation of bee hummingbirds. Comparative phylogeography is needed to test whether the repeated evolution of migration resulted from northward expansion of southern sedentary populations.
Collapse
Affiliation(s)
- Yuyini Licona-Vera
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C., Carretera Antigua a Coatepec No. 351, El Haya, Xalapa, 91070, Veracruz, Mexico
| | - Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C., Carretera Antigua a Coatepec No. 351, El Haya, Xalapa, 91070, Veracruz, Mexico.
| |
Collapse
|