1
|
Sommer GM, Njom SD, Indermaur A, Nyom ARB, Jandová K, Kukla J, Petrtýl M, Horká P, Musilova Z. Trophic ecology of the African riverine elephant fishes (Mormyridae). Ecol Evol 2024; 14:e70173. [PMID: 39206461 PMCID: PMC11349487 DOI: 10.1002/ece3.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Multiple species of the elephant fishes (Mormyridae) commonly coexist in sympatry in most African tropical rivers and lakes. In this study, we investigated the trophic ecology and potential trophic niche partitioning of eleven mormyrid fish species from the Sanaga River system in Cameroon using the stable isotope composition of carbon and nitrogen in the muscle samples. Albeit most mormyrids mainly feed on invertebrates, we found differences in isotope ratios, and we report signs of the trophic niche partitioning among species. We further found significant differences in isotopic signatures within the Mormyrus genus, suggesting ecological niche diversification among three closely related species. We have also evaluated differences in the isotopic signals between seasons in four species, which could be possibly caused by species migration and/or anthropogenic agricultural activities. To evaluate body shape, we applied geometric morphometric analyses, and we show that most of the species are clearly morphologically separated. We focused on the mormyrid ecomorphology to identify a possible interaction between shape and ecology, and we found a relationship between the δ13C (but not δ15N) isotopic signal and morphology, suggesting their interplay during mormyrid evolution. Overall, we present robust evidence of the trophic niche partitioning within the mormyrid species community, and we integrate trophic ecology with morphometrics, shedding light on the enigmatic evolutionary history of these fascinating African fishes.
Collapse
Affiliation(s)
- Gina Maria Sommer
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Samuel Didier Njom
- Department of Biological SciencesUniversity of NgaoundéréNgaoundéréCameroon
| | | | - Arnold Roger Bitja Nyom
- Department of Biological SciencesUniversity of NgaoundéréNgaoundéréCameroon
- Department of Management of Fisheries and Aquatic EcosystemsUniversity of DoualaDoualaCameroon
| | - Kateřina Jandová
- Institute for Environmental Studies, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jaroslav Kukla
- Institute for Environmental Studies, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Miloslav Petrtýl
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PragueSuchdolCzech Republic
| | - Petra Horká
- Institute for Environmental Studies, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Zuzana Musilova
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
2
|
Amen R, Havenstein K, Kirschbaum F, Tiedemann R. Diet in phenotypically divergent sympatric species of African weakly electric fish (genus: Campylomormyrus)-A hybrid capture/HTS metabarcoding approach. Mol Ecol 2024; 33:e17248. [PMID: 38126927 DOI: 10.1111/mec.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Ecological speciation within the mormyrid genus Campylomormyrus resulted in sympatric species exhibiting divergence in their feeding apparatus and electric organ discharge (EOD). This study documents the overall diet of the genus Campylomormyrus and examines the hypothesis that the Campylomormyrus radiation is caused by adaptation to different food sources. We performed diet assessment of five sympatric Campylomormyrus species (C. alces, C. compressirostris, C. curvirostris, C. tshokwe, C. numenius) and their sister taxon Gnathonemus petersii with markedly different snout morphologies and EODs using hybrid capture/HTS DNA metabarcoding of their stomach contents. Our approach allowed for high taxonomic resolution of prey items, including benthic invertebrates, allochthonous invertebrates and vegetation. Comparisons of the diet compositions using quantitative measures and diet overlap indices revealed that all species are able to exploit multiple food niches in their habitats, that is fauna at the bottom, the water surface and the water column. A major part of the diet is larvae of aquatic insects, such as dipterans, coleopterans and trichopterans, known to occur in holes and interstitial spaces of the substrate. The results indicate that different snout morphologies and the associated divergence in the EOD could translate into different prey spectra. This suggests that the diversification in EOD and/or morphology of the feeding apparatus could be under functional adaptation.
Collapse
Affiliation(s)
- Rahma Amen
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Katja Havenstein
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Kirschbaum
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Ralph Tiedemann
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Cheng F, Dennis AB, Baumann O, Kirschbaum F, Abdelilah-Seyfried S, Tiedemann R. Gene and Allele-Specific Expression Underlying the Electric Signal Divergence in African Weakly Electric Fish. Mol Biol Evol 2024; 41:msae021. [PMID: 38410843 PMCID: PMC10897887 DOI: 10.1093/molbev/msae021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.
Collapse
Affiliation(s)
- Feng Cheng
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alice B Dennis
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Laboratory of Adaptive Evolution and Genomics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth & Environment, University of Namur, Namur, Belgium
| | - Otto Baumann
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Kirschbaum
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Crop and Animal Science, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
4
|
Koch A, Kirschbaum F, Moritz T. Ontogeny reveals the origin of Gemminger bones in Mormyridae. J Anat 2023; 243:1024-1030. [PMID: 37491873 PMCID: PMC10641036 DOI: 10.1111/joa.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
Mormyridae are well known and intensively studied for their weak electric organ discharges, which facilitate communication and orientation. The Gemminger bones of Mormyridae are located next to the electrical organ in the caudal peduncle; however, they have not attracted much interest until recently. Therefore, we investigated the diversity of Gemminger bones in mormyrids and studied their ontogenetic development in Mormyrus rume proboscirostris. Gemminger bones are paired, thin, elongated ossifications lying on the dorsal and ventral sides of the caudal peduncle, and usually reach anterior well below the dorsal and anal fin bases. Ontogeny revealed that they are not intermuscular ossifications, as suspected based on the anatomical position of this structure and the systematic position of the mormyrids. Instead, they are membrane ossifications that originate from the fin stays of the dorsal and anal fins.
Collapse
Affiliation(s)
- Ann‐Katrin Koch
- Deutsches MeeresmuseumStralsundGermany
- Institute of Biological SciencesUniversity RostockRostockGermany
| | - Frank Kirschbaum
- Faculty of Life ScienceHumboldt‐University zu BerlinBerlinGermany
| | - Timo Moritz
- Deutsches MeeresmuseumStralsundGermany
- Institute of Biological SciencesUniversity RostockRostockGermany
| |
Collapse
|
5
|
Ford KL, Peterson R, Bernt M, Albert JS. Convergence is Only Skin Deep: Craniofacial Evolution in Electric Fishes from South America and Africa (Apteronotidae and Mormyridae). Integr Org Biol 2022; 4:obac022. [PMID: 35976714 PMCID: PMC9375771 DOI: 10.1093/iob/obac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Apteronotidae and Mormyridae are species-rich clades of weakly electric fishes from Neotropical and Afrotropical freshwaters, respectively, known for their high morphological disparity and often regarded as a classic example of convergent evolution. Here, we use CT-imaging and 3D geometric morphometrics to quantify disparity in craniofacial morphologies, and to test the hypothesis of convergent skull-shape evolution in a phylogenetic context. For this study, we examined 391 specimens representing 78 species of Apteronotidae and Mormyridae including 30 of 37 (81%) of all valid genera with the goal to sample most of the craniofacial disparity known in these clades. We found no overlap between Apteronotidae and Mormyridae in the skull-shape morphospace using PCA and a common landmark scheme, and therefore no instances of complete phenotypic convergence. Instead, we found multiple potential instances of incomplete convergence, and at least one parallel shift among electric fish clades. The greatest components of shape variance in both families are the same as observed for most vertebrate clades: heterocephaly (i.e., opposite changes in relative sizes of the snout and braincase regions of the skull), and heterorhynchy (i.e., dorsoventral changes in relative snout flexion and mouth position). Mormyrid species examined here exhibit less craniofacial disparity than do apteronotids, potentially due to constraints associated with a larger brain size, ecological constraints related to food-type availability. Patterns of craniofacial evolution in these two clades depict a complex story of phenotypic divergence and convergence in which certain superficial similarities of external morphology obscure deeper osteological and presumably developmental differences of skull form and function. Among apteronotid and mormyrid electric fishes, craniofacial convergence is only skin deep.
Collapse
Affiliation(s)
- Kassandra L Ford
- Institute of Ecology and Evolution, Universität Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Switzerland
- Department of Biology, University of Louisiana at Lafayette, USA
| | - Rose Peterson
- Department of Biological Sciences, George Washington University, USA
| | - Maxwell Bernt
- Department of Biology, University of Louisiana at Lafayette, USA
- Department of Ichthyology, American Museum of Natural History, USA
| | - James S Albert
- Department of Biology, University of Louisiana at Lafayette, USA
| |
Collapse
|
6
|
Ford KL, Albert JS. Is the medium the message? Functional diversity across abiotic gradients in freshwater electric fishes. Integr Comp Biol 2022; 62:945-957. [DOI: 10.1093/icb/icac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Evolutionary transitions across abiotic gradients can occur among habitats at multiple spatial scales, and among taxa and biotas through a range of ecological and evolutionary time frames. Two diverse groups of electric fishes, Neotropical Gymnotiformes and Afrotropical Mormyroidea, offer interesting examples of potentially convergent evolution in aspects of morphological, physiological, and life history traits. We examined biogeographical, morphological, and functional patterns across these two groups to assess the degree of convergence in association with abiotic environmental variables. While there are superficial similarities across the groups and continents, we found substantially more differences in terms of habitat occupancy, electric signal diversity, and morphological disparity. These differences likely correlate to differences in biogeographical histories across the Neotropics and Afrotropics, biotic factors associated with aquatic life and electric signals, and sampling issues plaguing both groups. Additional research and sampling are required to make further inferences about how electric fishes transition throughout diverse freshwater habitats across both microevolutionary and macroevolutionary scales. We find little evidence that abiotic gradients in the freshwater habitat medium have driven convergent evolution of functional traits in these two continental radiations of electric fishes.
Collapse
Affiliation(s)
- Kassandra L Ford
- Institute of Ecology and Evolution, Universität Bern, Switzerland
- Department of Biology, University of Louisiana at Lafayette, USA
| | - James S Albert
- Department of Biology, University of Louisiana at Lafayette, USA
| |
Collapse
|
7
|
Intergenus F1-hybrids of African weakly electric fish (Mormyridae: Gnathonemus petersii ♂ × Campylomormyrus compressirostris ♀) are fertile. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:355-371. [PMID: 35119505 PMCID: PMC9123046 DOI: 10.1007/s00359-022-01542-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Hybridisation is an important element of adaptive radiation in fish but data are limited in weakly electric mormyrid fish in this respect. Recently, it has been shown that intragenus hybrids (Campylomormyrus) are fertile and are able to produce F2-fish. In this paper, we demonstrate that even intergenus hybrids (Gnathonemus petersii ♂ × Campylomormyrus compressirostris ♀) are fertile. Three artificial reproduction (AR) trials, with an average fertilisation rate of ca. 23%, yielded different numbers of survivals (maximally about 50%) of the F1-hybrids. The complete ontogenetic development of these hybrids is described concerning their morphology and electric organ discharge (EOD). Two EOD types emerged at the juvenile stage, which did not change up to adulthood. Type I consisted of four phases and Type II was triphasic. The minimum body length at sexual maturity was between 10 and 11 cm. Malformations, growth and mortality rates are also described.
Collapse
|
8
|
Korniienko Y, Tiedemann R, Vater M, Kirschbaum F. Ontogeny of the electric organ discharge and of the papillae of the electrocytes in the weakly electric fish Campylomormyrus rhynchophorus (Teleostei: Mormyridae). J Comp Neurol 2021; 529:1052-1065. [PMID: 32785950 DOI: 10.1002/cne.25003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 11/11/2022]
Abstract
The electric organ of the mormyrid weakly electric fish, Campylomormyrus rhynchophorus (Boulenger, 1898), undergoes changes in both the electric organ discharge (EOD) and the light and electron microscopic morphology as the fish mature from the juvenile to the adult form. Of particular interest was the appearance of papillae, surface specializations of the uninnervated anterior face of the electrocyte, which have been hypothesized to increase the duration of the EOD. In a 24.5 mm long juvenile the adult electric organ (EO) was not yet functional, and the electrocytes lacked papillae. A 40 mm long juvenile, which produced a short biphasic EOD of 1.3 ms duration, shows small papillae (average area 136 μm2 ). In contrast, the EOD of a 79 mm long juvenile was triphasic. The large increase in duration of the EOD to 23.2 ms was accompanied by a small change in size of the papillae (average area 159 μm2 ). Similarly, a 150 mm long adult produced a triphasic EOD of comparable duration to the younger stage (24.7 ms) but featured a prominent increase in size of the papillae (average area 402 μm2 ). Thus, there was no linear correlation between EOD duration and papillary size. The most prominent ultrastructural change was at the level of the myofilaments, which regularly extended into the papillae, only in the oldest specimen-probably serving a supporting function. Physiological mechanisms, like gene expression levels, as demonstrated in some Campylomormyrus species, might be more important concerning the duration of the EOD.
Collapse
Affiliation(s)
- Yevheniia Korniienko
- Humboldt University of Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Berlin, Germany
| | - Ralph Tiedemann
- University of Potsdam, Institute of Biochemistry and Biology, Unit of Evolutionary Biology / Systematic Zoology, Potsdam-Golm, Germany
| | - Marianne Vater
- Unit of General Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam Golm, Germany
| | - Frank Kirschbaum
- Humboldt University of Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Berlin, Germany
| |
Collapse
|
9
|
Canitz J, Kirschbaum F, Tiedemann R. Transcriptome-wide single nucleotide polymorphisms related to electric organ discharge differentiation among African weakly electric fish species. PLoS One 2020; 15:e0240812. [PMID: 33108393 PMCID: PMC7591079 DOI: 10.1371/journal.pone.0240812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations.
Collapse
Affiliation(s)
- Julia Canitz
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Kirschbaum
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Crop and Animal Science, Faculty of Life Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
10
|
Korniienko Y, Nguyen L, Baumgartner S, Vater M, Tiedemann R, Kirschbaum F. Intragenus F1-hybrids of African weakly electric fish (Mormyridae: Campylomormyrus tamandua ♂ × C. compressirostris ♀) are fertile. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:571-585. [PMID: 32468077 PMCID: PMC8520511 DOI: 10.1007/s00359-020-01425-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/01/2020] [Accepted: 05/16/2020] [Indexed: 11/25/2022]
Abstract
Hybridization is widespread in fish and constitutes an important mechanism in fish speciation. There is, however, little knowledge about hybridization in mormyrids. F1-interspecies hybrids between Campylomormyrus tamandua ♂ × C. compressirostris ♀ were investigated concerning: (1) fertility; (2) survival of F2-fish and (3) new gene combinations in the F2-generation concerning the structure of the electric organ and features of the electric organ discharge. These F1-hybrids achieved sexual maturity at about 12–13.5 cm total length. A breeding group comprising six males and 13 females spawned 28 times naturally proving these F1-fish to be fertile. On average 228 eggs were spawned, the average fertilization rate was 47.8%. Eggs started to hatch 70–72 h after fertilization, average hatching rate was 95.6%. Average mortality rate during embryonic development amounted to 2.3%. Average malformation rate during the free embryonic stage was 27.7%. Exogenous feeding started on day 11. In total, we raised 353 normally developed larvae all of which died consecutively, the oldest specimen reaching an age of 5 months. During survival, the activities of the larval and adult electric organs were recorded and the structure of the adult electric organ was investigated histologically.
Collapse
Affiliation(s)
- Yevheniia Korniienko
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, Philippstr. 13, Haus 16, 10115, Berlin, Germany
| | - Linh Nguyen
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, Philippstr. 13, Haus 16, 10115, Berlin, Germany
- Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Stephanie Baumgartner
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, Philippstr. 13, Haus 16, 10115, Berlin, Germany
| | - Marianne Vater
- Institute of Biochemistry and Biology, Unit of General Zoology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Ralph Tiedemann
- Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Frank Kirschbaum
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, Philippstr. 13, Haus 16, 10115, Berlin, Germany.
| |
Collapse
|
11
|
Amen R, Nagel R, Hedt M, Kirschbaum F, Tiedemann R. Morphological differentiation in African weakly electric fish (genus Campylomormyrus) relates to substrate preferences. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractUnder an ecological speciation scenario, the radiation of African weakly electric fish (genus Campylomormyrus) is caused by an adaptation to different food sources, associated with diversification of the electric organ discharge (EOD). This study experimentally investigates a phenotype–environment correlation to further support this scenario. Our behavioural experiments showed that three sympatric Campylomormyrus species with significantly divergent snout morphology differentially react to variation in substrate structure. While the short snout species (C. tamandua) exhibits preference to sandy substrate, the long snout species (C. rhynchophorus) significantly prefers a stone substrate for feeding. A third species with intermediate snout size (C. compressirostris) does not exhibit any substrate preference. This preference is matched with the observation that long-snouted specimens probe deeper into the stone substrate, presumably enabling them to reach prey more distant to the substrate surface. These findings suggest that the diverse feeding apparatus in the genus Campylomormyrus may have evolved in adaptation to specific microhabitats, i.e., substrate structures where these fish forage. Whether the parallel divergence in EOD is functionally related to this adaptation or solely serves as a prezygotic isolation mechanism remains to be elucidated.
Collapse
|
12
|
Ontogeny of electric organ and electric organ discharge in Campylomormyrus rhynchophorus (Teleostei: Mormyridae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:453-466. [PMID: 32112119 PMCID: PMC8557190 DOI: 10.1007/s00359-020-01411-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/09/2020] [Accepted: 02/15/2020] [Indexed: 10/29/2022]
Abstract
The aim of this study was a longitudinal description of the ontogeny of the adult electric organ of Campylomormyrus rhynchophorus which produces as adult an electric organ discharge of very long duration (ca. 25 ms). We could indeed show (for the first time in a mormyrid fish) that the electric organ discharge which is first produced early during ontogeny in 33-mm-long juveniles is much shorter in duration and has a different shape than the electric organ discharge in 15-cm-long adults. The change from this juvenile electric organ discharges into the adult electric organ discharge takes at least a year. The increase in electric organ discharge duration could be causally linked to the development of surface evaginations, papillae, at the rostral face of the electrocyte which are recognizable for the first time in 65-mm-long juveniles and are most prominent at the periphery of the electrocyte.
Collapse
|
13
|
Crampton WGR. Electroreception, electrogenesis and electric signal evolution. JOURNAL OF FISH BIOLOGY 2019; 95:92-134. [PMID: 30729523 DOI: 10.1111/jfb.13922] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.
Collapse
|
14
|
Nagel R, Kirschbaum F, Hofmann V, Engelmann J, Tiedemann R. Electric pulse characteristics can enable species recognition in African weakly electric fish species. Sci Rep 2018; 8:10799. [PMID: 30018286 PMCID: PMC6050243 DOI: 10.1038/s41598-018-29132-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/21/2018] [Indexed: 12/02/2022] Open
Abstract
Communication is key to a wide variety of animal behaviours and multiple modalities are often involved in this exchange of information from sender to receiver. The communication of African weakly electric fish, however, is thought to be predominantly unimodal and is mediated by their electric sense, in which species-specific electric organ discharges (EODs) are generated in a context-dependent and thus variable sequence of pulse intervals (SPI). While the primary function of the electric sense is considered to be electrolocation, both of its components likely carry information regarding identity of the sender. However, a clear understanding of their contribution to species recognition is incomplete. We therefore analysed these two electrocommunication components (EOD waveform and SPI statistics) in two sympatric mormyrid Campylomormyrus species. In a set of five playback conditions, we further investigated which components may drive interspecific recognition and discrimination. While we found that both electrocommunication components are species-specific, the cues necessary for species recognition differ between the two species studied. While the EOD waveform and SPI were both necessary and sufficient for species recognition in C. compressirostris males, C. tamandua males apparently utilize other, non-electric modalities. Mapped onto a recent phylogeny, our results suggest that discrimination by electric cues alone may be an apomorphic trait evolved during a recent radiation in this taxon.
Collapse
Affiliation(s)
- Rebecca Nagel
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry/Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Frank Kirschbaum
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, 10115, Berlin, Germany
| | - Volker Hofmann
- Active Sensing, Faculty of Biology, Cognitive Interaction Technology - Center of Excellence, Bielefeld University, 33602, Bielefeld, Germany
- Faculty of Medicine, Department of Physiology, McGill University, H3G1Y6 Montreal, Quebec, Canada
| | - Jacob Engelmann
- Active Sensing, Faculty of Biology, Cognitive Interaction Technology - Center of Excellence, Bielefeld University, 33602, Bielefeld, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry/Biology, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|
15
|
Noguerales V, Cordero PJ, Ortego J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Mol Ecol 2018; 27:1229-1244. [DOI: 10.1111/mec.14504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
16
|
Nagel R, Kirschbaum F, Engelmann J, Hofmann V, Pawelzik F, Tiedemann R. Male-mediated species recognition among African weakly electric fishes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170443. [PMID: 29515818 PMCID: PMC5830707 DOI: 10.1098/rsos.170443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/15/2018] [Indexed: 05/16/2023]
Abstract
Effective communication among sympatric species is often instrumental for behavioural isolation, where the failure to successfully discriminate between potential mates could lead to less fit hybrid offspring. Discrimination between con- and heterospecifics tends to occur more often in the sex that invests more in offspring production, i.e. females, but males may also mediate reproductive isolation. In this study, we show that among two Campylomormyrus African weakly electric fish species, males preferentially associate with conspecific females during choice tests using live fish as stimuli, i.e. when all sensory modalities potentially used for communication were present. We then conducted playback experiments to determine whether the species-specific electric organ discharge (EOD) used for electrocommunication serves as the cue for this conspecific association preference. Interestingly, only C. compressirostris males associated significantly more with the conspecific EOD waveform when playback stimuli were provided, while no such association preference was observed in C. tamandua males. Given our results, the EOD appears to serve, in part, as a male-mediated pre-zygotic isolation mechanism among sympatric species. However, the failure of C. tamandua males to discriminate between con- and heterospecific playback discharges suggests that multiple modalities may be necessary for species recognition in some African weakly electric fish species.
Collapse
Affiliation(s)
- Rebecca Nagel
- Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, 14476 Potsdam, Germany
| | - Frank Kirschbaum
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Jacob Engelmann
- Active Sensing, Faculty of Biology, Cognitive Interaction Technology – Center of Excellence, Bielefeld University, 33602 Bielefeld, Germany
| | - Volker Hofmann
- Active Sensing, Faculty of Biology, Cognitive Interaction Technology – Center of Excellence, Bielefeld University, 33602 Bielefeld, Germany
| | - Felix Pawelzik
- Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, 14476 Potsdam, Germany
| | - Ralph Tiedemann
- Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
17
|
Levin BA, Golubtsov AS. New insights into the molecular phylogeny and taxonomy of mormyrids (Osteoglossiformes, Actinopterygii) in northern East Africa. J ZOOL SYST EVOL RES 2017. [DOI: 10.1111/jzs.12186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boris A. Levin
- Institute of Biology of Inland Waters; Russian Academy of Sciences; Borok Yaroslavl District Russia
- Cherepovets State University; Vologda Region Cherepovets Russia
| | - Alexander S. Golubtsov
- Institute of Biology of Inland Waters; Russian Academy of Sciences; Borok Yaroslavl District Russia
- A.N. Severtsov Institute of Ecology and Evolution; Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
18
|
Outomuro D, Johansson F. A potential pitfall in studies of biological shape: Does size matter? J Anim Ecol 2017; 86:1447-1457. [PMID: 28699246 DOI: 10.1111/1365-2656.12732] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 01/26/2023]
Abstract
The number of published studies using geometric morphometrics (GM) for analysing biological shape has increased steadily since the beginning of the 1990s, covering multiple research areas such as ecology, evolution, development, taxonomy and palaeontology. Unfortunately, we have observed that many published studies using GM do not evaluate the potential allometric effects of size on shape, which normally require consideration or assessment. This might lead to misinterpretations and flawed conclusions in certain cases, especially when size effects explain a large part of the shape variation. We assessed, for the first time and in a systematic manner, how often published studies that have applied GM consider the potential effects of allometry on shape. We reviewed the 300 most recent published papers that used GM for studying biological shape. We also estimated how much of the shape variation was explained by allometric effects in the reviewed papers. More than one-third (38%) of the reviewed studies did not consider the allometric component of shape variation. In studies where the allometric component was taken into account, it was significant in 88% of the cases, explaining up to 87.3% of total shape variation. We believe that one reason that may cause the observed results is a misunderstanding of the process that superimposes landmark configurations, i.e. the Generalized Procrustes Analysis, which removes isometric effects of size on shape, but not allometric effects. Allometry can be a crucial component of shape variation. We urge authors to address, and report, size effects in studies of biological shape. However, we do not propose to always remove size effects, but rather to evaluate the research question with and without the allometric component of shape variation. This approach can certainly provide a thorough understanding of how much size contributes to the observed shaped variation.
Collapse
Affiliation(s)
- David Outomuro
- Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Frank Johansson
- Section for Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Nagel R, Kirschbaum F, Tiedemann R. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:183-195. [DOI: 10.1007/s00359-017-1151-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
|
20
|
Karyotype description of the African weakly electric fish Campylomormyrus compressirostris in the context of chromosome evolution in Osteoglossiformes. ACTA ACUST UNITED AC 2017; 110:273-280. [PMID: 28108417 DOI: 10.1016/j.jphysparis.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/21/2016] [Accepted: 01/14/2017] [Indexed: 11/22/2022]
Abstract
Karyotyping is a basic method to investigate chromosomal evolution and genomic rearrangements. Sixteen genera within the basal teleost order Osteoglossiformes are currently described cytogenetically. Our study adds information to this chromosomal dataset by determining the karyotype of Campylomormyrus compressirostris, a genus of African weakly electric fish that has not been previously examined. Our results indicate a diploid chromosome number of 2n=48 (4sm+26m+18a) with a fundamental number of FN=72. This chromosome number is identical to the number documented for the sister taxon of the genus Campylomormyrus, i.e., Gnathonemus petersii (2n=48). These results support the close relationship of Campylomormyrus and Gnathonemus. However, the karyotype formula of C. compressirostris is different from Gnathonemus petersii, thereby confirming the high variability of karyotype formulae within the Mormyridae. We infer that the differences in chromosome number and formula of Campylomormyrus relative to other mormyrids may be caused by Robertsonian fusion and pericentric inversion. In addition to the karyotype description and classification of Campylomormyrus, a ChromEvol analysis was used to determine the ancestral haploid chromosome number of osteoglossiform taxa. Our results indicate a relatively conservative haploid chromosome number of n=24 for the most recent common ancestor of Osteoglossiformes and for most of the internal nodes of osteoglossiform phylogeny. Hence, we presume that the high chromosome variability evolved recently on multiple independent occasions. Furthermore, we suggest that the most likely ancestral chromosome number of Mormyridae is either n=24 or n=25. To the best of our knowledge this is the first attempt to determine and classify the karyotype of the weakly electric fish genus Campylomormyrus and to analyze chromosomal evolution within the Osteoglossiformes based on Maximum Likelihood and Bayesian Inference analyses.
Collapse
|
21
|
Kirschbaum F, Nguyen L, Baumgartner S, Chi HWL, Wolfart R, Elarbani K, Eppenstein H, Korniienko Y, Guido-Böhm L, Mamonekene V, Vater M, Tiedemann R. Intragenus (Campylomormyrus) and intergenus hybrids in mormyrid fish: Physiological and histological investigations of the electric organ ontogeny. ACTA ACUST UNITED AC 2017; 110:281-301. [PMID: 28108418 DOI: 10.1016/j.jphysparis.2017.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/04/2017] [Accepted: 01/14/2017] [Indexed: 11/24/2022]
Abstract
African weakly electric mormyrid fish show a high diversity of their electric organ discharge (EOD) both across and within genera. Thanks to a recently developed technique of artificial reproduction in mormyrid fish, we were able to perform hybridizations between different genera and within one genus (Campylomormyrus). The hybrids of intergenus hybridizations exhibited different degrees of reduced survival related to the phylogenetic distance of the parent species: hybrids of the crosses between C. rhynchophorus and its sister genus Gnathonemus survived and developed normally. Hybrids between C. rhynchophorus and a Mormyrus species (a more basal clade compared to Campylomormyrus s) survived up to 42days and developed many malformations, e.g., at the level of the unpaired fins. Hybrids between C. numenius and Hippopotamyrus pictus (a derived clade, only distantly related to Campylomormyrus) only survived for two days during embryological development. Eight different hybrid combinations among five Campylomormyrus species (C. tamandua, C. compressirostris, C. tshokwe, C. rhynchophorus, C. numenius) were performed. The aim of the hybridizations was to combine species with (1) either caudal or rostral position of the main stalk innervating the electrocytes in the electric organ and (2) short, median or long duration of their EOD. The hybrids, though they are still juveniles, show very interesting features concerning electrocyte geometry as well as EOD form and duration: the caudal position of the stalk is prevailing over the rostral position, and the penetration of the stalk is dominant over the non-penetrating feature (in the Campylomormyrus hybrids); in the hybrid between C. rhynchophorus and Gnathonemus petersii it is the opposite. When crossing species with long and short EODs, it is always the long duration EOD that is expressed in the hybrids. The F1-Hybrids of the cross C. tamandua×C. compressirostris are fertile: viable F2-fish could be obtained with artificial reproduction.
Collapse
Affiliation(s)
- Frank Kirschbaum
- Humboldt University, Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Philippstr. 13, Haus 16, D-10115 Berlin, Germany.
| | - Linh Nguyen
- Humboldt University, Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Philippstr. 13, Haus 16, D-10115 Berlin, Germany; University of Potsdam, Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, Karl-Liebknecht-Str. 24-25, Haus 26, D-14476 Potsdam-Golm, Germany
| | - Stephanie Baumgartner
- Humboldt University, Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Philippstr. 13, Haus 16, D-10115 Berlin, Germany
| | - Hiu Wan Linda Chi
- Humboldt University, Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Philippstr. 13, Haus 16, D-10115 Berlin, Germany
| | - Rene Wolfart
- Humboldt University, Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Philippstr. 13, Haus 16, D-10115 Berlin, Germany
| | - Khouloud Elarbani
- Humboldt University, Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Philippstr. 13, Haus 16, D-10115 Berlin, Germany
| | - Hari Eppenstein
- Humboldt University, Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Philippstr. 13, Haus 16, D-10115 Berlin, Germany
| | - Yevheniia Korniienko
- Humboldt University, Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Philippstr. 13, Haus 16, D-10115 Berlin, Germany
| | - Lilian Guido-Böhm
- Humboldt University, Faculty of Life Sciences, Unit of Biology and Ecology of Fishes, Philippstr. 13, Haus 16, D-10115 Berlin, Germany
| | - Victor Mamonekene
- Ecole Nationale Supérieure d'Agronomie et de Foresterie, Université Marien Ngouabi, B.P. 69, Brazzaville, People's Republic of Congo
| | - Marianne Vater
- University of Potsdam, Institute of Biochemistry and Biology, Unit of General Zoology, Karl-Liebknecht-Str. 24-25, Haus 26, D-14476 Potsdam-Golm, Germany
| | - Ralph Tiedemann
- University of Potsdam, Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, Karl-Liebknecht-Str. 24-25, Haus 26, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
22
|
Evidence for Non-neutral Evolution in a Sodium Channel Gene in African Weakly Electric Fish (Campylomormyrus, Mormyridae). J Mol Evol 2016; 83:61-77. [PMID: 27481396 DOI: 10.1007/s00239-016-9754-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/23/2016] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels, Nav1, play a crucial role in the generation and propagation of action potentials and substantially contribute to the shape of their rising phase. The electric organ discharge (EOD) of African weakly electric fish (Mormyroidea) is the sum of action potentials fired from all electrocytes of the electric organ at the same time and hence voltage-gated sodium channels are one factor-together with the electrocyte's morphology and innervation pattern-that determines the properties of these EODs. Due to the fish-specific genome duplication, teleost fish possess eight copies of sodium channel genes (SCN), which encode for Nav1 channels. In mormyroids, SCN4aa is solely expressed in the electrocytes of the adult electric organ. In this study, we compared entire SCN4aa sequences of six species of the genus Campylomormyrus and identified nonsynonymous substitutions among them. SCN4aa in Campylomormyrus exhibits a much higher evolutionary rate compared to its paralog SCN4ab, whose expression is not restricted to the electric organ. We also found evidence for strong positive selection on the SCN4aa gene within Mormyridae and along the lineage ancestral to the Mormyridae. We have identified sites at which all nonelectric teleosts are monomorphic in their amino acid, but mormyrids have different amino acids. Our findings confirm the crucial role of SCN4aa in EOD evolution among mormyrid weakly electric fish. The inferred positive selection within Mormyridae makes this gene a prime candidate for further investigation of the divergent evolution of pulse-type EODs among closely related species.
Collapse
|