1
|
Li PW, Lu YB, Antonelli A, Zhu ZJ, Wang W, Qin XM, Yang XR, Zhang Q. Sliding-window phylogenetic analyses uncover complex interplastomic recombination in the tropical Asian-American disjunct plant genus Hedyosmum (Chloranthaceae). THE NEW PHYTOLOGIST 2025; 246:2405-2415. [PMID: 40165720 DOI: 10.1111/nph.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Peng-Wei Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Yong-Bin Lu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Göteborg, Sweden
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201 Jiufeng 1 Road, East Lake High-Tech Development Zone, Wuhan, 430074, Hubei, China
| | - Zheng-Juan Zhu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xin-Mei Qin
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Xue-Rong Yang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| |
Collapse
|
2
|
Liang YF, Xue TT, Gadagkar SR, Qin F, Janssens SB, Yu SX. Phylogenomic conflict analyses of plastid and mitochondrial genomes of Impatiens (Balsaminaceae) reveal its complex evolutionary history. Mol Phylogenet Evol 2025; 206:108325. [PMID: 40068780 DOI: 10.1016/j.ympev.2025.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Impatiens is among the most diverse angiosperm genera, comprising more than 1000 species. The phylogenetic relationship among sections of Impatiens remains unclear. Plastomes and mitogenomes are useful for resolving problematic relationships in plant phylogenetics; however, conflicts between the organellar genomes have been reported. Here, we reconstructed the phylogeny of Impatiens using concatenated and multispecies coalescent (MSC) methods based on coding and noncoding regions of the plastome and coding regions of the mitogenome from 139 species, representing all major clades in Impatiens. Conflict analyses were conducted to test and visualize the incongruences between the organellar genomes and within the plastome. The analyses supported the monophyly of all subgenera and sections and identified a new clade (clade Longlinensis), but the relationships among these sections are inconsistent. There was incongruence between the organellar genome trees regarding the relationships among sect. Semeiocardium, sect. Racemosae and clade Longlinensis. There was also incongruence within the plastome regarding the relationships among sections Fasciculatae, Impatiens, Tuberosae, Scorpioidae, and Uniflorae. Our results show that incongruence between organellar genomes likely results from the complex evolutionary history of the genus, involving mixed inheritance of organellar genomes and hybridization. The incongruence within the plastome may result from the limited phylogenetic signal in plastome data, which could be due to the rapid radiation between 15.07 and 12.93 Ma. Specific genes and regions that led to such incongruence have been identified. By confirming the monophyly of Impatiens sections and detecting phylogenetic conflicts, this study provides a unique plastid and mitogenomic perspective on Impatiens phylogeny.
Collapse
Affiliation(s)
- Yun-Fen Liang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Tian Xue
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sudhindra R Gadagkar
- Biomedical Sciences, College of Graduate Studies, Midwestern University, AZ 85308, USA; College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Fei Qin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium; Department of Biology, KU Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven, Belgium.
| | - Sheng-Xiang Yu
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhang Z, Wang M, Yang Z, Comes HP, Zhong X, Folk RA, Song Y, York DA, Cameron KM, Li P. Incomplete lineage sorting and introgression among genera and species of Liliaceae tribe Tulipeae: insights from phylogenomics. BMC Biol 2025; 23:113. [PMID: 40296048 PMCID: PMC12039212 DOI: 10.1186/s12915-025-02204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Phylogenetic research in Tulipa (Liliaceae), a genus of significant economic and horticultural value, has relied on limited nuclear (mostly nuclear ribosomal internal transcribed spacer, nrITS) and plastid DNA sequences, resulting in low-resolution phylogenetic trees and uncertain intrageneric classifications. The genus, noted for its large genome, presents discordant relationships among Amana, Erythronium, and Tulipa, likely due to incomplete lineage sorting (ILS) and/or reticulate evolution. Thus, phylogenomic approaches are needed to clarify these relationships and the conflicting signals within the tribe Tulipeae. RESULTS We newly sequenced 50 transcriptomes of 46 species of tribe Tulipeae (including multiple accessions of all four genera) and one outgroup species of the sister tribe Lilieae (Notholirion campanulatum), and downloaded 15 previously published transcriptomes of tribe Tulipeae to supplement the sampling. One plastid dataset (74 plastid protein-coding genes, PCGs) and one nuclear dataset (2594 nuclear orthologous genes, OGs) were constructed, with the latter used for species tree inference based on maximum likelihood (ML) and multi-species coalescent (MSC) methods. To investigate causes of gene tree discordance, "site con/discordance factors" (sCF and sDF1/sDF2) were calculated first, after which phylogenetic nodes displaying high or imbalanced sDF1/2 were selected for phylogenetic network analyses and polytomy tests to determine whether ILS or reticulate evolution best explain incongruence. Key relationships not resolved by this technique, especially those among Amana, Erythronium, and Tulipa, were further investigated by applying D-statistics and QuIBL. CONCLUSIONS We failed to reconstruct a reliable and unambiguous evolutionary history among Amana, Erythronium, and Tulipa due to especially pervasive ILS and reticulate evolution, likely caused either by obscured minority phylogenetic signal or differing signals among genomic compartments. However, within Tulipa we confirmed the monophyly of most subgenera, with the exception of two species in the small subgenus Orithyia, of which Tulipa heterophylla was recovered as sister to the remainder of the genus, whereas T. sinkiangensis clustered within subgenus Tulipa. In contrast, most traditional sections of Tulipa were found to be non-monophyletic.
Collapse
Affiliation(s)
- Zhihui Zhang
- Systematic & Evolutionary Botany and Biodiversity Group, State Key Laboratory for Vegetation Structure, Function and Construction, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meizhen Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Zhaoping Yang
- College of Life Sciences and Technologies, Tarim University, Alar, 843300, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, Austria
| | - Xin Zhong
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Yigang Song
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Dana A York
- California Academy of Sciences, San Francisco, CA, USA
| | - Kenneth M Cameron
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA.
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity Group, State Key Laboratory for Vegetation Structure, Function and Construction, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Liu S, Yang Y, Tian Q, Yang Z, Li S, Valdes PJ, Farnsworth A, Kates HR, Siniscalchi CM, Guralnick RP, Soltis DE, Soltis PS, Stull GW, Folk RA, Yi T. An integrative framework reveals widespread gene flow during the early radiation of oaks and relatives in Quercoideae (Fagaceae). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1119-1141. [PMID: 39297574 PMCID: PMC12016745 DOI: 10.1111/jipb.13773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 04/24/2025]
Abstract
Although the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages of Quercus and relatives in Quercoideae. Our analyses recovered clear signatures of gene flow against a backdrop of rampant incomplete lineage sorting, with gene flow most prevalent among major lineages of Quercus and relatives in Quercoideae during their initial radiation, dated to the Early-Middle Eocene. Ancestral reconstructions including fossils suggest ancestors of Castanea + Castanopsis, Lithocarpus, and the Old World oak clade probably co-occurred in North America and Eurasia, while the ancestors of Chrysolepis, Notholithocarpus, and the New World oak clade co-occurred in North America, offering ample opportunity for hybridization in each region. Our study shows that hybridization-perhaps in the form of ancient syngameons like those seen today-has been a common and important process throughout the evolutionary history of oaks and their relatives. Concomitantly, this study provides a methodological framework for detecting ancient hybridization in other groups.
Collapse
Affiliation(s)
- Shui‐Yin Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying‐Ying Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Qin Tian
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhi‐Yun Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Shu‐Feng Li
- Chinese Academy of Sciences Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303China
| | - Paul J. Valdes
- School of Geographical SciencesUniversity of BristolBristolBS8 1SSUK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijing100101China
| | - Alex Farnsworth
- School of Geographical SciencesUniversity of BristolBristolBS8 1SSUK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijing100101China
| | - Heather R. Kates
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Carolina M. Siniscalchi
- Mississippi State University LibrariesMississippi State UniversityMississippi State39762MississippiUSA
| | - Robert P. Guralnick
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| | - Gregory W. Stull
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Ryan A. Folk
- Department of Biological SciencesMississippi State UniversityMississippi State39762MississippiUSA
| | - Ting‐Shuang Yi
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
5
|
Huang C, Fan Q, Xu K, Shi S, Meng K, Du H, Jin J, Guo W, Li H, Chen S, Liao W. Multiple Dataset-Based Insights into the Phylogeny and Phylogeography of the Genus Exbucklandia (Hamamelidaceae): Additional Evidence on the Evolutionary History of Tropical Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1061. [PMID: 40219129 PMCID: PMC11991608 DOI: 10.3390/plants14071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Southeast Asia's biodiversity refugia, shaped by Neogene-Quaternary climatic shifts and the Tibetan Plateau uplift, preserve relict lineages like Exbucklandia (Hamamelidaceae). Once widespread across ancient continents, this genus now survives in Asian montane forests, offering insights into angiosperm diversification. Chloroplast haplotypes formed three clades-Clade I (E. tricuspis), Clade II (E. populnea), and Clade III (E. tonkinensis)-with E. longipetala haplotypes nested within II/III. Nuclear microsatellites (SSRs) identified two ancestral gene pools: E. populnea and E. tricuspis showed predominant ancestry in Pool A, while E. tonkinensis and E. longipetala were primarily assigned to Pool B. All taxa exhibited localized genetic admixture, particularly in sympatric zones. Divergence dating traced the genus' origin to tropical Asia, with northward colonization of subtropical China ~7 Ma yielding E. populnea and E. tonkinensis. Quaternary Glacial Cycles triggered southward expansions, chloroplast capture, and localized hybridization. Morphological, nuclear, and plastid molecular evidence supports reclassifying E. longipetala as E. populnea × E. tonkinensis hybrids lacking genetic cohesion and E. tricuspis as a distinct species with a mixed nuclear composition. This study highlights how paleoclimate-driven gene flow shaped the phylogeography of relict taxa in Southeast Asia and the urgency of habitat restoration to conserve Exbucklandia.
Collapse
Affiliation(s)
- Cuiying Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (C.H.); (Q.F.); (H.D.); (J.J.)
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (C.H.); (Q.F.); (H.D.); (J.J.)
| | - Kewang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China;
| | - Shi Shi
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
| | - Kaikai Meng
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Guangxi Subtropical Crops Research Institute, Nanning 530001, China;
| | - Heying Du
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (C.H.); (Q.F.); (H.D.); (J.J.)
| | - Jiehao Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (C.H.); (Q.F.); (H.D.); (J.J.)
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510250, China;
| | - Hongwei Li
- Guangdong Geological Survey Institute, Guangzhou 510080, China;
| | - Sufang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (C.H.); (Q.F.); (H.D.); (J.J.)
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (C.H.); (Q.F.); (H.D.); (J.J.)
| |
Collapse
|
6
|
Zhao J, Liang ZL, Fang SL, Li RJ, Huang CJ, Zhang LB, Robison T, Zhu ZM, Cai WJ, Yu H, He ZR, Zhou XM. Phylogenomics of Paragymnopteris (Cheilanthoideae, Pteridaceae): Insights from plastome, mitochondrial, and nuclear datasets. Mol Phylogenet Evol 2025; 204:108253. [PMID: 39617091 DOI: 10.1016/j.ympev.2024.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Previous studies have shown that at least six genera of the Cheilanthoideae, a subfamily of the fern family Pteridaceae, may not be monophyletic. In these non-monophyletic genera, the Old-World genus Paragymnopteris including approximately five species have long been controversial. In this study, with an extensive taxon sampling of Paragymnopteris, we assembled 19 complete plastomes of all recognized Paragymnopteris species, plastomes of Pellaea (3 species) and Argyrochosma (1 species), as well as transcriptomes from Paragymnopteris (6 species) and Argyrochosma (1 species). We conducted a comprehensive and systematic phylogenomic analysis focusing on the contentious relationships among the genus of Paragymnopteris through 9 plastid makers, the plastomes, mitochondria, nuclear ribosomal cistron genomes, and single-copy nuclear genes. Moreover, we further combined distribution, ploidy, and morphological features to investigate the evolution of Paragymnopteris. The backbone of Paragymnopteris was resolved consistently in the nuclear and plastid phylogenies. Our major results include: (1) Paragymnopteris is not monophyletic including two fully supported clades; (2) confirming that Paragymnopteris delavayi var. intermedia is a close relative of P. delavayi instead of P. marantae var. marantae; (3) the chromosome base number may not be a stable trait which has previously been used as an important character to divide Paragymnopteris into two groups; and (4) gene flow or introgression might be the main reason for the gene trees conflict of Paragymnopteris, but both gene flow and ILS might simultaneously and/or cumulatively act on the conflict of core pellaeids. The robust phylogeny of Paragymnopteris presented here will help us for the future studies of the arid to semi-arid ferns of Cheilanthoideae at the evolutionary, physiological, developmental, and omics-based levels.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Zhen-Long Liang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Rong-Juan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Li-Bing Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA
| | - Tanner Robison
- Department of Biology, Utah State University, Logan, UT, USA
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Wen-Jing Cai
- Yunnan Institute of Forest Inventory and Planning, Kunming, Yunnan 650500, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
7
|
Sha LN, Chen N, Chen SY, Zhang Y, Cheng YR, Wu DD, Wang Y, Kang HY, Zhang HQ, Ma X, Zhou YH, Fan X. Rapid diversification of St-genome-sharing species in wheat grasses (Triticeae: Poaceae) accompanied by diversifying selection of chloroplast genes. BMC PLANT BIOLOGY 2025; 25:32. [PMID: 39780044 PMCID: PMC11716215 DOI: 10.1186/s12870-025-06051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding. RESULTS Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe. Phylogenomic analysis confirmed previous phylogenetic relationships, with the St/E/V lineages (Pseudoroegneria/Lophopyrum + Thinopyrum/Dasypyrum) being suffered from a chloroplast capture event prior to polyploidization events. Analyses of diversification rates detected a significant acceleration approximately five million years ago in the St-genome-sharing taxa. Molecular tests of evolution and gene expression further indicated that radiation within the accelerated group has been accompanied by adaptive genetic changes in a few chloroplast-encoded genes directly or indirectly related to photosynthesis. CONCLUSIONS Our results support an important role for adaptive evolution in plastomes during accelerated diversification. In combination with plastome data, further investigations using other genomes, such as the nuclear genome, are urgently needed to enhance our understanding of the evolutionary history of the St-genome-sharing taxa, especially to determine whether adaptive changes in the nuclear genome are accelerated as well because plastome represents the maternal inheritation in angiosperms.
Collapse
Affiliation(s)
- Li-Na Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ning Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shi-Yong Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Yue Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi-Ran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dan-Dan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
8
|
Yang L, Zhang S, Wu C, Jiang X, Deng M. Plastome characterization and its phylogenetic implications on Lithocarpus (Fagaceae). BMC PLANT BIOLOGY 2024; 24:1277. [PMID: 39736525 DOI: 10.1186/s12870-024-05874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND The genus Lithocarpus is a species-rich dominant woody lineage in East Asian evergreen broad-leaved forests. Despite its ecological and economic significance, the plastome structure and evolutionary history of the genus remain poorly understood. In this study, we comprehensively analyzed the 34 plastomes representing 33 Lithocarpus species. Of which, 21 were newly assembled. The plastome-based phylogenomic tree was reconstructed to reveal the maternal evolutionary patterns of the genus. RESULTS The Lithocarpus plastomes exhibit a typical quadripartite structure, ranging in length from 161,010 to 161,476 bp, and containing 131 genes, including 86 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. Remarkably, the infA gene was identified as a pseudogene in 17 species. Significant variability was observed in simple sequence repeats (SSRs) as well as in the boundary regions between the two single-copy regions and the inverted repeat region (SC/IR) across the plastomes. Additionally, four genes (accD, atpF, rpl32, and rps8) were found to be under positive selection. The monophyletic status of Lithocarpus was strongly supported by plastome-based phylogeny; however, the phylogenetic tree topology showed a significant difference from that obtained by the nuclear genome-based phylogeny. CONCLUSIONS The plastome of Fagaceae is generally conserved. Nevertheless, genes related to metabolism, photosynthesis, and energy were under strong positive selection in Lithocarpus, likely driven by environmental pressures and local adaptation. The plastome-based phylogeny confirmed the monophyletic status of Lithocarpus and revealed a phylogeographic pattern indicating limited seed-mediated gene flow in the ancestral lineage. The prevalence of cytonuclear discordance in Lithocarpus and other Fagaceae genera suggests that ancient introgression, incomplete lineage sorting, and asymmetrical seed- and pollen-mediated geneflow might contribute to this discordance. Future studies are essential to test these hypotheses and further elucidate the divergence patterns of this unique Asian evergreen lineage.
Collapse
Affiliation(s)
- Lifang Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shoujun Zhang
- Center for Horticulture and Conservation, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chunya Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xiaolong Jiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Min Deng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
- The Key Laboratory of Rare and Endangered Forest Plants of National Forestry and Grassland Administration, The Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.
| |
Collapse
|
9
|
Wang H, Zhang W, Yu Y, Fang X, Zhang T, Xu L, Gong L, Xiao H. Biased Gene Introgression and Adaptation in the Face of Chloroplast Capture in Aquilegia amurensis. Syst Biol 2024; 73:886-900. [PMID: 39001664 DOI: 10.1093/sysbio/syae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 12/14/2024] Open
Abstract
-Chloroplast capture, a phenomenon that can occur through interspecific hybridization and introgression, is frequently invoked to explain cytonuclear discordance in plants. However, relatively few studies have documented the mechanisms of cytonuclear coevolution and its potential for driving species differentiation and possible functional differences in the context of chloroplast capture. To address this crucial question, we chose the Aquilegia genus, which is known for having minimal sterility among species, and inferred that A. amurensis captured the plastome of A. parviflora based on cytonuclear discordance and gene flow between the 2 species. We focused on the introgression region and its differentiation from corresponding regions in closely related species, especially its composition in a chloroplast capture scenario. We found that nuclear genes encoding cytonuclear enzyme complexes (CECs; i.e., organelle-targeted genes) of chloroplast donor species were selectively retained and displaced the original CEC genes in chloroplast-receiving species due to cytonuclear interactions during introgression. Notably, the intrinsic correlation of CEC introgression was a greater degree of evolutionary distance for these CECs between A. amurensis and A. parviflora. Terpene synthase activity genes (GO: 0010333) were overrepresented among the introgressed genes, and more than 30% of these genes were CEC genes. These findings support our observations that floral terpene release pattern is similar between A. amurensis and A. parviflora compared with A. japonica. Our study clarifies the mechanisms of cytonuclear coevolution, species differentiation, and functional differences in the context of chloroplast capture and highlights the potential role of chloroplast capture in adaptation.
Collapse
Affiliation(s)
- Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wei Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Tengjiao Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luyuan Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
10
|
Tu XD, Xin YX, Fu HH, Zhou CY, Liu QL, Tang XH, Zou LH, Liu ZJ, Chen SP, Lin WJ, Li MH. The complete mitochondrial genome of Castanopsis carlesii and Castanea henryi reveals the rearrangement and size differences of mitochondrial DNA molecules. BMC PLANT BIOLOGY 2024; 24:988. [PMID: 39428457 PMCID: PMC11492686 DOI: 10.1186/s12870-024-05618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Castanopsis carlesii is a dominant tree species in subtropical evergreen broad-leaved forests and holds significant ecological value. It serves as an excellent timber tree species and raw material for cultivating edible fungi. Henry Chinquapin (Castanea henryi) wood is known for its hardness and resistance to water and moisture, making it an exceptional timber species. Additionally, its fruit has a sweet and fruity taste, making it a valuable food source. However, the mitogenomes of these species have not been previously reported. To gain a better understanding of them, this study successfully assembled high-quality mitogenomes of C. carlesii and Ca. henryi for the first time. RESULTS Our research reveals that the mitochondrial DNA (mtDNA) of C. carlesii exhibits a unique multi-branched conformation, while Ca. henryi primarily exists in the form of two independent molecules that can be further divided into three independent molecules through one pair of long repetitive sequences. The size of the mitogenomes of C. carlesii and Ca. henryi are 592,702 bp and 379,929 bp respectively, which are currently the largest and smallest Fagaceae mitogenomes recorded thus far. The primary factor influencing mitogenome size is dispersed repeats. Comparison with published mitogenomes from closely related species highlights differences in size, gene loss patterns, codon usage preferences, repetitive sequences, as well as mitochondrial plastid DNA segments (MTPTs). CONCLUSIONS Our study enhances the understanding of mitogenome structure and evolution in Fagaceae, laying a crucial foundation for future research on cell respiration, disease resistance, and other traits in this family.
Collapse
Affiliation(s)
- Xiong-De Tu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ya-Xuan Xin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hou-Hua Fu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cheng-Yuan Zhou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing-Long Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xing-Hao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shi-Pin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wen-Jun Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ming-He Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Sun S, Pan Z, Fu Y, Wang S, Fu P. Rampant intraspecific variation of plastid genomes in Gentiana section Chondrophyllae. Ecol Evol 2024; 14:e70239. [PMID: 39224159 PMCID: PMC11368500 DOI: 10.1002/ece3.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Exploring the level of intraspecific diversity in taxa experienced radiation is helpful to understanding speciation and biodiversity assembly. Gentiana section Chondrophyllae sensu lato encompasses more than 180 species and occupies more a half of species in the genus. In this study, we collected samples across the range of three species (Gentiana aristata, G. crassuloides and G. haynaldii) in section Chondrophyllae s.l., and recovered the intra-species variation by comparing with closely related taxon. Using 25 newly sequenced plastid genomes together with previously published data, we compared structural differences, quantified the variations in plastome size, and measured nucleotide diversity in various regions. Our results showed that the plastome size variation in the three Chondrophyllae species ranged from 285 to 628 bp, and the size variation in LSC, IR and SSC ranged from 236 to 898 bp, 52 to 393 bp and 135 to 356 bp, respectively. Nucleotide diversity of plastome or any of the four regions was much higher than the control species. The average nucleotide diversity in plastomes of the three species ranged from 0.0010 to 0.0023 in protein coding genes, and from 0.0023 to 0.0061 in intergenic regions. More repeat sequence variations were detected within the three Chondrophyllae species than the control species. Various plastid sequence matrixes resulted in different backbone topology in two target species, showed uncertainty in phylogenetic relationship based inference. In conclusion, our results recovered that species of G. section Chondrophyllae s.l. has high intraspecific plastome variation, and provided insights into the radiation in this speciose lineage.
Collapse
Affiliation(s)
- Shan‐Shan Sun
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Zhi‐Yong Pan
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Yu Fu
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shen‐Jue Wang
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Peng‐Cheng Fu
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| |
Collapse
|
12
|
Wang Y, Wu X, Chen Y, Xu C, Wang Y, Wang Q. Phylogenomic analyses revealed widely occurring hybridization events across Elsholtzieae (Lamiaceae). Mol Phylogenet Evol 2024; 198:108112. [PMID: 38806075 DOI: 10.1016/j.ympev.2024.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Obtaining a robust phylogeny proves challenging due to the intricate evolutionary history of species, where processes such as hybridization and incomplete lineage sorting can introduce conflicting signals, thereby complicating phylogenetic inference. In this study, we conducted comprehensive sampling of Elsholtzieae, with a particular focus on its largest genus, Elsholtzia. We utilized 503 nuclear loci and complete plastome sequences obtained from 99 whole-genome sequencing datasets to elucidate the interspecific relationships within the Elsholtzieae. Additionally, we explored various sources of conflicts between gene trees and species trees. Fully supported backbone phylogenies were recovered, and the monophyly of Elsholtzia and Keiskea was not supported. Significant gene tree heterogeneity was observed at numerous nodes, particularly regarding the placement of Vuhuangia and the E. densa clade. Further investigations into potential causes of this discordance revealed that incomplete lineage sorting (ILS), coupled with hybridization events, has given rise to substantial gene tree discordance. Several species, represented by multiple samples, exhibited a closer association with geographical distribution rather than following a strictly monophyletic pattern in plastid trees, suggesting chloroplast capture within Elsholtzieae and providing evidence of hybridization. In conclusion, this study provides phylogenomic insights to untangle taxonomic problems in the tribe Elsholtzieae, especially the genus Elsholtzia.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuexue Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yinghui Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Li Y, Zheng S, Wang T, Liu M, Kozlowski G, Yi L, Song Y. New insights on the phylogeny, evolutionary history, and ecological adaptation mechanism in cycle-cup oaks based on chloroplast genomes. Ecol Evol 2024; 14:e70318. [PMID: 39290669 PMCID: PMC11407850 DOI: 10.1002/ece3.70318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cycle-cup oaks (Quercus section Cyclobalanopsis) are one of the principal components of forests in the tropical and subtropical climates of East and Southeast Asia. They have experienced relatively recent increases in the diversification rate, driven by changing climates and the Himalayan orogeny. However, the evolutionary history and adaptive mechanisms at the chloroplast genome level in cycle-cup oaks remain largely unknown. Therefore, we studied this problem by conducting chloroplast genomics on 50 of the ca. 90 species. Comparative genomics and other analyses showed that Quercus section Cyclobalanopsis had a highly conserved chloroplast genome structure. Highly divergent regions, such as the ndhF and ycf1 gene regions and the petN-psbM and rpoB-trnC-GCA intergenic spacer regions, provided potential molecular markers for subsequent analysis. The chloroplast phylogenomic tree indicated that Quercus section Cyclobalanopsis was not monophyletic, which mixed with the other two sections of subgenus Cerris. The reconstruction of ancestral aera inferred that Palaeotropics was the most likely ancestral range of Quercus section Cyclobalanopsis, and then dispersed to Sino-Japan and Sino-Himalaya. Positive selection analysis showed that the photosystem genes had the lowest ω values among the seven functional gene groups. And nine protein-coding genes containing sites for positive selection: ndhA, ndhD, ndhF, ndhH, rbcL, rpl32, accD, ycf1, and ycf2. This series of analyses together revealed the phylogeny, evolutionary history, and ecological adaptation mechanism of the chloroplast genome of Quercus section Cyclobalanopsis in the long river of earth history. These chloroplast genome data provide valuable information for deep insights into phylogenetic relationships and intraspecific diversity in Quercus.
Collapse
Affiliation(s)
- Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Si‐Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Tian‐Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Mei‐Hua Liu
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- Department of Biology and Botanic GardenUniversity of FribourgFribourgSwitzerland
- Natural History Museum FribourgFribourgSwitzerland
| | - Li‐Ta Yi
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Yi‐Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| |
Collapse
|
14
|
Zhou Q, Karunarathne P, Andersson-Li L, Chen C, Opgenoorth L, Heer K, Piotti A, Vendramin GG, Nakvasina E, Lascoux M, Milesi P. Recurrent hybridization and gene flow shaped Norway and Siberian spruce evolutionary history over multiple glacial cycles. Mol Ecol 2024; 33:e17495. [PMID: 39148357 DOI: 10.1111/mec.17495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Most tree species underwent cycles of contraction and expansion during the Quaternary. These cycles led to an ancient and complex genetic structure that has since been affected by extensive gene flow and by strong local adaptation. The extent to which hybridization played a role in this multi-layered genetic structure is important to be investigated. To study the effect of hybridization on the joint population genetic structure of two dominant species of the Eurasian boreal forest, Picea abies and P. obovata, we used targeted resequencing and obtained around 480 K nuclear SNPs and 87 chloroplast SNPs in 542 individuals sampled across most of their distribution ranges. Despite extensive gene flow and a clear pattern of Isolation-by-Distance, distinct genetic clusters emerged, indicating the presence of barriers and corridors to migration. Two cryptic refugia located in the large hybrid zone between the two species played a critical role in shaping their current distributions. The two species repeatedly hybridized during the Pleistocene and the direction of introgression depended on latitude. Our study suggests that hybridization helped both species to overcome main shifts in their distribution ranges during glacial cycles and highlights the importance of considering whole species complex instead of separate entities to retrieve complex demographic histories.
Collapse
Affiliation(s)
- Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - Piyal Karunarathne
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- Institute of Population Genetics, Heinrich-Heine University, Düsseldorf, Universitäts Straße 1, Düsseldorf, Germany
| | - Lili Andersson-Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska L2:02, Solna, Sweden
| | - Chen Chen
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Lars Opgenoorth
- Department of Biology, Plant Ecology and Geobotany, Philipps-Universität Marburg, Marburg, Germany
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Katrin Heer
- Faculty of Environment and Natural Resources, Eva Mayr-Stihl Professorship for Forest Genetics, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Andrea Piotti
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Sesto Fiorentino, Italy
| | | | - Elena Nakvasina
- Department of Forestry and Forest Management, Northern (Arctic) Federal University Named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Juri G, Ripa RR, Premoli AC. Plastomes of Nothofagus reflect a shared biogeographic history in Patagonia. J Hered 2024; 115:588-599. [PMID: 38869982 DOI: 10.1093/jhered/esae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024] Open
Abstract
Plastomes are used in phylogenetic reconstructions because of their relatively conserved nature. Nonetheless, some limitations arise, particularly at lower taxonomic levels due to reduced interspecific polymorphisms and frequent hybridization events that result in unsolved phylogenies including polytomies and reticulate evolutionary patterns. Next-generation sequencing technologies allow access to genomic data and strongly supported phylogenies, yet biased topologies may be obtained due to insufficient taxon sampling. We analyze the hypothesis that intraspecific plastome diversity reflects biogeographic history and hybridization cycles among taxa. We generated 12 new plastome sequences covering distinct latitudinal locations of all species of subgenus Nothofagus from North Patagonia. Chloroplast genomes were assembled, annotated, and searched for simple sequence repeats (SSRs). Phylogenetic reconstructions included species and sampled locations. The six Nothofagus species analyzed were of similar size and structure; only Nothofagus obliqua of subgenus Lophozonia, used as an outgroup, presented slight differences in size. We detected a variable number of SSRs in distinct species and locations. Phylogenetic analyses of plastomes confirmed that subgenus Nothofagus organizes into two monophyletic clades each consisting of individuals of different species. We detected a geographic structure within subgenus Nothofagus and found evidence of local chloroplast sharing due to past hybridization, followed by adaptive introgression and ecological divergence. These contributions enrich the comprehension of transversal evolutionary mechanisms such as chloroplast capture and its implications for phylogenetic and phylogenomic analyses.
Collapse
Affiliation(s)
- Gabriela Juri
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Universidad Nacional de Río Negro - CONICET, Río Negro, Argentina
| | - Ramiro R Ripa
- Grupo de Genética Ecolgica, Evolutiva y de la Conservación, Instituto de Investigaciones en Biodiversidad y Medioambiente, Universidad Nacional del Comahue - CONICET, Río Negro, Argentina
| | - Andrea C Premoli
- Grupo de Genética Ecolgica, Evolutiva y de la Conservación, Instituto de Investigaciones en Biodiversidad y Medioambiente, Universidad Nacional del Comahue - CONICET, Río Negro, Argentina
| |
Collapse
|
16
|
Song W, Shi W, Wang H, Zhang Z, Tao R, Liu J, Wang S, Engel MS, Shi C. Comparative analysis of 12 water lily plastid genomes reveals genomic divergence and evolutionary relationships in early flowering plants. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:425-441. [PMID: 39219675 PMCID: PMC11358372 DOI: 10.1007/s42995-024-00242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
The aquatic plant Nymphaea, a model genus of the early flowering plant lineage Nymphaeales and family Nymphaeaceae, has been extensively studied. However, the availability of chloroplast genome data for this genus is incomplete, and phylogenetic relationships within the order Nymphaeales remain controversial. In this study, 12 chloroplast genomes of Nymphaea were assembled and analyzed for the first time. These genomes were 158,290-160,042 bp in size and contained 113 non-repeat genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. We also report on codon usage, RNA editing sites, microsatellite structures, and new repetitive sequences in this genus. Comparative genomics revealed that expansion and contraction of IR regions can lead to changes in the gene numbers. Additionally, it was observed that the highly variable regions of the chloroplast genome were mainly located in intergenic regions. Furthermore, the phylogenetic tree showed the order Nymphaeales was divided into three families, and the genus Nymphaea can be divided into five (or three) subgenera, with the subgenus Nymphaea being the oldest. The divergence times of nymphaealean taxa were analyzed, with origins of the order Nymphaeales and family Nymphaeaceae being about 194 and 131 million years, respectively. The results of the phylogenetic analysis and estimated divergence times will be useful for future evolutionary studies of basal angiosperm lineages. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00242-0.
Collapse
Affiliation(s)
- Weicai Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Wenbo Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Huan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Zirui Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Ruiqing Tao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| | - Shuo Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Michael S. Engel
- American Museum of Natural History, New York, NY 10024-5192 USA
- Natural History Museum, and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Chao Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650204 China
| |
Collapse
|
17
|
Zhao J, He ZR, Fang SL, Han XK, Jiang LY, Hu YP, Yu H, Zhang LB, Zhou XM. Phylogenomic data resolved the deep relationships of Gymnogynoideae (Selaginellaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1405253. [PMID: 39081519 PMCID: PMC11287774 DOI: 10.3389/fpls.2024.1405253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
The unresolved phylogenetic framework within the Selaginellaceae subfamily Gymnogynoideae (ca. 130 species) has hindered our comprehension of the diversification and evolution of Selaginellaceae, one of the most important lineages in land plant evolution. Here, based on plastid and nuclear data extracted from genomic sequencing of more than 90% species of all genera except two in Gymnogynoideae, a phylogenomic study focusing on the contentious relationships among the genera in Gymnogynoideae was conducted. Our major results included the following: (1) Only single-copy region (named NR) and only one ribosomal operon was firstly found in Afroselaginella among vascular plants, the plastome structure of Gymnogynoideae is diverse among the six genera, and the direct repeats (DR) type is inferred as the ancestral state in the subfamily; (2) The first strong evidence was found to support Afroselaginella as a sister to Megaloselaginella. Alternative placements of Ericetorum and Gymnogynum were detected, and their relationships were investigated by analyzing the variation of phylogenetic signals; and (3) The most likely genus-level relationships in Gymnogynoideae might be: ((Bryodesma, Lepidoselaginella), (((Megaloselaginella, Afroselaginella), Ericetorum), Gymnogynum)), which was supported by maximum likelihood phylogeny based on plastid datasets, maximum likelihood, and Bayesian inference based on SCG dataset and concatenated nuclear and plastid datasets and the highest proportion of phylogenetic signals of plastid genes.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Xu-Ke Han
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Lu-Yao Jiang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Yu-Ping Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Li-Bing Zhang
- Missouri Botanical Garden, St. Louis, MO, United States
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
18
|
Pokorny L, Pellicer J, Woudstra Y, Christenhusz MJM, Garnatje T, Palazzesi L, Johnson MG, Maurin O, Françoso E, Roy S, Leitch IJ, Forest F, Baker WJ, Hidalgo O. Genomic incongruence accompanies the evolution of flower symmetry in Eudicots: a case study in the poppy family (Papaveraceae, Ranunculales). FRONTIERS IN PLANT SCIENCE 2024; 15:1340056. [PMID: 38947944 PMCID: PMC11212465 DOI: 10.3389/fpls.2024.1340056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 07/02/2024]
Abstract
Reconstructing evolutionary trajectories and transitions that have shaped floral diversity relies heavily on the phylogenetic framework on which traits are modelled. In this study, we focus on the angiosperm order Ranunculales, sister to all other eudicots, to unravel higher-level relationships, especially those tied to evolutionary transitions in flower symmetry within the family Papaveraceae. This family presents an astonishing array of floral diversity, with actinomorphic, disymmetric (two perpendicular symmetry axes), and zygomorphic flowers. We generated nuclear and plastid datasets using the Angiosperms353 universal probe set for target capture sequencing (of 353 single-copy nuclear ortholog genes), together with publicly available transcriptome and plastome data mined from open-access online repositories. We relied on the fossil record of the order Ranunculales to date our phylogenies and to establish a timeline of events. Our phylogenomic workflow shows that nuclear-plastid incongruence accompanies topological uncertainties in Ranunculales. A cocktail of incomplete lineage sorting, post-hybridization introgression, and extinction following rapid speciation most likely explain the observed knots in the topology. These knots coincide with major floral symmetry transitions and thus obscure the order of evolutionary events.
Collapse
Affiliation(s)
- Lisa Pokorny
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| | - Yannick Woudstra
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maarten J. M. Christenhusz
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
- Jardí Botànic Marimurtra, Fundació Carl Faust, Blanes, Spain
| | - Luis Palazzesi
- División Paleobotánica, Museo Argentino de Ciencias Naturales, CONICET, Buenos Aires, Argentina
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | | | | | - Shyamali Roy
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| |
Collapse
|
19
|
Dai X, Xiang S, Zhang Y, Yang S, Hu Q, Wu Z, Zhou T, Xiang J, Chen G, Tan X, Wang J, Ding J. Genomic evidence for evolutionary history and local adaptation of two endemic apricots: Prunus hongpingensis and P. zhengheensis. HORTICULTURE RESEARCH 2024; 11:uhad215. [PMID: 38689695 PMCID: PMC11059793 DOI: 10.1093/hr/uhad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/16/2023] [Indexed: 05/02/2024]
Abstract
Apricot, belonging to the Armeniaca section of Rosaceae, is one of the economically important crop fruits that has been extensively cultivated. The natural wild apricots offer valuable genetic resources for crop improvement. However, some of them are endemic, with small populations, and are even at risk of extinction. In this study we unveil chromosome-level genome assemblies for two southern China endemic apricots, Prunus hongpingensis (PHP) and P. zhengheensis (PZH). We also characterize their evolutionary history and the genomic basis of their local adaptation using whole-genome resequencing data. Our findings reveal that PHP and PZH are closely related to Prunus armeniaca and form a distinct lineage. Both species experienced a decline in effective population size following the Last Glacial Maximum (LGM), which likely contributed to their current small population sizes. Despite the observed decrease in genetic diversity and heterozygosity, we do not observe an increased accumulation of deleterious mutations in these two endemic apricots. This is likely due to the combined effects of a low inbreeding coefficient and strong purifying selection. Furthermore, we identify a set of genes that have undergone positive selection and are associated with local environmental adaptation in PHP and PZH, respectively. These candidate genes can serve as valuable genetic resources for targeted breeding and improvement of cultivated apricots. Overall, our study not only enriches our comprehension of the evolutionary history of apricot species but also offers crucial insights for the conservation and future breeding of other endemic species amidst rapid climate changes.
Collapse
Affiliation(s)
- Xiaokang Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Songzhu Xiang
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Yulin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China
| | - Siting Yang
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Qianqian Hu
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Tingting Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Jingsong Xiang
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Gongyou Chen
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Xiaohua Tan
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| |
Collapse
|
20
|
Jiang Y, Yang J, Folk RA, Zhao J, Liu J, He Z, Peng H, Yang S, Xiang C, Yu X. Species delimitation of tea plants (Camellia sect. Thea) based on super-barcodes. BMC PLANT BIOLOGY 2024; 24:181. [PMID: 38468197 PMCID: PMC10926627 DOI: 10.1186/s12870-024-04882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND The era of high throughput sequencing offers new paths to identifying species boundaries that are complementary to traditional morphology-based delimitations. De novo species delimitation using traditional or DNA super-barcodes serve as efficient approaches to recognizing putative species (molecular operational taxonomic units, MOTUs). Tea plants (Camellia sect. Thea) form a group of morphologically similar species with significant economic value, providing the raw material for tea, which is the most popular nonalcoholic caffeine-containing beverage in the world. Taxonomic challenges have arisen from vague species boundaries in this group. RESULTS Based on the most comprehensive sampling of C. sect. Thea by far (165 individuals of 39 morphospecies), we applied three de novo species delimitation methods (ASAP, PTP, and mPTP) using plastome data to provide an independent evaluation of morphology-based species boundaries in tea plants. Comparing MOTU partitions with morphospecies, we particularly tested the congruence of MOTUs resulting from different methods. We recognized 28 consensus MOTUs within C. sect. Thea, while tentatively suggesting that 11 morphospecies be discarded. Ten of the 28 consensus MOTUs were uncovered as morphospecies complexes in need of further study integrating other evidence. Our results also showed a strong imbalance among the analyzed MOTUs in terms of the number of molecular diagnostic characters. CONCLUSION This study serves as a solid step forward for recognizing the underlying species boundaries of tea plants, providing a needed evidence-based framework for the utilization and conservation of this economically important plant group.
Collapse
Affiliation(s)
- Yinzi Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Starkville, 39762, MS, USA
| | - Jianli Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, Yunnan, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zhengshan He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shixiong Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Chunlei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Xiangqin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
21
|
Zhou H, Zhang X, Liu H, Ma J, Hao F, Ye H, Wang Y, Zhang S, Yue M, Zhao P. Chromosome-level genome assembly of Platycarya strobilacea. Sci Data 2024; 11:269. [PMID: 38443357 PMCID: PMC10914804 DOI: 10.1038/s41597-024-03107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
Platycarya strobilacea belongs to the walnut family (Juglandaceae), is commonly known as species endemic to East Asia, and is an ecologically important, wind pollinated, woody deciduous tree. To facilitate this ancient tree for the ecological value and conservation of this ancient tree, we report a new high-quality genome assembly of P. strobilacea. The genome size was 677.30 Mb, with a scaffold N50 size of 45,791,698 bp, and 98.43% of the assembly was anchored to 15 chromosomes. We annotated 32,246 protein-coding genes in the genome, of which 96.30% were functionally annotated in six databases. This new high-quality assembly of P. strobilacea provide valuable resource for the phylogenetic and evolutionary analysis of the walnut family and angiosperm.
Collapse
Affiliation(s)
- Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xuedong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fan Hao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yaling Wang
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ming Yue
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
22
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
23
|
Xue TT, Janssens SB, Liu BB, Yu SX. Phylogenomic conflict analyses of the plastid and mitochondrial genomes via deep genome skimming highlight their independent evolutionary histories: A case study in the cinquefoil genus Potentilla sensu lato (Potentilleae, Rosaceae). Mol Phylogenet Evol 2024; 190:107956. [PMID: 37898296 DOI: 10.1016/j.ympev.2023.107956] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Phylogenomic conflicts are widespread among genomic data, with most previous studies primarily focusing on nuclear datasets instead of organellar genomes. In this study, we investigate phylogenetic conflict analyses within and between plastid and mitochondrial genomes using Potentilla as a case study. We generated three plastid datasets (coding, noncoding, and all-region) and one mitochondrial dataset (coding regions) to infer phylogenies based on concatenated and multispecies coalescent (MSC) methods. Conflict analyses were then performed using PhyParts and Quartet Sampling (QS). Both plastid and mitochondrial genomes divided the Potentilla into eight highly supported clades, two of which were newly identified in this study. While most organellar loci were uninformative for the majority of nodes (bootstrap value < 70%), PhyParts and QS detected conflicting signals within the two organellar genomes. Regression analyses revealed that conflict signals mainly occurred among shorter loci, whereas longer loci tended to be more concordant with the species tree. In addition, two significant disagreements between the two organellar genomes were detected, likely attributed to hybridization and/or incomplete lineage sorting. Our results demonstrate that mitochondrial genes can fully resolve the phylogenetic relationships among eight major clades of Potentilla and are not always linked with plastome in evolutionary history. Stochastic inferences appear to be the primary source of observed conflicts among the gene trees. We recommend that the loci with short sequence length or containing limited informative sites should be used cautiously in MSC analysis, and suggest the joint application of concatenated and MSC methods for phylogenetic inference using organellar genomes.
Collapse
Affiliation(s)
- Tian-Tian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium; Department of Biology, KU Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven, Belgium.
| | - Bin-Bin Liu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sheng-Xiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Phylogenomics and topological conflicts in the tribe Anthospermeae (Rubiaceae). Ecol Evol 2024; 14:e10868. [PMID: 38274863 PMCID: PMC10809029 DOI: 10.1002/ece3.10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Genome skimming (shallow whole-genome sequencing) offers time- and cost-efficient production of large amounts of DNA data that can be used to address unsolved evolutionary questions. Here we address phylogenetic relationships and topological incongruence in the tribe Anthospermeae (Rubiaceae), using phylogenomic data from the mitochondrion, the nuclear ribosomal cistron, and the plastome. All three genomic compartments resolve relationships in the Anthospermeae; the tribe is monophyletic and consists of three major subclades. Carpacoce Sond. is sister to the remaining clade, which comprises an African subclade and a Pacific subclade. Most results, from all three genomic compartments, are statistically well supported; however, not fully consistent. Intergenomic topological incongruence is most notable in the Pacific subclade but present also in the African subclade. Hybridization and introgression followed by organelle capture may explain these conflicts but other processes, such as incomplete lineage sorting (ILS), can yield similar patterns and cannot be ruled out based on the results. Whereas the null hypothesis of congruence among all sequenced loci in the individual genomes could not be rejected for nuclear and mitochondrial data, it was rejected for plastid data. Phylogenetic analyses of three subsets of plastid loci identified using the hierarchical likelihood ratio test demonstrated statistically supported intragenomic topological incongruence. Given that plastid genes are thought to be fully linked, this result is surprising and may suggest modeling or sampling error. However, biological processes such as biparental inheritance and inter-plastome recombination have been reported and may be responsible for the observed intragenomic incongruence. Mitochondrial insertions into the plastome are rarely documented in angiosperms. Our results indicate that a mitochondrial insertion event in the plastid trnS GGA - rps4 IGS region occurred in the common ancestor of the Pacific clade of Anthospermeae. Exclusion/inclusion of this locus in phylogenetic analyses had a strong impact on topological results in the Pacific clade.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| |
Collapse
|
25
|
Li Y, Li X, Nie S, Zhang M, Yang Q, Xu W, Duan Y, Wang X. Reticulate evolution of the tertiary relict Osmanthus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:145-160. [PMID: 37837261 DOI: 10.1111/tpj.16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
When interspecific gene flow is common, species relationships are more accurately represented by a phylogenetic network than by a bifurcating tree. This study aimed to uncover the role of introgression in the evolution of Osmanthus, the only genus of the subtribe Oleinae (Oleaceae) with its distribution center in East Asia. We built species trees, detected introgression, and constructed networks using multiple kinds of sequencing data (whole genome resequencing, transcriptome sequencing, and Sanger sequencing of nrDNA) combined with concatenation and coalescence approaches. Then, based on well-understood species relationships, historical biogeographic analyses and diversification rate estimates were employed to reveal the history of Osmanthus. Osmanthus originated in mid-Miocene Europe and dispersed to the eastern Tibetan Plateau in the late Miocene. Thereafter, it continued to spread eastwards. Phylogenetic conflict is common within the 'Core Osmanthus' clade and is seen at both early and late stages of diversification, leading to hypotheses of net-like species relationships. Incomplete lineage sorting proved ineffective in explaining phylogenetic conflicts and thus supported introgression as the main cause of conflicts. This study elucidates the diversification history of a relict genus in the subtropical regions of eastern Asia and reveals that introgression had profound effects on its evolutionary history.
Collapse
Affiliation(s)
- Yongfu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Xuan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qinghua Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Wenbin Xu
- Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
26
|
Sanderson BJ, Gambhir D, Feng G, Hu N, Cronk QC, Percy DM, Freaner FM, Johnson MG, Smart LB, Keefover-Ring K, Yin T, Ma T, DiFazio SP, Liu J, Olson MS. Phylogenomics reveals patterns of ancient hybridization and differential diversification that contribute to phylogenetic conflict in willows, poplars, and close relatives. Syst Biol 2023; 72:1220-1232. [PMID: 37449764 DOI: 10.1093/sysbio/syad042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Despite the economic, ecological, and scientific importance of the genera Salix L. (willows) and Populus L. (poplars, cottonwoods, and aspens) Salicaceae, we know little about the sources of differences in species diversity between the genera and of the phylogenetic conflict that often confounds estimating phylogenetic trees. Salix subgenera and sections, in particular, have been difficult to classify, with one recent attempt termed a "spectacular failure" due to a speculated radiation of the subgenera Vetrix and Chamaetia. Here, we use targeted sequence capture to understand the evolutionary history of this portion of the Salicaceae plant family. Our phylogenetic hypothesis was based on 787 gene regions and identified extensive phylogenetic conflict among genes. Our analysis supported some previously described subgeneric relationships and confirmed the polyphyly of others. Using an fbranch analysis, we identified several cases of hybridization in deep branches of the phylogeny, which likely contributed to discordance among gene trees. In addition, we identified a rapid increase in diversification rate near the origination of the Vetrix-Chamaetia clade in Salix. This region of the tree coincided with several nodes that lacked strong statistical support, indicating a possible increase in incomplete lineage sorting due to rapid diversification. The extraordinary level of both recent and ancient hybridization in both Salix and Populus have played important roles in the diversification and diversity in these two genera.
Collapse
Affiliation(s)
- Brian J Sanderson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
- Department of Biology, West Virginia University, Morgantown, WV 26506,USA
| | - Diksha Gambhir
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Guanqiao Feng
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Nan Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Quentin C Cronk
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York 14456, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tongming Yin
- Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506,USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| |
Collapse
|
27
|
Kang JS, Giang VNL, Park HS, Park YS, Cho W, Nguyen VB, Shim H, Waminal NE, Park JY, Kim HH, Yang TJ. Evolution of the Araliaceae family involved rapid diversification of the Asian Palmate group and Hydrocotyle specific mutational pressure. Sci Rep 2023; 13:22325. [PMID: 38102332 PMCID: PMC10724125 DOI: 10.1038/s41598-023-49830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
The Araliaceae contain many valuable species in medicinal and industrial aspects. We performed intensive phylogenomics using the plastid genome (plastome) and 45S nuclear ribosomal DNA sequences. A total of 66 plastome sequences were used, 13 of which were newly assembled in this study, 12 from new sequences, and one from existing data. While Araliaceae plastomes showed conserved genome structure, phylogenetic reconstructions based on four different plastome datasets revealed phylogenetic discordance within the Asian Palmate group. The divergence time estimation revealed that splits in two Araliaceae subfamilies and the clades exhibiting phylogenetic discordances in the Asian Palmate group occurred at two climatic optima, suggesting that global warming events triggered species divergence, particularly the rapid diversification of the Asian Palmate group during the Middle Miocene. Nucleotide substitution analyses indicated that the Hydrocotyloideae plastomes have undergone accelerated AT-biased mutations (C-to-T transitions) compared with the Aralioideae plastomes, and the acceleration may occur in their mitochondrial and nuclear genomes as well. This implies that members of the genus Hydrocotyle, the only aquatic plants in the Araliaceae, have experienced a distinct evolutionary history from the other species. We also discussed the intercontinental disjunction in the genus Panax and proposed a hypothesis to complement the previously proposed hypothesis. Our results provide the evolutionary trajectory of Araliaceae and advance our current understanding of the evolution of Araliaceae species.
Collapse
Affiliation(s)
- Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Vo Ngoc Linh Giang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, South Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Van Binh Nguyen
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Faculty of Biology, Dalat University, Dalat, 670000, Vietnam
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Nomar Espinosa Waminal
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Gatersleben, Germany
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Hee Kim
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea.
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
28
|
Chen S, Li W, Li W, Liu Z, Shi X, Zou Y, Liao W, Fan Q. Population genetics of Camellia granthamiana, an endangered plant species with extremely small populations in China. Front Genet 2023; 14:1252148. [PMID: 37867601 PMCID: PMC10585715 DOI: 10.3389/fgene.2023.1252148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Camellia, the largest genus of Theaceae, is well-known for having high economic values. Camellia granthamiana demonstrates large beautiful flowers with some primitive characters, such as multiple large and persistent bracteoles and sepals, was listed as Vulnerable species on the IUCN Red List. Methods: In this study, we investigated all possible records of the species, and sampled four natural populations and five cultivated individuals. By applying shallow-genome sequencing for nine individuals and RAD-seq sequencing for all the sampled 77 individuals, we investigated population genetic diversity and population structure of the species. Results and discussion: The results showed that the population sampled from Fengkai, previously identified as C. albogigias, possessed different plastid genome from other species possibly due to plastid capture; the species possesses strong population structure possibly due to the effect of isolation by distance, habitat fragmentation, and self-crossing tendency of the species, whose effective population size declined quickly in the past 4,000 years. Nevertheless, C. granthamiana maintains a medium level of genetic diversity within population, and significant differentiation was observed among the four investigated populations, it is anticipated that more populations are expected to be found and all these extant populations should be taken into instant protection.
Collapse
Affiliation(s)
- Sufang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenyan Li
- Shenzhen Dapeng Peninsula National Geopark, Shenzhen, China
| | - Wei Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhongcheng Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xianggang Shi
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yanli Zou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Shenzhen Academy of Environmental Sciences, Shenzhen, China
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Liu TJ, Zhang SY, Wei L, Lin W, Yan HF, Hao G, Ge XJ. Plastome evolution and phylogenomic insights into the evolution of Lysimachia (Primulaceae: Myrsinoideae). BMC PLANT BIOLOGY 2023; 23:359. [PMID: 37452336 PMCID: PMC10347800 DOI: 10.1186/s12870-023-04363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Lysimachia L., the second largest genus within the subfamily Myrsinoideae of Primulaceae, comprises approximately 250 species worldwide. China is the species diversity center of Lysimachia, containing approximately 150 species. Despite advances in the backbone phylogeny of Lysimachia, species-level relationships remain poorly understood due to limited genomic information. This study analyzed 50 complete plastomes for 46 Lysimachia species. We aimed to identify the plastome structure features and hypervariable loci of Lysimachia. Additionally, the phylogenetic relationships and phylogenetic conflict signals in Lysimachia were examined. RESULTS These fifty plastomes within Lysimachia had the typical quadripartite structure, with lengths varying from 152,691 to 155,784 bp. Plastome size was positively correlated with IR and intron length. Thirteen highly variable regions in Lysimachia plastomes were identified. Additionally, ndhB, petB and ycf2 were found to be under positive selection. Plastid ML trees and species tree strongly supported that L. maritima as sister to subg. Palladia + subg. Lysimachia (Christinae clade), while the nrDNA ML tree clearly placed L. maritima and subg. Palladia as a sister group. CONCLUSIONS The structures of these plastomes of Lysimachia were generally conserved, but potential plastid markers and signatures of positive selection were detected. These genomic data provided new insights into the interspecific relationships of Lysimachia, including the cytonuclear discordance of the position of L. maritima, which may be the result of ghost introgression in the past. Our findings have established a basis for further exploration of the taxonomy, phylogeny and evolutionary history within Lysimachia.
Collapse
Affiliation(s)
- Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Shu-Yan Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Lei Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
| |
Collapse
|
30
|
Zhao YJ, Liu J, Yin GS, Gong X. Characteristics of plastid genomes in the genus Ceratostigma inhabiting arid habitats in China and their phylogenomic implications. BMC PLANT BIOLOGY 2023; 23:303. [PMID: 37280518 DOI: 10.1186/s12870-023-04323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ceratostigma, a genus in the Plumbaginaceae, is an ecologically dominant group of shrubs, subshrub and herb mainly distributed in Qinghai-Tibet Plateau and North China. Ceratostigma has been the focal group in several studies, owing to their importance in economic and ecological value and unique breeding styles. Despite this, the genome information is limited and interspecific relationships within the genus Cerotastigma remains unexplored. Here we sequenced, assembled and characterized the 14 plastomes of five species, and conducted phylogenetic analyses of Cerotastigma using plastomes and nuclear ribosomal DNA (nrDNA) data. RESULTS Fourteen Cerotastigma plastomes possess typical quadripartite structures with lengths from 164,076 to 168,355 bp that consist of a large single copy, a small single copy and a pair of inverted repeats, and contain 127-128 genes, including 82-83 protein coding genes, 37 transfer RNAs and eight ribosomal RNAs. All plastomes are highly conservative and similar in gene order, simple sequence repeats (SSRs), long repeat repeats and codon usage patterns, but some structural variations in the border of single copy and inverted repeats. Mutation hotspots in coding (Pi values > 0.01: matK, ycf3, rps11, rps3, rpl22 and ndhF) and non-coding regions (Pi values > 0.02: trnH-psbA, rps16-trnQ, ndhF-rpl32 and rpl32-trnL) were identified among plastid genomes that could be served as potential molecular markers for species delimitation and genetic variation studies in Cerotastigma. Gene selective pressure analysis showed that most protein-coding genes have been under purifying selection except two genes. Phylogenetic analyses based on whole plastomes and nrDNA strongly support that the five species formed a monophyletic clade. Moreover, interspecific delimitation was well resolved except C. minus, individuals of which clustered into two main clades corresponding to their geographic distributions. The topology inferred from the nrDNA dataset was not congruent with the tree derived from the analyses of the plastid dataset. CONCLUSION These findings represent the first important step in elucidating plastome evolution in this widespread distribution genus Cerotastigma in the Qinghai-Tibet Plateau. The detailed information could provide a valuable resource for understanding the molecular dynamics and phylogenetic relationship in the family Plumbaginaceae. Lineage genetic divergence within C. minus was perhaps promoted by geographic barriers in the Himalaya and Hengduan Mountains region, but introgression or hybridization could not be completely excluded.
Collapse
Affiliation(s)
- Yu-Juan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, 650201, China
| | - Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, 650201, China
| | - Gen-Shen Yin
- Institute of Agriculture and Life Sciences, Kunming University, Kunming, 650214, China
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, 650201, China.
| |
Collapse
|
31
|
Stull GW, Pham KK, Soltis PS, Soltis DE. Deep reticulation: the long legacy of hybridization in vascular plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:743-766. [PMID: 36775995 DOI: 10.1111/tpj.16142] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Hybridization has long been recognized as a fundamental evolutionary process in plants but, until recently, our understanding of its phylogenetic distribution and biological significance across deep evolutionary scales has been largely obscure. Over the past decade, genomic and phylogenomic datasets have revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common throughout the evolutionary history of plants, particularly in various lineages of flowering plants. However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here, we provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of ancient hybridization across plant phylogeny, as well as the challenges unique to documenting ancient versus recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not been explicitly attempted before. Further documenting the extent of deep reticulation in plants should remain an important research focus, especially because published examples likely represent the tip of the iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly explore the macroevolutionary significance of this process, in terms of its impact on evolutionary trajectories (e.g. how does hybridization influence trait evolution or the generation of biodiversity over long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny. Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history in many cases, although our ability to infer, visualize, and use networks for comparative analyses is highly limited. Developing improved methods for the generation, visualization, and use of networks represents a critical future direction for plant biology. Current classification systems also do not generally allow for the recognition of reticulate lineages, and our classifications themselves are largely based on evidence from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as considering whether and how to recognize hybridization in classification systems, will represent an important challenge for the plant systematics community.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
32
|
Yao G, Zhang YQ, Barrett C, Xue B, Bellot S, Baker WJ, Ge XJ. A plastid phylogenomic framework for the palm family (Arecaceae). BMC Biol 2023; 21:50. [PMID: 36882831 PMCID: PMC9993706 DOI: 10.1186/s12915-023-01544-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Over the past decade, phylogenomics has greatly advanced our knowledge of angiosperm evolution. However, phylogenomic studies of large angiosperm families with complete species or genus-level sampling are still lacking. The palms, Arecaceae, are a large family with ca. 181 genera and 2600 species and are important components of tropical rainforests bearing great cultural and economic significance. Taxonomy and phylogeny of the family have been extensively investigated by a series of molecular phylogenetic studies in the last two decades. Nevertheless, some phylogenetic relationships within the family are not yet well-resolved, especially at the tribal and generic levels, with consequent impacts for downstream research. RESULTS Plastomes of 182 palm species representing 111 genera were newly sequenced. Combining these with previously published plastid DNA data, we were able to sample 98% of palm genera and conduct a plastid phylogenomic investigation of the family. Maximum likelihood analyses yielded a robustly supported phylogenetic hypothesis. Phylogenetic relationships among all five palm subfamilies and 28 tribes were well-resolved, and most inter-generic phylogenetic relationships were also resolved with strong support. CONCLUSIONS The inclusion of nearly complete generic-level sampling coupled with nearly complete plastid genomes strengthened our understanding of plastid-based relationships of the palms. This comprehensive plastid genome dataset complements a growing body of nuclear genomic data. Together, these datasets form a novel phylogenomic baseline for the palms and an increasingly robust framework for future comparative biological studies of this exceptionally important plant family.
Collapse
Affiliation(s)
- Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Qu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Present Address: College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Craig Barrett
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Bine Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | | | | | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
33
|
Liu JX, Xu ZC, Zhang YX, Zhou MY, Li DZ. The identity of Dinochloa species and enumeration of Melocalamus (Poaceae: Bambusoideae) in China. PLANT DIVERSITY 2023; 45:133-146. [PMID: 37069933 PMCID: PMC10105079 DOI: 10.1016/j.pld.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/19/2023]
Abstract
Three woody bamboo species collected in Hainan, China in 1940 have been described as Dinochloa based on vegetative specimens. However, the identity of these species has long been in doubt, largely because the vegetative phase in species of Dinochloa is morphologically similar to that in species of Melocalamus, a climbing or scrambling bamboo genus of the paleotropical woody bamboos (Poaceae: Bambusoideae) that consists of about 15 species and one variety. To determine the phylogenetic affinity of the three Dinochloa species from Hainan, we sampled almost all recognized Chinese species of Melocalamus and representative species of Dinochloa as well as other closely related genera, performed molecular phylogenetic analysis, and compared their morphology based on herbarium and fieldwork investigation. Our ddRAD data indicate that the three species from Hainan are closely related to Melocalamus, not Dinochloa. Morphological analysis showed that these three species have a climbing habit but do not grow spirally, their culm leaves have smooth bases, and there is a ring of powder and/or tomenta above and below the nodes. Taken together our findings indicate that the three species from Hainan originally published in Dinochloa should be transferred to Melocalamus, i.e., Melocalamus orenudus (McClure) D.Z. Li & J.X. Liu, Melocalamus puberulus (McClure) D.Z. Li & J.X. Liu, and Melocalamus utilis (McClure) D.Z. Li & J.X. Liu, respectively. This study concludes with an enumeration of Chinese species of Melocalamus, with a key to nine recognized species and one variety, and a lectotypification for M. compatiflorus.
Collapse
Affiliation(s)
- Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zu-Chang Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yu-Xiao Zhang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Meng-Yuan Zhou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
34
|
Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes. Nat Commun 2023; 14:617. [PMID: 36739280 PMCID: PMC9899254 DOI: 10.1038/s41467-023-36247-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
In lineages of allopolyploid origin, sets of homoeologous chromosomes may coexist that differ in gene content and syntenic structure. Presence or absence of genes and microsynteny along chromosomal blocks can serve to differentiate subgenomes and to infer phylogenies. We here apply genome-structural data to infer relationships in an ancient allopolyploid lineage, the walnut family (Juglandaceae), by using seven chromosome-level genomes, two of them newly assembled. Microsynteny and gene-content analyses yield identical topologies that place Platycarya with Engelhardia as did a 1980s morphological-cladistic study. DNA-alignment-based topologies here and in numerous earlier studies instead group Platycarya with Carya and Juglans, perhaps misled by past hybridization. All available data support a hybrid origin of Juglandaceae from extinct or unsampled progenitors nested within, or sister to, Myricaceae. Rhoiptelea chiliantha, sister to all other Juglandaceae, contains proportionally more DNA repair genes and appears to evolve at a rate 2.6- to 3.5-times slower than the remaining species.
Collapse
|
35
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
36
|
Li Y, Wang L, Zhang X, Kang H, Liu C, Mao L, Fang Y. Extensive sharing of chloroplast haplotypes among East Asian Cerris oaks: The imprints of shared ancestral polymorphism and introgression. Ecol Evol 2022; 12:e9142. [PMID: 35923946 PMCID: PMC9339761 DOI: 10.1002/ece3.9142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/27/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Shared ancestral polymorphism and introgression are two main causes of chloroplast DNA (cpDNA) haplotype sharing among closely related angiosperms. In this study, we explored the roles of these two processes in shaping the phylogeographic patterns of East Asian Cerris oaks by examining the geographic distributions of randomly and locally distributed shared haplotypes, which coincide with the expectations of shared ancestry and introgression, respectively. We sequenced 1340 bp of non-coding cpDNA from Quercus acutissima (n = 418) and Q. chenii (n = 183) and compiled previously published sequence data of Q. variabilis (n = 439). The phylogenetic relationships among haplotypes were examined using a median-joining network. The geographic patterns of interspecifically shared haplotypes were assessed to test whether nearby populations have a higher degree of interspecific cpDNA sharing than distant ones. We identified a total of 27 haplotypes that were grouped into three non-species-specific lineages with overlapping distributions. Ancestral haplotypes were extensively shared and randomly distributed across populations of the three species. Some young haplotypes were locally shared in mountainous areas that may have been shared refugia. The local exchange of cpDNA resulted in an excess of similar haplotypes between nearby populations. Our study demonstrated that the haplotype sharing pattern among East Asian Cerris oaks reflected the imprints of both shared ancestral polymorphism and introgression. This pattern was also associated with the relatively stable climates and complex landscapes in East Asia, which not only allowed the long-term persistence of ancestral lineages but also connected the survived populations across refugia.
Collapse
Affiliation(s)
- Yao Li
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| | - Lu Wang
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| | - Xingwang Zhang
- School of Life SciencesHuaibei Normal UniversityHuaibeiChina
| | - Hongzhang Kang
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Chunjiang Liu
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lingfeng Mao
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| | - Yanming Fang
- Co‐Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCollege of Biology and the Environment, Nanjing Forestry UniversityNanjingChina
| |
Collapse
|
37
|
Wang D, Zeng QY, Han XM. The complete chloroplast genome of Chinese endemic species Abies ferreana (Pinaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour 2022; 7:1282-1284. [PMID: 35859719 PMCID: PMC9291656 DOI: 10.1080/23802359.2022.2097028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abies ferreana Bordères & Gaussen 1947 is endemic to China, where it is distributed at 3300–4000 meters in the mountains of Southwest Sichuan and Northwest Yunnan. In this study, the complete chloroplast genome of A. ferreana was reconstructed by de novo assembly using whole-genome sequencing data. The complete chloroplast genome of A. ferreana was 120,049 bp in length with a GC content of 37.9%. A total of 113 genes were identified, including 4 rRNA genes, 35 tRNA genes, and 74 protein-coding genes. Among these, 14 genes contain introns. In the phylogenetic tree with 12 other species of Abies, A. ferreana and Abies fanjingshanensis W. L. Huang et al. 1984 were grouped into the same branch, with a bootstrap value of 100%. The complete chloroplast genome of A. ferreana provides potential genetic resources for further Abies evolutionary and genomic studies.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xue-Min Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
38
|
Chloroplast Genome of Lithocarpus dealbatus (Hook.f. & Thomson ex Miq.) Rehder Establishes Monophyletic Origin of the Species and Reveals Mutational Hotspots with Taxon Delimitation Potential. Life (Basel) 2022; 12:life12060828. [PMID: 35743859 PMCID: PMC9225305 DOI: 10.3390/life12060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
There is phylogenetic ambiguity in the genus Lithocarpus and subfamily Quercoideae (Family: Fagaceae). Lithocarpus dealbatus, an ecologically important tree, is the dominant species among the Quercoideae in India. Although several studies have been conducted on the species' regeneration and ecological and economic significance, limited information is available on its phylo-genomics. To resolve the phylogeny in Quercoideae, we sequenced and assembled the 161,476 bp chloroplast genome of L. dealbatus, which has a large single-copy section of 90,732 bp and a small single-copy region of 18,987 bp, separated by a pair of inverted repeat regions of 25,879 bp. The chloroplast genome contained 133 genes, of which 86 were protein-coding genes, 39 were transfer RNAs, and eight were ribosomal RNAs. Analysis of repeat elements and RNA editing sites revealed interspecific similarities within the Lithocarpus genus. DNA diversity analysis identified five highly diverged coding and noncoding hotspot regions in the four genera, which can be used as polymorphic markers for species/taxon delimitation across the four genera of Quercoideae viz., Lithocarpus, Quercus, Castanea, and Castanopsis. The chloroplast-based phylogenetic analysis among the Quercoideae established a monophyletic origin of Lithocarpus, and a closer evolutionary lineage with a few Quercus species. Besides providing insights into the chloroplast genome architecture of L. dealbatus, the study identified five mutational hotspots having high taxon-delimitation potential across four genera of Quercoideae.
Collapse
|
39
|
Plastid phylogenomic analyses of the Selaginella sanguinolenta group (Selaginellaceae) reveal conflict signatures resulting from sequence types, outlier genes, and pervasive RNA editing. Mol Phylogenet Evol 2022; 173:107507. [PMID: 35589053 DOI: 10.1016/j.ympev.2022.107507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
Different from the generally conserved plastomes (plastid genomes) of most land plants, the Selaginellaceae plastomes exhibit dynamic structure, high GC content and high substitution rates. Previous plastome analyses identified strong conflict on several clades in Selaginella, however the factors causing the conflictions and the impact on the phylogenetic inference have not been sufficiently investigated. Here, we dissect the distribution of phylogenetic signals and conflicts in Selaginella sanguinolenta group, the plastome of which is DR (direct repeats) structure and with genome-wide RNA editing. We analyzed the data sets including 22 plastomes representing all species of the S. sanguinolenta group, covering the entire geographical distribution from the Himalayas to Siberia and the Russian Far East regions. We recovered four different topologies by applying multispecies coalescent (ASTRAL) and concatenation methods (IQ-TREE and RAxML) on four data sets of PC (protein-coding genes), NC (non-coding sequences), PCN (the concatenated PC and NC), and RC (predicted RNA editing sites "C" were corrected by "T"), respectively. Six monophyletic clades, S. nummularifolia clade, S. rossii clade, S. sajanensis clade, S. sanguinolenta I clade, S. sanguinolenta II clade, and S. sanguinolenta III clade, were consistently resolved and supported by the characteristics of GC content, RNA editing frequency, and gene content. However, the relationships among these clades varied across the four topologies. To explore the underlying causes of the uncertainty, we compared the phylogenetic signals of the four topologies. We identified that the sequence types (coding versus non-coding), outlier genes (genes with extremely high |ΔGLS| values), and C-to-U RNA editing frequency in the protein-coding genes were responsible for the unstable phylogenomic relationship. We further revealed a significant positive correlation between the |ΔGLS| values and the variation coefficient of the RNA editing number. Our results demonstrated that the coalescent method performed better than the concatenation method in overcoming the problems caused by outlier genes and extreme RNA editing events. Our study particularly focused on the importance of exploring the plastid phylogenomic conflicts and suggested conducting concatenated analyses cautiously when adopting organelle genome data.
Collapse
|
40
|
Zhou BF, Yuan S, Crowl AA, Liang YY, Shi Y, Chen XY, An QQ, Kang M, Manos PS, Wang B. Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nat Commun 2022; 13:1320. [PMID: 35288565 PMCID: PMC8921187 DOI: 10.1038/s41467-022-28917-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we use phylogenomic analyses of nuclear and plastid genomes to investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. Innovation related to seed dispersal is implicated in triggering waves of continental radiations beginning with the rapid diversification of major lineages and resulting in unparalleled transformation of forest dynamics within 15 million years following the K-Pg extinction. We detect introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, which may have further amplified the diversification of white oaks across Eurasia.
Collapse
Affiliation(s)
- Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Andrew A Crowl
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Qing-Qing An
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
41
|
Wu H, Yang JB, Liu JX, Li DZ, Ma PF. Organelle Phylogenomics and Extensive Conflicting Phylogenetic Signals in the Monocot Order Poales. FRONTIERS IN PLANT SCIENCE 2022; 12:824672. [PMID: 35173754 PMCID: PMC8841755 DOI: 10.3389/fpls.2021.824672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The Poales is one of the largest orders of flowering plants with significant economic and ecological values. Reconstructing the phylogeny of the Poales is important for understanding its evolutionary history that forms the basis for biological studies. However, due to sparse taxon sampling and limited molecular data, previous studies have resulted in a variety of contradictory topologies. In particular, there are three nodes surrounded by incongruence: the phylogenetic ambiguity near the root of the Poales tree, the sister family of Poaceae, and the delimitation of the xyrid clade. We conducted a comprehensive sampling and reconstructed the phylogenetic tree using plastid and mitochondrial genomic data from 91 to 66 taxa, respectively, representing all the 16 families of Poales. Our analyses support the finding of Bromeliaceae and Typhaceae as the earliest diverging groups within the Poales while having phylogenetic relationships with the polytomy. The clade of Ecdeiocoleaceae and Joinvilleaceae is recovered as the sister group of Poaceae. The three families, Mayacaceae, Eriocaulaceae, and Xyridaceae, of the xyrid assembly diverged successively along the backbone of the Poales phylogeny, and thus this assembly is paraphyletic. Surprisingly, we find substantial phylogenetic conflicts within the plastid genomes of the Poales, as well as among the plastid, mitochondrial, and nuclear data. These conflicts suggest that the Poales could have a complicated evolutionary history, such as rapid radiation and polyploidy, particularly allopolyploidy through hybridization. In sum, our study presents a new perspicacity into the complex phylogenetic relationships and the underlying phylogenetic conflicts within the Poales.
Collapse
Affiliation(s)
- Hong Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
42
|
Xi J, Lv S, Zhang W, Zhang J, Wang K, Guo H, Hu J, Yang Y, Wang J, Xia G, Fan G, Wang X, Xiao L. Comparative plastomes of Carya species provide new insights into the plastomes evolution and maternal phylogeny of the genus. FRONTIERS IN PLANT SCIENCE 2022; 13:990064. [PMID: 36407576 PMCID: PMC9667483 DOI: 10.3389/fpls.2022.990064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 05/03/2023]
Abstract
Carya, in the Juglandiodeae subfamily, is to a typical temperate-subtropical forest-tree genus for studying the phylogenetic evolution and intercontinental disjunction between eastern Asia (EA) and North America (NA). Species of the genus have high economic values worldwide for their high-quality wood and the rich healthy factors of their nuts. Although previous efforts based on multiple molecular markers or genome-wide SNPs supported the monophyly of Carya and its two EA and NA major subclades, the maternal phylogeny of Carya still need to be comprehensively evaluated. The variation of Carya plastome has never been thoroughly characterized. Here, we novelly present 19 newly generated plastomes of congeneric Carya species, including the recently rediscovered critically endangered C. poilanei. The overall assessment of plastomes revealed highly conservative in the general structures. Our results indicated that remarkable differences in several plastome features are highly consistent with the EA-NA disjunction and showed the relatively diverse matrilineal sources among EA Carya compared to NA Carya. The maternal phylogenies were conducted with different plastome regions and full-length plastome datasets from 30 plastomes, representing 26 species in six genera of Juglandoideae and Myrica rubra (as root). Six out of seven phylogenetic topologies strongly supported the previously reported relationships among genera of Juglandoideae and the two subclades of EA and NA Carya, but displayed significant incongruencies between species within the EA and NA subclades. The phylogenetic tree generated from full-length plastomes demonstrated the optimal topology and revealed significant geographical maternal relationships among Carya species, especially for EA Carya within overlapping distribution areas. The full-length plastome-based phylogenetic topology also strongly supported the taxonomic status of five controversial species as separate species of Carya. Historical and recent introgressive hybridization and plastid captures might contribute to plastome geographic patterns and inconsistencies between topologies built from different datasets, while incomplete lineage sorting could account for the discordance between maternal topology and the previous nuclear genome data-based phylogeny. Our findings highlight full-length plastomes as an ideal tool for exploring maternal relationships among the subclades of Carya, and potentially in other outcrossing perennial woody plants, for resolving plastome phylogenetic relationships.
Collapse
Affiliation(s)
- Jianwei Xi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Saibin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Weiping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingbo Zhang
- Department of Biological Sciences, St. John’s University - Queens, NY, United States
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Haobing Guo
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Jie Hu
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jianhua Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guohua Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guangyi Fan
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Xinwang Wang
- Pecan Breeding and Genetics, Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, United States
| | - Lihong Xiao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| |
Collapse
|
43
|
Feng Y, Xiang X, Akhter D, Pan R, Fu Z, Jin X. Mitochondrial Phylogenomics of Fagales Provides Insights Into Plant Mitogenome Mosaic Evolution. FRONTIERS IN PLANT SCIENCE 2021; 12:762195. [PMID: 34733309 PMCID: PMC8558628 DOI: 10.3389/fpls.2021.762195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/17/2021] [Indexed: 05/13/2023]
Abstract
Fagales are an order of woody plants and comprise more than 1,100 species, most of which produce economically important timbers, nuts, and fruits. Their nuclear and plastid genomes are well-sequenced and provided valuable resources to study their phylogeny, breeding, resistance, etc. However, little is known about the mitochondrial genomes (mitogenomes), which hinder a full understanding of their genome evolution. In this study, we assembled complete mitogenomes of 23 species, covering five of the seven families of Fagales. These mitogenomes had similar gene sets but varied 2.4 times in size. The mitochondrial genes were highly conserved, and their capacity in phylogeny was challenging. The mitogenomic structure was extremely dynamic, and synteny among species was poor. Further analyses of the Fagales mitogenomes revealed extremely mosaic characteristics, with horizontal transfer (HGT)-like sequences from almost all seed plant taxa and even mitoviruses. The largest mitogenome, Carpinus cordata, did not have large amounts of specific sequences but instead contained a high proportion of sequences homologous to other Fagales. Independent and unequal transfers of third-party DNA, including nuclear genome and other resources, may partially account for the HGT-like fragments and unbalanced size expansions observed in Fagales mitogenomes. Supporting this, a mitochondrial plasmid-like of nuclear origin was found in Carpinus. Overall, we deciphered the last genetic materials of Fagales, and our large-scale analyses provide new insights into plant mitogenome evolution and size variation.
Collapse
Affiliation(s)
- Yanlei Feng
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaoguo Xiang
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Delara Akhter
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, Hangzhou, China
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Zhixi Fu
- College of Life Science, Sichuan Normal University, Chengdu, China
- Sustainable Development Research Center of Resources and Environment of Western Sichuan, Sichuan Normal University, Chengdu, China
| | - Xiaohua Jin
- Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|