1
|
Li S, Zhang MY, Yuan J, Zhang YX. Nano-vaccines for gene delivery against HIV-1 infection. Expert Rev Vaccines 2023; 22:315-326. [PMID: 36945780 DOI: 10.1080/14760584.2023.2193266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Over the last four decades, human immunodeficiency virus type 1 (HIV-1) infection has been a major public health concern. It is acknowledged that an effective vaccine remains the best hope for eliminating the HIV-1 pandemic. The prophylaxis of HIV-1 infection remains a central theme because of the absence of an available HIV-1 vaccine. The incapability of conventional delivery strategies to induce potent immunity is a crucial task to overcome and ultimately lead to a major obstacle in HIV-1 vaccine research. AREAS COVERED The literature search was conducted in the following databases: PubMed, Web of Science, and Embase. Nano-platforms based vaccines have proven prophylaxis of various diseases for effectively activating the immune system. Nano-vaccines, including non-viral and viral vectored nano-vaccines, are in a position to improve the effectiveness of HIV-1 antigen delivery and enhance the innate and adaptive immune responses against HIV-1. Compared to traditional vaccination strategies, genetic immunization can elicit a long-term immune response to provide protective immunity for HIV-1 prevention. EXPERT OPINION The research progress on nano-vaccines for gene delivery against HIV-1 was discussed. The vaccine strategies based on nano-platforms that are being applied to stimulate effective HIV-1-specific cellular and humoral immune responses were particularly emphasized.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jie Yuan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
2
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Horvath A, Rogers L, Pollakis G, Baranov O, Pieroth N, Joseph S, Chachage M, Heitzer A, Maganga L, Msafiri F, Joachim A, Viegas E, Eller LA, Kibuuka H, Rerks-Ngarm S, Pitisuttithum P, Nitayapan S, Dhitavat J, Premsri N, Fidler S, Shattock RJ, Robb ML, Weber J, McCormack S, Munseri PJ, Lyamuya E, Nilsson C, Kroidl A, Hoelscher M, Wagner R, Geldmacher C, Held K. Systematic comparison of HIV-1 Envelope-specific IgG responses induced by different vaccination regimens: Can we steer IgG recognition towards regions of viral vulnerability? Front Immunol 2022; 13:1075606. [PMID: 36741409 PMCID: PMC9891136 DOI: 10.3389/fimmu.2022.1075606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Immunogens and vaccination regimens can influence patterns of immune-epitope recognition, steering them towards or away from epitopes of potential viral vulnerability. HIV-1 envelope (Env)-specific antibodies targeting variable region 2 (V2) or 3 (V3) correlated with protection during the RV144 trial, however, it was suggested that the immunodominant V3 region might divert antibody responses away from other relevant sites. We mapped IgG responses against linear Env epitopes in five clinical HIV vaccine trials, revealing a specific pattern of Env targeting for each regimen. Notable V2 responses were only induced in trials administering CRF01_AE based immunogens, but targeting of V3 was seen in all trials, with the soluble, trimeric CN54gp140 protein eliciting robust V3 recognition. Strong V3 targeting was linked to greater overall response, increased number of total recognised antigenic regions, and where present, stronger V2 recognition. Hence, strong induction of V3-specific antibodies did not negatively impact the targeting of other linear epitopes in this study, suggesting that the induction of antibodies against V3 and other regions of potential viral vulnerability need not be necessarily mutually exclusive.
Collapse
Affiliation(s)
- Augusta Horvath
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Lisa Rogers
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Georgios Pollakis
- Institute of Infection Veterinary and Ecological Sciences (IVES/CIMI), University of Liverpool, Liverpool, United Kingdom
| | - Olga Baranov
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Nora Pieroth
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Sarah Joseph
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom
| | - Mkunde Chachage
- National Institute for Medical Research-Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Asli Heitzer
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lucas Maganga
- National Institute for Medical Research-Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Frank Msafiri
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Agricola Joachim
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Edna Viegas
- Instituto Nacional de Saúde, Maputo, Mozambique
| | - Leigh-Anne Eller
- United States Military HIV Research Program, Silver Spring, MD, United States.,Makerere University Walter Reed Project, Kampala, Uganda.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Supachai Rerks-Ngarm
- Department of Disease Control, Ministry of Public Health, Mueang Nonthaburi, Thailand
| | | | | | - Jittima Dhitavat
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nakorn Premsri
- Department of Disease Control, Ministry of Public Health, Mueang Nonthaburi, Thailand
| | - Sarah Fidler
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Robin J Shattock
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Merlin Lee Robb
- United States Military HIV Research Program, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Jonathan Weber
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Sheena McCormack
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom
| | | | - Eligius Lyamuya
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Charlotta Nilsson
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden.,The Public Health Agency of Sweden, Solna, Sweden
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene; University Hospital Regensburg, Regensburg, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
4
|
Li S, Wang B, Jiang S, Pan Y, Shi Y, Kong W, Shan Y. Surface-Functionalized Silica-Coated Calcium Phosphate Nanoparticles Efficiently Deliver DNA-Based HIV-1 Trimeric Envelope Vaccines against HIV-1. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53630-53645. [PMID: 34735127 DOI: 10.1021/acsami.1c16989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection remains one of the worst crises in global health. The prevention of HIV-1 infection is a crucial task that needs to be addressed due to the absence of a licensed vaccine against HIV-1. DNA vaccines present a promising alternative approach to combat HIV-1 infection due to their excellent safety profile, lack of severe side effects, and relatively rapid fabrication. Traditional vaccines composed of a monomeric envelope or peptide fragments have been indicated to lack protective efficacy mediated by inducing HIV-1-specific neutralizing antibodies in clinical trials. The immunogenicity and protection against HIV-1 induced by DNA vaccines are limited due to the poor uptake of these vaccines by antigen-presenting cells and their ready degradation by DNases and lysosomes. To address these issues of naked DNA vaccines, we described the feasibility of CpG-functionalized silica-coated calcium phosphate nanoparticles (SCPs) for efficiently delivering DNA-based HIV-1 trimeric envelope vaccines against HIV-1. Vaccines comprising the soluble BG505 SOSIP.664 trimer fused to the GCN4-based isoleucine zipper or bacteriophage T4 fibritin foldon motif with excellent simulation of the native HIV-1 envelope were chosen as trimer-based vaccine platforms. Our results showed that SCP-based DNA immunization could significantly induce both broad humoral immune responses and potent cellular immune responses compared to naked DNA vaccination in vivo. To the best of our knowledge, this study is the first to assess the feasibility of CpG-functionalized SCPs for efficiently delivering DNA vaccines expressing a native-like HIV-1 trimer. These CpG-functionalized SCPs for delivering DNA-based HIV-1 trimeric envelope vaccines may lead to the development of promising vaccine candidates against HIV-1.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Bo Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Shun Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
5
|
Reciprocal Inhibition of Immunogenic Performance in Mice of Two Potent DNA Immunogens Targeting HCV-Related Liver Cancer. Microorganisms 2021; 9:microorganisms9051073. [PMID: 34067686 PMCID: PMC8156932 DOI: 10.3390/microorganisms9051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic HCV infection and associated liver cancer impose a heavy burden on the healthcare system. Direct acting antivirals eliminate HCV, unless it is drug resistant, and partially reverse liver disease, but they cannot cure HCV-related cancer. A possible remedy could be a multi-component immunotherapeutic vaccine targeting both HCV-infected and malignant cells, but also those not infected with HCV. To meet this need we developed a two-component DNA vaccine based on the highly conserved core protein of HCV to target HCV-infected cells, and a renowned tumor-associated antigen telomerase reverse transcriptase (TERT) based on the rat TERT, to target malignant cells. Their synthetic genes were expression-optimized, and HCV core was truncated after aa 152 (Core152opt) to delete the domain interfering with immunogenicity. Core152opt and TERT DNA were highly immunogenic in BALB/c mice, inducing IFN-γ/IL-2/TNF-α response of CD4+ and CD8+ T cells. Additionally, DNA-immunization with TERT enhanced cellular immune response against luciferase encoded by a co-delivered plasmid (Luc DNA). However, DNA-immunization with Core152opt and TERT mix resulted in abrogation of immune response against both components. A loss of bioluminescence signal after co-delivery of TERT and Luc DNA into mice indicated that TERT affects the in vivo expression of luciferase directed by the immediate early cytomegalovirus and interferon-β promoters. Panel of mutant TERT variants was created and tested for their expression effects. TERT with deleted N-terminal nucleoli localization signal and mutations abrogating telomerase activity still suppressed the IFN-β driven Luc expression, while the inactivated reverse transcriptase domain of TERT and its analogue, enzymatically active HIV-1 reverse transcriptase, exerted only weak suppressive effects, implying that suppression relied on the presence of the full-length/nearly full-length TERT, but not its enzymatic activity. The effect(s) could be due to interference of the ectopically expressed xenogeneic rat TERT with biogenesis of mRNA, ribosomes and protein translation in murine cells, affecting the expression of immunogens. HCV core can aggravate this effect, leading to early apoptosis of co-expressing cells, preventing the induction of immune response.
Collapse
|
6
|
Khojasteh NF, Fekri M, Shabani SH, Milani A, Baesi K, Bolhassani A. Evaluation of HIV-1 Regulatory and Structural Proteins as Antigen Candidate in Mice and Humans. Curr HIV Res 2021; 19:225-237. [PMID: 33243125 DOI: 10.2174/1570162x18999201125212131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The diagnosis of HIV infection is important among different groups. Moreover, combination antiretroviral therapy is used to treat HIV-1, but it cannot eradicate the infection. Thus, the development of therapeutic vaccines, along with antiretroviral therapy, is recommended. This study evaluates the values of four HIV proteins as antigen candidates in therapeutic vaccine design as well as a possible diagnostic marker for HIV infection in humans. METHODS In this study, the HIV-1 Tat and Rev regulatory proteins and structural Gp120 and p24 proteins were generated in E. coli expression system. Their immunogenicity was evaluated in BALB/ c mice using homologous and heterologous prime/boost strategies. Moreover, the detection of anti- HIV IgG antibodies against these recombinant proteins was assessed in untreated (Naïve/ HIV-infected), treated, and drug-resistant patients compared to the healthy (control) group as a possible diagnostic marker for HIV infection. RESULTS In humans, our results showed that among HIV-1 proteins, anti-Gp120 antibody was not detected in treated individuals compared to the healthy (control) group. The levels of anti-Gp120 antibody were significantly different between the treated group and Naïve as well as drug-resistant subjects. Moreover, the level of anti-p24 antibody was significantly lower in the treated group than the Naive group. In mice, the results of immunization indicated that the Rev antigen could significantly induce IgG2a, IgG2b, and IFN-γ secretion aimed at Th1 response as well as Granzyme B generation as CTL activity in comparison with other antigens. Furthermore, the heterologous DNA prime/ protein boost regimen was more potent than the homologous regimen for stimulation of cellular immunity. CONCLUSION Briefly, the levels of both anti-Gp120 and anti-p24 antibodies can be considered for the diagnosis of the HIV-infected individuals in different groups compared to the healthy group. Moreover, among four recombinant proteins, Rev elicited Th1 cellular immunity and CTL activity in mice as an antigen candidate in therapeutic vaccine development.
Collapse
Affiliation(s)
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Baesi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Joachim A, Ahmed MIM, Pollakis G, Rogers L, Hoffmann VS, Munseri P, Aboud S, Lyamuya EF, Bakari M, Robb ML, Wahren B, Sandstrom E, Nilsson C, Biberfeld G, Geldmacher C, Held K. Induction of Identical IgG HIV-1 Envelope Epitope Recognition Patterns After Initial HIVIS-DNA/MVA-CMDR Immunization and a Late MVA-CMDR Boost. Front Immunol 2020; 11:719. [PMID: 32411138 PMCID: PMC7198863 DOI: 10.3389/fimmu.2020.00719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 01/16/2023] Open
Abstract
In the RV144 trial, to date the only HIV-1 vaccine efficacy trial demonstrating a modestly reduced risk of HIV-1 acquisition, antibody responses toward the HIV Envelope protein (Env) variable (V) 2 and V3 regions were shown to be correlated with a reduced risk of infection. These potentially protective antibody responses, in parallel with the vaccine efficacy, however, waned quickly. Dissecting vaccine-induced IgG recognition of antigenic regions and their variants within the HIV-1 Env from different vaccine trials will aid in designing future HIV-1 immunogens and vaccination schedules. We, therefore, analyzed the IgG response toward linear HIV-1 Env epitopes elicited by a multi-clade, multigene HIVIS-DNA priming, and heterologous recombinant modified vaccinia virus Ankara (MVA-CMDR) boosting regimen (HIVIS03) and assessed whether a late MVA-CMDR boost 3 years after completion of the initial vaccination schedule (HIVIS06) restored antibody responses toward these epitopes. Here we report that vaccination schedule in the HIVIS03 trial elicited IgG responses against linear epitopes within the V2 and V3 tip as well as against the gp41 immunodominant region in a high proportion of vaccinees. Antibodies against the V2 and gp41 Env regions were restricted to variants with close homology to the MVA-CMDR immunogen sequence, while V3 responses were more cross-reactive. Boosting with a late third MVA-CMDR after 3 years effectively restored waned IgG responses to linear Env epitopes and induced targeting of identical antigenic regions and variants comparable to the previous combined HIVIS-DNA/MVA-CMDR regimen. Our findings support the notion that anti-HIV-1 Env responses, associated with a reduced risk of infection in RV144, could be maintained by regular boosting with a single dose of MVA-CMDR.
Collapse
Affiliation(s)
- Agricola Joachim
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Mohamed I M Ahmed
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Georgios Pollakis
- Faculty of Health and Life Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections (HPRU EZI), Liverpool, United Kingdom
| | - Lisa Rogers
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Verena S Hoffmann
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,Institute for Medical Information Processing, Biometry, and Epidemiology, LMU Munich, Munich, Germany
| | - Patricia Munseri
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Eligius F Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Muhammad Bakari
- Tanzania Ministry of Health, Community Development, Gender, Elderly, and Children, Dodoma, Tanzania
| | - Merlin L Robb
- Walter Reed Army Institute of Research (WRAIR), Rockville, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Sandstrom
- Department of Clinical Science and Education, Karolinska Institutet, Sodersjukhuset, Stockholm, Sweden
| | - Charlotta Nilsson
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,The Public Health Agency of Sweden, Solna, Sweden
| | - Gunnel Biberfeld
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
8
|
Rezaei T, Khalili S, Baradaran B, Mosafer J, Rezaei S, Mokhtarzadeh A, de la Guardia M. Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. J Control Release 2019; 316:116-137. [PMID: 31669566 DOI: 10.1016/j.jconrel.2019.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
Abstract
According to WHO (World Health Organization) reports, more than 770,000 people died from HIV and almost 1.7 million people becoming newly infected in the worldwide in 2018. Therefore, many attempts should be done to produce a forceful vaccine to control the AIDS. DNA-based vaccines have been investigated for HIV vaccination by researches during the recent 20 years. The DNA vaccines are novel approach for induction of both type of immune responses (cellular and humoral) in the host cells and have many advantages including high stability, fast and easy of fabrication and absence of severe side effects when compared with other vaccination methods. Recent studies have been focused on vaccine design, immune responses and on the use of adjuvants as a promising strategy for increased level of responses, delivery approaches by viral and non-viral methods and vector design for different antigens of HIV virus. In this review, we outlined the aforementioned advances on HIV DNA vaccines. Then we described the future trends in clinical trials as a strong strategy even in healthy volunteers and the potential developments in control and prevention of HIV.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajee Teacher Training University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sarah Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
9
|
Nadai Y, Held K, Joseph S, Ahmed MIM, Hoffmann VS, Peterhoff D, Missanga M, Bauer A, Joachim A, Reimer U, Zerweck J, McCormack S, Cope AV, Tatoud R, Shattock RJ, Robb ML, Sandstroem EG, Hoelscher M, Maboko L, Bakari M, Kroidl A, Wagner R, Weber J, Pollakis G, Geldmacher C. Envelope-Specific Recognition Patterns of HIV Vaccine-Induced IgG Antibodies Are Linked to Immunogen Structure and Sequence. Front Immunol 2019; 10:717. [PMID: 31105688 PMCID: PMC6492543 DOI: 10.3389/fimmu.2019.00717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
Background: A better understanding of the parameters influencing vaccine-induced IgG recognition of individual antigenic regions and their variants within the HIV Envelope protein (Env) can help to improve design of preventive HIV vaccines. Methods: Env-specific IgG responses were mapped in samples of the UKHVC003 Standard Group (UK003SG, n = 11 from UK) and TaMoVac01 (TMV01, n = 17 from Tanzania) HIV vaccine trials. Both trials consisted of three immunizations with DNA, followed by two boosts with recombinant Modified Vaccinia Virus Ankara (MVA), either mediating secretion of gp120 (UK003SG) or the presentation of cell membrane bound gp150 envelopes (TMV01) from infected cells, and an additional two boosts with 5 μg of CN54gp140 protein adjuvanted with glucopyranosyl lipid adjuvant (GLA). Env immunogen sequences in UK003SG were solely based on the clade C isolate CN54, whereas in TMV01 these were based on clades A, C, B, and CRF01AE. The peptide microarray included 8 globally representative Env sequences, CN54gp140 and the MVA-encoded Env immunogens from both trials, as well as additional peptide variants for hot spots of immune recognition. Results: After the second MVA boost, UK003SG vaccinees almost exclusively targeted linear, non-glycosylated antigenic regions located in the inter-gp120 interface. In contrast, TMV01 recipients most strongly targeted the V2 region and an immunodominant region in gp41. The V3 region was frequently targeted in both trials, with a higher recognition magnitude for diverse antigenic variants observed in the UK003SG (p < 0.0001). After boosting with CN54gp140/GLA, the overall response magnitude increased with a more comparable recognition pattern of antigenic regions and variants between the two trials. Recognition of most immunodominant regions within gp120 remained significantly stronger in UK003SG, whereas V2-region recognition was not boosted in either group. Conclusions: IgG recognition of linear antigenic Env regions differed between the two trials particularly after the second MVA boost. Structural features of the MVA-encoded immunogens, such as secreted, monomeric gp120 vs. membrane-anchored, functional gp150, and differences in prime-boost immunogen sequence variability most probably contributed to these differences. Prime-boosting with multivalent Env immunogens during TMV01 did not improve variant cross-recognition of immunodominant peptide variants in the V3 region.
Collapse
Affiliation(s)
- Yuka Nadai
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Sarah Joseph
- MRC Clinical Trials Unit at UCL, London, United Kingdom
| | - Mohamed I M Ahmed
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Verena S Hoffmann
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Germany
| | | | - Asli Bauer
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,NIMR-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Agricola Joachim
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Ulf Reimer
- JPT Peptide Technologies, Berlin, Germany
| | | | | | - Alethea V Cope
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Roger Tatoud
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Robin J Shattock
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Merlin Lee Robb
- US Military HIV Research Program, Silver Spring, MD, United States
| | - Eric G Sandstroem
- Department of Clinical Science and Education, Karolinska Institutet at Södersjukhuset, Stockholm, Sweden
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | | | - Muhammad Bakari
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital, Regensburg, Germany
| | - Jonathan Weber
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Georgios Pollakis
- Institute of Global Health (CIMI), University of Liverpool, Liverpool, United Kingdom
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
10
|
Optimizing the immunogenicity of HIV prime-boost DNA-MVA-rgp140/GLA vaccines in a phase II randomized factorial trial design. PLoS One 2018; 13:e0206838. [PMID: 30496299 PMCID: PMC6264478 DOI: 10.1371/journal.pone.0206838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background We evaluated the safety and immunogenicity of (i) an intradermal HIV-DNA regimen given with/without intradermal electroporation (EP) as prime and (ii) the impact of boosting with modified vaccinia virus Ankara (HIV-MVA) administered with or without subtype C CN54rgp140 envelope protein adjuvanted with Glucopyranosyl Lipid A (GLA-AF) in volunteers from Tanzania and Mozambique. Methods Healthy HIV-uninfected adults (N = 191) were randomized twice; first to one of three HIV-DNA intradermal priming regimens by needle-free ZetaJet device at weeks 0, 4 and 12 (Group I: 2x0.1mL [3mg/mL], Group II: 2x0.1mL [3mg/mL] plus EP, Group III: 1x0.1mL [6mg/mL] plus EP). Second the same volunteers received 108 pfu HIV-MVA twice, alone or combined with CN54rgp140/GLA-AF, intramuscularly by syringe, 16 weeks apart. Additionally, 20 volunteers received saline placebo. Results Vaccinations and electroporation did not raise safety concerns. After the last vaccination, the overall IFN-γ ELISpot response rate to either Gag or Env was 97%. Intradermal electroporation significantly increased ELISpot response rates to HIV-DNA-specific Gag (66% group I vs. 86% group II, p = 0.026), but not to the HIV-MVA vaccine-specific Gag or Env peptide pools nor the magnitude of responses. Co-administration of rgp140/GLA-AF with HIV-MVA did not impact the frequency of binding antibody responses against subtype B gp160, C gp140 or E gp120 antigens (95%, 99%, 79%, respectively), but significantly enhanced the magnitude against subtype B gp160 (2700 versus 300, p<0.001) and subtype C gp140 (24300 versus 2700, p<0.001) Env protein. At relatively low titers, neutralizing antibody responses using the TZM-bl assay were more frequent in vaccinees given adjuvanted protein boost. Conclusion Intradermal electroporation increased DNA-induced Gag response rates but did not show an impact on Env-specific responses nor on the magnitude of responses. Co-administration of HIV-MVA with rgp140/GLA-AF significantly enhanced antibody responses.
Collapse
|
11
|
Chissumba RM, Luciano A, Namalango E, Bauer A, Bhatt N, Wahren B, Nilsson C, Geldmacher C, Scarlatti G, Jani I, Kestens L. Regulatory T cell abundance and activation status before and after priming with HIVIS-DNA and boosting with MVA-HIV/rgp140/GLA-AF may impact the magnitude of the vaccine-induced immune responses. Immunobiology 2018; 223:792-801. [PMID: 30121146 DOI: 10.1016/j.imbio.2018.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/11/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Little is known about regulatory CD4 T cells (Tregs) in the context of HIV vaccines. Tregs can be differentiated into resting (FoxP3+CD45RA+ - rTregs), activated (FoxP3HighCD45RA- - aTregs) and memory (FoxP3LowCD45RA- - mTregs). Tregs, as CD4 T cells, are also frequent targets for HIV infection. We studied how the abundance and phenotypes of Tregs in terms of activation status and expression of HIV-1 binding molecules would have changed during vaccination in healthy volunteers participating in a phase IIa HIV vaccine clinical trial. Subjects were primed three times with HIVIS-DNA and boosted twice with MVA-CMDR-HIV alone (n = 12) or MVA-CMDR combined with protein CN54rgp140 (n = 13). The proportions of β7 integrin in all CD4 T cells and in the Tregs subset decreased moderately after the final vaccination (p = 0.001 and p = 0.033, respectively) and the rTregs proportion within the total Tregs were also decreased after the final vaccination (p = 0.038). All these proportions returned to normal values within the three months after the final vaccination. The magnitude of HIV-Envelope-specific IFNγ + T cells after vaccination (r = 0.66; p = 0.021) correlated directly with the proportion of Tregs, and correlated inversely correlated with ratios of Th17/Tregs (r = -0.75; p = 0.0057) and Th17/mTregs (r = -0.78; p = 0.0065). Higher titers of IgG gp140 antibodies were observed in subjects with higher mTregs proportions (r = 0.52; p = 0.022). Interestingly, pre-vaccination levels of mTregs correlated with vaccine-induced Env-binding antibodies (r = 0.57; p = 0.01) and presence of neutralizing antibodies (r = 0.61; p = 0.01), while the pre-vaccination Th17/mTregs ratio correlated inversely with the magnitude of cellular IFN-γ ELISpot responses (r = -0.9; p = 0.002). Taken together, these results suggest that pre- and post-vaccination Tregs, their activation status, the Th17/Tregs ratio and other host factors affecting Treg abundance, have an impact on the magnitude of HIV vaccine-induced immune responses. Moreover, the DNA-HIVIS/MVA-HIV regimen, alone or in combination with CN54rgp140 induced moderate and temporary alterations of the Tregs activation status. We also show a decrease in expression of the HIV-1 ligand β7 integrin on Tregs and all CD4 T cells.
Collapse
Affiliation(s)
- Raquel Matavele Chissumba
- Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique; Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Abílio Luciano
- Instituto de Ciências de Saúde, Ministry of Health, Maputo, Mozambique
| | | | - Asli Bauer
- National Institute for Medical Research, Mbeya Medical Research Center, Mbeya, Tanzania
| | - Nilesh Bhatt
- Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Britta Wahren
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Charlotta Nilsson
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, Klinikum of the University of Munich (LMU), Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Department of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Ilesh Jani
- Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Luc Kestens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Codon optimization and improved delivery/immunization regimen enhance the immune response against wild-type and drug-resistant HIV-1 reverse transcriptase, preserving its Th2-polarity. Sci Rep 2018; 8:8078. [PMID: 29799015 PMCID: PMC5967322 DOI: 10.1038/s41598-018-26281-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines require a considerable enhancement of immunogenicity. Here, we optimized a prototype DNA vaccine against drug-resistant HIV-1 based on a weak Th2-immunogen, HIV-1 reverse transcriptase (RT). We designed expression-optimized genes encoding inactivated wild-type and drug-resistant RTs (RT-DNAs) and introduced them into mice by intradermal injections followed by electroporation. RT-DNAs were administered as single or double primes with or without cyclic-di-GMP, or as a prime followed by boost with RT-DNA mixed with a luciferase-encoding plasmid (“surrogate challenge”). Repeated primes improved cellular responses and broadened epitope specificity. Addition of cyclic-di-GMP induced a transient increase in IFN-γ production. The strongest anti-RT immune response was achieved in a prime-boost protocol with electroporation by short 100V pulses done using penetrating electrodes. The RT-specific response, dominated by CD4+ T-cells, targeted epitopes at aa 199–220 and aa 528–543. Drug-resistance mutations disrupted the epitope at aa 205–220, while the CTL epitope at aa 202–210 was not affected. Overall, multiparametric optimization of RT strengthened its Th2- performance. A rapid loss of RT/luciferase-expressing cells in the surrogate challenge experiment revealed a lytic potential of anti-RT response. Such lytic CD4+ response would be beneficial for an HIV vaccine due to its comparative insensitivity to immune escape.
Collapse
|
13
|
Viegas EO, Tembe N, Nilsson C, Meggi B, Maueia C, Augusto O, Stout R, Scarlatti G, Ferrari G, Earl PL, Wahren B, Andersson S, Robb ML, Osman N, Biberfeld G, Jani I, Sandström E, the TaMoVac Study Group. Intradermal HIV-1 DNA Immunization Using Needle-Free Zetajet Injection Followed by HIV-Modified Vaccinia Virus Ankara Vaccination Is Safe and Immunogenic in Mozambican Young Adults: A Phase I Randomized Controlled Trial. AIDS Res Hum Retroviruses 2018; 34:193-205. [PMID: 28969431 DOI: 10.1089/aid.2017.0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We assessed the safety and immunogenicity of HIV-DNA priming using Zetajet™, a needle-free device intradermally followed by intramuscular HIV-MVA boosts, in 24 healthy Mozambicans. Volunteers were randomized to receive three immunizations of 600 μg (n = 10; 2 × 0.1 ml) or 1,200 μg (n = 10; 2 × 0.2 ml) of HIV-DNA (3 mg/ml), followed by two boosts of 108 pfu HIV-MVA. Four subjects received placebo saline injections. Vaccines and injections were safe and well tolerated with no difference between the two priming groups. After three HIV-DNA immunizations, IFN-γ ELISpot responses to Gag were detected in 9/17 (53%) vaccinees, while none responded to Envelope (Env). After the first HIV-MVA, the overall response rate to Gag and/or Env increased to 14/15 (93%); 14/15 (93%) to Gag and 13/15 (87%) to Env. There were no significant differences between the immunization groups in frequency of response to Gag and Env or magnitude of Gag responses. Env responses were significantly higher in the higher dose group (median 420 vs. 157.5 SFC/million peripheral blood mononuclear cell, p = .014). HIV-specific antibodies to subtype C gp140 and subtype B gp160 were elicited in all vaccinees after the second HIV-MVA, without differences in titers between the groups. Neutralizing antibody responses were not detected. Two (13%) of 16 vaccinees, one in each of the priming groups, exhibited antibodies mediating antibody-dependent cellular cytotoxicity to CRF01_AE. In conclusion, HIV-DNA vaccine delivered intradermally in volumes of 0.1-0.2 ml using Zetajet was safe and well tolerated. Priming with the 1,200 μg dose of HIV-DNA generated higher magnitudes of ELISpot responses to Env.
Collapse
Affiliation(s)
- Edna Omar Viegas
- Instituto Nacional de Saúde, Maputo, Mozambique
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Eduardo Mondlane University, Maputo, Mozambique
| | - Nelson Tembe
- Instituto Nacional de Saúde, Maputo, Mozambique
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Eduardo Mondlane University, Maputo, Mozambique
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Public Health Agency of Sweden, Stockholm, Sweden
| | | | | | | | | | | | - Guido Ferrari
- Department of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Patricia L. Earl
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAD)/National Institutes of Health (NIH), Bethesda, Maryland
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sören Andersson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Merlin L. Robb
- The Military HIV Research Program, Walter Reed Army Institute of Research and The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | | | - Gunnel Biberfeld
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ilesh Jani
- Instituto Nacional de Saúde, Maputo, Mozambique
| | - Eric Sandström
- Department of Education and Clinical Research, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
14
|
|
15
|
Kadkhodayan S, Jafarzade BS, Sadat SM, Motevalli F, Agi E, Bolhassani A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett 2017; 188:38-45. [DOI: 10.1016/j.imlet.2017.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 11/30/2022]
|
16
|
Hinkula J, Petkov S, Ljungberg K, Hallengärd D, Bråve A, Isaguliants M, Falkeborn T, Sharma S, Liakina V, Robb M, Eller M, Moss B, Biberfeld G, Sandström E, Nilsson C, Markland K, Blomberg P, Wahren B. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV. Heliyon 2017; 3:e00339. [PMID: 28721397 PMCID: PMC5496381 DOI: 10.1016/j.heliyon.2017.e00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In order to develop a more effective prophylactic HIV-1 vaccine it is important optimize the components, improve Envelope glycoprotein immunogenicity as well as to explore prime-boost immunization schedules. It is also valuable to include several HIV-1 subtype antigens representing the world-wide epidemic. METHODS HIVIS-DNA plasmids which include Env genes of subtypes A, B and C together with Gag subtypes A and B and RTmut/Rev of subtype B were modified as follows: the Envelope sequences were shortened, codon optimized, provided with an FT4 sequence and an immunodominant region mutated. The reverse transcriptase (RT) gene was shortened to contain the most immunogenic N-terminal fragment and fused with an inactivated viral protease vPR gene. HIVISopt-DNA thus contains fewer plasmids but additional PR epitopes compared to the native HIVIS-DNA. DNA components were delivered intradermally to young Balb/c mice once, using a needle-free Biojector® immediately followed by dermal electroporation. Vaccinia-based MVA-CMDR boosts including Env gene E and Gag-RT genes A were delivered intramuscularly by needle, once or twice. RESULTS Both HIVIS-DNA and HIVISopt-DNA primed humoral and cell mediated responses well. When boosted with heterologous MVA-CMDR (subtypes A and E) virus inhibitory neutralizing antibodies were obtained to HIV-1 subtypes A, B, C and AE. Both plasmid compositions boosted with MVA-CMDR generated HIV-1 specific cellular responses directed against HIV-1 Env, Gag and Pol, as measured by IFNγ ELISpot. It was shown that DNA priming augmented the vector MVA immunological boosting effects, the HIVISopt-DNA with a trend to improved (Env) neutralization, the HIVIS-DNA with a trend to better (Gag) cell mediated immune reponses. CONCLUSIONS HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct composition. Priming by HIV-DNA augmented neutralizing antibody responses revealed by boosting with the vaccinia-based heterologous sequences. Cellular and antibody responses covered selected strains representing HIV-1 subtypes A, B, C and CRF01_AE. We assume this is related to the inclusion of heterologous full genes in the vaccine schedule.
Collapse
Affiliation(s)
- J Hinkula
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - S Petkov
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Ljungberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - D Hallengärd
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - A Bråve
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - M Isaguliants
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - T Falkeborn
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - S Sharma
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - V Liakina
- Faculty of Medicine, Vilnius University 2, 08661 Vilnius, Lithuania
| | - M Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - M Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - B Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - G Biberfeld
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - E Sandström
- Department of South Hospital, Karolinska Institutet, 11883 Stockholm, Sweden
| | - C Nilsson
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Markland
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - P Blomberg
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - B Wahren
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
17
|
Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination. Sci Rep 2016; 6:33564. [PMID: 27658623 PMCID: PMC5034244 DOI: 10.1038/srep33564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
The delivery of plasmid DNA to the skin can target distinct subsets of dermal dendritic cells to confer a superior immune response. The needle-free immunization technology offers a reliable, safe and efficient means to administer intradermal (ID) injections. We report here that the ID injection of DNA vectors using an NF device (NF-ID) elicits a superior cell-mediated immune response, at much lesser DNA dosage, comparable in magnitude to the traditional intramuscular immunization. However, the humoral response is significantly impaired, possibly at the stage of B cell isotype switching. We found that the NF-ID administration deposits the DNA primarily on the epidermis resulting in a rapid loss of the DNA as well as the synthesized antigen due to the faster regeneration rate of the skin layers. Therefore, despite the immune-rich nature of the skin, the NF-ID immunization of DNA vectors may be limited by the impaired humoral response. Additional booster injections are required to augment the antibody response. As an alternative and a viable solution, we rescued the IgG response by coadministration of a Toll-like receptor 9 agonist, among other adjuvants examined. Our work has important implication for the optimization of the emerging needle-free technology for ID immunization.
Collapse
|
18
|
McCoy JR, Mendoza JM, Spik KW, Badger C, Gomez AF, Schmaljohn CS, Sardesai NY, Broderick KE. A multi-head intradermal electroporation device allows for tailored and increased dose DNA vaccine delivery to the skin. Hum Vaccin Immunother 2015; 11:746-54. [PMID: 25839221 DOI: 10.4161/21645515.2014.978223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The identification of an effective and tolerable delivery method is a necessity for the success of DNA vaccines in the clinic. This article describes the development and validation of a multi-headed intradermal electroporation device which would be applicable for delivering multiple DNA vaccine plasmids simultaneously but spatially separated. Reporter gene plasmids expressing green and red fluorescent proteins were used to demonstrate the impact of spatial separation on DNA delivery to increase the number of transfected cells and avoid interference through visible expression patterns. To investigate the impact of plasmid interference on immunogenicity, a disease target was investigated where issues with multi-valent vaccines had been previously described. DNA-based Hantaan and Puumala virus vaccines were delivered separately or as a combination and the effect of multi-valence was determined by appropriate assays. While a negative impact was observed for both antigenic vaccines when delivered together, these effects were mitigated when the vaccine was delivered using the multi-head device. We also demonstrate how the multi-head device facilitates higher dose delivery to the skin resulting in improved immune responses. This new multi-head platform device is an efficient, tolerable and non-invasive method to deliver multiple plasmid DNA constructs simultaneously allowing the tailoring of delivery sites for combination vaccines. Additionally, this device would allow the delivery of multi-plasmid vaccine formulations without risk of impacted immune responses through interference. Such a low-cost, easy to use device platform for the delivery of multi-agent DNA vaccines would have direct applications by the military and healthcare sectors for mass vaccination purposes.
Collapse
Affiliation(s)
- Jay R McCoy
- a Inovio Pharmaceuticals Inc. ; Blue Bell , PA USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine 2015; 33:4663-74. [PMID: 26006087 DOI: 10.1016/j.vaccine.2015.05.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies.
Collapse
|
20
|
Priming with a simplified intradermal HIV-1 DNA vaccine regimen followed by boosting with recombinant HIV-1 MVA vaccine is safe and immunogenic: a phase IIa randomized clinical trial. PLoS One 2015; 10:e0119629. [PMID: 25875843 PMCID: PMC4398367 DOI: 10.1371/journal.pone.0119629] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
Background Intradermal priming with HIV-1 DNA plasmids followed by HIV-1MVA boosting induces strong and broad cellular and humoral immune responses. In our previous HIVIS-03 trial, we used 5 injections with 2 pools of HIV-DNA at separate sites for each priming immunization. The present study explores whether HIV-DNA priming can be simplified by reducing the number of DNA injections and administration of combined versus separated plasmid pools. Methods In this phase IIa, randomized trial, priming was performed using 5 injections of HIV-DNA, 1000 μg total dose, (3 Env and 2 Gag encoding plasmids) compared to two “simplified” regimens of 2 injections of HIV-DNA, 600 μg total dose, of Env- and Gag-encoding plasmid pools with each pool either administered separately or combined. HIV-DNA immunizations were given intradermally at weeks 0, 4, and 12. Boosting was performed intramuscularly with 108 pfu HIV-MVA at weeks 30 and 46. Results 129 healthy Tanzanian participants were enrolled. There were no differences in adverse events between the groups. The proportion of IFN-γ ELISpot responders to Gag and/or Env peptides after the second HIV-MVA boost did not differ significantly between the groups primed with 2 injections of combined HIV-DNA pools, 2 injections with separated pools, and 5 injections with separated pools (90%, 97% and 97%). There were no significant differences in the magnitude of Gag and/or Env IFN-γ ELISpot responses, in CD4+ and CD8+ T cell responses measured as IFN-γ/IL-2 production by intracellular cytokine staining (ICS) or in response rates and median titers for binding antibodies to Env gp160 between study groups. Conclusions A simplified intradermal vaccination regimen with 2 injections of a total of 600 μg with combined HIV-DNA plasmids primed cellular responses as efficiently as the standard regimen of 5 injections of a total of 1000 μg with separated plasmid pools after boosting twice with HIV-MVA. Trial Registration World Health Organization International Clinical Trials Registry Platform PACTR2010050002122368
Collapse
|
21
|
McCoy JR, Mendoza JM, Spik KW, Badger C, Gomez AF, Schmaljohn CS, Sardesai NY, Broderick KE. A multi-head intradermal electroporation device allows for tailored and increased dose DNA vaccine delivery to the skin. Hum Vaccin Immunother 2014; 10:3039-47. [PMID: 25483486 PMCID: PMC5443063 DOI: 10.4161/hv.29671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/09/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
The identification of an effective and tolerable delivery method is a necessity for the success of DNA vaccines in the clinic. This manuscript describes the development and validation of a multi-headed intradermal electroporation device which would be applicable for delivering multiple DNA vaccine plasmids simultaneously but spatially separated. Reporter gene plasmids expressing green and red fluorescent proteins were used to demonstrate the impact of spatial separation on DNA delivery to increase the number of transfected cells and avoid interference through visible expression patterns. To investigate the impact of plasmid interference on immunogenicity, a disease target was investigated where issues with multi-valent vaccines had been previously described. DNA-based Hantaan and Puumala virus vaccines were delivered separately or as a combination and the effect of multi-valence was determined by appropriate assays. While a negative impact was observed for both antigenic vaccines when delivered together, these effects were mitigated when the vaccine was delivered using the multi-head device. We also demonstrate how the multi-head device facilitates higher dose delivery to the skin resulting in improved immune responses. This new multi-head platform device is an efficient, tolerable and non-invasive method to deliver multiple plasmid DNA constructs simultaneously allowing the tailoring of delivery sites for combination vaccines. Additionally, this device would allow the delivery of multi-plasmid vaccine formulations without risk of impacted immune responses through interference. Such a low-cost, easy to use device platform for the delivery of multi-agent DNA vaccines would have direct applications by the military and healthcare sectors for mass vaccination purposes.
Collapse
Affiliation(s)
- Jay R McCoy
- Inovio Pharmaceuticals Inc.; Plymouth Meeting, PA USA
| | | | - Kristin W Spik
- United States Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | - Catherine Badger
- United States Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | - Alan F Gomez
- Inovio Pharmaceuticals Inc.; Plymouth Meeting, PA USA
| | - Connie S Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | | | | |
Collapse
|
22
|
Garrod TJ, Gargett T, Yu W, Major L, Burrell CJ, Wesselingh S, Suhrbier A, Grubor-Bauk B, Gowans EJ. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag. Virus Res 2014; 192:25-33. [PMID: 25152448 DOI: 10.1016/j.virusres.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 11/29/2022]
Abstract
Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene.
Collapse
Affiliation(s)
- Tamsin J Garrod
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia.
| | - Tessa Gargett
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Wenbo Yu
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Lee Major
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Steven Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|
23
|
Immunotherapy with an HIV-DNA Vaccine in Children and Adults. Vaccines (Basel) 2014; 2:563-80. [PMID: 26344746 PMCID: PMC4494215 DOI: 10.3390/vaccines2030563] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 11/17/2022] Open
Abstract
Therapeutic HIV immunization is intended to induce new HIV-specific cellular immune responses and to reduce viral load, possibly permitting extended periods without antiretroviral drugs. A multigene, multi-subtype A, B, C HIV-DNA vaccine (HIVIS) has been used in clinical trials in both children and adults with the aim of improving and broadening the infected individuals' immune responses. Despite the different country locations, different regimens and the necessary variations in assays performed, this is, to our knowledge, the first attempt to compare children's and adults' responses to a particular HIV vaccine. Ten vertically HIV-infected children aged 4-16 years were immunized during antiretroviral therapy (ART). Another ten children were blindly recruited as controls. Both groups continued their antiretroviral treatment during and after vaccinations. Twelve chronically HIV-infected adults were vaccinated, followed by repeated structured therapy interruptions (STI) of their antiretroviral treatment. The adult group included four controls, receiving placebo vaccinations. The HIV-DNA vaccine was generally well tolerated, and no serious adverse events were registered in any group. In the HIV-infected children, an increased specific immune response to Gag and RT proteins was detected by antigen-specific lymphoproliferation. Moreover, the frequency of HIV-specific CD8+ T-cell lymphocytes releasing perforin was significantly higher in the vaccinees than the controls. In the HIV-infected adults, increased CD8+ T-cell responses to Gag, RT and viral protease peptides were detected. No augmentation of HIV-specific lymphoproliferative responses were detected in adults after vaccination. In conclusion, the HIV-DNA vaccine can elicit new HIV-specific cellular immune responses, particularly to Gag antigens, in both HIV-infected children and adults. Vaccinated children mounted transient new HIV-specific immune responses, including both CD4+ T-cell lymphoproliferation and late CD8+ T-cell responses. In the adult cohort, primarily CD8+ T-cell responses related to MHC class I alleles were noted. However, no clinical benefits with respect to viral load reduction were ascribable to the vaccinations alone. No severe adverse effects related to the vaccine were found in either cohort, and no virological failures or drug resistances were detected.
Collapse
|
24
|
Xu Y, Yuen PW, Lam JKW. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives. Pharmaceutics 2014; 6:378-415. [PMID: 25014738 PMCID: PMC4190526 DOI: 10.3390/pharmaceutics6030378] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Pak-Wai Yuen
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Jenny Ka-Wing Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
25
|
Lindh I, Bråve A, Hallengärd D, Hadad R, Kalbina I, Strid Å, Andersson S. Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses. Vaccine 2014; 32:2288-93. [PMID: 24631072 DOI: 10.1016/j.vaccine.2014.02.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/16/2014] [Accepted: 02/26/2014] [Indexed: 02/04/2023]
Abstract
During early infection with human immunodeficiency virus type 1 (HIV-1), there is a rapid depletion of CD4(+) T-cells in the gut-associated lymphoid tissue (GALT) in the gastrointestinal tract. Therefore, immediate protection at these surfaces is of high priority for the development of an HIV-1 vaccine. Thus, transgenic plants expressing HIV-1 antigens, which are exposed to immune competent cells in the GALT during oral administration, can be interesting as potential vaccine candidates. In the present study, we used two HIV-1 p24 antigen-expressing transgenic plant systems, Arabidopsis thaliana and Daucus carota, in oral immunization experiments. Both transgenic plant systems showed a priming effect in mice and induced humoral immune responses, which could be detected as anti-p24-specific IgG in sera after an intramuscular p24 protein boost. Dose-dependent antigen analyses using transgenic A. thaliana indicated that low p24 antigen doses were superior to high p24 antigen doses.
Collapse
Affiliation(s)
- Ingrid Lindh
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Andreas Bråve
- Swedish Institute for Communicable Disease Control (SMI), SE-17182 Stockholm, Sweden
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Ronza Hadad
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Irina Kalbina
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Åke Strid
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Sören Andersson
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; Department of Laboratory Medicine, Örebro University Hospital, SE-70185 Örebro, Sweden.
| |
Collapse
|
26
|
Villarreal DO, Talbott KT, Choo DK, Shedlock DJ, Weiner DB. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 2013; 12:537-54. [PMID: 23659301 DOI: 10.1586/erv.13.33] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human body has developed an elaborate defense system against microbial pathogens and foreign antigens. However, particular microbes have evolved sophisticated mechanisms to evade immune surveillance, allowing persistence within the human host. In an effort to combat such infections, intensive research has focused on the development of effective prophylactic and therapeutic countermeasures to suppress or clear persistent viral infections. To date, popular therapeutic strategies have included the use of live-attenuated microbes, viral vectors and dendritic-cell vaccines aiming to help suppress or clear infection. In recent years, improved DNA vaccines have now re-emerged as a promising candidate for therapeutic intervention due to the development of advanced optimization and delivery technologies. For instance, genetic optimization of synthetic plasmid constructs and their encoded antigens, in vivo electroporation-mediated vaccine delivery, as well as codelivery with molecular adjuvants have collectively enhanced both transgene expression and the elicitation of vaccine-induced immunity. In addition, the development of potent heterologous prime-boost regimens has also provided significant contributions to DNA vaccine immunogenicity. Herein, the authors will focus on these recent improvements to this synthetic platform in relation to their application in combating persistent virus infection.
Collapse
Affiliation(s)
- Daniel O Villarreal
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Richie TL, Charoenvit Y, Wang R, Epstein JE, Hedstrom RC, Kumar S, Luke TC, Freilich DA, Aguiar JC, Sacci JB, Sedegah M, Nosek RA, De La Vega P, Berzins MP, Majam VF, Abot EN, Ganeshan H, Richie NO, Banania JG, Baraceros MFB, Geter TG, Mere R, Bebris L, Limbach K, Hickey BW, Lanar DE, Ng J, Shi M, Hobart PM, Norman JA, Soisson LA, Hollingdale MR, Rogers WO, Doolan DL, Hoffman SL. Clinical trial in healthy malaria-naïve adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA. Hum Vaccin Immunother 2012; 8:1564-84. [PMID: 23151451 PMCID: PMC3601132 DOI: 10.4161/hv.22129] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines.
Collapse
|
30
|
Hallengärd D, Applequist SE, Nyström S, Maltais AK, Marovich M, Moss B, Earl P, Nihlmark K, Wahren B, Bråve A. Immunization with multiple vaccine modalities induce strong HIV-specific cellular and humoral immune responses. Viral Immunol 2012; 25:423-32. [PMID: 23035853 PMCID: PMC10970668 DOI: 10.1089/vim.2012.0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/05/2012] [Indexed: 12/30/2022] Open
Abstract
Heterologous priming and boosting with antigens expressed by DNA, viral vectors, or as proteins, are experimental strategies to induce strong immune responses against infectious diseases and cancer. In a preclinical study we compared the ability of recombinant modified vaccinia Ankara encoding HIV antigens (MVA-CMDR), and/or recombinant gp140C (rgp140C), to boost responses induced by a multigene/multisubtype HIV DNA vaccine delivered by electroporation (EP). Homologous DNA immunizations augmented by EP stimulated strong cellular immune responses. Still stronger cellular immune responses were observed after DNA priming and MVA-CMDR boosting, which was superior to all other immunization schedules tested in terms of antigen-specific IFN-γ, IL-2, and bifunctional IFN-γ and IL-2 responses. For HIV Env-specific antibody responses, mice receiving repeated rgp140C immunizations, and mice boosted with rgp140C, elicited the highest binding titers and the highest numbers of antibody-secreting B cells. When considering both cellular and humoral immune responses, a combination of DNA, MVA-CMDR, and rgp140C immunizations induced the overall most potent immune responses and the highest avidity of HIV Env-specific antibodies. These data emphasize the importance of including multiple vaccine modalities that can stimulate both T and B cells, and thus elicit strong and balanced immune responses. The present HIV vaccine combination holds promise for further evaluation in clinical trials.
Collapse
Affiliation(s)
- David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hallengärd D, Bråve A, Isaguliants M, Blomberg P, Enger J, Stout R, King A, Wahren B. A combination of intradermal jet-injection and electroporation overcomes in vivo dose restriction of DNA vaccines. GENETIC VACCINES AND THERAPY 2012; 10:5. [PMID: 22873174 PMCID: PMC3532290 DOI: 10.1186/1479-0556-10-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/12/2012] [Indexed: 01/04/2023]
Abstract
Background The use of optimized delivery devices has been shown to enhance the potency of DNA vaccines. However, further optimization of DNA vaccine delivery is needed for this vaccine modality to ultimately be efficacious in humans. Methods Herein we evaluated antigen expression and immunogenicity after intradermal delivery of different doses of DNA vaccines by needle or by the Biojector jet-injection device, with or without the addition of electroporation (EP). Results Neither needle injection augmented by EP nor Biojector alone could induce higher magnitudes of immune responses after immunizations with a high dose of DNA. After division of a defined DNA dose into multiple skin sites, the humoral response was particularly enhanced by Biojector while cellular responses were particularly enhanced by EP. Furthermore, a close correlation between in vivo antigen expression and cell-mediated as well as humoral immune responses was observed. Conclusions These results show that two optimized DNA vaccine delivery devices can act together to overcome dose restrictions of plasmid DNA vaccines.
Collapse
Affiliation(s)
- David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, 171 77, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bakari M, Aboud S, Nilsson C, Francis J, Buma D, Moshiro C, Aris EA, Lyamuya EF, Janabi M, Godoy-Ramirez K, Joachim A, Polonis VR, Bråve A, Earl P, Robb M, Marovich M, Wahren B, Pallangyo K, Biberfeld G, Mhalu F, Sandström E. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania. Vaccine 2011; 29:8417-28. [PMID: 21864626 PMCID: PMC4795940 DOI: 10.1016/j.vaccine.2011.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/13/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND We conducted a phase I/II randomized placebo-controlled trial with the aim of exploring whether priming with a low intradermal dose of a multiclade, multigene HIV-1 DNA vaccine could improve the immunogenicity of the same vaccine given intramuscularly prior to boosting with a heterologous HIV-1 MVA among healthy adults in Dar es Salaam, Tanzania. METHODS Sixty HIV-uninfected volunteers were randomized to receive DNA plasmid vaccine 1mg intradermally (id), n=20, or 3.8mg intramuscularly (im), n=20, or placebo, n=20, using a needle-free injection device. DNA plasmids encoding HIV-1 genes gp160 subtype A, B, C; rev B; p17/p24 gag A, B and Rtmut B were given at weeks 0, 4 and 12. Recombinant MVA (10(8)pfu) expressing HIV-1 Env, Gag, Pol of CRF01_AE or placebo was administered im at month 9 and 21. RESULTS The vaccines were well tolerated. Two weeks after the third HIV-DNA injection, 22/38 (58%) vaccinees had IFN-γ ELISpot responses to Gag. Two weeks after the first HIV-MVA boost all 35 (100%) vaccinees responded to Gag and 31 (89%) to Env. Two to four weeks after the second HIV-MVA boost, 28/29 (97%) vaccinees had IFN-γ ELISpot responses, 27 (93%) to Gag and 23 (79%) to Env. The id-primed recipients had significantly higher responses to Env than im recipients. Intracellular cytokine staining for Gag-specific IFN-γ/IL-2 production showed both CD8(+) and CD4(+) T cell responses. All vaccinees had HIV-specific lymphoproliferative responses. All vaccinees reacted in diagnostic HIV serological tests and 26/29 (90%) had antibodies against gp160 after the second HIV-MVA boost. Furthermore, while all of 29 vaccinee sera were negative for neutralizing antibodies against clade B, C and CRF01_AE pseudoviruses in the TZM-bl neutralization assay, in a PBMC assay, the response rate ranged from 31% to 83% positives, depending upon the clade B or CRF01_AE virus tested. CONCLUSIONS This vaccine approach is safe and highly immunogenic. Low dose, id HIV-DNA priming elicited higher and broader cell-mediated immune responses to Env after HIV-MVA boost compared to a higher HIV-DNA priming dose given im. Three HIV-DNA priming immunizations followed by two HIV-MVA boosts efficiently induced Env-antibody responses.
Collapse
Affiliation(s)
- Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The signal peptide sequence impacts the immune response elicited by a DNA epitope vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1776-80. [PMID: 21832097 DOI: 10.1128/cvi.05179-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the effect of two leader sequences, one from a transmembrane molecule (H2-L(d)) and another from a secreted molecule (rat KC chemokine), on the immunogenicity of DNA epitope vaccines. The chemokine leader enhanced vaccine immunogenicity, thus underscoring the importance of the leader sequence in DNA epitope vaccine design.
Collapse
|
34
|
Abstract
This review provides a detailed look at the attributes and immunologic mechanisms of plasmid DNA vaccines and their utility as laboratory tools as well as potential human vaccines. The immunogenicity and efficacy of DNA vaccines in a variety of preclinical models is used to illustrate how they differ from traditional vaccines in novel ways due to the in situ antigen production and the ease with which they are constructed. The ability to make new DNA vaccines without needing to handle a virulent pathogen or to adapt the pathogen for manufacturing purposes demonstrates the potential value of this vaccine technology for use against emerging and epidemic pathogens. Similarly, personalized anti-tumor DNA vaccines can also readily be made from a biopsy. Because DNA vaccines bias the T-helper (Th) cell response to a Th1 phenotype, DNA vaccines are also under development for vaccines against allergy and autoimmune diseases. The licensure of four animal health products, including two prophylactic vaccines against infectious diseases, one immunotherapy for cancer, and one gene therapy delivery of a hormone for a food animal, provides evidence of the efficacy of DNA vaccines in multiple species including horses and pigs. The size of these target animals provides evidence that the somewhat disappointing immunogenicity of DNA vaccines in a number of human clinical trials is not due simply to the larger mass of humans compared with most laboratory animals. The insights gained from the mechanisms of protection in the animal vaccines, the advances in the delivery and expression technologies for increasing the potency of DNA vaccines, and encouragingly potent human immune responses in certain clinical trials, provide insights for future efforts to develop DNA vaccines into a broadly useful vaccine and immunotherapy platform with applications for human and animal health.
Collapse
|
35
|
Comparison of plasmid vaccine immunization schedules using intradermal in vivo electroporation. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1577-81. [PMID: 21752954 DOI: 10.1128/cvi.05045-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In vivo electroporation (EP) has proven to significantly increase plasmid transfection efficiency and to augment immune responses after immunization with plasmids. In this study, we attempted to establish an immunization protocol using intradermal (i.d.) EP. BALB/c mice were immunized with a plasmid encoding HIV-1 p37Gag, either i.d. with the Derma Vax EP device, intramuscularly (i.m.) without EP, or with combinations of both. A novel FluoroSpot assay was used to evaluate the vaccine-specific cellular immune responses. The study showed that i.d. EP immunizations induced stronger immune responses than i.m. immunizations using a larger amount of DNA and that repeated i.d. EP immunizations induced stronger immune responses than i.m. priming followed by i.d. EP boosting. Two and three i.d. EP immunizations induced immune responses of similar magnitude, and a short interval between immunizations was superior to a longer interval in terms of the magnitude of cellular immune responses. The FluoroSpot assay allowed for the quantification of vaccine-specific cells secreting either gamma interferon (IFN-γ), interleukin-2 (IL-2), or both, and the sensitivity of the assay was confirmed with IFN-γ and IL-2 enzyme-linked immunosorbent spot (ELISpot) assays. The data obtained in this study can aid in the design of vaccine protocols using i.d. EP, and the results emphasize the advantages of the FluoroSpot assay over traditional ELISpot assay and intracellular staining for the detection and quantification of bifunctional vaccine-specific immune responses.
Collapse
|
36
|
Amplified antigen-specific immune responses in HIV-1 infected individuals in a double blind DNA immunization and therapy interruption trial. Vaccine 2011; 29:5558-66. [DOI: 10.1016/j.vaccine.2011.01.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/22/2010] [Accepted: 01/21/2011] [Indexed: 11/16/2022]
|
37
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
38
|
Staff C, Mozaffari F, Haller BK, Wahren B, Liljefors M. A Phase I safety study of plasmid DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients. Vaccine 2010; 29:6817-22. [PMID: 21195077 DOI: 10.1016/j.vaccine.2010.12.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A plasmid DNA vaccine, encoding a truncated form of human CEA fused to a T-helper epitope (CEA66 DNA) was delivered three times intradermally at 2 mg or intramuscularly at 8 mg by Biojector® to patients with colorectal cancer. Prior to the first vaccination, all patients received cyclophosphamide (300 mg/m²) intravenously. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was administered subcutaneously with each vaccination. All patients completed the vaccine schedule. There were no grade 3 or 4 adverse events (AE). The most frequently reported AE grades 1 and 2 were injection site reactions, fatigue, headache, arthralgia, chest tightness and myalgia. Vaccination with CEA66 DNA in combination with GM-CSF was well tolerated and no signs of autoimmunity have been detected.
Collapse
Affiliation(s)
- Caroline Staff
- Department of Oncology and Pathology (Radiumhemmet), Cancer Centre Karolinska, Karolinska Institutet, Karolinska University Hospital Solna, S-17176 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
39
|
Abstract
Efforts to make vaccines against infectious diseases as well as immunotherapies for cancer, autoimmune diseases and allergy have utilized a variety of heterologous expression systems, including viral and bacterial vectors, as well as DNA and RNA constructs. This review explores the immunologic rationale and provides an update of insights obtained from preclinical and clinical studies of such vaccines.
Collapse
|
40
|
Prototype development and preclinical immunogenicity analysis of a novel minimally invasive electroporation device. Gene Ther 2010; 18:258-65. [DOI: 10.1038/gt.2010.137] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Bråve A, Gudmundsdotter L, Sandström E, Haller BK, Hallengärd D, Maltais AK, King AD, Stout RR, Blomberg P, Höglund U, Hejdeman B, Biberfeld G, Wahren B. Biodistribution, persistence and lack of integration of a multigene HIV vaccine delivered by needle-free intradermal injection and electroporation. Vaccine 2010; 28:8203-9. [PMID: 20951666 PMCID: PMC7126493 DOI: 10.1016/j.vaccine.2010.08.108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 12/16/2022]
Abstract
It is likely that gene-based vaccines will enter the human vaccine area soon. A few veterinary vaccines employing this concept have already been licensed, and a multitude of clinical trials against infectious diseases or different forms of cancer are ongoing. Highly important when developing novel vaccines are the safety aspects and also new adjuvants and delivery techniques needs to be carefully investigated so that they meet all short- and long-term safety requirements. One novel in vivo delivery method for plasmid vaccines is electroporation, which is the application of short pulses of electric current immediately after, and at the site of, an injection of a genetic vaccine. This method has been shown to significantly augment the transfection efficacy and the subsequent vaccine-specific immune responses. However, the dramatic increase in delivery efficacy offered by electroporation has raised concerns of potential increase in the risk of integration of plasmid DNA into the host genome. Here, we demonstrate the safety and lack of integration after immunization with a high dose of a multigene HIV-1 vaccine delivered intradermally using the needle free device Biojector 2000 together with electroporation using Derma Vax™ DNA Vaccine Skin Delivery System. We demonstrate that plasmids persist in the skin at the site of injection for at least four months after immunization. However, no association between plasmid DNA and genomic DNA could be detected as analyzed by qPCR following field inversion gel electrophoresis separating heavy and light DNA fractions. We will shortly initiate a phase I clinical trial in which healthy volunteers will be immunized with this multiplasmid HIV-1 vaccine using a combination of the delivery methods jet-injection and intradermal electroporation.
Collapse
Affiliation(s)
- Andreas Bråve
- Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mohammed AJ, AlAwaidy S, Bawikar S, Kurup PJ, Elamir E, Shaban MMA, Sharif SM, van der Avoort HGAM, Pallansch MA, Malankar P, Burton A, Sreevatsava M, Sutter RW. Fractional doses of inactivated poliovirus vaccine in Oman. N Engl J Med 2010; 362:2351-9. [PMID: 20573923 DOI: 10.1056/nejmoa0909383] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND We conducted a clinical trial of fractional doses of inactivated poliovirus vaccine administered to infants in Oman, in order to evaluate strategies for making the vaccine affordable for use in developing countries. METHODS We compared fractional doses of inactivated poliovirus vaccine (0.1 ml, representing one fifth of a full dose) given intradermally with the use of a needle-free jet injector device, with full doses of vaccine given intramuscularly, with respect to immunogenicity and reactogenicity. Infants were randomly assigned at birth to receive either a fractional dose or a full dose of inactivated poliovirus vaccine at 2, 4, and 6 months. We also administered a challenge dose of monovalent type 1 oral poliovirus vaccine at 7 months and collected stool samples before and 7 days after administration of the challenge dose. RESULTS A total of 400 infants were randomized, of whom 373 (93.2%) fulfilled the study requirements. No significant baseline differences between the groups were detected. Thirty days after completion of the three-dose schedule, the rates of seroconversion to types 1, 2, and 3 poliovirus were 97.3%, 95.7%, and 97.9%, respectively, in the fractional-dose group, as compared with 100% seroconversion to all serotypes in the full-dose group (P=0.01 for the comparison with respect to type 2 poliovirus; results with respect to types 1 and 3 poliovirus were not significant). The median titers were significantly lower in the fractional-dose group than in the full-dose group (P<0.001 for all three poliovirus serotypes). At 7 months, 74.8% of the infants in the fractional-dose group and 63.1% of those in full-dose group excreted type 1 poliovirus (P=0.03). Between birth and 7 months, 42 hospitalizations were reported, all related to infectious causes, anemia, or falls, with no significant difference between vaccination groups. CONCLUSIONS These data show that fractional doses of inactivated poliovirus vaccine administered intradermally at 2, 4, and 6 months, as compared with full doses of inactivated poliovirus vaccine given intramuscularly on the same schedule, induce similar levels of seroconversion but significantly lower titers. (Current Controlled Trials number, ISRCTN17418767.)
Collapse
|
43
|
Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference. THE LANCET. INFECTIOUS DISEASES 2010; 10:305-16. [PMID: 20417413 DOI: 10.1016/s1473-3099(10)70069-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The search for an HIV/AIDS vaccine is steadily moving ahead, generating and validating new concepts in terms of novel vectors for antigen delivery and presentation, new vaccine and adjuvant strategies, alternative approaches to design HIV-1 antigens for eliciting protective cross-neutralising antibodies, and identification of key mechanisms in HIV infection and modulation of the immune system. All these different perspectives are contributing to the unprecedented challenge of developing a protective HIV-1 vaccine. The high scientific value of this massive effort is its great impact on vaccinology as a whole, providing invaluable scientific information for the current and future development of new preventive vaccine as well as therapeutic knowledge-based infectious-disease and cancer vaccines.
Collapse
|
44
|
Brown SA, Surman SL, Sealy R, Jones BG, Slobod KS, Branum K, Lockey TD, Howlett N, Freiden P, Flynn P, Hurwitz JL. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials. Viruses 2010; 2:435-467. [PMID: 20407589 PMCID: PMC2855973 DOI: 10.3390/v2020435] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 12/21/2022] Open
Abstract
Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of `original antigenic sin' is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.
Collapse
Affiliation(s)
- Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Robert Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Karen S. Slobod
- Early Development, Novartis Vaccines and Diagnostics, 350 Mass Ave. Cambridge, MA 02139, USA; E-Mail: (K.S.S.)
| | - Kristen Branum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Timothy D. Lockey
- Department of Therapeutics, Production and Quality, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (T.D.L.)
| | - Nanna Howlett
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Patricia Flynn
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pediatrics, University of Tennessee, Memphis, TN 38163, USA
| | - Julia L. Hurwitz
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pathology, University of Tennessee, Memphis, TN 38163, USA
| |
Collapse
|
45
|
Brave A, Johansson U, Hallengärd D, Heidari S, Gullberg H, Wahren B, Hinkula J, Spetz AL. Induction of HIV-1-specific cellular and humoral immune responses following immunization with HIV-DNA adjuvanted with activated apoptotic lymphocytes. Vaccine 2009; 28:2080-7. [PMID: 20044053 DOI: 10.1016/j.vaccine.2009.12.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 12/31/2022]
Abstract
Delivery of DNA encoding foreign antigens into mammalian cells can induce adaptive immune responses. There are currently many DNA-based vaccines in clinical trials against infectious diseases and cancer but there is a lack of adjuvants for improvement of responses to DNA-based vaccines. Here, we show augmented systemic and mucosa-associated B cell responses after immunization with a cocktail of seven different plasmids (3 env, 2 gag, 1 rev, 1 RT) combined with mitogen activated apoptotic syngeneic lymphocytes in mice. In addition we show that apoptotic cells can function as adjuvant for induction of cellular immune responses in a magnitude comparable to the cytokine adjuvant GM-CSF in mice. These data suggest that activated apoptotic lymphocytes can act independent as adjuvants to improve antigen-specific DNA vaccines.
Collapse
Affiliation(s)
- Andreas Brave
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sandström E, Nilsson C, Hejdeman B, Bråve A, Bratt G, Robb M, Cox J, Vancott T, Marovich M, Stout R, Aboud S, Bakari M, Pallangyo K, Ljungberg K, Moss B, Earl P, Michael N, Birx D, Mhalu F, Wahren B, Biberfeld G. Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus Ankara. J Infect Dis 2009; 198:1482-90. [PMID: 18808335 DOI: 10.1086/592507] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A human immunodeficiency virus (HIV) vaccine that limits disease and transmission is urgently needed. This clinical trial evaluated the safety and immunogenicity of an HIV vaccine that combines a plasmid-DNA priming vaccine and a modified vaccinia virus Ankara (MVA) boosting vaccine. METHODS Forty healthy volunteers were injected with DNA plasmids containing gp160 of HIV-1 subtypes A, B, and C; rev B; p17/p24 gag A and B, and RTmut B by use of a needle-free injection system. The vaccine was administered intradermally or intramuscularly, with or without recombinant granulocyte macrophage colony-stimulating factor, and boosted with a heterologous MVA containing env, gag, and pol of CRF01A_E. Immune responses were monitored with HIV-specific interferon (IFN)-gamma and interleukin (IL)-2 ELISpot and lymphoproliferative assays (LPAs). RESULTS Vaccine-related adverse events were mild and tolerable. After receipt of the DNA priming vaccine, 11 (30%) of 37 vaccinees had HIV-specific IFN-gamma responses. After receipt of the MVA boosting vaccine, ELISpot assays showed that 34 (92%) of 37 vaccinees had HIV-specific IFN-gamma responses, 32 (86%) to Gag and 24 (65%) to Env. IFN-gamma production was detected in both the CD8(+) T cell compartment (5 of 9 selected vaccinees) and the CD4(+) T cell compartment (9 of 9). ELISpot results showed that 25 (68%) of 37 vaccinees had a positive IL-2 response and 35 (92%) of 38 had a positive LPA response. Of 38 subjects, a total of 37 (97%) were responders. One milligram of HIV-1 DNA administered intradermally was as effective as 4 mg administered intramuscularly in priming for the MVA boosting vaccine. CONCLUSION This HIV-DNA priming-MVA boosting approach is safe and highly immunogenic. TRIALS REGISTRATION International Standard Randomised Controlled Trial number: ISRCTN32604572 .
Collapse
Affiliation(s)
- Eric Sandström
- Department of Clinical Science and Education, Södersjukhuset, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
McBurney SP, Ross TM. Viral sequence diversity: challenges for AIDS vaccine designs. Expert Rev Vaccines 2008; 7:1405-17. [PMID: 18980542 DOI: 10.1586/14760584.7.9.1405] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the greatest challenges facing AIDS vaccine development is the intrinsic diversity among circulating populations of HIV-1 in various geographical locations and the need to develop vaccines that can elicit enduring protective immunity to variant HIV-1 strains. While variation is observed in all of the viral proteins, the greatest diversity is localized to the viral envelope glycoproteins, evidently reflecting the predominant role of these proteins in eliciting host immune recognition and responses that result in progressive evolution of the envelope proteins during persistent infection. Interestingly, while envelope glycoprotein variation is widely assumed to be a major obstacle to AIDS vaccine development, there is very little experimental data in animal or human lentivirus systems addressing this critical issue. In this review, the state of vaccine development to address envelope diversity will be presented, focusing on the use of centralized and polyvalent sequence design as mechanisms to elicit broadly reactive immune responses.
Collapse
Affiliation(s)
- Sean P McBurney
- University of Pittsburgh, School of Medicine, Center for Vaccine Research, Program in Molecular Virology and Microbiology, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
48
|
Bråve A, Hallengärd D, Malm M, Blazevic V, Rollman E, Stanescu I, Krohn K. Combining DNA technologies and different modes of immunization for induction of humoral and cellular anti-HIV-1 immune responses. Vaccine 2008; 27:184-6. [PMID: 18992294 DOI: 10.1016/j.vaccine.2008.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/02/2008] [Accepted: 10/14/2008] [Indexed: 11/29/2022]
Abstract
We show here that it is possible to combine two different genetic immunogens, one designed to induce HIV-1 specific humoral immune responses (pKCMVgp160B) and one designed to induce cellular anti-HIV-1 immune responses (Auxo-GTU-MultiHIV), and still retain the major properties of both vaccine constructs. The two different constructs were delivered using two different methods; the gene-gun and the Biojector, which both are needle-free devices. In BALB/c mice we were able to induce high levels of HIV-1-specific T cell responses as well as high levels of anti-gp160 antibodies by co-administrating the vaccine constructs. The cellular immune responses, but not antibody responses, were moderately compromised from the combination. This study shows that it is a feasible strategy to combine different vaccines and modes of delivery, but that interference as to magnitude may occur to certain gene products.
Collapse
Affiliation(s)
- Andreas Bråve
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
49
|
Bråve A, Johansen K, Palma P, Benthin R, Hinkula J. Maternal immune status influences HIV-specific immune responses in pups after DNA prime protein boost using mucosal adjuvant. Vaccine 2008; 26:5957-66. [DOI: 10.1016/j.vaccine.2008.08.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 08/05/2008] [Accepted: 08/31/2008] [Indexed: 11/29/2022]
|
50
|
LINDH INGRID, KALBINA IRINA, THULIN SARA, SCHERBAK NIKOLAI, SÄVENSTRAND HELENA, BRÅVE ANDREAS, HINKULA JORMA, STRID ÅKE, ANDERSSON SÖREN. Feeding of mice withArabidopsis thalianaexpressing the HIV-1 subtype C p24 antigen gives rise to systemic immune responses. APMIS 2008; 116:985-94. [DOI: 10.1111/j.1600-0463.2008.00900.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|