1
|
Lang H, Zeng J, Wen Y, Xu J, Xiao R, Shi Y, Lu Q, Xia X, Hu G. Oleracein E Rejuvenates Senescent Hippocampal NSCs by Inhibiting the ERK1/2-mTOR Axis to Improve Cognitive Dysfunction in Vascular Dementia. Eur J Neurosci 2025; 61:e70137. [PMID: 40353431 DOI: 10.1111/ejn.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Vascular dementia (VD) is one of the most prevalent forms of dementia, yet effective treatments remain limited. Our previous research identified hippocampal neural stem cells (hNSCs) senescence as a key contributor to VD progression and suggested that reducing hNSC senescence could help reverse cognitive impairment. In this study, we investigated whether Oleracein E (OE), a phenolic antioxidant alkaloid, could alleviate hNSC senescence and improve cognitive function in VD. Using a two-vessel occlusion mouse model of VD, we found that OE treatment significantly reduced hNSCs senescence, restored proliferation and neuronal differentiation capacities, and improved cognitive performance. Mechanistically, OE exerted its effects by inhibiting ERK1/2 phosphorylation and suppressing mTOR activation. Furthermore, pharmacological activation of mTOR with MHY1485 partially abolished the antisenescence effects of OE in hNSCs. These findings suggest that OE may counteract senescence-related neurogenesis dysfunction and cognitive decline in VD, highlighting its potential as a therapeutic intervention.
Collapse
Affiliation(s)
- Haili Lang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jie Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuqi Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiang Xu
- Department of Neurosurgery, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, Jiangxi, China
| | - Renjie Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yichuan Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaobao Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Qu J, Lu Z, Cheng Y, Deng S, Shi W, Liu Q, Ling Y. miR-484 in Hippocampal Astrocytes of Aged and Young Rats Targets CSF-1 to Regulate Neural Progenitor/Stem Cell Proliferation and Differentiation Into Neurons. CNS Neurosci Ther 2025; 31:e70415. [PMID: 40304412 PMCID: PMC12042212 DOI: 10.1111/cns.70415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/23/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025] Open
Abstract
AIM Aging-related cognitive decline is closely linked to the reduced function of neural progenitor/stem cells (NPSCs), which can be influenced by the neural microenvironment, particularly astrocytes. The aim of this study was to explore how astrocytes affect NPSCs and cognitive function during aging. METHODS H2O2-treated astrocytes were used to mimic the aging phenotype of astrocytes. Proteomic analysis identified altered protein expression, revealing high levels of colony-stimulating factor-1 (CSF-1) in the supernatant of H2O2-treated astrocytes. Primary NPSCs were isolated and cultured in vitro, then stimulated with varying concentrations of recombinant CSF-1 protein to assess its effects on NPSC proliferation, differentiation, and apoptosis. Transcriptome sequencing identified miR-484 related to CSF-1 in H2O2-treated astrocytes, and a dual-luciferase assay verified the interaction between miR-484 and CSF-1. The impact of miR-484 overexpression on NPSC function and cognitive restoration was evaluated both in vitro and in vivo (in 20-month-old rats). RESULTS High concentration of CSF-1 inhibited the NPSC proliferation and differentiation into neurons while inducing apoptosis. Overexpression of miR-484 downregulated CSF-1 expression by binding to its 3' untranslated region, thereby promoting the NPSC proliferation and differentiation into neurons. In 20-month-old rats, miR-484 overexpression improved spatial learning and memory in the Morris water maze, increased NPSC proliferation, and reduced apoptosis. CONCLUSION Our findings reveal that miR-484 regulates CSF-1 to influence NPSC proliferation, differentiation into neurons, and apoptosis, consequently improving cognitive function in 20-month-old rats. This study provides a foundation for developing therapeutic strategies targeting age-related hippocampal cognitive impairments.
Collapse
Affiliation(s)
- Jiahua Qu
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Zhichao Lu
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Yongbo Cheng
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Song Deng
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Wei Shi
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Qianqian Liu
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Yuejuan Ling
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
- Institute of Pain Medicine and Special Environmental MedicineNantong UniversityNantongChina
| |
Collapse
|
3
|
Guan J, Wu P, Liu M, Jiang C, Meng X, Wu X, Lu M, Fan Y, Gan L. Egln3 expression in microglia enhances the neuroinflammatory responses in Alzheimer's disease. Brain Behav Immun 2025; 125:21-32. [PMID: 39701332 DOI: 10.1016/j.bbi.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive and behavioral abnormalities, is the most prevalent neurodegenerative disease worldwide. Neuroinflammation, which is induced by microglial activation, resulting in the expression of a multitude of inflammatory factors, is one of the principal characteristics of AD. Herein, we found that Egln3 is differentially expressed in microglia in the brains of AD mice. Egln3 is a member of the Egln family of proline hydroxylases, which regulates a variety of biological processes, including transcription, the cell cycle, and apoptosis, through hydroxylation, ubiquitylation, and participation in glycolysis. To further observe the effects of Egln3 on cognitive function, we utilized APP/PS1 mice as a pathological model of AD to conduct behavioral experiments and assess the expression levels of Aβ and inflammatory factors. The specific mechanisms by which Egln3 affects microglial activation were analyzed using in vitro experiments and transcriptome sequencing. The results of these analyses demonstrated that Egln3 is highly expressed in microglia in AD. Inhibition of Egln3 expression in the brains of APP/PS1 mice improves neuroinflammatory responses and cognitive function, indicating that a high expression of Egln3 promotes AD progression. Furthermore, our findings indicate that Egln3 could activate the MAPK pathway, which in turn contributes to the aggravation of neuroinflammation. Inhibition of the MAPK pathway results in attenuation of the pro-inflammatory state of microglia. Consequently, Egln3 may exacerbate neuroinflammation and promote AD progression via the MAPK pathway in microglia, making it a promising target for AD-related therapies.
Collapse
Affiliation(s)
- Jiaxin Guan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu 233030, China
| | - Meiling Liu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiaowei Wu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Meijiao Lu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Ying Fan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Lu Gan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
4
|
Bi Y, Qiao X, Cai Z, Zhao H, Ye R, Liu Q, Gao L, Liu Y, Liang B, Liu Y, Zhang Y, Yang Z, Wu Y, Wang H, Jia W, Zeng C, Jia C, Wu H, Xue Y, Ji G. Exosomal miR-302b rejuvenates aging mice by reversing the proliferative arrest of senescent cells. Cell Metab 2025; 37:527-541.e6. [PMID: 39818209 DOI: 10.1016/j.cmet.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Cellular senescence, a hallmark of aging, involves a stable exit from the cell cycle. Senescent cells (SnCs) are closely associated with aging and aging-related disorders, making them potential targets for anti-aging interventions. In this study, we demonstrated that human embryonic stem cell-derived exosomes (hESC-Exos) reversed senescence by restoring the proliferative capacity of SnCs in vitro. In aging mice, hESC-Exos treatment remodeled the proliferative landscape of SnCs, leading to rejuvenation, as evidenced by extended lifespan, improved physical performance, and reduced aging markers. Ago2 Clip-seq analysis identified miR-302b enriched in hESC-Exos that specifically targeted the cell cycle inhibitors Cdkn1a and Ccng2. Furthermore, miR-302b treatment reversed the proliferative arrest of SnCs in vivo, resulting in rejuvenation without safety concerns over a 24-month observation period. These findings demonstrate that exosomal miR-302b has the potential to reverse cellular senescence, offering a promising approach to mitigate senescence-related pathologies and aging.
Collapse
Affiliation(s)
- Youkun Bi
- Henan Academy of Sciences, Zhengzhou 450000, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinlong Qiao
- Yuan Sheng Biotechnology Ltd., Qingdao 266109, China
| | - Zhaokui Cai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Ye
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Gao
- Yuan Sheng Biotechnology Ltd., Qingdao 266109, China
| | - Yingqi Liu
- Yuan Sheng Biotechnology Ltd., Qingdao 266109, China
| | - Bo Liang
- Henan Academy of Sciences, Zhengzhou 450000, China
| | - Yixuan Liu
- Henan Academy of Sciences, Zhengzhou 450000, China
| | - Yaning Zhang
- Henan Academy of Sciences, Zhengzhou 450000, China
| | - Zhiguang Yang
- Yuan Sheng Biotechnology Ltd., Qingdao 266109, China
| | - Yanyun Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiwen Wang
- Henan Academy of Sciences, Zhengzhou 450000, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Jia
- Biomedical Institute of TaishengKangyuan Ltd., Beijing 100103, China
| | | | - Ce Jia
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongjin Wu
- Boao International Hospital, Shanghai University of Traditional Chinese Medicine, Hainan 571434, China.
| | - Yuanchao Xue
- Henan Academy of Sciences, Zhengzhou 450000, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guangju Ji
- Henan Academy of Sciences, Zhengzhou 450000, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Sun H, Xia T, Ma S, Lv T, Li Y. Intercellular communication is crucial in the regulation of healthy aging via exosomes. Pharmacol Res 2025; 212:107591. [PMID: 39800177 DOI: 10.1016/j.phrs.2025.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The hallmarks of aging encompass a variety of molecular categories (genomic, telomeric, and epigenetic), organelles (proteostasis, autophagy, and mitochondria), cellular components (including stem cells), systems (such as intercellular communication and chronic inflammation), and environmental factors (dysbiosis and nutrient sensing). These hallmarks play a crucial role in the aging process. Despite their intricate interconnections, the relationships among the hallmarks of aging remain unclear. Although the boundaries between these hallmarks may be indistinct, they exhibit interdependence, with the influence of one hallmark extending to others. Building on this foundation, we investigated the interrelations among the various hallmarks of aging and provided a systematic overview of their logical relationships, proposing that cellular communication plays a crucial role in the aging process. Exosomes function as a primary mode of cellular communication and significantly impact the aging process. Therefore, we propose utilizing exosomes as valuable tools for understanding the mechanisms of aging and addressing age-related concerns. Exosomes may represent a novel approach for the treatment and diagnosis of aging-related conditions in animals. Furthermore, our research reveals that exocytosis in young nematodes slows the aging process, while exocytosis in aged nematodes has the opposite effect, accelerating aging. In conclusion, exosomes act as intercellular messengers that influence the maintenance of a healthy aging process and link the hallmarks of aging with indicators of well-being.
Collapse
Affiliation(s)
- Huifang Sun
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Tengyuan Xia
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Shuting Ma
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Tao Lv
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China.
| | - Yuhong Li
- College of Biological and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China.
| |
Collapse
|
6
|
Feng K, Ye T, Xie X, Liu J, Gong L, Chen Z, Zhang J, Li H, Li Q, Wang Y. ESC-sEVs alleviate non-early-stage osteoarthritis progression by rejuvenating senescent chondrocytes via FOXO1A-autophagy axis but not inducing apoptosis. Pharmacol Res 2024; 209:107474. [PMID: 39433168 DOI: 10.1016/j.phrs.2024.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Osteoarthritis (OA) is a common joint degenerative disease which currently lacks satisfactory disease-modifying treatments. Oxidative stress-mediated senescent chondrocytes accumulation is closely associated with OA progression, which abrogates cartilage metabolism homeostasis by secreting senescence-associated secretory phenotype (SASP) factors. Numerous studies suggested mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have been regarded as promising candidates for OA therapy. However, MSC-sEVs were applied before the occurrence of cartilage degeneration or at early-stage OA, while in clinical practice, most OA patients who present with pain are already in non-early-stage. Recently, embryonic stem cells-derived sEVs (ESC-sEVs) have been reported to possess powerful anti-aging effects. However, whether ESC-sEVs could attenuate non-early-stage OA progression remains unknown. In this study, we demonstrated ESC-sEVs ameliorated senescent phenotype and cartilage destruction in both mechanical stress-induced non-early-stage posttraumatic OA and naturally aged mice. More importantly, we found ESC-sEVs alleviated senescent phenotype by rejuvenating aged chondrocytes but not inducing apoptosis. We also provided evidence that the FOXO1A-autophagy axis played an important role in the anti-aging effects of ESC-sEVs. To promote clinical translation, we confirmed ESC-sEVs reversed senescent phenotype in ex-vivo cultured human end-stage OA cartilage explants. Collectively, our findings reveal that ESC-sEVs-based therapy is of high translational value in non-early-stage OA treatment.
Collapse
Affiliation(s)
- Kai Feng
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Teng Ye
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xuetao Xie
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jiashuo Liu
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Liangzhi Gong
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhengsheng Chen
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Haiyan Li
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, 124 La Trobe St, Melbourne, VIC 3000, Australia
| | - Qing Li
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yang Wang
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
7
|
Peng Y, Zhao T, Rong S, Yang S, Teng W, Xie Y, Wang Y. Young small extracellular vesicles rejuvenate replicative senescence by remodeling Drp1 translocation-mediated mitochondrial dynamics. J Nanobiotechnology 2024; 22:543. [PMID: 39238005 PMCID: PMC11378612 DOI: 10.1186/s12951-024-02818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Human mesenchymal stem cells have attracted interest in regenerative medicine and are being tested in many clinical trials. In vitro expansion is necessary to provide clinical-grade quantities of mesenchymal stem cells; however, it has been reported to cause replicative senescence and undefined dysfunction in mesenchymal stem cells. Quality control assessments of in vitro expansion have rarely been addressed in ongoing trials. Young small extracellular vesicles from the remnant pulp of human exfoliated deciduous teeth stem cells have demonstrated therapeutic potential for diverse diseases. However, it is still unclear whether young small extracellular vesicles can reverse senescence-related declines. RESULTS We demonstrated that mitochondrial structural disruption precedes cellular dysfunction during bone marrow-derived mesenchymal stem cell replication, indicating mitochondrial parameters as quality assessment indicators of mesenchymal stem cells. Dynamin-related protein 1-mediated mitochondrial dynamism is an upstream regulator of replicative senescence-induced dysfunction in bone marrow-derived mesenchymal stem cells. We observed that the application of young small extracellular vesicles could rescue the pluripotency dissolution, immunoregulatory capacities, and therapeutic effects of replicative senescent bone marrow-derived mesenchymal stem cells. Mechanistically, young small extracellular vesicles could promote Dynamin-related protein 1 translocation from the cytoplasm to the mitochondria and remodel mitochondrial disruption during replication history. CONCLUSIONS Our findings show that Dynamin-related protein 1-mediated mitochondrial disruption is associated with the replication history of bone marrow-derived mesenchymal stem cells. Young small extracellular vesicles from human exfoliated deciduous teeth stem cells alleviate replicative senescence by promoting Dynamin-related protein 1 translocation onto the mitochondria, providing evidence for a potential rejuvenation strategy.
Collapse
Affiliation(s)
- Yingying Peng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Tingting Zhao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Shuxuan Rong
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Shuqing Yang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Wei Teng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| | - Yunyi Xie
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| | - Yan Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
8
|
Rudnitsky E, Braiman A, Wolfson M, Muradian KK, Gorbunova V, Turgeman G, Fraifeld VE. Stem cell-derived extracellular vesicles as senotherapeutics. Ageing Res Rev 2024; 99:102391. [PMID: 38914266 DOI: 10.1016/j.arr.2024.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Cellular senescence (CS) is recognized as one of the hallmarks of aging, and an important player in a variety of age-related pathologies. Accumulation of senescent cells can promote a pro-inflammatory and pro-cancerogenic microenvironment. Among potential senotherapeutics are extracellular vesicles (EVs) (40-1000 nm), including exosomes (40-150 nm), that play an important role in cell-cell communications. Here, we review the most recent studies on the impact of EVs derived from stem cells (MSCs, ESCs, iPSCs) as well as non-stem cells of various types on CS and discuss potential mechanisms responsible for the senotherapeutic effects of EVs. The analysis revealed that (i) EVs derived from stem cells, pluripotent (ESCs, iPSCs) or multipotent (MSCs of various origin), can mitigate the cellular senescence phenotype both in vitro and in vivo; (ii) this effect is presumably senomorphic; (iii) EVs display cross-species activity, without apparent immunogenic responses. In summary, stem cell-derived EVs appear to be promising senotherapeutics, with a feasible application in humans.
Collapse
Affiliation(s)
- Ekaterina Rudnitsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Khachik K Muradian
- Department of Biology of Aging and Experimental Life Span Extension, State Institute of Gerontology of National Academy of Medical Sciences of Ukraine, Kiev 4114, Ukraine
| | - Vera Gorbunova
- Department of Biology, Rochester Aging Research Center, University of Rochester, Rochester, NY 14627, USA
| | - Gadi Turgeman
- Department of Molecular Biology, Faculty of Natural Sciences and Medical School, Ariel University, Ariel 40700, Israel.
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
9
|
Rao S, He Z, Wang Z, Yin H, Hu X, Tan Y, Wan T, Zhu H, Luo Y, Wang X, Li H, Wang Z, Hu X, Hong C, Wang Y, Luo M, Du W, Qian Y, Tang S, Xie H, Chen C. Extracellular vesicles from human urine-derived stem cells delay aging through the transfer of PLAU and TIMP1. Acta Pharm Sin B 2024; 14:1166-1186. [PMID: 38487008 PMCID: PMC10935484 DOI: 10.1016/j.apsb.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 03/17/2024] Open
Abstract
Aging increases the risks of various diseases and the vulnerability to death. Cellular senescence is a hallmark of aging that contributes greatly to aging and aging-related diseases. This study demonstrates that extracellular vesicles from human urine-derived stem cells (USC-EVs) efficiently inhibit cellular senescence in vitro and in vivo. The intravenous injection of USC-EVs improves cognitive function, increases physical fitness and bone quality, and alleviates aging-related structural changes in different organs of senescence-accelerated mice and natural aging mice. The anti-aging effects of USC-EVs are not obviously affected by the USC donors' ages, genders, or health status. Proteomic analysis reveals that USC-EVs are enriched with plasminogen activator urokinase (PLAU) and tissue inhibitor of metalloproteinases 1 (TIMP1). These two proteins contribute importantly to the anti-senescent effects of USC-EVs associated with the inhibition of matrix metalloproteinases, cyclin-dependent kinase inhibitor 2A (P16INK4a), and cyclin-dependent kinase inhibitor 1A (P21cip1). These findings suggest a great potential of autologous USC-EVs as a promising anti-aging agent by transferring PLAU and TIMP1 proteins.
Collapse
Affiliation(s)
- Shanshan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zehui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xiongke Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- Department of Pediatric Orthopedics, Hunan Children's Hospital, University of South China, Changsha 410007, China
| | - Yijuan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Tengfei Wan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Hao Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Yi Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xin Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Hongming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chungu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Yiyi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Mingjie Luo
- Xiangya School of Nursing, Central South University, Changsha 410013, China
- School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuxuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Siyuan Tang
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| |
Collapse
|
10
|
Guan T, Guo Y, Zhou T, Yu Q, Sun J, Sun B, Zhang G, Kong J. Oxidized SOD1 accelerates cellular senescence in neural stem cells. Stem Cell Res Ther 2024; 15:55. [PMID: 38414053 PMCID: PMC10900543 DOI: 10.1186/s13287-024-03669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Neural stem cells (NSCs), especially human NSCs, undergo cellular senescence characterized by an irreversible proliferation arrest and loss of stemness after prolonged culture. While compelling correlative data have been generated to support the oxidative stress theory as one of the primary determinants of cellular senescence of NSCs, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and cellular senescence of NSCs has yet to be firmly established. Human SOD1 (hSOD1) is susceptible to oxidation. Once oxidized, it undergoes aberrant misfolding and gains toxic properties associated with age-related neurodegenerative disorders. The present study aims to examine the role of oxidized hSOD1 in the senescence of NSCs. METHODS NSCs prepared from transgenic mice expressing the wild-type hSOD1 gene were maintained in culture through repeated passages. Extracellular vesicles (EVs) were isolated from culture media at each passage. To selectively knock down oxidized SOD1 in NSCs and EVs, we used a peptide-directed chaperone-mediated protein degradation system named CT4 that we developed recently. RESULTS In NSCs expressing the hSOD1 from passage 5, we detected a significant increase of oxidized hSOD1 and an increased expression of biomarkers of cellular senescence, including upregulation of P53 and SA-β-Gal and cytoplasmic translocation of HMGB1. The removal of oxidized SOD1 remarkably increased the proliferation and stemness of the NSCs. Meanwhile, EVs derived from senescent NSCs carrying the wild-type hSOD1 contained high levels of oxidized hSOD1, which could accelerate the senescence of young NSCs and induce the death of cultured neurons. The removal of oxidized hSOD1 from the EVs abolished their senescence-inducing activity. Blocking oxidized SOD1 on EVs with the SOD1 binding domain of the CT4 peptide mitigated its toxicity to neurons. CONCLUSION Oxidized hSOD1 is a causal factor in the cellular senescence of NSCs. The removal of oxidized hSOD1 is a strategy to rejuvenate NSCs and to improve the quality of EVs derived from senescent cells.
Collapse
Affiliation(s)
- Teng Guan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Ting Zhou
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Yu
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jingyi Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Baoliang Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
11
|
Chen Z, Luo L, Ye T, Zhou J, Niu X, Yuan J, Yuan T, Fu D, Li H, Li Q, Wang Y. Identification of specific markers for human pluripotent stem cell-derived small extracellular vesicles. J Extracell Vesicles 2024; 13:e12409. [PMID: 38321535 PMCID: PMC10847391 DOI: 10.1002/jev2.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/17/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Pluripotent stem cell-derived small extracellular vesicles (PSC-sEVs) have demonstrated great clinical translational potential in multiple aging-related degenerative diseases. Characterizing the PSC-sEVs is crucial for their clinical applications. However, the specific marker pattern of PSC-sEVs remains unknown. Here, the sEVs derived from two typical types of PSCs including induced pluripotent stem cells (iPSC-sEVs) and embryonic stem cells (ESC-sEVs) were analysed using proteomic analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and surface marker phenotyping analysis by nanoparticle flow cytometry (NanoFCM). A group of pluripotency-related proteins were found to be enriched in PSC-sEVs by LC-MS/MS and then validated by Western Blot analysis. To investigate whether these proteins were specifically expressed in PSC-sEVs, sEVs derived from seven types of non-PSCs (non-PSC-sEVs) were adopted for analysis. The results showed that PODXL, OCT4, Dnmt3a, and LIN28A were specifically enriched in PSC-sEVs but not in non-PSC-sEVs. Then, commonly used surface antigens for PSC identification (SSEA4, Tra-1-60 and Tra-1-81) and PODXL were gauged at single-particle resolution by NanoFCM for surface marker identification. The results showed that the positive rates of PODXL (>50%) and SSEA4 (>70%) in PSC-sEVs were much higher than those in non-PSC-sEVs (<10%). These results were further verified with samples purified by density gradient ultracentrifugation. Taken together, this study for the first time identified a cohort of specific markers for PSC-sEVs, among which PODXL, OCT4, Dnmt3a and LIN28A can be detected with Western Blot analysis, and PODXL and SSEA4 can be detected with NanoFCM analysis. The application of these specific markers for PSC-sEVs identification may advance the clinical translation of PSCs-sEVs.
Collapse
Affiliation(s)
- Zhengsheng Chen
- Institute of Microsurgery on Extremities, Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei Luo
- Institute of Microsurgery on Extremities, Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Teng Ye
- Institute of Microsurgery on Extremities, Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiacheng Zhou
- Institute of Microsurgery on Extremities, Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Niu
- Institute of Microsurgery on Extremities, Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ji Yuan
- Institute of Microsurgery on Extremities, Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ting Yuan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dehao Fu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Li
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- Chemical and Environmental Engineering Department, School of EngineeringRMIT UniversityMelbourneVictoriaAustralia
| | - Qing Li
- Institute of Microsurgery on Extremities, Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yang Wang
- Institute of Microsurgery on Extremities, Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Muok L, Sun L, Esmonde C, Worden H, Vied C, Duke L, Ma S, Zeng O, Driscoll T, Jung S, Li Y. Extracellular vesicle biogenesis of three-dimensional human pluripotent stem cells in a novel Vertical-Wheel bioreactor. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e133. [PMID: 38938678 PMCID: PMC11080838 DOI: 10.1002/jex2.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) secreted by human-induced pluripotent stem cells (hiPSCs) have great potential as cell-free therapies in various diseases, including prevention of blood-brain barrier senescence and stroke. However, there are still challenges in pre-clinical and clinical use of hiPSC-EVs due to the need for large-scale production of a large quantity. Vertical-Wheel bioreactors (VWBRs) have design features that allow the biomanufacturing of hiPSC-EVs using a scalable aggregate or microcarrier-based culture system under low shear stress. EV secretion by undifferentiated hiPSCs expanded as 3-D aggregates and on Synthemax II microcarriers in VWBRs were investigated. Additionally, two types of EV collection media, mTeSR and HBM, were compared. The hiPSCs were characterized by metabolite and transcriptome analysis as well as EV biogenesis markers. Protein and microRNA cargo were analysed by proteomics and microRNA-seq, respectively. The in vitro functional assays of microglia stimulation and proliferation were conducted. HiPSCs expanded as 3-D aggregates and on microcarriers had comparable cell number, while microcarrier culture had higher glucose consumption, higher glycolysis and lower autophagy gene expression based on mRNA-seq. The microcarrier cultures had at least 17-23 fold higher EV secretion, and EV collection in mTeSR had 2.7-3.7 fold higher yield than HBM medium. Microcarrier culture with mTeSR EV collection had a smaller EV size than other groups, and the cargo was enriched with proteins (proteomics) and miRNAs (microRNA-seq) reducing apoptosis and promoting cell proliferation (e.g. Wnt-related pathways). hiPSC-EVs demonstrated the ability of stimulating proliferation and M2 polarization of microglia in vitro. HiPSC expansion on microcarriers produces much higher yields of EVs than hiPSC aggregates in VWBRs. EV collection in mTeSR increases yield compared to HBM. The biomanufactured EVs from microcarrier culture in mTeSR have exosomal characteristics and are functional in microglia stimulation, which paves the ways for future in vivo anti-aging study.
Collapse
Affiliation(s)
- Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | | | - Cynthia Vied
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Leanne Duke
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Shaoyang Ma
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Olivia Zeng
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | | | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
13
|
Rather HA, Almousa S, Craft S, Deep G. Therapeutic efficacy and promise of stem cell-derived extracellular vesicles in Alzheimer's disease and other aging-related disorders. Ageing Res Rev 2023; 92:102088. [PMID: 37827304 PMCID: PMC10842260 DOI: 10.1016/j.arr.2023.102088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The term extracellular vesicles (EVs) refers to a variety of heterogeneous nanovesicles secreted by almost all cell types, primarily for intercellular communication and maintaining cellular homeostasis. The role of EVs has been widely reported in the genesis and progression of multiple pathological conditions, and these vesicles are suggested to serve as 'liquid biopsies'. In addition to their use as biomarkers, EVs secreted by specific cell types, especially with stem cell properties, have shown promise as cell-free nanotherapeutics. Stem cell-derived EVs (SC-EVs) have been increasingly used as an attractive alternative to stem cell therapies and have been reported to promote regeneration of aging-associated tissue loss and function. SC-EVs treatment ameliorates brain and peripheral aging, reproductive dysfunctions and inhibits cellular senescence, thereby reversing several aging-related disorders and dysfunctions. The anti-aging therapeutic potential of SC-EVs depends on multiple factors, including the type of stem cells, the age of the source stem cells, and their physiological state. In this review, we briefly describe studies related to the promising effects of SC-EVs against various aging-related pathologies, and then we focus in-depth on the therapeutic benefits of SC-EVs against Alzheimer's disease, one of the most devastating neurodegenerative diseases in elderly individuals. Numerous studies in transgenic mouse models have reported the usefulness of SC-EVs in targeting the pathological hallmarks of Alzheimer's disease, including amyloid plaques, neurofibrillary tangles, and neuroinflammation, leading to improved neuronal protection, synaptic plasticity, and cognitive measures. Cell culture studies have further identified the underlying molecular mechanisms through which SC-EVs reduce amyloid beta (Aβ) levels or shift microglia phenotype from pro-inflammatory to anti-inflammatory state. Interestingly, multiple routes of administration, including nasal delivery, have confirmed that SC-EVs could cross the blood-brain barrier. Due to this, SC-EVs have also been tested to deliver specific therapeutic cargo molecule/s (e.g., neprilysin) to the brain. Despite these promises, several challenges related to quality control, scalability, and biodistribution remain, hindering the realization of the vast clinical promise of SC-EVs.
Collapse
Affiliation(s)
- Hilal Ahmad Rather
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Sameh Almousa
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Atirum Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
14
|
Yu L, Wen H, Liu C, Wang C, Yu H, Zhang K, Han Q, Liu Y, Han Z, Li Z, Liu N. Embryonic stem cell-derived extracellular vesicles rejuvenate senescent cells and antagonize aging in mice. Bioact Mater 2023; 29:85-97. [PMID: 37449253 PMCID: PMC10336196 DOI: 10.1016/j.bioactmat.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/11/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Aging is a degenerative process that leads to tissue dysfunction and death. Embryonic stem cells (ESCs) have great therapeutic potential for age-related diseases due to their capacity for self-renewal and plasticity. However, the use of ESCs in clinical treatment is limited by immune rejection, tumourigenicity and ethical issues. ESC-derived extracellular vesicles (EVs) may provide therapeutic effects that are comparable to those of ESCs while avoiding unwanted effects. Here, we fully evaluate the role of ESC-EVs in rejuvenation in vitro and in vivo. Using RNA sequencing (RNA-Seq) and microRNA sequencing (miRNA-Seq) screening, we found that miR-15b-5p and miR-290a-5p were highly enriched in ESC-EVs, and induced rejuvenation by silencing the Ccn2-mediated AKT/mTOR pathway. These results demonstrate that miR-15b-5p and miR-290a-5p function as potent activators of rejuvenation mediated by ESC-EVs. The rejuvenating effect of ESC-EVs was further investigated in vivo by injection into aged mice. The results showed that ESC-EVs successfully ameliorated the pathological age-related phenotypes and rescued the transcriptome profile of aged mice. Our findings demonstrate that ESC-EVs treatment can rejuvenate senescence both in vitro and in vivo and suggest the therapeutic potential of ESC-EVs as a novel cell-free alternative to ESCs for age-related diseases.
Collapse
Affiliation(s)
- Lu Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Hang Wen
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chen Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Kaiyue Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qingsheng Han
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yue Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Matos BMD, Stimamiglio MA, Correa A, Robert AW. Human pluripotent stem cell-derived extracellular vesicles: From now to the future. World J Stem Cells 2023; 15:453-465. [PMID: 37342215 PMCID: PMC10277970 DOI: 10.4252/wjsc.v15.i5.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Extracellular vesicles (EVs) are nanometric particles that enclose cell-derived bioactive molecules in a lipid bilayer and serve as intercellular communication tools. Accordingly, in various biological contexts, EVs are reported to engage in immune modulation, senescence, and cell proliferation and differentiation. Therefore, EVs could be key elements for potential off-the-shelf cell-free therapy. Little has been studied regarding EVs derived from human pluripotent stem cells (hPSC-EVs), even though hPSCs offer good opportunities for induction of tissue regeneration and unlimited proliferative ability. In this review article, we provide an overview of studies using hPSC-EVs, focusing on identifying the conditions in which the cells are cultivated for the isolation of EVs, how they are characterized, and applications already demonstrated. The topics reported in this article highlight the incipient status of the studies in the field and the significance of hPSC-EVs’ prospective applications as PSC-derived cell-free therapy products.
Collapse
Affiliation(s)
- Bruno Moises de Matos
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | | | - Alejandro Correa
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | - Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| |
Collapse
|
16
|
Niu X, Xia Y, Luo L, Chen Y, Yuan J, Zhang J, Zheng X, Li Q, Deng Z, Wang Y. iPSC-sEVs alleviate microglia senescence to protect against ischemic stroke in aged mice. Mater Today Bio 2023; 19:100600. [PMID: 36936398 PMCID: PMC10020681 DOI: 10.1016/j.mtbio.2023.100600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
The polarization of microglia plays an important role in the outcome of ischemic stroke (IS). In the aged population, senescent microglia show a predominant pro-inflammatory phenotype, which leads to worse outcomes in aged ischemic stroke compared to young ischemic stroke. Recent research demonstrated that inducible pluripotent stem cell-derived small extracellular vesicles (iPSC-sEVs) possess the significant anti-ageing ability. We hypothesized that iPSC-sEVs could alleviate microglia senescence to regulate microglia polarization in aged ischemic stroke. In this study, we showed that treatment with iPSC-sEVs significantly alleviated microglia senescence as indicated by the decreased senescence-associated proteins including P16, P21, P53, and γ-H2AX as well as the activity of SA-β-gal, and inhibited pro-inflammatory activation of microglia both in vivo and in vitro. Furthermore, iPSC-sEVs shifted microglia from pro-inflammatory phenotype to anti-inflammatory phenotype, which reduced the apoptosis of neurons, and improved the outcome of aged stroke mice. Mechanism studies showed that iPSC-sEVs reversed the loss of Rictor and downstream p-AKT (s473) in senescent microglia, which was involved in the senescence and pro-inflammatory phenotype regulation of microglia. Inhibition of Rictor abolished the iPSC-sEVs-afforded phosphorylation of AKT and alleviation of inflammation of senescent microglia. Proteomics results indicated that iPSC-sEVs carried transforming growth factor-β1 (TGF-β1) to upregulate Rictor and p-AKT in senescent microglia, which could be hindered by blocking TGF-β1. Taken together, our work demonstrates iPSC-sEVs reverse the senescent characteristic of microglia in aged brains and therefore improve the outcome after stroke, at least, via delivering TGF-β1 to upregulate Rictor and p-AKT. Our data suggest that iPSC-sEVs might be a novelty therapeutic method for aged ischemic stroke and other diseases involving senescent microglia.
Collapse
Affiliation(s)
- Xinyu Niu
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuguo Xia
- Department of Neurosurgery; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954, Huashan Road, Shanghai 200030, China
| | - Yu Chen
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ji Yuan
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Juntao Zhang
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xianyou Zheng
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Institute of Microsurgery on Extremities, Department of Orthopedic Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Qing Li
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Institute of Microsurgery on Extremities, Department of Orthopedic Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Zhifeng Deng
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Department of Neurosurgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Yang Wang
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
17
|
Liu G, Li X, Yang F, Qi J, Shang L, Zhang H, Li S, Xu F, Li L, Yu H, Li Y, Dong X, Song Q, Zhu F, Chen G, Cao C, Jiang L, Su J, Yang L, Xu X, Zhang Z, Zhao RC, Li B. C-Phycocyanin Ameliorates the Senescence of Mesenchymal Stem Cells through ZDHHC5-Mediated Autophagy via PI3K/AKT/mTOR Pathway. Aging Dis 2023:AD.2023.0121. [PMID: 37163424 PMCID: PMC10389819 DOI: 10.14336/ad.2023.0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/15/2023] [Indexed: 05/12/2023] Open
Abstract
The senescence of mesenchymal stem cells (MSCs) impairs their regenerative capacity to maintain tissue homeostasis. Numerous studies are focusing on the interventions and mechanisms to attenuate the senescence of MSCs. C-phycocyanin (C-PC) is reported to have multiple functions such as antitumor, antioxidation, anti-inflammation and anti-aging roles, but there is little research about the effects of C-PC on the senescence of MSCs. Here we investigated the roles and mechanism of C-PC on MSCs senescence. In vitro results showed that C-PC could reduce senescence, enhance proliferation, promote the adipogenic and osteogenic differentiation in senescent MSCs induced by oxidative stress. In vivo D-Galactose (D-Gal) induced rats aging models showed C-PC also increased the viability and differentiation of intrinsic senescent bone marrow derived MSCs (BMSCs). Furthermore, C-PC also decreased the levels of oxidative stress markers ROS or MDA, elevated the SOD activity, and increased the anti-inflammatory factors. Proteomic chip analysis showed that C-PC interacted with ZDHHC5, and their interaction was verified by pull down assay. Overexpression of ZDHHC5 aggravated the senescence of MSCs and greatly lessened the beneficial effects of C-PC on senescence. In addition, we found ZDHHC5 regulated autophagy by altering LC3, Beclin1 and PI3K/AKT/mTOR pathway. In summary, our data indicated that C-PC ameliorates the senescence of MSCs through zinc finger Asp-His-His-Cys (DHHC) domain-containing protein 5 (ZDHHC5) mediated autophagy via PI3K/AKT/mTOR pathway. The present study uncovered the key role of autophagy in MSCs senescence and PI3K/AKT/mTOR pathway may be a potential target for anti-senescence studies of MSCs.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingyu Qi
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lipeng Shang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lingne Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huaxin Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Yang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Liangqian Jiang
- Department of Medical Genetics, Linyi People's Hospital, Linyi, China
| | - Junzhe Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Robert Chunhua Zhao
- College of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Extracellular vesicles throughout development: A potential roadmap for emerging glioblastoma therapies. Semin Cell Dev Biol 2023; 133:32-41. [PMID: 35697594 DOI: 10.1016/j.semcdb.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are membrane-delimited vesicular bodies carrying different molecules, classified according to their size, density, cargo, and origin. Research on this topic has been actively growing through the years, as EVs are associated with critical pathological processes such as neurodegenerative diseases and cancer. Despite that, studies exploring the physiological functions of EVs are sparse, with particular emphasis on their role in organismal development, initial cell differentiation, and morphogenesis. In this review, we explore the topic of EVs from a developmental perspective, discussing their role in the earliest cell-fate decisions and neural tissue morphogenesis. We focus on the function of EVs through development to highlight possible conserved or novel processes that can impact disease progression. Specifically, we take advantage of what was learned about their role in development so far to discuss EVs impact on glioblastoma, a particular brain tumor of stem-cell origin and poor prognosis, and how their function can be hijacked to improve current therapies.
Collapse
|
19
|
Romero-García N, Huete-Acevedo J, Mas-Bargues C, Sanz-Ros J, Dromant M, Borrás C. The Double-Edged Role of Extracellular Vesicles in the Hallmarks of Aging. Biomolecules 2023; 13:165. [PMID: 36671550 PMCID: PMC9855573 DOI: 10.3390/biom13010165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The exponential growth in the elderly population and their associated socioeconomic burden have recently brought aging research into the spotlight. To integrate current knowledge and guide potential interventions, nine biochemical pathways are summarized under the term hallmarks of aging. These hallmarks are deeply inter-related and act together to drive the aging process. Altered intercellular communication is particularly relevant since it explains how damage at the cellular level translates into age-related loss of function at the organismal level. As the main effectors of intercellular communication, extracellular vesicles (EVs) might play a key role in the aggravation or mitigation of the hallmarks of aging. This review aims to summarize this role and to provide context for the multiple emerging EV-based gerotherapeutic strategies that are currently under study.
Collapse
Affiliation(s)
- Nekane Romero-García
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari Valencia, University of Valencia, 46010 Valencia, Spain
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
20
|
Li Q, Niu X, Yi Y, Chen Y, Yuan J, Zhang J, Li H, Xia Y, Wang Y, Deng Z. Inducible Pluripotent Stem Cell-Derived Small Extracellular Vesicles Rejuvenate Senescent Blood-Brain Barrier to Protect against Ischemic Stroke in Aged Mice. ACS NANO 2023; 17:775-789. [PMID: 36562422 DOI: 10.1021/acsnano.2c10824] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood-brain barrier (BBB) breakdown after ischemic stroke exacerbates brain injury and BBB senescence can cause severe neurological deficits in aged ischemic stroke population. Recent evidence reveals that inducible pluripotent stem cell-derived small extracellular vesicles (iPSC-sEVs) possess phenomenal antisenescence capability. However, whether iPSC-sEVs can rejuvenate BBB senescence to improve stroke outcomes in aged mice remains unknown. Here, we showed that long-term treatment with iPSC-sEVs alleviated aging-induced BBB senescence in aged mice. In aged stroke mice, iPSC-sEVs significantly mitigated BBB integrity damage, reduced the following infiltration of peripheral leukocytes, and decreased the release of pro-inflammatory factors from the leukocytes, which ultimately inhibited neuronal death and improved neurofunctional recovery. Mechanism studies showed that iPSC-sEVs could activate the endothelial nitric oxide synthase (eNOS) and up-regulate sirtuin 1 (Sirt1) in senescent endothelial cells. Blocking the activation of eNOS abolished iPSC-sEV-mediated rejuvenation of BBB senescence and the protection of BBB integrity. Proteomics results demonstrated that iPSC-sEVs were enriched with bioactive factors including AKT serine/threonine kinase 1 (AKT1) and calmodulin (CALM) to activate the eNOS-Sirt1 axis. Further investigation showed that AKT1 and CALM inhibitors blocked iPSC-sEV-afforded activation of the eNOS-Sirt1 axis in senescent endothelial cells. Taken together, iPSC-sEVs can protect against ischemic stroke in aged mice by rejuvenating BBB senescence, partially, through delivering AKT1 and CALM to activate eNOS-Sirt1 axis, which indicates that iPSC-sEVs treatment is an effective alternative to treat ischemic stroke in the aged population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | | | | | | |
Collapse
|
21
|
Hu GW, Xu GH, Lang HL, Zhao YZ, Xiao RJ, Sun J, Chen Y. Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes. Neural Regen Res 2023; 18:609-617. [DOI: 10.4103/1673-5374.350205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Yuan Y, Sun J, You T, Shen W, Xu W, Dong Q, Cui M. Extracellular Vesicle-Based Therapeutics in Neurological Disorders. Pharmaceutics 2022; 14:pharmaceutics14122652. [PMID: 36559145 PMCID: PMC9783774 DOI: 10.3390/pharmaceutics14122652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological diseases remain some of the major causes of death and disability in the world. Few types of drugs and insufficient delivery across the blood-brain barrier limit the treatment of neurological disorders. The past two decades have seen the rapid development of extracellular vesicle-based therapeutics in many fields. As the physiological and pathophysiological roles of extracellular vesicles are recognized in neurological diseases, they have become promising therapeutics and targets for therapeutic interventions. Moreover, advanced nanomedicine technologies have explored the potential of extracellular vesicles as drug delivery systems in neurological diseases. In this review, we discussed the preclinical strategies for extracellular vesicle-based therapeutics in neurological disorders and the struggles involved in their clinical application.
Collapse
Affiliation(s)
- Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Tongyao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Weiwei Shen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Wenqing Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- Correspondence: (Q.D.); (M.C.)
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200031, China
- Correspondence: (Q.D.); (M.C.)
| |
Collapse
|
23
|
Jin S, Lv Z, Kang L, Wang J, Tan C, Shen L, Wang L, Liu J. Next generation of neurological therapeutics: Native and bioengineered extracellular vesicles derived from stem cells. Asian J Pharm Sci 2022; 17:779-797. [PMID: 36600903 PMCID: PMC9800941 DOI: 10.1016/j.ajps.2022.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
Extracellular vesicles (EVs)-based cell-free therapy, particularly stem cell-derived extracellular vesicles (SC-EVs), offers new insights into treating a series of neurological disorders and becomes a promising candidate for alternative stem cell regenerative therapy. Currently, SC-EVs are considered direct therapeutic agents by themselves and/or dynamic delivery systems as they have a similar regenerative capacity of stem cells to promote neurogenesis and can easily load many functional small molecules to recipient cells in the central nervous system. Meanwhile, as non-living entities, SC-EVs avoid the uncontrollability and manufacturability limitations of live stem cell products in vivo (e.g., low survival rate, immune response, and tumorigenicity) and in vitro (e.g., restricted sources, complex preparation processes, poor quality control, low storage, shipping instability, and ethical controversy) by strict quality control system. Moreover, SC-EVs can be engineered or designed to enhance further overall yield, increase bioactivity, improve targeting, and extend their half-life. Here, this review provides an overview on the biological properties of SC-EVs, and the current progress in the strategies of native or bioengineered SC-EVs for nerve injury repairing is presented. Then we further summarize the challenges of recent research and perspectives for successful clinical application to advance SC-EVs from bench to bedside in neurological diseases.
Collapse
Affiliation(s)
- Shilin Jin
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Zhongyue Lv
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Lin Kang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Chengcheng Tan
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Liming Shen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116085, China
| |
Collapse
|
24
|
Bi Y, Qiao X, Liu Q, Song S, Zhu K, Qiu X, Zhang X, Jia C, Wang H, Yang Z, Zhang Y, Ji G. Systemic proteomics and miRNA profile analysis of exosomes derived from human pluripotent stem cells. Stem Cell Res Ther 2022; 13:449. [PMID: 36064647 PMCID: PMC9444124 DOI: 10.1186/s13287-022-03142-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing studies have reported the therapeutic effect of mesenchymal stem cell (MSC)-derived exosomes by which protein and miRNA are clearly characterized. However, the proteomics and miRNA profiles of exosomes derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) remain unclear. METHODS In this study, we isolated exosomes from hESCs, hiPSCs, and human umbilical cord mesenchymal stem cells (hUC-MSCs) via classic ultracentrifugation and a 0.22-μm filter, followed by the conservative identification. Tandem mass tag labeling and label-free relative peptide quantification together defined their proteomics. High-throughput sequencing was performed to determine miRNA profiles. Then, we conducted a bioinformatics analysis to identify the dominant biological processes and pathways modulated by exosome cargos. Finally, the western blot and RT-qPCR were performed to detect the actual loads of proteins and miRNAs in three types of exosomes. RESULTS Based on our study, the cargos from three types of exosomes contribute to sophisticated biological processes. In comparison, hESC exosomes (hESC-Exos) were superior in regulating development, metabolism, and anti-aging, and hiPSC exosomes (hiPSC-Exos) had similar biological functions as hESC-Exos, whereas hUC-MSCs exosomes (hUC-MSC-Exos) contributed more to immune regulation. CONCLUSIONS The data presented in our study help define the protein and miRNA landscapes of three exosomes, predict their biological functions via systematic and comprehensive network analysis at the system level, and reveal their respective potential applications in different fields so as to optimize exosome selection in preclinical and clinical trials.
Collapse
Affiliation(s)
- Youkun Bi
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlong Qiao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Liu
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaole Song
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqi Zhu
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Qiu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiang Zhang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ce Jia
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huiwen Wang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiguang Yang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Zhang
- Sixth Department of Liver Disease, Dalian Public Health Clinical Center, Dalian Medical University, Dalian, 116023, China.
| | - Guangju Ji
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Mato-Basalo R, Lucio-Gallego S, Alarcón-Veleiro C, Sacristán-Santos M, Quintana MDPM, Morente-López M, de Toro FJ, Silva-Fernández L, González-Rodríguez A, Arufe MC, Labora JAF. Action Mechanisms of Small Extracellular Vesicles in Inflammaging. Life (Basel) 2022; 12:546. [PMID: 35455036 PMCID: PMC9028066 DOI: 10.3390/life12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
The accumulation process of proinflammatory components in the body due to aging influences intercellular communication and is known as inflammaging. This biological mechanism relates the development of inflammation to the aging process. Recently, it has been reported that small extracellular vesicles (sEVs) are mediators in the transmission of paracrine senescence involved in inflammatory aging. For this reason, their components, as well as mechanisms of action of sEVs, are relevant to develop a new therapy called senodrugs (senolytics and senomorphic) that regulates the intercellular communication of inflammaging. In this review, we include the most recent and relevant studies on the role of sEVs in the inflammatory aging process and in age-related diseases such as cancer and type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - María C. Arufe
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Centro de Invesigaciones Científicas Avanzadas (CICA), Universidade da Coruña, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (R.M.-B.); (S.L.-G.); (C.A.-V.); (M.S.-S.); (M.d.P.M.Q.); (M.M.-L.); (F.J.d.T.); (L.S.-F.); (A.G.-R.)
| | - Juan Antonio Fafián Labora
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Centro de Invesigaciones Científicas Avanzadas (CICA), Universidade da Coruña, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (R.M.-B.); (S.L.-G.); (C.A.-V.); (M.S.-S.); (M.d.P.M.Q.); (M.M.-L.); (F.J.d.T.); (L.S.-F.); (A.G.-R.)
| |
Collapse
|
26
|
Zhang Y, Xu C. Effects of exosomes on adult hippocampal neurogenesis and neuropsychiatric disorders. Mol Biol Rep 2022; 49:6763-6777. [PMID: 35262819 DOI: 10.1007/s11033-022-07313-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022]
Abstract
Exosomes are extracellular vesicles originating from the endosomal system, which are involved in intercellular substance transfer and cell waste elimination. Recent studies implicate the roles of exosomes in adult hippocampal neurogenesis, a process through which new granule cells are generated in the dentate gyrus, and which is closely related to mood and cognition, as well as psychiatric disorders. As such, exosomes are recognized as potential biomarkers of neurologic and psychiatric disorders. This review briefly introduces the synthesis and secretion mechanism of exosomes, and discuss the relationship between exosomes and hippocampal neurogenesis, and their roles in regulating depression, epilepsy and schizophrenia. Finally, we discuss the prospects of their application in diagnosing disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Ying Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Chi Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China. .,Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
27
|
Gonzales MM, Krishnamurthy S, Garbarino V, Daeihagh AS, Gillispie GJ, Deep G, Craft S, Orr ME. A geroscience motivated approach to treat Alzheimer's disease: Senolytics move to clinical trials. Mech Ageing Dev 2021; 200:111589. [PMID: 34687726 PMCID: PMC9059898 DOI: 10.1016/j.mad.2021.111589] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
The pathogenic processes driving Alzheimer's disease (AD) are complex. An incomplete understanding of underlying disease mechanisms has presented insurmountable obstacles for developing effective disease-modifying therapies. Advanced chronological age is the greatest risk factor for developing AD. Intervening on biological aging may alter disease progression and represents a novel, complementary approach to current strategies. Toward this end, cellular senescence has emerged as a promising target. This complex stress response harbors damaged cells in a cell cycle arrested, apoptosis-resistant cell state. Senescent cells accumulate with age where they notoriously secrete molecules that contribute to chronic tissue dysfunction and disease. Thus, benefits of cell survival in a senescent fate are countered by their toxic secretome. The removal of senescent cells improves brain structure and function in rodent models at risk of developing AD, and in those with advanced Aβ and tau pathology. The present review describes the path to translating this promising treatment strategy to AD clinical trials. We review evidence for senescent cell accumulation in the human brain, considerations and strategies for senescence-targeting trials specific to AD, approaches to detect senescent brain cells in biofluids, and summarize the goals of the first senolytic trials for the treatment of AD (NCT04063124 and NCT04685590). This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudarshan Krishnamurthy
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Valentina Garbarino
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ali S Daeihagh
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gregory J Gillispie
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA; Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
28
|
Gonzales MM, Krishnamurthy S, Garbarino V, Daeihagh AS, Gillispie GJ, Deep G, Craft S, Orr ME. A geroscience motivated approach to treat Alzheimer’s disease: Senolytics move to clinical trials. Mech Ageing Dev 2021. [DOI: 10.1016/j.mad.2021.111589
expr 868687188 + 807217478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
29
|
Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles 2021; 10:e12154. [PMID: 34609061 PMCID: PMC8491204 DOI: 10.1002/jev2.12154] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double-edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age-related diseases. Among the hallmarks of senescence, the SASP, especially SASP-related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age-related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell-free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age-related diseases, and provide new ideas for antiaging therapy with EVs.
Collapse
Affiliation(s)
- Yujia Yin
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huihui Chen
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yizhi Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Xipeng Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
30
|
Xia Y, Hu G, Chen Y, Yuan J, Zhang J, Wang S, Li Q, Wang Y, Deng Z. Embryonic Stem Cell Derived Small Extracellular Vesicles Modulate Regulatory T Cells to Protect against Ischemic Stroke. ACS NANO 2021; 15:7370-7385. [PMID: 33733738 DOI: 10.1021/acsnano.1c00672] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stem cell derived small extracellular vesicles (sEVs) have been proved to promote neurological recovery after stroke. Recent studies demonstrate a phenomenal tissue repair ability in embryonic stem cell derived sEVs (ESC-sEVs). However, whether ESC-sEVs could protect against ischemic stroke remains unknown. Immune responses play an essential role in the pathogenesis of ischemic stroke, and modulating post-stroke immune responses ameliorates ischemia-induced brain damage. In this study, we aim to determine the therapeutic function of ESC-sEVs, specifically focusing on their role in immunomodulation after ischemic stroke. ESC-sEVs are intravenously administered after transient middle cerebral artery occlusion. ESC-sEVs significantly decrease leukocyte infiltration, inflammatory cytokine expression, neuronal death, and infarct volume and alleviate long-term neurological deficits and tissue loss after ischemic stroke. Interestingly, ESC-sEVs induce a marked increase in regulatory T cells (Tregs) after stroke. Further, ESC-sEV-afforded immunomodulatory function and neuroprotection against stroke are dependent on Tregs, as the depletion of Tregs almost completely abrogates the protective effects. Mechanistically, proteomic analysis reveals the enrichment of TGF-β, Smad2, and Smad4 proteins in ESC-sEVs, which could be delivered to activate the TGF-β/Smad pathway in CD4+ T cells and therefore induce Treg expansion. ESC-sEVs modulate neuroinflammation and protect against ischemic stroke through the expansion of Tregs, a process that is partially dependent on the activation of the TGF-β/Smad signaling pathway by the transfer of TGF-β, Smad2, and Smad4. The results suggest ESC-sEVs might be a candidate for immune modulation.
Collapse
Affiliation(s)
- Yuguo Xia
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yu Chen
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ji Yuan
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Sifan Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhifeng Deng
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
31
|
Gillispie GJ, Sah E, Krishnamurthy S, Ahmidouch MY, Zhang B, Orr ME. Evidence of the Cellular Senescence Stress Response in Mitotically Active Brain Cells-Implications for Cancer and Neurodegeneration. Life (Basel) 2021; 11:153. [PMID: 33671362 PMCID: PMC7922097 DOI: 10.3390/life11020153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular stress responses influence cell fate decisions. Apoptosis and proliferation represent opposing reactions to cellular stress or damage and may influence distinct health outcomes. Clinical and epidemiological studies consistently report inverse comorbidities between age-associated neurodegenerative diseases and cancer. This review discusses how one particular stress response, cellular senescence, may contribute to this inverse correlation. In mitotically competent cells, senescence is favorable over uncontrolled proliferation, i.e., cancer. However, senescent cells notoriously secrete deleterious molecules that drive disease, dysfunction and degeneration in surrounding tissue. In recent years, senescent cells have emerged as unexpected mediators of neurodegenerative diseases. The present review uses pre-defined criteria to evaluate evidence of cellular senescence in mitotically competent brain cells, highlights the discovery of novel molecular regulators and discusses how this single cell fate decision impacts cancer and degeneration in the brain. We also underscore methodological considerations required to appropriately evaluate the cellular senescence stress response in the brain.
Collapse
Affiliation(s)
- Gregory J. Gillispie
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Eric Sah
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
| | - Sudarshan Krishnamurthy
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Mohamed Y. Ahmidouch
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Wake Forest University, Winston-Salem, NC 27109, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Miranda E. Orr
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (G.J.G.); (E.S.); (S.K.); (M.Y.A.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Salisbury VA Medical Center, Salisbury, NC 28144, USA
| |
Collapse
|