1
|
Lee J, Oh B, Park J, Kim JY, Son J, Kim HS, Choi YE. On-site microfluidic aptasensor for rapid and highly selective detection of microcystin-LR. Talanta 2025; 293:128147. [PMID: 40253964 DOI: 10.1016/j.talanta.2025.128147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
To detect microcystin-LR (MC-LR), a potent cyanotoxin harmful to human health, fast and precise monitoring tools are essential, particularly for on-site applications. In this study, we developed a novel on-site microfluidic aptasensor system that utilizes a fluorescence-tagged aptamer for the rapid and selective detection of MC-LR. By employing a target non-immobilized aptamer selection technique, high-affinity DNA aptamers for MC-LR were identified, and then further optimized through sequence truncation to enhance detection efficiency. The developed aptamer was designed such that its fluorescence is quenched in the absence of MC-LR, but recovered in its presence, enabling a clear signal detection that correlates with a toxin concentration. The developed system achieved a detection limit of 1.9 ppb, significantly lower than the safety threshold suggested by world health organization (WHO) for recreational waters, demonstrating sufficient sensitivity for reliable on-site monitoring. In addition, the microfluidic aptasensor system demonstrated high specificity, exhibiting the strongest response to MC-LR compared to other cyanotoxins. This system is the first portable MC-LR detection tool that allows for on-site environmental monitoring with the advantages of its fast response time and ease of operation. Combining a low detection limit with high accuracy, the microfluidic aptasensor system presents a promising alternative to conventional laboratory-based methods, providing a practical and reliable solution for water quality assessment.
Collapse
Affiliation(s)
- Jihye Lee
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jaewon Park
- Department of Electro-Mechanical Systems Engineering, Korea University, Sejong, 30019, South Korea
| | - Jee Young Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jino Son
- National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, South Korea.
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Stukan I, Żuk A, Pukacka K, Mierzejewska J, Pawłowski J, Kowalski B, Dąbkowska M. Wolf in Sheep's Clothing: Taming Cancer's Resistance with Human Serum Albumin? Int J Nanomedicine 2025; 20:3493-3525. [PMID: 40125439 PMCID: PMC11930253 DOI: 10.2147/ijn.s500997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Human serum albumin (HSA) has emerged as a promising carrier for nanodrug delivery, offering unique structural properties that can be engineered to overcome key challenges in cancer treatment, especially resistance to chemotherapy. This review focuses on the cellular uptake of albumin-based nanoparticles and the modifications that enhance their ability to bypass resistance mechanisms, particularly multidrug resistance type 1 (MDR1), by improving targeting to cancer cells. In our unique approach, we integrate the chemical properties of albumin, its interactions with cancer cells, and surface modifications of albumin-based delivery systems that enable to bypass resistance mechanisms, particularly those related to MDR1, and precisely target receptors on cancer cells to improve treatment efficacy. We discuss that while well-established albumin receptors such as gp60 and gp18/30 are crucial for cellular uptake and transcytosis, their biology remains underexplored, limiting their translational potential. Additionally, we explore the potential of emerging targets, such as cluster of differentiation 44 (CD44), cluster of differentiation (CD36) and transferrin receptor TfR1, as well as the advantages of using dimeric forms of albumin (dHSA) to further enhance delivery to resistant cancer cells. Drawing from clinical examples, including the success of albumin-bound paclitaxel (Abraxane) and new formulations like Pazenir and Fyarro (for Sirolimus), we identify gaps in current knowledge and propose strategies to optimize albumin-based systems. In conclusion, albumin-based nanoparticles, when tailored with appropriate modifications, have the potential to bypass multidrug resistance and improve the targeting of cancer cells. By enhancing albumin's ability to efficiently deliver therapeutic agents, these carriers represent a promising approach to addressing one of oncology's most persistent challenges, with substantial potential to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Iga Stukan
- Department of General Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Żuk
- Independent Laboratory of Community Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kamila Pukacka
- Department of Pharmaceutical Technology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Julia Mierzejewska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jakub Pawłowski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogusław Kowalski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
3
|
Yang Y, Yang Z, Liu H, Zhou Y. Aptamers in dentistry: diagnosis, therapeutics, and future perspectives. Biomater Sci 2025; 13:1368-1378. [PMID: 39523847 DOI: 10.1039/d4bm01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Oral health is essential to general health. The diagnosis of dental diseases and treatment planning of dental care need to be straightforward and accurate. Recent studies have reported the use of aptamers in dentistry to achieve a simple diagnosis and facilitate therapy. Aptamers comprise nucleic acid sequences that possess a strong affinity for their target. Synthesized chemically, aptamers have several advantages, including smaller size, higher stability, and lower immunogenicity compared with monoclonal antibodies. They can be used to detect biomarkers in saliva and the presence of various pathogens, or can be used as a targeted drug delivery system for disease treatment. This review highlights current research on aptamers for dental care, especially the recent progress in oral disease diagnosis and therapeutics. The challenges and unresolved problems faced by the clinical use of aptamers are also discussed. In the future, the clinical applications of aptamers will be further extended to include, for example, dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Zhen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| |
Collapse
|
4
|
DeFranciscis V, Amabile G, Kortylewski M. Clinical applications of oligonucleotides for cancer therapy. Mol Ther 2025:S1525-0016(25)00172-8. [PMID: 40045578 DOI: 10.1016/j.ymthe.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
Oligonucleotide therapeutics (ONTs) represent a rapidly evolving modality for cancer treatment, capitalizing on their ability to modulate gene expression with high specificity. With more than 20 nucleic acid-based therapies that gained regulatory approval, advances in chemical modifications, sequence optimization, and novel delivery systems have propelled ONTs from research tools to clinical realities. ONTs, including siRNAs, antisense oligonucleotides, saRNA, miRNA, aptamers, and decoys, offer promising solutions for targeting previously "undruggable" molecules, such as transcription factors, and enhancing cancer immunotherapy by overcoming tumor immune evasion. The promise of ONT application in cancer treatment is exemplified by the recent FDA approval of the first oligonucleotide-based treatment to myeloproliferative disease. At the same time, there are challenges in delivering ONTs to specific tissues, mitigating off-target effects, and improving cellular uptake and endosomal release. This review provides a comprehensive overview of ONTs in clinical trials, emerging delivery strategies, and innovative therapeutic approaches, emphasizing the role of ONTs in immunotherapy and addressing hurdles that hinder their clinical translation. By examining advances and remaining challenges, we highlight opportunities for ONTs to revolutionize oncology and enhance patient outcomes.
Collapse
Affiliation(s)
- Vittorio DeFranciscis
- National Research Council, Institute of Genetic and Biomedical Research, Milan, Italy
| | | | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
5
|
Xia B, Shaheen N, Chen H, Zhao J, Guo P, Zhao Y. RNA aptamer-mediated RNA nanotechnology for potential treatment of cardiopulmonary diseases. Pharmacol Res 2025; 213:107659. [PMID: 39978660 DOI: 10.1016/j.phrs.2025.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Ribonucleic acid (RNA) aptamers are single-stranded RNAs that bind to target proteins or other molecules with high specificity and affinity, modulating biological functions through distinct mechanisms. These aptamers can act n as antagonists to block pathological interactions, agonists to activate signaling pathways, or delivery vehicles for therapeutic cargos such as siRNAs and miRNAs. The advances in RNA nanotechnology further enhances the versatility of RNA aptamers, offering scalable platforms for engineering. In this review, we have summarized recent developments in RNA aptamer-mediated RNA nanotechnology and provide an overview of its potential in treating cardiovascular and respiratory disorders, including atherosclerosis, acute coronary syndromes, heart failure, lung cancer, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), acute lung injury, viral respiratory infections, and pulmonary fibrosis. By integrating aptamer technologies with innovative delivery systems, RNA aptamers hold the potential to revolutionize the treatment landscape for cardiopulmonary diseases.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Huilong Chen
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Norollahi SE, Morovat S, Keymoradzadeh A, Hamzei A, Modaeinama M, Soleimanmanesh N, Soleimanmanesh Y, Najafizadeh A, Bakhshalipour E, Alijani B, Samadani AA. Transforming agents: The power of structural modifications in glioblastoma multiforme therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:41-56. [PMID: 39701498 DOI: 10.1016/j.pbiomolbio.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024]
Abstract
Glioblastoma (GBM) is a very deadly type of brain tumor with a poor prognosis and a short survival rate. Recent advancements in understanding GBM's molecular and genetic characteristics have led to the development of various therapeutic and diagnostic strategies. Key elements such as microRNAs, lncRNAs, exosomes, angiogenesis, and chromatin modifications are highlighted, alongside significant epigenetic alterations that impact therapy and diagnosis. Despite these advancements, molecular classifications have not improved patient outcomes due to intratumoral diversity complicating targeted therapies. In this article, it is tried to emphasize the potential of investigating the epigenetic landscape of GBM, particularly identifying patients with diffuse hypermethylation at gene promoters associated with better outcomes. Integrating epigenetic and genetic data has enhanced the identification of glioma subtypes with high diagnostic precision. The reversibility of epigenetic changes offers promising therapeutic prospects, as recent insights into the "epigenetic orchestra" suggest new avenues for innovative treatment modalities for this challenging cancer. In this review article, we focus on the roles of translational elements and their alterations in the context of GBM diagnosis and therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran; Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| | - Saman Morovat
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Arman Keymoradzadeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Hamzei
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Morteza Modaeinama
- Department of Neurosurgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ali Najafizadeh
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Elahe Bakhshalipour
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Alijani
- Department of Neurosurgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
7
|
Liu R, Zeng Y, Qiao X, Zhao X, Li J, Niu J, Yu S, Wang Y, Wang L, Song L. HGF-HGFR-STAT signaling axis regulates haemocyte proliferation in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 163:105316. [PMID: 39793641 DOI: 10.1016/j.dci.2025.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
As a pleiotropic growth factor, hepatocyte growth factor (HGF) involves in the division and growth of multifarious cells through binding hepatocyte growth factor receptor (HGFR). In the present study, a homologue of HGF (CgHGF-like) and HGFR (CgHGFR) with conserved domain features were identified in oyster Crassostrea gigas. The mRNA transcripts of CgHGF-like and CgHGFR were detected in all tested tissues, and both showed the highest expression level in haemocytes. Their mRNA expression in haemocytes were significantly increased after Vibrio splendidus stimulation. Immunofluorescence assay showed that the positive signals of CgHGF-like and CgHGFR were mainly located in the cytoplasm and membrane of haemocytes, respectively. Recombinant protein CgHGF-like and CgHGFR-SEMA showed in vitro interaction by Bio-layer interferometry assay. In the CgHGF-like-RNAi and CgHGFR-RNAi oysters, the percent of haemocytes with EdU positive signals, as well as the mRNA expression levels of CgGATA, CgSCL and CgRUNX all significantly down-regulated in haemocytes after V. splendidus stimulation. The positive signals of CgSTAT were observed in the haemocyte nucleus after V. splendidus stimulation, however, the nuclear translocation of CgSTAT was suppressed in CgHGF-like-RNAi and CgHGFR-RNAi oysters. These results collectively indicated that CgHGF-like might interact with CgHGFR to regulate haemocyte proliferation by activating CgSTAT during the immune response, suggesting its important roles in haemocyte proliferation of oyster C. gigas.
Collapse
Affiliation(s)
- Rui Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuqing Zeng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xinyu Zhao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jie Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jixiang Niu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yiqing Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
8
|
Cardle II, Raman J, Nguyen DC, Wang T, Wu AY, Sellers DL, Pichon TJ, Cheng EL, Kacherovsky N, Salipante SJ, Jensen MC, Pun SH. DNA Aptamer-Polymer Conjugates for Selective Targeting of Integrin α4β1 + T-Lineage Cancers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4543-4561. [PMID: 39788927 PMCID: PMC11995848 DOI: 10.1021/acsami.4c17788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Selective therapeutic targeting of T-cell malignancies is difficult due to the shared lineage between healthy and malignant T cells. Current front-line chemotherapy for these cancers is largely nonspecific, resulting in frequent cases of relapsed/refractory disease. The development of targeting approaches for effectively treating T-cell leukemia and lymphoma thus remains a critical goal for the oncology field. Here, we report the discovery of a DNA aptamer, named HR7A1, that displays low nanomolar affinity for the integrin α4β1 (VLA-4), a marker associated with chemoresistance and relapse in leukemia patients. After truncation of HR7A1 to a minimal binding motif, we demonstrate elevated binding of the aptamer to T-lineage cancer cells over healthy immune cells. Using cryo-EM and competition studies, we find that HR7A1 shares an overlapping binding site on α4β1 with fibronectin and VCAM-1, which has implications for sensitizing blood cancers to chemotherapy. We last characterize barriers to in vivo aptamer translation, including serum stability, temperature-sensitive binding, and short circulation half-life, and synthesize an aptamer-polymer conjugate that addresses these challenges. Future work will seek to validate in vivo targeting of α4β1+ tumors with the conjugate, establishing an aptamer-based biomaterial that can be readily adapted for targeted treatment of T-cell malignancies.
Collapse
Affiliation(s)
- Ian I. Cardle
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Therapeutics, Seattle, WA 98101, USA
| | - Jai Raman
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Dinh Chuong Nguyen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Tong Wang
- Nanoscience Initiative, CUNY Advanced Science Research Center, City University of New York, NY 10031, USA
| | - Abe Y. Wu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Trey J. Pichon
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Emmeline L. Cheng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Nataly Kacherovsky
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Michael C. Jensen
- Seattle Children’s Therapeutics, Seattle, WA 98101, USA
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
10
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
11
|
Shi S, Zhong H, Zhang Y, Mei Q. Targeted delivery of nano-radiosensitizers for tumor radiotherapy. Coord Chem Rev 2024; 518:216101. [DOI: 10.1016/j.ccr.2024.216101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Huang BT, Lai WY, Yeh CL, Tseng YT, Peck K, Yang PC, Lin EPY. AptBCis1, An Aptamer-Cisplatin Conjugate, Is Effective in Lung Cancer Leptomeningeal Carcinomatosis. ACS NANO 2024; 18:27905-27916. [PMID: 39360769 PMCID: PMC11483943 DOI: 10.1021/acsnano.4c04680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/16/2024]
Abstract
Treatment of lung cancer leptomeningeal carcinomatosis (LM) remains challenging partly due to the biological nature of the blood-brain barrier (BBB). Cisplatin has limited effects on LM, and it is notorious for neurotoxicity. Aptamers are small oligonucleotides considered as antibody surrogates. Here we report a DNA therapeutics, AptBCis1. AptBCis1 is a cisplatin-conjugated, BBB-penetrating, and cancer-targeting DNA aptamer. Its backbone, AptB1, was identified via in vivo SELEX using lung cancer LM orthotopic mouse models. The AptB1 binds to EAAT2, Nucleolin, and YB-1 proteins. Treatment with AptBCis1 1 mg/kg (equivalent to cisplatin 0.35 mg/kg) showed superior tumor suppressive effects compared to cisplatin 2 mg/kg in mice with lung cancer LM diseases. The cerebrospinal fluid platinum concentration in the AptBCis1 group was 10% of that in the cisplatin group. The data suggested the translational potential of AptBCis1 in lung cancer with LM and in cancers in which platinum-based chemotherapy remains as the standard of care.
Collapse
Affiliation(s)
- Bo-Tsang Huang
- Division
of Thoracic Medicine, Department of Internal Medicine, School of Medicine,
College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Yun Lai
- Division
of Thoracic Medicine, Department of Internal Medicine, School of Medicine,
College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department
of Medical Research, Taipei Medical University
Hospital, Taipei 110, Taiwan
| | - Chen-Lin Yeh
- Division
of Thoracic Medicine, Department of Internal Medicine, School of Medicine,
College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Ting Tseng
- Division
of Thoracic Medicine, Department of Internal Medicine, School of Medicine,
College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Konan Peck
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Pan-Chyr Yang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Division
of Chest Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Emily Pei-Ying Lin
- Division
of Thoracic Medicine, Department of Internal Medicine, School of Medicine,
College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division
of Thoracic Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department
of Medical Research, Taipei Medical University
Hospital, Taipei 110, Taiwan
| |
Collapse
|
13
|
Lee ES, Cha BS, Jang YJ, Woo J, Kim S, Park SS, Oh SW, Park KS. Harnessing the potential of aptamers in cell-derived vesicles for targeting colorectal cancers at Pan-Dukes' stages. Int J Biol Macromol 2024; 280:135911. [PMID: 39317285 DOI: 10.1016/j.ijbiomac.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Colorectal cancer (CRC) remains one of the most formidable challenges in the global health arena. To address this challenge, extensive research has been directed toward developing targeted drug delivery systems (DDS). Cell-derived vesicles (CDV), which mirror the lipid bilayer structure of cell membranes, have garnered tremendous attention as ideal materials for DDS owing to their scalability in production and high biocompatibility. In this study, a novel method, termed colorectal cancer overall Dukes' staging Systematic Evolution of Ligands by Exponential enrichment (CROSS), was developed to identify Toggle Cell 1 (TC1) aptamers with high binding affinity to CRC cells at various Dukes' stages (A-D). Furthermore, a novel DDS was developed by incorporating a cholesterol-modified TC1 aptamer into CDV, which exhibited improved targeting ability and cellular uptake efficiency toward CRC cells compared to CDV alone. The results of this study highlight the potential efficacy of CDV in constructing a targeted DDS while overcoming the current challenges associated with other lipid-based DDS.
Collapse
Affiliation(s)
- Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Young Jun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jisu Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Soo Park
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Seung Wook Oh
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
14
|
Peng F, Hu M, Su Z, Hu L, Guo L, Yang K. Intratumoral Microbiota as a Target for Advanced Cancer Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405331. [PMID: 39054925 DOI: 10.1002/adma.202405331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In recent years, advancements in microbial sequencing technology have sparked an increasing interest in the bacteria residing within solid tumors and its distribution and functions in various tumors. Intratumoral bacteria critically modulate tumor oncogenesis and development through DNA damage induction, chronic inflammation, epigenetic alterations, and metabolic and immune regulation, while also influencing cancer treatment efficacy by affecting drug metabolism. In response to these discoveries, a variety of anti-cancer therapies targeting these microorganisms have emerged. These approaches encompass oncolytic therapy utilizing tumor-associated bacteria, the design of biomaterials based on intratumoral bacteria, the use of intratumoral bacterial components for drug delivery systems, and comprehensive strategies aimed at the eradication of tumor-promoting bacteria. Herein, this review article summarizes the distribution patterns of bacteria in different solid tumors, examines their impact on tumors, and evaluates current therapeutic strategies centered on tumor-associated bacteria. Furthermore, the challenges and prospects for developing drugs that target these bacterial communities are also explored, promising new directions for cancer treatment.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mengyuan Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyue Su
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Kai Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
15
|
Yao L, Wang L, Liu S, Qu H, Mao Y, Li Y, Zheng L. Evolution of a bispecific G-quadruplex-forming circular aptamer to block IL-6/sIL-6R interaction for inflammation inhibition. Chem Sci 2024; 15:13011-13020. [PMID: 39148786 PMCID: PMC11323322 DOI: 10.1039/d4sc02183e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
IL-6 (interleukin-6) is an essential cytokine that participates in many inflammatory and immune responses, and disrupting the interaction between IL-6 and its receptor sIL-6R (soluble form of IL-6 receptor) represents a promising treatment strategy for inflammation and related diseases. Herein we report the first-ever effort of evolving a bispecific circular aptamer, named CIL-6A6-1, that is capable of binding both IL-6 and sIL-6R with nanomolar affinities and is stable in serum for more than 48 hours. CIL-6A6-1 can effectively block the IL-6/sIL-6R interaction and significantly inhibit cell inflammation. Most importantly, this bispecific aptamer is much more effective than aptamers that bind IL-6 and sIL-6R alone as well as tocilizumab, a commercially available humanized monoclonal antibody against sIL-6R, highlighting the advantage of selecting bispecific circular aptamers as molecular tools for anti-inflammation therapy. Interestingly, CIL-6A6-1 is predicted to adopt a unique structural fold with two G-quadruplex motifs capped by a long single-stranded region, which differs from all known DNA aptamers. This unique structural fold may also contribute to its excellent functionality and high stability in biological complex media. We anticipate that our study will represent a significant step forward towards demonstrating the practical utility of bispecific DNA aptamers for therapeutic applications.
Collapse
Affiliation(s)
- Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton L8S4K1 Canada
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| |
Collapse
|
16
|
Yan B, Li Y, He S. Aptamer-mediated therapeutic strategies provide a potential approach for cancer. Int Immunopharmacol 2024; 136:112356. [PMID: 38820957 DOI: 10.1016/j.intimp.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
17
|
Chen J, He J, Bing T, Feng Y, Lyu Y, Lei M, Tan W. Identification of the Binding Site between Aptamer sgc8c and PTK7. Anal Chem 2024; 96:10601-10611. [PMID: 38889444 DOI: 10.1021/acs.analchem.4c01186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Aptamers are single-stranded RNA or DNA molecules that can specifically bind to targets and have found broad applications in cancer early-stage detection, accurate drug delivery, and precise treatment. Although various aptamer screening methods have been developed over the past several decades, the accurate binding site between the target and the aptamer cannot be characterized during a typical aptamer screening process. In this research, we chose a widely used aptamer screened by our group, sgc8c, and its target protein tyrosine kinase 7 (PTK7) as the model aptamer and target and tried to determine the binding site between aptamer sgc8c and PTK7. Through sequential protein truncation, we confirmed that the exact binding site of sgc8c was within the region of Ig 3 to Ig 4 in the extracellular domain of PTK7. Using in vitro expressed Ig (3-4), we successfully acquired the crystal of an sgc8c-Ig (3-4) binding complex. The possible sgc8c-binding amino acid residues on PTK7 and PTK7-binding nucleotide residues on sgc8c were further identified and simulated by mass spectrometry and molecular dynamics simulation and finally verified by aptamer/protein truncation and mutation.
Collapse
Affiliation(s)
- Jianghuai Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jiaxuan He
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tao Bing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yawei Feng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Furong Laboratory, Changsha, Hunan 410082, China
| | - Ming Lei
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
18
|
Qi C, Li W, Luo Y, Ni S, Ji M, Wang Z, Zhang T, Bai X, Tang J, Yuan B, Liu K. Selective inhibition of c-Met signaling pathways with a bispecific DNA nanoconnector for the targeted therapy of cancer. Int J Biol Macromol 2024; 273:133134. [PMID: 38876234 DOI: 10.1016/j.ijbiomac.2024.133134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Hepatocyte growth factor receptor (c-Met) is a suitable molecular target for the targeted therapy of cancer. Novel c-Met-targeting drugs need to be developed because conventional small-molecule inhibitors and antibodies of c-Met have some limitations. To synthesize such drugs, we developed a bispecific DNA nanoconnector (STPA) to inhibit c-Met function. STPA was constructed by using DNA triangular prism as a scaffold and aptamers as binding molecules. After c-Met-specific SL1 and nucleolin-specific AS1411 aptamers were integrated with STPA, STPA could bind to c-Met and nucleolin on the cell membrane. This led to the formation of the c-Met/STPA/nucleolin complex, which in turn blocked c-Met activation. In vitro experiments showed that STPA could not only inhibit the c-Met signaling pathways but also facilitate c-Met degradation through lysosomes. STPA also inhibited c-Met-promoted cell migration, invasion, and proliferation. The results of in vivo experiments showed that STPA could specifically target to tumor site in xenograft mouse model, and inhibit tumor growth with low toxicity by downregulating c-Met pathways. This study provided a novel and simple strategy to develop c-Met-targeting drugs for the targeted therapy of cancer.
Collapse
Affiliation(s)
- Cuihua Qi
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wei Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanchao Luo
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shanshan Ni
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mengmeng Ji
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhaoting Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tianlu Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xue Bai
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jinlu Tang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Baoyin Yuan
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Kangdong Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450000, Henan, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, Henan, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, Henan, China
| |
Collapse
|
19
|
Menon AP, Villanueva H, Meraviglia-Crivelli D, van Santen HM, Hellmeier J, Zheleva A, Nonateli F, Peters T, Wachsmann TL, Hernandez-Rueda M, Huppa JB, Schütz GJ, Sevcsik E, Moreno B, Pastor F. CD3 aptamers promote expansion and persistence of tumor-reactive T cells for adoptive T cell therapy in cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102198. [PMID: 38745854 PMCID: PMC11091522 DOI: 10.1016/j.omtn.2024.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
The CD3/T cell receptor (TCR) complex is responsible for antigen-specific pathogen recognition by T cells, and initiates the signaling cascade necessary for activation of effector functions. CD3 agonistic antibodies are commonly used to expand T lymphocytes in a wide range of clinical applications, including in adoptive T cell therapy for cancer patients. A major drawback of expanding T cell populations ex vivo using CD3 agonistic antibodies is that they expand and activate T cells independent of their TCR antigen specificity. Therapeutic agents that facilitate expansion of T cells in an antigen-specific manner and reduce their threshold of T cell activation are therefore of great interest for adoptive T cell therapy protocols. To identify CD3-specific T cell agonists, several RNA aptamers were selected against CD3 using Systematic Evolution of Ligands by EXponential enrichment combined with high-throughput sequencing. The extent and specificity of aptamer binding to target CD3 were assessed through surface plasma resonance, P32 double-filter assays, and flow cytometry. Aptamer-mediated modulation of the threshold of T cell activation was observed in vitro and in preclinical transgenic TCR mouse models. The aptamers improved efficacy and persistence of adoptive T cell therapy by low-affinity TCR-reactive T lymphocytes in melanoma-bearing mice. Thus, CD3-specific aptamers can be applied as therapeutic agents which facilitate the expansion of tumor-reactive T lymphocytes while conserving their tumor specificity. Furthermore, selected CD3 aptamers also exhibit cross-reactivity to human CD3, expanding their potential for clinical translation and application in the future.
Collapse
Affiliation(s)
- Ashwathi Puravankara Menon
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Hisse M. van Santen
- Immune System Development and Function Unit, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), 28049 Madrid, Spain
| | - Joschka Hellmeier
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060 Vienna, Austria
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Francesca Nonateli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Timo Peters
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology, Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Mercedes Hernandez-Rueda
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Johannes B. Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology, Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerhard J. Schütz
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060 Vienna, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Lehargasse 6, 1060 Vienna, Austria
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
20
|
Huayamares SG, Loughrey D, Kim H, Dahlman JE, Sorscher EJ. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol 2024; 21:407-427. [PMID: 38589512 DOI: 10.1038/s41571-024-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric J Sorscher
- Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Sun X, Zhang W, Gou C, Wang X, Wang X, Shao X, Chen X, Chen Z. AS1411 binds to nucleolin via its parallel structure and disrupts the exos-miRNA-27a-mediated reciprocal activation loop between glioma and astrocytes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167211. [PMID: 38701957 DOI: 10.1016/j.bbadis.2024.167211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
The interaction between glioma cells and astrocytes promotes the proliferation of gliomas. Micro-RNAs (miRNAs) carried by astrocyte exosomes (exos) may be involved in this process, but the mechanism remains unclear. The oligonucleotide AS1411, which consists of 26 bases and has a G-quadruplex structure, is an aptamer that targets nucleolin. In this study, we demonstrate exosome-miRNA-27a-mediated cross-activation between astrocytes and glioblastoma and show that AS1411 reduces astrocytes' pro-glioma activity. The enhanced affinity of AS1411 toward nucleolin is attributed to its G-quadruplex structure. After binding to nucleolin, AS1411 inhibits the entry of the NF-κB pathway transcription factor P65 into the nucleus, then downregulates the expression of miRNA-27a in astrocytes surrounding gliomas. Then, AS1411 downregulates astrocyte exosome-miRNA-27a and upregulates the expression of INPP4B, the target gene of miRNA-27a in gliomas, thereby inhibiting the PI3K/AKT pathway and inhibiting glioma proliferation. These results were verified in mouse orthotopic glioma xenografts and human glioma samples. In conclusion, the parallel structure of AS1411 allows it to bind to nucleolin and disrupt the exosome-miRNA-27a-mediated reciprocal activation loop between glioma cells and astrocytes. Our results may help in the development of a novel approach to therapeutic modulation of the glioma microenvironment.
Collapse
Affiliation(s)
- Xiaoming Sun
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Wenzi Zhang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Changlong Gou
- Department of ultrasound medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xinyu Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xianhui Wang
- Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xin Shao
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhuo Chen
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
22
|
Thomas BJ, Guldenpfennig C, Daniels MA, Burke DH, Porciani D. Multiplexed In Vivo Screening Using Barcoded Aptamer Technology to Identify Oligonucleotide-Based Targeting Reagents. Nucleic Acid Ther 2024; 34:109-124. [PMID: 38752363 PMCID: PMC11250842 DOI: 10.1089/nat.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 06/19/2024] Open
Abstract
Recent FDA approvals of mRNA vaccines, short-interfering RNAs, and antisense oligonucleotides highlight the success of oligonucleotides as therapeutics. Aptamers are excellent affinity reagents that can selectively label protein biomarkers, but their clinical application has lagged. When formulating a given aptamer for in vivo use, molecular design details can determine biostability and biodistribution; therefore, extensive postselection manipulation is often required for each new design to identify clinically useful reagents harboring improved pharmacokinetic properties. Few methods are available to comprehensively screen such aptamers, especially in vivo, constituting a significant bottleneck in the field. In this study, we introduce barcoded aptamer technology (BApT) for multiplexed screening of predefined aptamer formulations in vitro and in vivo. We demonstrate this technology by simultaneously investigating 20 aptamer formulations, each harboring different molecular designs, for targeting Non-Small Cell Lung Cancer cells and tumors. Screening in vitro identified a 45 kDa bispecific formulation as the best cancer cell targeting reagent, whereas screening in vivo identified a 30 kDa monomeric formulation as the best tumor-specific targeting reagent. The multiplexed analysis pipeline also identified biodistribution phenotypes shared among formulations with similar molecular architectures. The BApT approach we describe here has the potential for broad application to fields where oligonucleotide-based targeting reagents are desired.
Collapse
Affiliation(s)
- Brian J. Thomas
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Caitlyn Guldenpfennig
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Mark A. Daniels
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Donald H. Burke
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - David Porciani
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
23
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
24
|
Mahmoudian F, Ahmari A, Shabani S, Sadeghi B, Fahimirad S, Fattahi F. Aptamers as an approach to targeted cancer therapy. Cancer Cell Int 2024; 24:108. [PMID: 38493153 PMCID: PMC10943855 DOI: 10.1186/s12935-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allowing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azin Ahmari
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Radiation Oncology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shiva Shabani
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Infectious Diseases, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Bahman Sadeghi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Zhou H, Abudureheman T, Zheng W, Yang L, Zhu J, Liang A, Duan C, Chen K. CAR-Aptamers Enable Traceless Enrichment and Monitoring of CAR-Positive Cells and Overcome Tumor Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305566. [PMID: 38148412 PMCID: PMC10933668 DOI: 10.1002/advs.202305566] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Chimeric antigen receptor (CAR)-positive cell therapy, specifically with anti-CD19 CAR-T (CAR19-T) cells, achieves a high complete response during tumor treatment for hematological malignancies. Large-scale production and application of CAR-T therapy can be achieved by developing efficient and low-cost enrichment methods for CAR-T cells, expansion monitoring in vivo, and overcoming tumor escape. Here, novel CAR-specific binding aptamers (CAR-ap) to traceless sort CAR-positive cells and obtain a high positive rate of CAR19-T cells is identified. Additionally, CAR-ap-enriched CAR19-T cells exhibit similar antitumor capacity as CAR-ab (anti-CAR antibody)-enriched CAR-T cells. Moreover, CAR-ap accurately monitors the expansion of CAR19-T cells in vivo and predicts the prognosis of CAR-T treatment. Essentially, a novel class of stable CAR-ap-based bispecific circular aptamers (CAR-bc-ap) is constructed by linking CAR-ap with a tumor surface antigen (TSA): protein tyrosine kinase 7 (PTK7) binding aptamer Sgc8. These CAR-bc-aps significantly enhance antitumor cytotoxicity with a loss of target antigens by retargeting CAR-T cells to the tumor in vitro and in vivo. Overall, novel CAR-aptamers are screened for traceless enrichment, monitoring of CAR-positive cells, and overcoming tumor cell immune escape. This provides a low-cost and high-throughput approach for CAR-positive cell-based immunotherapy.
Collapse
Affiliation(s)
- Hang Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Tuersunayi Abudureheman
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| | - Wei‐Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li‐Ting Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Jian‐Min Zhu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ai‐Bin Liang
- Department of Hematology, Tongji HospitalTongji University School of MedicineShanghai200065China
| | - Cai‐Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non‐human Primate, National Health CommissionFujian Maternity and Child Health HospitalFuzhouFujian350122China
| | - Kaiming Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
- Fujian Branch of Shanghai Children's Medical Center, affiliated with Shanghai Jiaotong UniversitySchool of Medicine and Fujian Children's HospitalFuzhouFujian350005China
| |
Collapse
|
26
|
Sousa AM, Ferreira D, Rodrigues LR, Pereira MO. Aptamer-based therapy for fighting biofilm-associated infections. J Control Release 2024; 367:522-539. [PMID: 38295992 DOI: 10.1016/j.jconrel.2024.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/06/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Biofilms are key players in the pathogenesis of most of chronic infections associated with host tissue or fluids and indwelling medical devices. These chronic infections are hard to be treated due to the increased biofilms tolerance towards antibiotics in comparison to planktonic (or free living) cells. Despite the advanced understanding of their formation and physiology, biofilms continue to be a challenge and there is no standardized therapeutic approach in clinical practice to eradicate them. Aptamers offer distinctive properties, including excellent affinity, selectivity, stability, making them valuable tools for therapeutic purposes. This review explores the flexibility and designability of aptamers as antibiofilm drugs but, importantly, as targeting tools for diverse drug and delivery systems. It highlights specific examples of application of aptamers in biofilms of diverse species according to different modes of action including inhibition of motility and adhesion, blocking of quorum sensing molecules, and dispersal of biofilm-cells to planktonic state. Moreover, it discusses the limitations and challenges that impaired an increased success of the use of aptamers on biofilm management, as well as the opportunities related to aptamers modifications that can significantly expand their applicability on the biofilm field.
Collapse
Affiliation(s)
- Ana Margarida Sousa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| | - Débora Ferreira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Lígia Raquel Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
27
|
Cong Y, Zhang SY, Li HM, Zhong JJ, Zhao W, Tang YJ. A truncated DNA aptamer with high selectivity for estrogen receptor-positive breast cancer cells. Int J Biol Macromol 2023; 252:126450. [PMID: 37634779 DOI: 10.1016/j.ijbiomac.2023.126450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The estrogen receptor-positive (ER+) breast cancers constitute more than 50 % of breast cancers, seriously threatening the health of women. Unfortunately, the detection and targeted therapy of ER+ breast cancers remain a challenge. Here, a novel nucleic acid aptamer S1-4 was developed to specifically target ER+ breast cancer MCF-7 cells by using Cell-SELEX and nucleic acid truncation strategies. The affinity dissociation constant of the binding of aptamer S1-4 to MCF-7 cells was 97.6 ± 7.5 nM in vitro. Compared with HER2+ breast cells SK-BR-3 and triple-negative breast cancer cells MDA-MB-231, MCF-7 cells were selectively recognized and targeted by aptamer S1-4. Fluorescence tracing in vivo results also indicated that aptamer S1-4 selectively targeted the cell membrane of tumor tissues in MCF-7- but not in SK-BR3 or MDB-MA-231-bearing mice. This selectively developed novel aptamer probe S1-4 with high affinity could be used for the diagnosis and treatment of ER+ breast cancers.
Collapse
Affiliation(s)
- Ying Cong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shu-Yue Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hong-Mei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
28
|
Shobeiri SS, Dashti M, Pordel S, Rezaee M, Haghnavaz N, Moghadam M, Ansari B, Sankian M. Topical anti-TNF-a ssDNA aptamer decreased the imiquimod induced psoriatic inflammation in BALB/c mice. Cytokine 2023; 172:156406. [PMID: 37879125 DOI: 10.1016/j.cyto.2023.156406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Tumor Necrosis Factor-α (TNF-α) is a pro-inflammatory factor that plays a pivotal role in psoriasis. Due to limitations of monoclonal antibody-based therapies, it is needed to discover new anti-TNF-α factors instead of usual anti-TNF-α monoclonal antibodies. Compared to antibodies, single-stranded DNA or RNA molecules named aptamers, have advantages such as time-saving, less risk for immunogenicity and cost-effectiveness. Therefore, the aim of the present study was to assess the therapeutic effects of T1-T4 dimer anti-TNF-ɑ ssDNA aptamer topical treatment in the imiquimod (IMQ)-induced psoriasis animal model. METHODS 5% IMQ cream was prescribed on the right ear of BALB/c to induce psoriasis model. The hydrogel-containing anti-TNF-ɑ aptamer or treatment control aptamer (anti- Interleukin (IL)17A) was topically prescribed to the mice's ears 10 min before IMQ cream treatment. The psoriasis area severity index (PASI) score was used to evaluate psoriasis intensity. Histopathology analysis was done for mice ears sections. Mass, size, and cell number of mice spleens were measured. The IL-17 level was determined in culture supernatants of axillary lymph node cells using ELISA. The mRNA expression levels of IL-17A, IL-1β, STAT3, and S100a9, were evaluated in mice treated ear with quantitative Real Time-PCR. RESULTS The anti-TNF-ɑ ssDNA aptamer lower doses had significant decrease in IMQ-induced PASI score (p < 0.05). In addition, in these groups, the IL-17A, STAT3, and S100a9 mRNA levels were significantly lower than the IMQ group (p < 0.05). CONCLUSION According to our findings, this aptamer seems to be a prospective candidate for treating psoriatic inflammation especially in lower concentrations.
Collapse
Affiliation(s)
- Saeideh Sadat Shobeiri
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Dashti
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safoora Pordel
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - MohammadAli Rezaee
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Navideh Haghnavaz
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Moghadam
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Ansari
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Xing L, Lv L, Ren J, Yu H, Zhao X, Kong X, Xiang H, Tao X, Dong D. Advances in targeted therapy for pancreatic cancer. Biomed Pharmacother 2023; 168:115717. [PMID: 37862965 DOI: 10.1016/j.biopha.2023.115717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Pancreatic cancer (PC) represents a group of malignant tumours originating from pancreatic duct epithelial cells and acinar cells, and the 5-year survival rate of PC patients is only approximately 12%. Molecular targeted drugs are specific drugs designed to target and block oncogenes, and they have become promising strategies for the treatment of PC. Compared to traditional chemotherapy drugs, molecular targeted drugs have greater targeting precision, and they have significant therapeutic effects and minimal side effects. This article reviews several molecular targeted drugs that are currently in the experimental stage for the treatment of PC; these include antibody-drug conjugates (ADCs), aptamer-drug conjugates (ApDCs) and peptide-drug conjugates (PDCs). ADCs can specifically recognize cell surface antigens and reduce systemic exposure and toxicity of chemotherapy drugs. By delivering nucleic acid drugs to target cells, the targeting RNA of ApDCs can inhibit the expression or translation of mutated genes, thereby inhibiting tumour development. Moreover, PDCs can effectively penetrate tumour cells, and the peptide groups in PDCs preferentially target tumour cells with minimal side effects. In the targeted therapy of PC, molecular targeted drugs have very broad prospects, which provides new hope for the clinical treatment of PC patients and is worth further research.
Collapse
Affiliation(s)
- Lin Xing
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jiaqi Ren
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hao Yu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xin Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
30
|
Hou M, Guo R, Ren T, Wang T, Jiang JH, He J. Selective Proteolysis of Activated Transcriptional Factor by NIR-Responsive Palindromic DNA Thalidomide Conjugate Inhibits the Canonical Smad Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302525. [PMID: 37415558 DOI: 10.1002/smll.202302525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Dysfunctional transcription factors that activate abnormal expressions of specific proteins are often associated with the progression of various diseases. Despite being attractive drug targets, the lack of druggable sites has dramatically hindered their drug development. The emergence of proteolysis targeting chimeras (PROTACs) has revitalized the drug development of many conventional hard-to-drug protein targets. Here, the use of a palindromic double-strand DNA thalidomide conjugate (PASTE) to selectively bind and induce proteolysis of targeted activated transcription factor (PROTAF) is reported. The selective proteolysis of the dimerized phosphorylated receptor-regulated Smad2/3 and inhibition of the canonical Smad pathway validates PASTE-mediated PROTAF. Further aptamer-guided active delivery of PASTE and near-infrared light-triggered PROTAF are demonstrated. Great potential in using PASTE for the selective degradation of the activated transcription factor is seen, providing a powerful tool for studying signaling pathways and developing precision medicines.
Collapse
Affiliation(s)
- Min Hou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205, China
| | - Rui Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tianyu Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianjun He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
31
|
Richard I. Basic notions about gene therapy from the nucleic acid perspective and applications in a pediatric disease: Duchenne muscular dystrophy. Arch Pediatr 2023; 30:8S2-8S11. [PMID: 38043979 DOI: 10.1016/s0929-693x(23)00221-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy involves the introduction of genetic material into cells as a therapeutic molecule to cure a disease. Through the transfer of specific nucleic acid to the target tissue, gene expression can be downregulated, augmented, or corrected thanks to the nucleic acid sequence as a support of gene expression. This is achieved through molecular interactions according to the sequence arrangement or the secondary structure of the molecules or through their catalytic properties. Over the past two decades, the rapid advances of knowledge and technologies in gene therapy have led to the development of different strategies and to the extension of its use to numerous indications, including certain cancers. Major success has been achieved in clinical trials and the field of gene therapy is booming. Several gene therapy products are now on the market in Europe, the United States, and China. In this review, we cover the basic principles of gene therapy and the characteristics of the main vectors used to transfer genetic material into the cell. As an example of applications, we address the various strategies applied to a rare pediatric muscle disease: Duchenne muscular dystrophy. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Isabelle Richard
- Genethon, 91000, Evry, France; Université Paris-Saclay, Univ. Evry, Inserm, Integrare research unit UMR_S951, 91000, Evry-Courcouronnes, France; Atamyo Therapeutics, 1, bis rue de l'internationale, Evry, France.
| |
Collapse
|
32
|
P U A, Raj G, John J, Mohan K M, John F, George J. Aptamers: Features, Synthesis and Applications. Chem Biodivers 2023; 20:e202301008. [PMID: 37709723 DOI: 10.1002/cbdv.202301008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Aptamers have become a topic of interest among the researchers and scientists since they not only possess all of the benefits of antibodies but also possess special qualities including heat stability, low cost, and limitless uses⋅ Here we give a review about the features, applications, and challenges of aptamers and also how they are beneficial over the antibodies for biomedical applications. Their unique features make aptamers a prominent tool in therapeutics, diagnostics, biosensors and targeted drug delivery. In conclusion, aptamers represent exciting materials for a variety of applications and can be modified to improve their properties and to extend their applications in biomedical field.
Collapse
Affiliation(s)
- Aiswarya P U
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Gopika Raj
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinju John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Malavika Mohan K
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
33
|
Ruiz-Ciancio D, Lin LH, Veeramani S, Barros MN, Sanchez D, Di Bartolo AL, Masone D, Giangrande PH, Mestre MB, Thiel WH. Selection of a novel cell-internalizing RNA aptamer specific for CD22 antigen in B cell acute lymphoblastic leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:698-712. [PMID: 37662970 PMCID: PMC10469072 DOI: 10.1016/j.omtn.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
Despite improvements in B cell acute lymphoblastic leukemia (B-ALL) treatment, a significant number of patients experience relapse of the disease, resulting in poor prognosis and high mortality. One of the drawbacks of current B-ALL treatments is the high toxicity associated with the non-specificity of chemotherapeutic drugs. Targeted therapy is an appealing strategy to treat B-ALL to mitigate these toxic off-target effects. One such target is the B cell surface protein CD22. The restricted expression of CD22 on the B-cell lineage and its ligand-induced internalizing properties make it an attractive target in cases of B cell malignancies. To target B-ALL and the CD22 protein, we performed cell internalization SELEX (Systematic Evolution of Ligands by EXponential enrichment) followed by molecular docking to identify internalizing aptamers specific for B-ALL cells that bind the CD22 cell-surface receptor. We identified two RNA aptamers, B-ALL1 and B-ALL2, that target human malignant B cells, with B-ALL1 the first documented RNA aptamer interacting with the CD22 antigen. These B-ALL-specific aptamers represent an important first step toward developing novel targeted therapies for B cell malignancy treatments.
Collapse
Affiliation(s)
- Dario Ruiz-Ciancio
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, San Juan 5400, Argentina
- National Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Li-Hsien Lin
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Suresh Veeramani
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Maya N. Barros
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Diego Sanchez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, CCT-Mendoza 5500, Argentina
| | - Ary Lautaro Di Bartolo
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza M5502JMA, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza M5502JMA, Argentina
| | - Paloma H. Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
- VP Platform Discovery Sciences, Biology, Wave Life Sciences, 733 Concord Avenue, Cambridge, MA 02138, USA
| | - María Belén Mestre
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, Rivadavia, San Juan 5400, Argentina
- National Council of Scientific and Technical Research (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - William H. Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
34
|
Qiao Y, Xu B. Peptide Assemblies for Cancer Therapy. ChemMedChem 2023; 18:e202300258. [PMID: 37380607 PMCID: PMC10613339 DOI: 10.1002/cmdc.202300258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Supramolecular assemblies made by the self-assembly of peptides are finding an increasing number of applications in various fields. While the early exploration of peptide assemblies centered on tissue engineering or regenerative medicine, the recent development has shown that peptide assemblies can act as supramolecular medicine for cancer therapy. This review covers the progress of applying peptide assemblies for cancer therapy, with the emphasis on the works appeared over the last five years. We start with the introduction of a few seminal works on peptide assemblies, then discuss the combination of peptide assemblies with anticancer drugs. Next, we highlight the use of enzyme-controlled transformation or shapeshifting of peptide assemblies for inhibiting cancer cells and tumors. After that, we provide the outlook for this exciting field that promises new kind of therapeutics for cancer therapy.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
35
|
Liu Y, Hu B, Pei X, Li J, Qi D, Xu Y, Ou H, Wu Y, Xue L, Huang JH, Wu E, Hu X. A Non-G-Quadruplex DNA Aptamer Targeting NCL for Diagnosis and Therapy in Bladder Cancer. Adv Healthc Mater 2023; 12:e2300791. [PMID: 37262080 PMCID: PMC11469069 DOI: 10.1002/adhm.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 06/03/2023]
Abstract
Bladder cancer (BC) is a highly aggressive malignant tumor affecting the urinary system, characterized by metastasis and a poor prognosis that often leads to limited therapeutic success. This study aims to develop a novel DNA aptamer for the diagnosis and treatment of BC using a tissue-based systematic evolution of ligands by an exponential enrichment (SELEX) process. By using SELEX, this work successfully generates a new aptamer named TB-5, which demonstrates a remarkable and specific affinity for nucleolin (NCL) in BC tissues and displays marked biocompatibility both in vitro and in vivo. Additionally, this work shows that NCL is a reliable tissue-specific biomarker in BC. Moreover, according to circular dichroism spectroscopy, TB-5 forms a non-G-quadruplex structure, distinguishing it from the current NCL-targeting aptamer AS1411, and exhibits a distinct binding region on NCL compared to AS1411. Notably, this study further reveals that TB-5 activates NCL function by promoting autophagy and suppressing the migration and invasion of BC cells, which occurs by disrupting mRNA transcription processes. These findings highlight the critical role of NCL in the pathological examination of BC and warrant more comprehensive investigations on anti-NCL aptamers in BC imaging and treatment.
Collapse
Affiliation(s)
- Yunyi Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Bei Hu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Xiaming Pei
- Department of UrologyHunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine. ChangshaHunan410013China
| | - Juan Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
| | - Yuxi Xu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Hailong Ou
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Yatao Wu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Lei Xue
- Department of PathologyHunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine. ChangshaHunan410013China
| | - Jason H. Huang
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
- Department of Medical EducationTexas A&M University School of MedicineCollege StationTX77843USA
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
- Department of Medical EducationTexas A&M University School of MedicineCollege StationTX77843USA
- Department of Pharmaceutical SciencesTexas A&M University School of PharmacyCollege StationTX77843USA
- LIVESTRONG Cancer Institutes and Department of OncologyDell Medical SchoolThe University of Texas at AustinAustinTX78712USA
| | - Xiaoxiao Hu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
- Research Institute of Hunan University in ChongqingChongqing401120China
- Shenzhen Research InstituteHunan UniversityShenzhenGuangdong518000China
- Hunan Yonghe‐sun Biotechnology Co. Ltd.ChangshaHunan410082China
| |
Collapse
|
36
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is a key challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signaling pathways incorporated in resistance mechanisms, or develop actively targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Furthermore, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways in cancer and discussed the use of aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Cheng F, Jiang Y, Kong B, Lin H, Shuai X, Hu P, Gao P, Zhan L, Huang C, Li C. Multi-Catcher Polymers Regulate the Nucleolin Cluster on the Cell Surface for Cancer Therapy. Adv Healthc Mater 2023; 12:e2300102. [PMID: 36988195 DOI: 10.1002/adhm.202300102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Cell signal transduction mediated by cell surface ligand-receptor is crucial for regulating cell behavior. The oligomerization or hetero-aggregation of the membrane receptor driven by the ligand realizes the rearrangement of apoptotic signals, providing a new ideal tool for tumor therapy. However, the construction of a stable model of cytomembrane receptor aggregation and the development of a universal anti-tumor therapy model on the cellular surface remain challenging. This work describes the construction of a "multi-catcher" flexible structure GC-chol-apt-cDNA with a suitable integration of the oligonucleotide aptamer (apt) and cholesterol (chol) on a polymer skeleton glycol chitosan (GC), for the regulation of the nucleolin cluster through strong polyvalent binding and hydrophobic membrane anchoring on the cell surface. This oligonucleotide aptamer shows nearly 100-fold higher affinity than that of the monovalent aptamer and achieves stable anchoring to the plasma membrane for up to 6 h. Moreover, it exerts a high tumor inhibition both in vitro and in vivo by activating endogenous mitochondrial apoptosis pathway through the cluster of nucleolins on the cell membrane. This multi-catcher nano-platform combines the spatial location regulation of cytomembrane receptors with the intracellular apoptotic signaling cascade and represents a promising strategy for antitumor therapy.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yongjian Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Bo Kong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Huarong Lin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Xinjia Shuai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Pingping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Pengfei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Lei Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
38
|
Liu W, Bi J, Ren Y, Chen H, Zhang J, Wang T, Wang M, Zhang L, Zhao J, Wu Z, Lv Y, Liu B, Wu R. Targeting extracellular CIRP with an X-aptamer shows therapeutic potential in acute pancreatitis. iScience 2023; 26:107043. [PMID: 37360693 PMCID: PMC10285643 DOI: 10.1016/j.isci.2023.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Severe acute pancreatitis (AP) is associated with a high mortality rate. Cold-inducible RNA binding protein (CIRP) can be released from cells in inflammatory conditions and extracellular CIRP acts as a damage-associated molecular pattern. This study aims to explore the role of CIRP in the pathogenesis of AP and evaluate the therapeutic potential of targeting extracellular CIRP with X-aptamers. Our results showed that serum CIRP concentrations were significantly increased in AP mice. Recombinant CIRP triggered mitochondrial injury and ER stress in pancreatic acinar cells. CIRP-/- mice suffered less severe pancreatic injury and inflammatory responses. Using a bead-based X-aptamer library, we identified an X-aptamer that specifically binds to CIRP (XA-CIRP). Structurally, XA-CIRP blocked the interaction between CIRP and TLR4. Functionally, it reduced CIRP-induced pancreatic acinar cell injury in vitro and L-arginine-induced pancreatic injury and inflammation in vivo. Thus, targeting extracellular CIRP with X-aptamers may be a promising strategy to treat AP.
Collapse
Affiliation(s)
- Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Junzhou Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
39
|
Li F, Cao Y, Kan X, Li D, Li Y, Huang C, Liu P. AS1411-conjugated doxorubicin-loaded silver nanotriangles for targeted chemo-photothermal therapy of breast cancer. Nanomedicine (Lond) 2023; 18:1077-1094. [PMID: 37650546 DOI: 10.2217/nnm-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Combination therapy has attracted tremendous interest for its great potential in treating cancers. Materials & methods: Based on chitosan-coated silver nanotriangles, polyethylene glycol, AS1411 aptamer and doxorubicin, a multifunctional nanocomposite (AS1411-DOX-AgNTs) was constructed and characterized. Then the photothermal properties, ability to target breast cancer cells and anti-breast cancer effect of AS1411-DOX-AgNTs were evaluated. Results: AS1411-DOX-AgNTs were successfully fabricated and showed excellent photothermal conversion efficiency, breast cancer cell and tumor targeting ability. Compared with single treatments, the combination of AS1411-DOX-AgNTs with near-infrared irradiation possessed the strongest anti-breast cancer effect in vitro and in vivo. Conclusion: AS1411-DOX-AgNTs hold great potential in targeted DOX delivery and combined chemo-photothermal therapy for breast cancer.
Collapse
Affiliation(s)
- Fan Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yuyu Cao
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Xuechun Kan
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Dongdong Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yan Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Cheng Huang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| |
Collapse
|
40
|
Chang X, Liu C, Han YM, Li QL, Guo B, Jiang HL. Efficient transfected liposomes co-loaded with pNrf2 and pirfenidone improves safe delivery for enhanced pulmonary fibrosis reversion. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:415-431. [PMID: 37159604 PMCID: PMC10163678 DOI: 10.1016/j.omtn.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
Pulmonary fibrosis (PF) is an interstitial lung disease with complex pathological mechanism, and there is currently a lack of therapeutics that can heal it completely. Using gene therapy with drugs provides promising therapeutic strategies for synergistically reversing PF. However, improving the intracellular accumulation and transfection efficiency of therapeutic nucleic acids is still a critical issue that urgently needs to be addressed. Herein, we developed lipid nanoparticles (PEDPs) with high transfection efficiency coloaded with pDNA of nuclear factor erythroid 2-related factor 2 (pNrf2) and pirfenidone (PFD) for PF therapy. PEDPs can penetrate biological barriers, accumulate at the target, and exert therapeutic effects, eventually alleviating the oxidative stress imbalance in type II alveolar epithelial cells (AECs II) and inhibiting myofibroblast overactivation through the synergistic effects of Nrf2 combined with PFD, thus reversing PF. In addition, we systematically engineered various liposomes (LNPs), demonstrated that reducing the polyethylene glycol (PEG) proportion could significantly improve the uptake and transfection efficiency of the LNPs, and proposed a possible mechanism for this influence. This study clearly reveals that controlling the composition ratio of PEG in PEDPs can efficiently deliver therapeutics into AECs II, improve pNrf2 transfection, and synergize with PFD in a prospective strategy to reverse PF.
Collapse
Affiliation(s)
- Xin Chang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Chang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yu-Mo Han
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Qiu-Ling Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Bin Guo
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
41
|
Chen Y, Pal S, Hu Q. Cell-based Relay Delivery Strategy in Biomedical Applications. Adv Drug Deliv Rev 2023; 198:114871. [PMID: 37196699 DOI: 10.1016/j.addr.2023.114871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
The relay delivery strategy is a two-step targeting approach based on two distinct modules in which the first step with an initiator is to artificially create a target/environment which can be targeted by the follow-up effector. This relay delivery concept creates opportunities to amplify existing or create new targeted signals through deploying initiators to enhance the accumulation efficiency of the following effector at the disease site. As the "live" medicines, cell-based therapeutics possess inherent tissue/cell homing abilities and favorable feasibility of biological and chemical modifications, endowing them the great potential in specifically interacting with diverse biological environments. All these unique capabilities make cellular products great candidates that can serve as either initiators or effectors for relay delivery strategies. In this review, we survey recent advances in relay delivery strategies with a specific focus on the roles of various cells in developing relay delivery systems.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
42
|
Duan M, Li K, Zhang L, Zhou Y, Bian L, Wang C. Screening, characterization and specific binding mechanism of aptamers against human plasminogen Kringle 5. Bioorg Chem 2023; 137:106579. [PMID: 37149949 DOI: 10.1016/j.bioorg.2023.106579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Plasminogen Kringle 5 is one of the most potent cytokines identified to inhibit the proliferation and migration of vascular endothelial cells. Herein, six aptamer candidates that specifically bind to Kringle 5 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). After 10 rounds of screening against Kringle 5, a highly enriched ssDNA pool was sequenced and the representative aptamers were subjected to binding assays to evaluate their affinity and specificity. The preferred aptamer KG-4, which demonstrated a low dissociation constant (Kd) of ∼ 432 nM and excellent selectivity for Kringle 5. A conserved "motif" of eight bases located at the stem-loop intersection, common to the aptamer, was further confirmed as the recognition element for binding with Kringle 5. The bulge formed by the motif and depression on the lysine binding site of Kringle 5 were both located at the binding interface, and the "induced fit" between their structures played a central role in the recognition process. Kringle 5 interacts KG-4 primarily through enthalpy-driven van der Waals forces and hydrogen bond. The key nucleotides A34 and C35 at motif on KG-4 and the positively charged amino acids in the loop 1 and loop 4 regions on Kringle 5 play a major role in the interaction. Furthermore, KG-4 dose-dependently reduced the proliferation inhibition of vascular endothelial cells by Kringle 5 and had a blocking effect on the function of Kringle 5 in inhibiting migration and promoting apoptosis of vascular endothelial cells in vitro. This study put a new light on protein-aptamer binding mechanism and may provide insight into the treatment of ischemic diseases by target depletion of Kringle 5.
Collapse
Affiliation(s)
- Meijiao Duan
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kewei Li
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ling Zhang
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yaqi Zhou
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Cuiling Wang
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
43
|
Puzzo F, Zhang C, Powell Gray B, Zhang F, Sullenger BA, Kay MA. Aptamer-programmable adeno-associated viral vectors as a novel platform for cell-specific gene transfer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:383-397. [PMID: 36817723 PMCID: PMC9929486 DOI: 10.1016/j.omtn.2023.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Adeno-associated viruses (AAVs) are commonly used for in vivo gene therapy. Nevertheless, the wide tropism that characterizes these vectors limits specific targeting to a particular cell type or tissue. Here, we developed new chemically modified AAV vectors (Nε-AAVs) displaying a single site substitution on the capsid surface for post-production vector engineering through biorthogonal copper-free click chemistry. We were able to identify AAV vectors that would tolerate the unnatural amino acid substitution on the capsid without disrupting their packaging efficiency. We functionalized the Nε-AAVs through conjugation with DNA (AS1411) or RNA (E3) aptamers or with a folic acid moiety (FA). E3-, AS1411-, and FA-AAVs showed on average a 3- to 9-fold increase in transduction compared with their non-conjugated counterparts in different cancer cell lines. Using specific competitors, we established ligand-specific transduction. In vivo studies confirmed the selective uptake of FA-AAV and AS1411-AAV without off-target transduction in peripheral organs. Overall, the high versatility of these novel Nε-AAVs might pave the way to tailoring gene therapy vectors toward specific types of cells both for ex vivo and in vivo applications.
Collapse
Affiliation(s)
- Francesco Puzzo
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Chuanling Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bethany Powell Gray
- Department of Surgery, Duke University School of Medicine, Durham, NC 27705, USA
| | - Feijie Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Sun T, Jiang C. Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Adv Drug Deliv Rev 2023; 196:114773. [PMID: 36906230 DOI: 10.1016/j.addr.2023.114773] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Drug delivery systems (DDS) triggered by local microenvironment represents the state-of-art of nanomedicine design, where the triggering hallmarks at intracellular and subcellular levels could be employed to exquisitely recognize the diseased sites, reduce side effects, and expand the therapeutic window by precisely tailoring the drug-release kinetics. Though with impressive progress, the DDS design functioning at microcosmic levels is fully challenging and underexploited. Here, we provide an overview describing the recent advances on stimuli-responsive DDSs triggered by intracellular or subcellular microenvironments. Instead of focusing on the targeting strategies as listed in previous reviews, we herein mainly highlight the concept, design, preparation and applications of stimuli-responsive systems in intracellular models. Hopefully, this review could give useful hints in developing nanoplatforms proceeding at a cellular level.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
45
|
Li P, Wang C, Wang W, Duan X, Li J. Preliminary evaluation of a 64Cu-labeled DNA aptamer for PET imaging of glioblastoma. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
AbstractTo develop a DNA aptamer-based PET tracer for imaging of glioblastoma. 5 mM of NOTA-AS1411, 60-min, and 37 °C were selected as the optimal condition for 64Cu radiolabeling of AS1411. 64Cu-NOTA-AS1411 remained stable in PBS and 100% mouse serum for at least six hours. From the PET images, 64Cu-NOTA-AS1411 tended to be excreted out through the kidneys and there was high tracer accumulation in the bladder. There was a higher tumor uptake in the AS1411 group than that in the control group. 64Cu-NOTA-AS1411 is a suitable potential PET tracer for imaging murine glioblastoma.
Collapse
|
46
|
Menon AP, Moreno B, Meraviglia-Crivelli D, Nonatelli F, Villanueva H, Barainka M, Zheleva A, van Santen HM, Pastor F. Modulating T Cell Responses by Targeting CD3. Cancers (Basel) 2023; 15:1189. [PMID: 36831533 PMCID: PMC9953819 DOI: 10.3390/cancers15041189] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Harnessing the immune system to fight cancer has become a reality with the clinical success of immune-checkpoint blockade (ICB) antibodies against PD(L)-1 and CTLA-4. However, not all cancer patients respond to ICB. Thus, there is a need to modulate the immune system through alternative strategies for improving clinical responses to ICB. The CD3-T cell receptor (TCR) is the canonical receptor complex on T cells. It provides the "first signal" that initiates T cell activation and determines the specificity of the immune response. The TCR confers the binding specificity whilst the CD3 subunits facilitate signal transduction necessary for T cell activation. While the mechanisms through which antigen sensing and signal transduction occur in the CD3-TCR complex are still under debate, recent revelations regarding the intricate 3D structure of the CD3-TCR complex might open the possibility of modulating its activity by designing targeted drugs and tools, including aptamers. In this review, we summarize the basis of CD3-TCR complex assembly and survey the clinical and preclinical therapeutic tools available to modulate CD3-TCR function for potentiating cancer immunotherapy.
Collapse
Affiliation(s)
- Ashwathi Puravankara Menon
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Francesca Nonatelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Hisse M. van Santen
- Unidad Desarrollo y Función del Sistema Inmunitario, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
47
|
Deng G, Zha H, Luo H, Zhou Y. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Front Bioeng Biotechnol 2023; 11:1118546. [PMID: 36741760 PMCID: PMC9892635 DOI: 10.3389/fbioe.2023.1118546] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
The burden of incidence rate and mortality of cancer is increasing rapidly, and the development of precise intervention measures for cancer detection and treatment will help reduce the burden and pain of cancer. At present, the sensitivity and specificity of tumor markers such as CEA and CA-125 used clinically are low, while PET, SPECT, and other imaging diagnoses with high sensitivity possess shortcomings, including long durations to obtain formal reports and the inability to identify the molecular pathological type of cancer. Cancer surgery is limited by stage and easy to recur. Radiotherapy and chemotherapy often cause damage to normal tissues, leading to evident side effects. Aptamers can selectively and exclusively bind to biomarkers and have, therefore, gained attention as ligands to be targeted for cancer detection and treatment. Gold nanoparticles (AuNPs) are considered as promising nano carriers for cancer diagnosis and treatment due to their strong light scattering characteristics, effective biocompatibility, and easy surface modification with targeted agents. The aptamer-gold nanoparticles targeting delivery system developed herein can combine the advantages of aptamers and gold nanoparticles, and shows excellent targeting, high specificity, low immunogenicity, minor side effects, etc., which builds a bridge for cancer markers to be used in early and efficient diagnosis and precise treatment. In this review, we summarize the latest progress in the application of aptamer-modified gold nanoparticles in cancer targeted diagnosis and delivery of therapeutic agents to cancer cells and emphasize the prospects and challenges of transforming these studies into clinical applications.
Collapse
Affiliation(s)
- Guozhen Deng
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - He Zha
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hongzhi Luo
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Yi Zhou
- Department of Orthopaedics, Jian Yang Hospital of Traditional Chinese Medicine, JianYang, Sichuan, China
| |
Collapse
|
48
|
Novopashina DS, Dymova MA, Davydova AS, Meschaninova MI, Malysheva DO, Kuligina EV, Richter VA, Kolesnikov IA, Taskaev SY, Vorobyeva MA. Aptamers for Addressed Boron Delivery in BNCT: Effect of Boron Cluster Attachment Site on Functional Activity. Int J Mol Sci 2022; 24:ijms24010306. [PMID: 36613750 PMCID: PMC9820356 DOI: 10.3390/ijms24010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Among the great variety of anti-cancer therapeutic strategies, boron neutron capture therapy (BNCT) represents a unique approach that doubles the targeting accuracy due to the precise positioning of a neutron beam and the addressed delivery of boron compounds. We have recently demonstrated the principal possibility of using a cell-specific 2'-F-RNA aptamer for the targeted delivery of boron clusters for BNCT. In the present study, we evaluated the amount of boron-loaded aptamer inside the cell via two independent methods: quantitative real-time polymerase chain reaction and inductive coupled plasma-atomic emission spectrometry. Both assays showed that the internalized boron level inside the cell exceeds 1 × 109 atoms/cell. We have synthesized closo-dodecaborate conjugates of 2'-F-RNA aptamers GL44 and Waz, with boron clusters attached either at the 3'- or at the 5'-end. The influence of cluster localization was evaluated in BNCT experiments on U-87 MG human glioblastoma cells and normal fibroblasts and subsequent analyses of cell viability via real-time cell monitoring and clonogenic assay. Both conjugates of GL44 aptamer provided a specific decrease in cell viability, while only the 3'-conjugate of the Waz aptamer showed the same effect. Thus, an individual adjustment of boron cluster localization is required for each aptamer. The efficacy of boron-loaded 2'-F-RNA conjugates was comparable to that of 10B-boronophenylalanine, so this type of boron delivery agent has good potential for BNCT due to such benefits as precise targeting, low toxicity and the possibility to use boron clusters made of natural, unenriched boron.
Collapse
Affiliation(s)
- Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Mariya I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Daria O. Malysheva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Iaroslav A. Kolesnikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Budker Institute of Nuclear Physics, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey Yu. Taskaev
- Budker Institute of Nuclear Physics, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
49
|
Li Y, Zhao J, Xue Z, Tsang C, Qiao X, Dong L, Li H, Yang Y, Yu B, Gao Y. Aptamer nucleotide analog drug conjugates in the targeting therapy of cancers. Front Cell Dev Biol 2022; 10:1053984. [PMID: 36544906 PMCID: PMC9760908 DOI: 10.3389/fcell.2022.1053984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Aptamers are short single-strand oligonucleotides that can form secondary and tertiary structures, fitting targets with high affinity and specificity. They are so-called "chemical antibodies" and can target specific biomarkers in both diagnostic and therapeutic applications. Systematic evolution of ligands by exponential enrichment (SELEX) is usually used for the enrichment and selection of aptamers, and the targets could be metal ions, small molecules, nucleotides, proteins, cells, or even tissues or organs. Due to the high specificity and distinctive binding affinity of aptamers, aptamer-drug conjugates (ApDCs) have demonstrated their potential role in drug delivery for cancer-targeting therapies. Compared with antibodies which are produced by a cell-based bioreactor, aptamers are chemically synthesized molecules that can be easily conjugated to drugs and modified; however, the conventional ApDCs conjugate the aptamer with an active drug using a linker which may add more concerns to the stability of the ApDC, the drug-releasing efficiency, and the drug-loading capacity. The function of aptamer in conventional ApDC is just as a targeting moiety which could not fully perform the advantages of aptamers. To address these drawbacks, scientists have started using active nucleotide analogs as the cargoes of ApDCs, such as clofarabine, ara-guanosine, gemcitabine, and floxuridine, to replace all or part of the natural nucleotides in aptamer sequences. In turn, these new types of ApDCs, aptamer nucleotide analog drug conjugates, show the strength for targeting efficacy but avoid the complex drug linker designation and improve the synthetic efficiency. More importantly, these classic nucleotide analog drugs have been used for many years, and aptamer nucleotide analog drug conjugates would not increase any unknown druggability risk but improve the target tumor accumulation. In this review, we mainly summarized aptamer-conjugated nucleotide analog drugs in cancer-targeting therapies.
Collapse
Affiliation(s)
- Yongshu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China,Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yongshu Li, ; Yunhua Gao,
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zhichao Xue
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Lianhua Dong
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Huijie Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Yi Yang
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Bin Yu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yunhua Gao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China,Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Yongshu Li, ; Yunhua Gao,
| |
Collapse
|
50
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|