1
|
Singto T, Sergeeva A, Filor V, Vidak J, Kleuser B, Belik V, Schumacher F, Bäumer W. Immune cells in dorsal root ganglia are associated with pruritus in a mouse model of allergic contact dermatitis and co-culture study. J Neuroimmunol 2025; 404:578617. [PMID: 40245781 DOI: 10.1016/j.jneuroim.2025.578617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
The interaction between the neuroimmune system plays a crucial role in itch sensation, yet most research has focused on immune cells within the skin. Our study seeks to explore the presence and functions of immune cells within the dorsal root ganglia (DRG) in the context of allergic contact dermatitis (ACD). Immunofluorescence and histological staining techniques were employed to identify immune cells, including T-cells, basophils, mast cells, and dendritic cells (DCs), within the DRG of BALB/c mice sensitized and challenged with toluene diisocyanate (TDI). Our findings revealed an increase in mast cells and DCs within the DRG under ACD condition. Additionally, when DRG neurons were cultured with mast cells, a higher proportion of neurons exhibited responses to non-histaminergic pruritogens compared to neurons cultured alone. This suggests that mast cells may contribute to heightened sensitivity to non-histaminergic pruritogens. Furthermore, we conducted transcriptomic analysis of DCs within the DRG using RNA sequencing, followed by pathway enrichment analysis. Our analysis revealed that sorted DCs are implicated in immune responses, inflammation, and itch, with notable upregulation of Cathepsin S (Ctss) and sphingosine-1-phosphate (S1P) phosphatase 2 (Sgpp2). Subsequent functional experiments targeting CTSS in co-culture studies validated suppressed response to pruritogen and agonists of TRPA1 and TRPV1, indicating a potential role in peripheral sensitization. Additionally, the co-culture study indicated that the neuroimmune interaction between DCs and DRG neurons might involve S1P metabolism and S1P receptor signaling. In conclusion, targeting DCs and exploring the non-histaminergic functions of mast cells within the DRG, holds promise as novel targets for treating pruritus.
Collapse
Affiliation(s)
- Tichakorn Singto
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstraße. 20, 14195 Berlin, Germany
| | - Alisa Sergeeva
- System Modeling Group, Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Viviane Filor
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstraße. 20, 14195 Berlin, Germany
| | - Jonathan Vidak
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstraße. 20, 14195 Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Vitaly Belik
- System Modeling Group, Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Wolfgang Bäumer
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstraße. 20, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Bojarski KK, David A, Lecaille F, Samsonov SA. In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions. Carbohydr Res 2024; 543:109201. [PMID: 39013335 DOI: 10.1016/j.carres.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Alexis David
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
3
|
Lin S, Liu X, Jiang J, Ge W, Zhang Y, Li F, Tao Q, Liu S, Li M, Chen H. The involvement of keratinocytes in pruritus of chronic inflammatory dermatosis. Exp Dermatol 2024; 33:e15142. [PMID: 39032085 DOI: 10.1111/exd.15142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Frequent itching and incessant scratching are commonly observed in various chronic inflammatory skin conditions, including atopic dermatitis and psoriasis. The persistent and prolonged nature of pruritus can worsen one's quality of life. Keratinocytes (KCs), the predominant cells of the epidermis, have been confirmed to interact with sensory neurons and immune cells and be involved in chronic skin inflammatory diseases associated with pruritus. Initially, KCs and sensory neurons form a unique synapse-like connection within the epidermis, serving as the structural foundation for their interaction. Additionally, several receptors, including toll-like receptors and protease-activated receptor 2, expressed on KCs, become activated in an inflammatory milieu. On the one hand, activated KCs are sources of pro-inflammatory cytokines and neurotrophic factors, such as adenosine triphosphate, thymic stromal lymphopoietin, and nerve growth factor, which directly or indirectly participate in stimulating sensory neurons, thereby contributing to the itch sensations. On the other hand, KCs also function as primary transducers alongside intraepidermal nerve endings, directly initiating pruritic responses. This review summarizes the current literature and highlights the critical role of KCs in the development and persistence of chronic itch in inflammatory skin disorders.
Collapse
Affiliation(s)
- Shiying Lin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Ge
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinlian Zhang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Li
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
4
|
Reches G, Piran R. Par2-mediated responses in inflammation and regeneration: choosing between repair and damage. Inflamm Regen 2024; 44:26. [PMID: 38816842 PMCID: PMC11138036 DOI: 10.1186/s41232-024-00338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The protease activated receptor 2 (Par2) plays a pivotal role in various damage models, influencing injury, proliferation, inflammation, and regeneration. Despite extensive studies, its binary roles- EITHER aggravating injury or promoting recovery-make a conclusive translational decision on its modulation strategy elusive. Analyzing two liver regeneration models, autoimmune hepatitis and direct hepatic damage, we discovered Par2's outcome depends on the injury's nature. In immune-mediated injury, Par2 exacerbates damage, while in direct tissue injury, it promotes regeneration. Subsequently, we evaluated the clinical significance of this finding by investigating Par2's expression in the context of autoimmune diabetes. We found that the absence of Par2 in all lymphocytes provided full protection against the autoimmune destruction of insulin-producing β-cells in mice, whereas the introduction of a β-cell-specific Par2 null mutation accelerated the onset of autoimmune diabetes. This pattern led us to hypothesize whether these observations are universal. A comprehensive review of recent Par2 publications across tissues and systems confirms the claim drafted above: Par2's initial activation in the immune system aggravates inflammation, hindering recovery, whereas its primary activation in the damaged tissue fosters regeneration. As a membrane-anchored receptor, Par2 emerges as an attractive drug target. Our findings highlight a crucial translational modulation strategy in regenerative medicine based on injury type.
Collapse
Affiliation(s)
- Gal Reches
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold St, Safed, Israel.
| |
Collapse
|
5
|
Biazus Soares G, Hashimoto T, Yosipovitch G. Atopic Dermatitis Itch: Scratching for an Explanation. J Invest Dermatol 2024; 144:978-988. [PMID: 38363270 DOI: 10.1016/j.jid.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Chronic pruritus is a cardinal symptom of atopic dermatitis (AD). The mechanisms underlying atopic itch involve intricate crosstalk among skin, immune components, and neural components. In this review, we explore these mechanisms, focusing on key players and interactions that induce and exacerbate itch. We discuss the similarities and differences between pruritus and pain in patients with AD as well as the relationship between pruritus and factors such as sweat and the skin microbiome. Furthermore, we explore novel targets that could provide significant itch relief in these patients as well as exciting future research directions to better understand atopic pruritus in darker skin types.
Collapse
Affiliation(s)
- Georgia Biazus Soares
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
6
|
Tsagareli MG, Follansbee T, Iodi Carstens M, Carstens E. Targeting Transient Receptor Potential (TRP) Channels, Mas-Related G-Protein-Coupled Receptors (Mrgprs), and Protease-Activated Receptors (PARs) to Relieve Itch. Pharmaceuticals (Basel) 2023; 16:1707. [PMID: 38139833 PMCID: PMC10748146 DOI: 10.3390/ph16121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Itch (pruritus) is a sensation in the skin that provokes the desire to scratch. The sensation of itch is mediated through a subclass of primary afferent sensory neurons, termed pruriceptors, which express molecular receptors that are activated by itch-evoking ligands. Also expressed in pruriceptors are several types of Transient Receptor Potential (TRP) channels. TRP channels are a diverse class of cation channels that are responsive to various somatosensory stimuli like touch, pain, itch, and temperature. In pruriceptors, TRP channels can be activated through intracellular signaling cascades initiated by pruritogen receptors and underly neuronal activation. In this review, we discuss the role of TRP channels TRPA1, TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, and TRPC3/4 in acute and chronic pruritus. Since these channels often mediate itch in association with pruritogen receptors, we also discuss Mas-related G-protein-coupled receptors (Mrgprs) and protease-activated receptors (PARs). Additionally, we cover the exciting therapeutic targets amongst the TRP family, as well as Mrgprs and PARs for the treatment of pruritus.
Collapse
Affiliation(s)
- Merab G. Tsagareli
- Laboratory of Pain and Analgesia, Ivane Beritashvili Center for Experimental Biomedicine, 0160 Tbilisi, Georgia;
| | - Taylor Follansbee
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Mirela Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA;
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, USA;
| |
Collapse
|
7
|
Hu M, Scheffel J, Elieh-Ali-Komi D, Maurer M, Hawro T, Metz M. An update on mechanisms of pruritus and their potential treatment in primary cutaneous T-cell lymphoma. Clin Exp Med 2023; 23:4177-4197. [PMID: 37555911 PMCID: PMC10725374 DOI: 10.1007/s10238-023-01141-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Primary cutaneous T-cell lymphomas (CTCL), which include mycosis fungoides (MF) and Sézary syndrome (SS), are a group of lymphoproliferative disorders characterized by clonal accumulation of neoplastic T-lymphocytes in the skin. Severe pruritus, one of the most common and distressing symptoms in primary CTCL, can significantly impair emotional well-being, physical functioning, and interpersonal relationships, thus greatly reducing quality of life. Unfortunately, effectively managing pruritus remains challenging in CTCL patients as the underlying mechanisms are, as of yet, not fully understood. Previous studies investigating the mechanisms of itch in CTCL have identified several mediators and their corresponding antagonists used for treatment. However, a comprehensive overview of the mediators and receptors contributing to pruritus in primary CTCL is lacking in the current literature. Here, we summarize and review the mediators and receptors that may contribute to pruritus in primary CTCL to explore the mechanisms of CTCL pruritus and identify effective therapeutic targets using the PubMed and Web of Science databases. Studies were included if they described itch mediators and receptors in MF and SS. Overall, the available data suggest that proteases (mainly tryptase), and neuropeptides (particularly Substance P) may be of greatest interest. At the receptor level, cytokine receptors, MRGPRs, and TRP channels are most likely important. Future drug development efforts should concentrate on targeting these mediators and receptors for the treatment of CTCL pruritus.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, Institute and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany.
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
8
|
Ortiz-Carpena JF, Inclan-Rico JM, Pastore CF, Hung LY, Wilkerson WB, Weiner MB, Lin C, Gentile ME, Cohen NA, Saboor IA, Vaughan AE, Rossi HL, Herbert DR. [WITHDRAWN] Neuron-dependent tuft cell expansion initiates sinonasal allergic Type 2 inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547596. [PMID: 37461610 PMCID: PMC10349937 DOI: 10.1101/2023.07.04.547596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The authors have withdrawn this manuscript owing to inaccuracies in the calculation of tuft cell numbers and errors in the selection of immunofluorescence images used to support our claims. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
9
|
Ren X, Liu S, Virlogeux A, Kang SJ, Brusch J, Liu Y, Dymecki SM, Han S, Goulding M, Acton D. Identification of an essential spinoparabrachial pathway for mechanical itch. Neuron 2023; 111:1812-1829.e6. [PMID: 37023756 PMCID: PMC10446756 DOI: 10.1016/j.neuron.2023.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/31/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
The sensation of itch is a protective response that is elicited by either mechanical or chemical stimuli. The neural pathways for itch transmission in the skin and spinal cord have been characterized previously, but the ascending pathways that transmit sensory information to the brain to evoke itch perception have not been identified. Here, we show that spinoparabrachial neurons co-expressing Calcrl and Lbx1 are essential for generating scratching responses to mechanical itch stimuli. Moreover, we find that mechanical and chemical itch are transmitted by separate ascending pathways to the parabrachial nucleus, where they engage separate populations of FoxP2PBN neurons to drive scratching behavior. In addition to revealing the architecture of the itch transmission circuitry required for protective scratching in healthy animals, we identify the cellular mechanisms underlying pathological itch by showing the ascending pathways for mechanical and chemical itch function cooperatively with the FoxP2PBN neurons to drive chronic itch and hyperknesis/alloknesis.
Collapse
Affiliation(s)
- Xiangyu Ren
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Shijia Liu
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Amandine Virlogeux
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jeremy Brusch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Yuanyuan Liu
- NIDCR, National Institute of Health, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Koumaki D, Gregoriou S, Evangelou G, Krasagakis K. Pruritogenic Mediators and New Antipruritic Drugs in Atopic Dermatitis. J Clin Med 2023; 12:2091. [PMID: 36983094 PMCID: PMC10054239 DOI: 10.3390/jcm12062091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Atopic dermatitis (AD) is a common highly pruritic chronic inflammatory skin disorder affecting 5-20% of children worldwide, while the prevalence in adults varies from 7 to 10%. Patients with AD experience intense pruritus that could lead to sleep disturbance and impaired quality of life. Here, we analyze the pathophysiology of itchiness in AD. We extensively review the histamine-dependent and histamine-independent pruritogens. Several receptors, substance P, secreted molecules, chemokines, and cytokines are involved as mediators in chronic itch. We also, summarize the new emerging antipruritic drugs in atopic dermatitis.
Collapse
Affiliation(s)
- Dimitra Koumaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stamatios Gregoriou
- Department of Dermatology and Venereology, Andreas Sygros Hospital, Medical School of Athens, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - George Evangelou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | |
Collapse
|
11
|
Hiroyasu S, Barit JVJG, Hiroyasu A, Tsuruta D. Pruritogens in pemphigoid diseases: Possible therapeutic targets for a burdensome symptom. J Dermatol 2023; 50:150-161. [PMID: 36477831 PMCID: PMC10108135 DOI: 10.1111/1346-8138.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Pruritus is a hallmark feature in pemphigoid diseases, where it can be severe and greatly impact the quality of life of affected patients. Despite being a key symptom, the exact pathophysiological mechanisms involved in pruritus in pemphigoid are yet to be fully elucidated and effective therapies addressing them are limited. This review summarizes the present understanding of pruritus specific to pemphigoid diseases, especially the pruritogens that induce it, and the therapeutic options that have been explored so far. The majority of the available evidence is on bullous pemphigoid and epidermolysis bullosa acquisita. Histamine derived from basophils correlates with pruritus severity, with omalizumab demonstrating promising efficacy in pruritus for bullous pemphigoid. IL-4/-13 contribute to itch in bullous pemphigoid with dupilumab being evaluated in clinical trials. Other pruritogens of interest include substance P, tryptase, and thymic stromal lymphopoetin, with therapies targeting them requiring further investigation. Scratching behaviors contribute directly to blister formation through various mechanisms, such as pathological autoantibody recruitment, T helper cell type 1 polarization, and exposure of intracellular autoantigens. Treatments addressing these pathways may contribute to decreasing disease severity. Additional studies are needed to fully characterize how pruritus is regulated in pemphigoid diseases, to help pave the way to develop novel and effective therapeutics that will not only address pruritic symptoms but also decrease disease severity.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Jay-V James G Barit
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aoi Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
13
|
Silva R, Malcangio M. Fractalkine/CX 3CR 1 Pathway in Neuropathic Pain: An Update. FRONTIERS IN PAIN RESEARCH 2022; 2:684684. [PMID: 35295489 PMCID: PMC8915718 DOI: 10.3389/fpain.2021.684684] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/30/2021] [Indexed: 01/23/2023] Open
Abstract
Injuries to the nervous system can result in a debilitating neuropathic pain state that is often resistant to treatment with available analgesics, which are commonly associated with several side-effects. Growing pre-clinical and clinical evidence over the last two decades indicates that immune cell-mediated mechanisms both in the periphery and in the Central Nervous System (CNS) play significant roles in the establishment and maintenance of neuropathic pain. Specifically, following peripheral nerve injury, microglia, which are CNS resident immune cells, respond to the activity of the first pain synapse in the dorsal horn of spinal cord and also to neuronal activity in higher centres in the brain. This microglial response leads to the production and release of several proinflammatory mediators which contribute to neuronal sensitisation under neuropathic pain states. In this review, we collect evidence demonstrating the critical role played by the Fractalkine/CX3CR1 signalling pathway in neuron-to-microglia communication in neuropathic pain states and explore how strategies that include components of this pathway offer opportunities for innovative targets for neuropathic pain.
Collapse
Affiliation(s)
- Rita Silva
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Sage J, Renault J, Domain R, Bojarski K, Chazeirat T, Saidi A, Leblanc E, Nizard C, Samsonov S, Kurfurst R, Lalmanach G, Lecaille F. Modulation of the expression and activity of cathepsin S in reconstructed human skin by neohesperidin dihydrochalcone. Matrix Biol 2022; 107:97-112. [DOI: 10.1016/j.matbio.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023]
|
15
|
Toyama S, Tominaga M, Takamori K. Connections between Immune-Derived Mediators and Sensory Nerves for Itch Sensation. Int J Mol Sci 2021; 22:12365. [PMID: 34830245 PMCID: PMC8624544 DOI: 10.3390/ijms222212365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.
Collapse
Affiliation(s)
- Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Chiba 279-0021, Japan
| |
Collapse
|
16
|
Wong LS, Yen YT, Lee CH. The Implications of Pruritogens in the Pathogenesis of Atopic Dermatitis. Int J Mol Sci 2021; 22:7227. [PMID: 34281281 PMCID: PMC8269281 DOI: 10.3390/ijms22137227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/17/2023] Open
Abstract
Atopic dermatitis (AD) is a prototypic inflammatory disease that presents with intense itching. The pathophysiology of AD is multifactorial, involving environmental factors, genetic susceptibility, skin barrier function, and immune responses. A recent understanding of pruritus transmission provides more information about the role of pruritogens in the pathogenesis of AD. There is evidence that pruritogens are not only responsible for eliciting pruritus, but also interact with immune cells and act as inflammatory mediators, which exacerbate the severity of AD. In this review, we discuss the interaction between pruritogens and inflammatory molecules and summarize the targeted therapies for AD.
Collapse
Affiliation(s)
- Lai-San Wong
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Yu-Ta Yen
- Department of Dermatology, Fooying University Hospital, Pingtung 928, Taiwan;
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| |
Collapse
|
17
|
Unlocking the Non-IgE-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2). Cells 2021; 10:cells10051033. [PMID: 33925682 PMCID: PMC8146469 DOI: 10.3390/cells10051033] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
Mas-related G-protein coupled receptor member X2 (MRGPRX2) is a class A GPCR expressed on mast cells. Mast cells are granulated tissue-resident cells known for host cell response, allergic response, and vascular homeostasis. Immunoglobulin E receptor (FcεRI)-mediated mast cell activation is a well-studied and recognized mechanism of allergy and hypersensitivity reactions. However, non-IgE-mediated mast cell activation is less explored and is not well recognized. After decades of uncertainty, MRGPRX2 was discovered as the receptor responsible for non-IgE-mediated mast cells activation. The puzzle of non-IgE-mediated pseudo-allergic reaction is unlocked by MRGPRX2, evidenced by a plethora of reported endogenous and exogenous MRGPRX2 agonists. MRGPRX2 is exclusively expressed on mast cells and exhibits varying affinity for many molecules such as antimicrobial host defense peptides, neuropeptides, and even US Food and Drug Administration-approved drugs. The discovery of MRGPRX2 has changed our understanding of mast cell biology and filled the missing link of the underlying mechanism of drug-induced MC degranulation and pseudo-allergic reactions. These non-canonical characteristics render MRGPRX2 an intriguing player in allergic diseases. In the present article, we reviewed the emerging role of MRGPRX2 as a non-IgE-mediated mechanism of mast cell activation in pseudo-allergic reactions. We have presented an overview of mast cells, their receptors, structural insight into MRGPRX2, MRGPRX2 agonists and antagonists, the crucial role of MRGPRX2 in pseudo-allergic reactions, current challenges, and the future research direction.
Collapse
|
18
|
Garcovich S, Maurelli M, Gisondi P, Peris K, Yosipovitch G, Girolomoni G. Pruritus as a Distinctive Feature of Type 2 Inflammation. Vaccines (Basel) 2021; 9:vaccines9030303. [PMID: 33807098 PMCID: PMC8005108 DOI: 10.3390/vaccines9030303] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Pruritus is a common symptom of several skin diseases, both inflammatory and neoplastic. Pruritus might have a tremendous impact on patients’ quality of life and strongly interfere with sleep, social, and work activities. We review the role of type-2 inflammation and immunity in the pathogenesis of chronic pruritic conditions of the skin. Type 2 cytokines, including IL-4, IL-13, thymic stromal lymphopoietin, periostin, IL-31, IL-25, and IL-33 are released by mast cells, innate lymphoid cells 2, keratinocytes, and type 2 T lymphocytes, and are master regulators of chronic itch. These cytokines might act as direct pruritogen on primary sensory neurons (pruriceptors) or alter the sensitivity to other itch mediators Type 2 inflammation- and immunity-dominated skin diseases, including atopic dermatitis, prurigo nodularis, bullous pemphigoid, scabies, parasitic diseases, urticaria, and Sézary syndrome are indeed conditions associated with most severe pruritus. In contrast, in other skin diseases, such as scleroderma, lupus erythematosus, hidradenitis suppurativa, and acne, type 2 inflammation is less represented, and pruritus is milder or variable. Th2 inflammation and immunity evolved to protect against parasites, and thus, the scratching response evoked by pruritus might have developed to alert about the presence and to remove parasites from the skin surface.
Collapse
Affiliation(s)
- Simone Garcovich
- Dermatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Dermatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence:
| | - Martina Maurelli
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy; (M.M.); (P.G.); (G.G.)
| | - Paolo Gisondi
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy; (M.M.); (P.G.); (G.G.)
| | - Ketty Peris
- Dermatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Dermatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gil Yosipovitch
- Miami Itch Center, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Giampiero Girolomoni
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 37126 Verona, Italy; (M.M.); (P.G.); (G.G.)
| |
Collapse
|
19
|
Pierre O, Fouchard M, Buscaglia P, Le Goux N, Leschiera R, Mignen O, Fluhr JW, Misery L, Le Garrec R. Calcium Increase and Substance P Release Induced by the Neurotoxin Brevetoxin-1 in Sensory Neurons: Involvement of PAR2 Activation through Both Cathepsin S and Canonical Signaling. Cells 2020; 9:E2704. [PMID: 33348659 PMCID: PMC7767211 DOI: 10.3390/cells9122704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
Red tides involving Karenia brevis expose humans to brevetoxins (PbTxs). Oral exposition triggers neurotoxic shellfish poisoning, whereas inhalation induces a respiratory syndrome and sensory disturbances. No curative treatment is available and the pathophysiology is not fully elucidated. Protease-activated receptor 2 (PAR2), cathepsin S (Cat-S) and substance P (SP) release are crucial mediators of the sensory effects of ciguatoxins (CTXs) which are PbTx analogs. This work explored the role of PAR2 and Cat-S in PbTx-1-induced sensory effects and deciphered the signaling pathway involved. We performed calcium imaging, PAR2 immunolocalization and SP release experiments in monocultured sensory neurons or co-cultured with keratinocytes treated with PbTx-1 or P-CTX-2. We demonstrated that PbTx-1-induced calcium increase and SP release involved Cat-S, PAR2 and transient receptor potential vanilloid 4 (TRPV4). The PbTx-1-induced signaling pathway included protein kinase A (PKA) and TRPV4, which are compatible with the PAR2 biased signaling induced by Cat-S. Internalization of PAR2 and protein kinase C (PKC), inositol triphosphate receptor and TRPV4 activation evoked by PbTx-1 are compatible with the PAR2 canonical signaling. Our results suggest that PbTx-1-induced sensory disturbances involve the PAR2-TRPV4 pathway. We identified PAR2, Cat-S, PKA, and PKC that are involved in TRPV4 sensitization induced by PbTx-1 in sensory neurons.
Collapse
Affiliation(s)
- Ophélie Pierre
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Maxime Fouchard
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Paul Buscaglia
- InsermUMR1227, Lymphocytes B et Autoimmunity, University Brest, F-29200 Brest, France; (P.B.); (N.L.G.); (O.M.)
| | - Nelig Le Goux
- InsermUMR1227, Lymphocytes B et Autoimmunity, University Brest, F-29200 Brest, France; (P.B.); (N.L.G.); (O.M.)
| | - Raphaël Leschiera
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Olivier Mignen
- InsermUMR1227, Lymphocytes B et Autoimmunity, University Brest, F-29200 Brest, France; (P.B.); (N.L.G.); (O.M.)
| | - Joachim W. Fluhr
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
- Department of Dermatology and Allergology, Universitaetsmedizin Charit Berlin, D-10117 Berlin, Germany
| | - Laurent Misery
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaële Le Garrec
- EA4685 Laboratory of Interactions Neurons-Keratinocytes (LIEN), Faculty of Medicine and Health Sciences, University Brest, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| |
Collapse
|
20
|
Kühn H, Kolkhir P, Babina M, Düll M, Frischbutter S, Fok JS, Jiao Q, Metz M, Scheffel J, Wolf K, Kremer AE, Maurer M. Mas-related G protein-coupled receptor X2 and its activators in dermatologic allergies. J Allergy Clin Immunol 2020; 147:456-469. [PMID: 33071069 DOI: 10.1016/j.jaci.2020.08.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The Mas-related G protein-coupled receptor X2 (MRGPRX2) is a multiligand receptor responding to various exogenous and endogenous stimuli. Being highly expressed on skin mast cells, MRGPRX2 triggers their degranulation and release of proinflammatory mediators, and it promotes multicellular signaling cascades, such as itch induction and transmission in sensory neurons. The expression of MRGPRX2 by skin mast cells and the levels of the MRGPRX2 agonists (eg, substance P, major basic protein, eosinophil peroxidase) are upregulated in the serum and/or skin of patients with inflammatory and pruritic skin diseases, such as chronic spontaneous urticaria or atopic dermatitis. Therefore, MRGPRX2 and its agonists might be potential biomarkers for the progression of cutaneous inflammatory diseases and the response to treatment. In addition, they may represent promising targets for prevention and treatment of signs and symptoms in patients with skin diseases or drug reactions. To assess this possibility, this review explores the role and relevance of MRGPRX2 and its activators in cutaneous inflammatory disorders and chronic pruritus.
Collapse
Affiliation(s)
- Helen Kühn
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pavel Kolkhir
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; I.M. Sechenov First Moscow State Medical University (Sechenov University), Division of Immune-mediated Skin Diseases, Moscow, Russia
| | - Magda Babina
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Miriam Düll
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jie Shen Fok
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Respiratory Medicine, Box Hill Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Qingqing Jiao
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Martin Metz
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Wolf
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
21
|
Montague-Cardoso K, Malcangio M. Cathepsin S as a potential therapeutic target for chronic pain. MEDICINE IN DRUG DISCOVERY 2020; 7:100047. [PMID: 32904424 PMCID: PMC7453913 DOI: 10.1016/j.medidd.2020.100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 01/28/2023] Open
Abstract
Chronic pain is a distressing yet poorly-treated condition that can arise as a result of diseases and injuries to the nervous system. The development of more efficacious therapies for chronic pain is essential and requires advances in our understanding of its underlying mechanisms. Clinical and preclinical evidence has demonstrated that immune responses play a crucial role in chronic pain. The lysosomal cysteine protease cathepsin S (CatS) plays a key role in such immune response. Here we discuss the preclinical evidence for the mechanistic importance of extracellular CatS in chronic pain focussing on studies utilising drugs and other pharmacological tools that target CatS activity. We also consider the use of CatS inhibitors as potential novel antihyperalgesics, highlighting that the route and timing of delivery would need to be tailored to the initial cause of pain in order to ensure the most effective use of such drugs. Cathepsin S plays a key extracellular role in the underlying mechanisms of chronic pain Pharmacological tools provide crucial evidence for this role and the therapeutic potential of targeting Cathepsin S The route of delivery and timing of cathepsin S inhibitor administration should be tailored to specific causes of chronic pain
Collapse
Affiliation(s)
- Karli Montague-Cardoso
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL
| |
Collapse
|
22
|
PAR2, Keratinocytes, and Cathepsin S Mediate the Sensory Effects of Ciguatoxins Responsible for Ciguatera Poisoning. J Invest Dermatol 2020; 141:648-658.e3. [PMID: 32800876 DOI: 10.1016/j.jid.2020.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/14/2023]
Abstract
Ciguatera fish poisoning is caused by the consumption of fish contaminated with ciguatoxins (CTXs). The most distressing symptoms are cutaneous sensory disturbances, including cold dysesthesia and itch. CTXs are neurotoxins known to activate voltage-gated sodium channels, but no specific treatment exists. Peptidergic neurons have been critically involved in ciguatera fish poisoning sensory disturbances. Protease-activated receptor-2 (PAR2) is an itch- and pain-related G protein‒coupled receptor whose activation leads to a calcium-dependent neuropeptide release. In this study, we studied the role of voltage-gated sodium channels, PAR2, and the PAR2 agonist cathepsin S in the cytosolic calcium increase and subsequent release of the neuropeptide substance P elicited by Pacific CTX-2 (P-CTX-2) in rat sensory neurons and human epidermal keratinocytes. In sensory neurons, the P-CTX-2‒evoked calcium response was driven by voltage-gated sodium channels and PAR2-dependent mechanisms. In keratinocytes, P-CTX-2 also induced voltage-gated sodium channels and PAR2-dependent marked calcium response. In the cocultured cells, P-CTX-2 significantly increased cathepsin S activity, and cathepsin S and PAR2 antagonists almost abolished P-CTX-2‒elicited substance P release. Keratinocytes synergistically favored the induced substance P release. Our results demonstrate that the sensory effects of CTXs involve the cathepsin S-PAR2 pathway and are potentiated by their direct action on nonexcitable keratinocytes through the same pathway.
Collapse
|
23
|
Abstract
Itch is a unique sensation that helps organisms scratch away external threats; scratching itself induces an immune response that can contribute to more itchiness. Itch is induced chemically in the peripheral nervous system via a wide array of receptors. Given the superficial localization of itch neuron terminals, cells that dwell close to the skin contribute significantly to itch. Certain mechanical stimuli mediated by recently discovered circuits also contribute to the itch sensation. Ultimately, in the spinal cord, and likely in the brain, circuits that mediate touch, pain, and itch engage in cross modulation. Much of itch perception is still a mystery, but we present in this review the known ligands and receptors associated with itch. We also describe experiments and findings from investigations into the spinal and supraspinal circuitry responsible for the sensation of itch.
Collapse
Affiliation(s)
- Mark Lay
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;,
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;,
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|