1
|
Jiang W, Zhou H, Xu G, Zhang M, Tung TH, Luo C. The association between air pollution and three types of diabetes: An umbrella review of systematic reviews and meta-analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118080. [PMID: 40118013 DOI: 10.1016/j.ecoenv.2025.118080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Despite numerous meta-analyses showing an association between air pollutants and diabetes, there is considerable heterogeneity between studies. OBJECTIVES This study aims to evaluate the cumulative evidence regarding the association between air pollution and type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and gestational diabetes mellitus (GDM) through systematic reviews and meta-analyses. METHODS Following the PRISMA 2020 guidance, a comprehensive review across three databases, including Web of Science, Embase, and PubMed, from inception to September 30, 2024. The quality of the included systematic reviews was assessed using the AMSTAR 2 tool. The research protocol has been registered in PROSPERO (CRD42024594953). RESULTS A total of 19 meta-analyses were identified in this review, including two articles investigating the impact of air pollution on T1DM, nine on T2DM, and ten on GDM. Due to limited data, no significant relationship between air pollution and T1DM was found. There is evidence that exposure to particulate matter (PM2.5 and PM10) may significantly increase the risk of T2DM. However, meta-analyses concerning GDM exhibit a less consistent association between air pollution and GDM risk, which varies by pollutant and duration of exposure. CONCLUSION Results suggest that exposure to air pollution may increase diabetes risk to some extent, particularly for T2DM. However, due to limited available studies, further prospective cohort studies are warranted to elucidate the role of air pollutants in diabetes, particularly for T1DM. Additionally, understanding potential mechanisms by which air pollution affects diabetes is crucial for future investigations.
Collapse
Affiliation(s)
- Weicong Jiang
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China; Department of Financial Markets, Linhai Rural Commercial Bank, Linhai, China
| | - Huili Zhou
- Department of Nephrology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Guangbiao Xu
- Department of Nephrology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Meixian Zhang
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China.
| | - Chengwen Luo
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China.
| |
Collapse
|
2
|
Zhang Q, Feng Y, Zhao J, Sun S, Zheng T, Wang J, Chen H, Ye H, Lv S, Zhang Y, Wang S, Li Y, Dong Z. Caffeic acid-mediated photodynamic multifunctional hyaluronic acid-gallic acid hydrogels with instant and enduring bactericidal potency accelerate bacterial infected wound healing. Int J Biol Macromol 2024; 282:136877. [PMID: 39461641 DOI: 10.1016/j.ijbiomac.2024.136877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
The emergence of drug-resistant bacteria poses significant challenges in wound treatment. Antimicrobial photodynamic therapy has emerged as an effective approach to eliminating bacteria by inducing oxidative stress without causing drug resistance. Here, we developed a natural hyaluronic acid (HA)-gallic acid (GA) conjugation-based hydrogel combined with herbal photosensitizer-caffeic acid (CA), which exhibits self-healing ability, shape adaptability, biodegradability, and robust tissue adhesion. Under exposure to 400 nm light, caffeic acid acts as a photosensitizer, generating reactive oxygen species and oxidative damage to bacterial cell membranes. Furthermore, the presence of GA and CA displayed a continuous inhibitory effect on bacterial growth, along with antioxidant properties that promote wound healing even after the cessation of light exposure. The antibacterial mechanism of the HA-GA/CA hydrogel against MRSA, S. aureus, and E. coli was investigated through various assays measuring ATP levels, Zeta potential, hydroxyl radicals (·OH) generated by light irradiation, and biofilm clearance rate. Additionally, hydrogel's application in treating MRSA-infected wounds in mice under light irradiation demonstrated rapid wound-healing effects and biocompatibility. Overall, HA-GA/CA hydrogel provides a sustainable, antibiotic-free alternative for treating MRSA-infected wounds.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Yifan Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Jixiang Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Shuhui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Tingting Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Jinrui Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Huan Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Hanyi Ye
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Shun Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Yinghua Zhang
- Jilin Provincial Academy of Chinese Medicine, Changchun 130012, PR China
| | - Siming Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Ying Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, PR China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, PR China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, PR China.
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, PR China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, PR China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, PR China.
| |
Collapse
|
3
|
Lv X, Lin G, Zhang Y, Yuan K, Liang T, Liu R, Du Y, Yu H, Sun S. Weekly-specific ambient PM 1 before and during pregnancy and the risk of gestational diabetes mellitus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117006. [PMID: 39244877 DOI: 10.1016/j.ecoenv.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Exposure to fine or respirable particulate matter has been linked to an elevated risk of gestational diabetes mellitus (GDM). However, the association between exposure to particulate matter with an aerodynamic diameter ≤ 1 μm (PM1) and GDM has not been explored. METHODS We conducted a cohort study involving 60,173 pregnant women from nine hospitals in Beijing, China, from February 2015 to April 2021. Daily concentrations of PM1 and ozone were obtained from a validated spatiotemporal artificial intelligence model. We used a modified Poisson regression combined with distributed lag models to estimate the association between weekly-specific PM1 exposure and the risk of GDM after adjusting for individual-level covariates. RESULTS Among the 51,299 pregnant women included in the final analysis, 4008 were diagnosed with GDM. Maternal exposure to PM1 during preconception and gestational periods was generally associated with an increased risk of GDM. The most pronounced associations were identified during the 12th week before pregnancy, the 5th-8th weeks of the first trimester, and the 23rd-24th weeks of the second trimester. Each 10 μg/m3 increase in PM1 was associated with a relative risk of GDM of 1.65 (95 % CI: 1.59, 1.72) during the preconception period, 1.67 (95 % CI: 1.61, 1.73) in the first trimester, 1.52 (95 % CI: 1.47, 1.58) in the second trimester, and 2.54 (95 % CI: 2.45, 2.63) when considering the first and second trimester combined. CONCLUSIONS Exposure to PM1 before and during pregnancy was associated with an increased risk of GDM, particularly during the 12 weeks before pregnancy and gestational weeks 5-8 and 23-24.
Collapse
Affiliation(s)
- Xin Lv
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guiyin Lin
- Beijing Tongzhou District Maternal and Child Health Hospital, 124 Yuqiao Middle Road, Beijing, Tongzhou District 101100, China
| | - Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Kun Yuan
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Tian Liang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ruiyi Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ying Du
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huanling Yu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
5
|
Nepalia A, Fernandes SE, Singh H, Rana S, Saini DK. Anti-microbial resistance and aging-A design for evolution. WIREs Mech Dis 2023; 15:e1626. [PMID: 37553220 DOI: 10.1002/wsbm.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
The emergence of resistance to anti-infective agents poses a significant threat to successfully treating infections caused by bacteria. Bacteria acquire random mutations due to exposure to environmental stresses, which may increase their fitness to other selection pressures. Interestingly, for bacteria, the frequency of anti-microbial resistance (AMR) seems to be increasing in tandem with the human lifespan. Based on evidence from previous literature, we speculate that increased levels of free radicals (Reactive Oxygen Species-ROS and Reactive Nitrosative Species-RNS), elevated inflammation, and the altered tissue microenvironment in aged individuals may drive pathogen mutagenesis. If these mutations result in the hyperactivation of efflux pumps or alteration in drug target binding sites, it could confer AMR, thus rendering antibiotic therapy ineffective while leading to the selection of novel drug-resistant variants. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Environmental Factors Metabolic Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Amrita Nepalia
- Department of Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Sheryl Erica Fernandes
- Department of Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Harpreet Singh
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Shweta Rana
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, and Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Zakharova OV, Belova VV, Baranchikov PA, Kostyakova AA, Muratov DS, Grigoriev GV, Chebotaryova SP, Kuznetsov DV, Gusev AA. The Conditions Matter: The Toxicity of Titanium Trisulfide Nanoribbons to Bacteria E. coli Changes Dramatically Depending on the Chemical Environment and the Storage Time. Int J Mol Sci 2023; 24:ijms24098299. [PMID: 37176006 PMCID: PMC10179056 DOI: 10.3390/ijms24098299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
In this work, we present an analysis of the antibacterial activity of TiS3 nanostructures in water and 0.9% NaCl solution suspensions. TiS3 nanoribbons 1-10 µm long, 100-300 nm wide, and less than 100 nm thick were produced by the direct reaction of pure titanium powder with elemental sulphur in a quartz tube sealed under vacuum. For the toxicity test of a bioluminescent strain of E. coli we used concentrations from 1 to 0.0001 g L-1 and also studied fresh suspensions and suspensions left for 24 h. The strongest toxic effect was observed in freshly prepared water solutions where the luminescence of bacteria decreased by more than 75%. When saline solution was substituted for water or when the solutions were stored for 24 h it resulted in a considerable decrease in the TiS3 antibacterial effect. The toxicity of TiS3 in water exceeded the toxicity of the reference TiO2 nanoparticles, though when saline solution was used instead of water the opposite results were observed. In addition, we did not find a relationship between the antibacterial activity of water suspensions of nanoribbons and the stability of their colloidal systems, which indicates an insignificant contribution to the toxicity of aggregation processes. In 0.9% NaCl solution suspensions, toxicity increased in proportion to the increase in the zeta potential. We suppose that the noted specificity of toxicity is associated with the emission of hydrogen sulphide molecules from the surface of nanoribbons, which, depending on the concentration, can either decrease or increase oxidative stress, which is considered the key mechanism of nanomaterial cytotoxicity. However, the exact underlying mechanisms need further investigation. Thus, we have shown an important role of the dispersion medium and the period of storage in the antibacterial activity of TiS3 nanoribbons. Our results could be used in nanotoxicological studies of other two-dimensional nanomaterials, and for the development of novel antibacterial substances and other biomedical applications of this two-dimensional material.
Collapse
Affiliation(s)
- Olga V Zakharova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Valeria V Belova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Peter A Baranchikov
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Anna A Kostyakova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Dmitry S Muratov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Scientific School "Chemistry and Technology of Polymer Materials", Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia
| | - Gregory V Grigoriev
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Svetlana P Chebotaryova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Denis V Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Alexander A Gusev
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| |
Collapse
|
7
|
Kęska A, Janicka A, Zawiślak M, Molska J, Włostowski R, Włóka A, Świeściak J, Ostrowski K. Assessment of the Actual Toxicity of Engine Exhaust Gas Emissions from Euro 3 and Euro 6 Compliant Vehicles with the BAT-CELL Method Using In Vitro Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14138. [PMID: 36361013 PMCID: PMC9654593 DOI: 10.3390/ijerph192114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Legal restrictions on vehicle engine exhaust gas emission control do not always go hand in hand with an actual reduction in the emissions of toxins into the atmosphere. Moreover, the methods currently used to measure exhaust gas emissions do not give unambiguous results on the impact of the tested gases on living organisms. The method used to assess the actual toxicity of gases, BAT-CELL Bio-Ambient-Tests using in vitro tests, takes into account synergistic interactions of individual components of a mixture of gases without the need to know its qualitative and quantitative composition and allows for determination of the actual toxicity of the gas composition. Using the BAT-CELL method, exhaust gases from passenger vehicles equipped with spark-ignition engines complying with the Euro 3 and Euro 6 emission standards were tested. The results of toxicological tests were correlated with the results of chromatographic analysis. It was shown that diverse qualitative composition of the mixture of hydrocarbons determining the exhaust gases toxicity may decrease the percentage value of cell survival. Additionally, it was proven that the average survival of cells after exposure to exhaust gases from tested vehicles meeting the more restrictive Euro 6 standard was lower than for vehicles meeting the Euro 3 standard thus indicating the higher toxicity of exhaust gases from newer vehicles.
Collapse
|
8
|
Wang D, Ning Q, Deng Z, Zhang M, You J. Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119603. [PMID: 35691443 DOI: 10.1016/j.envpol.2022.119603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Mutations are an important origin of antibiotic resistance in bacteria. While there is increasing evidence showing promoted resistance mutations by environmental stresses, no retrospective research has yet been conducted on this phenomenon and its mechanisms. Herein, we summarized the phenomena of stress-elevated resistance mutations in bacteria, generalized the regulatory mechanisms and discussed the environmental and human health implications. It is shown that both chemical pollutants, such as antibiotics and other pharmaceuticals, biocides, metals, nanoparticles and disinfection byproducts, and non-chemical stressors, such as ultraviolet radiation, electrical stimulation and starvation, are capable of elevating resistance mutations in bacteria. Notably, resistance mutations are more likely to occur under sublethal or subinhibitory levels of these stresses, suggesting a considerable environmental concern. Further, mechanisms for stress-induced mutations are summarized in several points, namely oxidative stress, SOS response, DNA replication and repair systems, RpoS regulon and biofilm formation, all of which are readily provoked by common environmental stresses. Given bacteria in the environment are confronted with a variety of unfavorable conditions, we propose that the stress-elevated resistance mutations are a universal phenomenon in the environment and represent a nonnegligible risk factor for ecosystems and human health. The present review identifies a need for taking into account the pollutants' ability to elevate resistance mutations when assessing their environmental and human health risks and highlights the necessity of including resistance mutations as a target to prevent antibiotic resistance evolution.
Collapse
Affiliation(s)
- Dali Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qing Ning
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | | | - Meng Zhang
- Shenzhen Dapeng New District Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Jing You
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
9
|
Wang J, Zhao S, Jiang H, Geng X, Li J, Mao S, Ma S, Bualert S, Zhong G, Zhang G. Oxidative potential of solvent-extractable organic matter of ambient total suspended particulate in Bangkok, Thailand. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:400-413. [PMID: 35137735 DOI: 10.1039/d1em00414j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxidative stress is a key mechanism by which ambient particulate matter induces adverse health effects. Most studies have focused on the oxidative potential (OP) of water-soluble constituents, while there has been limited work on the OP of solvent-extractable organic matter (EOM OP). In this study, the EOM OP of ambient total suspended particulate (TSP) from Bangkok, Thailand, was determined using the dithiothreitol (DTT) assay. Positive matrix factorization (PMF), combined with chemical analysis of molecular markers, was employed to apportion the contributions of various emission sources to EOM OP. The volume-normalized OP initially increased with organic carbon (OC) concentration and plateaued gradually, while the mass-normalized OP fitted well with OC concentration using a power function. Fossil fuel combustion (62%) and plastic waste burning (23%) were the major contributors to EOM OP, while biomass burning demonstrated only a limited contribution. EOM OP correlated well with each group of polycyclic aromatic hydrocarbons (PAHs), suggesting that secondary formation of quinones associated with fossil fuel combustion and plastic waste burning could be an important pathway of TSP toxicity. This study underscores the importance of considering different emission sources when evaluating potential health impacts and the implementation of air pollution regulations.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Haoyu Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Xiaofei Geng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Shuduan Mao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Shexia Ma
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Surat Bualert
- Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
10
|
DsrA Modulates Central Carbon Metabolism and Redox Balance by Directly Repressing pflB Expression in Salmonella Typhimurium. Microbiol Spectr 2022; 10:e0152221. [PMID: 35107349 PMCID: PMC8809350 DOI: 10.1128/spectrum.01522-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial small RNAs (sRNAs) function as vital regulators in response to various environmental stresses by base pairing with target mRNAs. The sRNA DsrA, an important posttranscriptional regulator, has been reported to play a crucial role in defense against oxidative stress in Salmonella enterica serovar Typhimurium, but its regulatory mechanism remains unclear. The transcriptome sequencing (RNA-seq) results in this study showed that the genes involved in glycolysis, pyruvate metabolism, the tricarboxylic acid (TCA) cycle, and NADH-dependent respiration exhibited significantly different expression patterns between S. Typhimurium wild type (WT) and the dsrA deletion mutant (ΔdsrA strain) before and after H2O2 treatment. This indicated the importance of DsrA in regulating central carbon metabolism (CCM) and NAD(H) homeostasis of S. Typhimurium. To reveal the direct target of DsrA action, fusion proteins of six candidate genes (acnA, srlE, tdcB, nuoH, katG, and pflB) with green fluorescent protein (GFP) were constructed, and the fluorescence analysis showed that the expression of pflB encoding pyruvate-formate lyase was repressed by DsrA. Furthermore, site-directed mutagenesis and RNase E-dependent experiments showed that the direct base pairing of DsrA with pflB mRNA could recruit RNase E to degrade pflB mRNA and reduce the stability of pflB mRNA. In addition, the NAD+/NADH ratio in WT-ppflB-pdsrA was significantly lower than that in WT-ppflB, suggesting that the repression of pflB by DsrA could contribute greatly to the redox balance in S. Typhimurium. Taken together, a novel target of DsrA was identified, and its regulatory role was clarified, which demonstrated that DsrA could modulate CCM and redox balance by directly repressing pflB expression in S. Typhimurium. IMPORTANCE Small RNA DsrA plays an important role in defending against oxidative stress in bacteria. In this study, we identified a novel target (pflB, encoding pyruvate-formate lyase) of DsrA and demonstrated its potential regulatory mechanism in S. Typhimurium by transcriptome analysis. In silico prediction revealed a direct base pairing between DsrA and pflB mRNA, which was confirmed in site-directed mutagenesis experiments. The interaction of DsrA-pflB mRNA could greatly contribute to the regulation of central carbon metabolism and intracellular redox balance in S. Typhimurium. These findings provided a better understanding of the critical roles of small RNA in central metabolism and stress responses in foodborne pathogens.
Collapse
|
11
|
Zhang J, Cao C, Wang Y, Xie L, Li W, Li B, Guo R, Yan H. Magnesium oxide/silver nanoparticles reinforced poly(butylene succinate-co-terephthalate) biofilms for food packaging applications. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kitanovski Z, Hovorka J, Kuta J, Leoni C, Prokeš R, Sáňka O, Shahpoury P, Lammel G. Nitrated monoaromatic hydrocarbons (nitrophenols, nitrocatechols, nitrosalicylic acids) in ambient air: levels, mass size distributions and inhalation bioaccessibility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59131-59140. [PMID: 32529617 PMCID: PMC8541976 DOI: 10.1007/s11356-020-09540-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/01/2020] [Indexed: 05/04/2023]
Abstract
Nitrated monoaromatic hydrocarbons (NMAHs) are ubiquitous in the environment and an important part of atmospheric humic-like substances (HULIS) and brown carbon. They are ecotoxic and with underresearched toxic potential for humans. NMAHs were determined in size-segregated ambient particulate matter collected at two urban sites in central Europe, Ostrava and Kladno, Czech Republic. The average sums of 12 NMAHs (Σ12NMAH) measured in winter PM10 samples from Ostrava and Kladno were 102 and 93 ng m-3, respectively, and 8.8 ng m-3 in summer PM10 samples from Ostrava. The concentrations in winter corresponded to 6.3-7.3% and 2.6-3.1% of HULIS-C and water-soluble organic carbon (WSOC), respectively. Nitrocatechols represented 67-93%, 61-73% and 28-96% of NMAHs in PM10 samples collected in winter and summer at Ostrava and in winter at Kladno, respectively. The mass size distribution of the targeted substance classes peaked in the submicrometre size fractions (PM1), often in the PM0.5 size fraction especially in summer. The bioaccessible fraction of NMAHs was determined by leaching PM3 samples in two simulated lung fluids, Gamble's solution and artificial lysosomal fluid (ALF). More than half of NMAH mass is found bioaccessible, almost complete for nitrosalicylic acids. The bioaccessible fraction was generally higher when using ALF (mimics the chemical environment created by macrophage activity, pH 4.5) than Gamble's solution (pH 7.4). Bioaccessibility may be negligible for lipophilic substances (i.e. log KOW > 4.5).
Collapse
Affiliation(s)
- Zoran Kitanovski
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Jan Hovorka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Kuta
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| | - Cecilia Leoni
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Roman Prokeš
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| | - Ondřej Sáňka
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| | - Pourya Shahpoury
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
13
|
Quezada-Maldonado EM, Sánchez-Pérez Y, Chirino YI, García-Cuellar CM. Airborne particulate matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117313. [PMID: 34022687 DOI: 10.1016/j.envpol.2021.117313] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Air pollution, which includes particulate matter (PM), is classified in group 1 as a carcinogen to humans by the International Agency for Research in Cancer. Specifically, PM exposure has been associated with lung cancer in patients living in highly polluted cities. The precise mechanism by which PM is linked to cancer has not been completely described, and the genotoxicity induced by PM exposure plays a relevant role in cell damage. In this review, we aimed to analyze the types of DNA damage and alterations in DNA repair pathways induced by PM exposure, from both epidemiological and toxicological studies, to comprehend the contribution of PM exposure to carcinogenesis. Scientific evidence supports that PM exposure mainly causes oxidative stress by reactive oxygen species (ROS) and the formation of DNA adducts, specifically by polycyclic aromatic hydrocarbons (PAH). PM exposure also induces double-strand breaks (DSBs) and deregulates the expression of some proteins in DNA repair pathways, precisely, base and nucleotide excision repairs and homologous repair. Furthermore, specific polymorphisms of DNA repair genes could lead to an adverse response in subjects exposed to PM. Nevertheless, information about the effects of PM on DNA repair pathways is still limited, and it has not been possible to conclude which pathways are the most affected by exposure to PM or if DNA damage is repaired properly. Therefore, deepening the study of genotoxic damage and alterations of DNA repair pathways is needed for a more precise understanding of the carcinogenic mechanism of PM.
Collapse
Affiliation(s)
- Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado Edificio B, Primer Piso, Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico.
| |
Collapse
|
14
|
Hubai K, Székely O, Teke G, Kováts N. Is essential oil production influenced by air pollution in Ocimum basilicum L.? BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Marangon D, Traversi D, D'Agostino AM, Gea M, Fontana M, Schilirò T. The North-western Italy air quality monitoring network: Improving experience of PM2.5 assessment with mutagenicity assay. ENVIRONMENTAL RESEARCH 2021; 195:110699. [PMID: 33539832 DOI: 10.1016/j.envres.2020.110699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/19/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The finest fraction of Particulate Matter (PM2.5) carries a large number of pollutants, some of which are assessed as genotoxic, such as some Polycyclic Aromatic Hydrocarbons (PAHs). In many countries, PM2.5 in combination with some PAHs are monitored to assess the concentrations of pollutants, while the air quality is rarely assessed by means of biological assays. Epidemiological studies have demonstrated a significant correlation between these two pollutants and human adverse effects, in particular on the respiratory system. Nevertheless, other air pollutants can induce a biological effect and the cumulative effect of the PM2.5 complex mixture may not be easily deduced by PM2.5 and PAH levels. This study aimed to combine the legislative monitoring of PM2.5 with the study of its mutagenicity. During a full year, daily air samples were collected in nine sites of the North-western Italy air quality monitoring network (Piedmont Region) and PM2.5 and PAH concentrations were assessed. Monthly pooled organic extracts were tested with the Salmonella assay using TA98 and TA100 strains, with and without metabolic activation (±S9), and using TA98NR and YG1021 strains. In all sites, a positive response was observed for TA98 and TA100 especially without S9. A significant mutagenic seasonal variation was detected, with higher mutagenicity in winter and lower responses in summer (average total mutagenicity ratio 27:1). The response of TA98NR and YG1021 compared with TA98 suggested a significant contribution of nitro-compounds to the mutagenicity. No significant differences were found between urban background and rural sites denoting the spread of pollution. A mutagenicity increase, 1.28 Total Mutagenicity Factor/20 m3, was observed for each PM2.5 μg increment. PAH levels and corresponding Toxic Equivalent Factors were highly correlated to mutagenicity results. This work confirms that complex environmental mixtures can be appropriately assessed through the implementation of physical-chemical analyzes with bioassays able to evaluate synergistic and antagonistic effects, especially for highest and lowest pollution settings.
Collapse
Affiliation(s)
- Daniele Marangon
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Torino, 10135, Italy
| | - Deborah Traversi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, Torino, 10126, Italy
| | - Anna Maria D'Agostino
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Torino, 10135, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, Torino, 10126, Italy
| | - Marco Fontana
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Torino, 10135, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, Torino, 10126, Italy.
| |
Collapse
|
16
|
Kim HY, Park SH, Zuo G, Kim KH, Hwang SH, Suh HW, Lim SS. Effect of Extract and Synthesized Derivatives of Isolated Compound from Symplocos chinensis f. Pilosa Ohwi on Neuropathic Pain in Mice. Molecules 2021; 26:molecules26061639. [PMID: 33804199 PMCID: PMC7999106 DOI: 10.3390/molecules26061639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 01/08/2023] Open
Abstract
Neuropathic pain is described as the "most terrible of all tortures that a nerve wound may inflict." The aim of the present study was to demonstrate the antinociceptive effect of Symplocos chinensis f. pilosa Ohwi water extract (SCW) and synthesized derivatives of the isolated compound. The antinociceptive effect was tested using the acetic acid-induced writhing and 5% formalin tests. Antinociceptive effects on neuropathic pain were evaluated using the von Frey test with chronic constriction injury (CCI) and surgical nerve injury (SNI) models and tail-flick test with a vincristine-induced pain model. An Ames test was also conducted. 5-hydroxymethylfurfural (5-HMF) was isolated and derivatives were synthesized with various acid groups. Among the plant water extracts, SCW showed significantly effective activity. Additionally, SCW presented antinociceptive effects in the neuropathic pain models. The SCW water fraction resulted in fewer writhes than the other fractions, and isolated 5-HMF was identified as an effective compound. Because 5-HMF revealed a positive response in the Ames test, derivatives were synthesized. Among the synthesized derivations, 5-succinoxymethylfurfural (5-SMF) showed the best effect in the neuropathic pain model. Our data suggest that SCW and the synthesized compound, 5-SMF, possess effective antinociceptive activity against neuropathic pain.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (H.-Y.K.); (G.Z.); (K.H.K.); (S.H.H.)
| | - Soo-Hyun Park
- R&D Center, Frontbio Inc., 32 Soyanggang-ro, Chuncheon 24232, Gangwon-do, Korea;
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (H.-Y.K.); (G.Z.); (K.H.K.); (S.H.H.)
| | - Kang Hyuk Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (H.-Y.K.); (G.Z.); (K.H.K.); (S.H.H.)
| | - Seung Hwan Hwang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (H.-Y.K.); (G.Z.); (K.H.K.); (S.H.H.)
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Gyeonggi-do, Korea
| | - Hong-Won Suh
- Department of Pharmacology, College of Medicine, Hallym University, Hallymdeahak-gil, Chuncheon 24252, Korea;
| | - Soon-Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (H.-Y.K.); (G.Z.); (K.H.K.); (S.H.H.)
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea
- Institute of Natural Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2133
| |
Collapse
|
17
|
Zhang H, Wang Q, He S, Wu K, Ren M, Dong H, Di J, Yu Z, Huang C. Ambient air pollution and gestational diabetes mellitus: A review of evidence from biological mechanisms to population epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137349. [PMID: 32114225 DOI: 10.1016/j.scitotenv.2020.137349] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 05/26/2023]
Abstract
Gestational diabetes mellitus (GDM) is a serious complication of pregnancy that could cause adverse health effects on both mothers and fetuses, and its prevalence has been increasing worldwide. Experimental and epidemiological studies suggest that air pollution may be an important risk factor of GDM, but conclusions are inconsistent. To provide a comprehensive overview of ambient air pollution on GDM, we summarized existing evidence concerning biological linkages between maternal exposure to air pollutants and GDM based on mechanism studies. We also performed a quantitative meta-analysis based on human epidemiological studies by searching English databases (Pubmed, Web of Science and Embase) and Chinese databases (Wanfang, CNKI). As a result, the limited mechanism studies indicated that β-cell dysfunction, neurohormonal disturbance, inflammation, oxidative stress, imbalance of gut microbiome and insulin resistance may be involved in air pollution-GDM relationship, but few studies were performed to explore the direct biological linkage. Additionally, a total of 13 epidemiological studies were included in the meta-analysis, and the air pollutants considered included PM2.5, PM10, SO2, NO2 and O3. Most studies were retrospective and mainly conducted in developed regions. The results of meta-analysis indicated that maternal first trimester exposure to SO2 increased the risk of GDM (standardized odds ratio (OR) = 1.392, 95% confidence intervals (CI): 1.010, 1.773), while pre-pregnancy O3 exposure was inversely associated with GDM risk (standardized OR = 0.981, 95% CI: 0.977, 0.985). No significant effects were observed for PM2.5, PM10 and NO2. In conclusion, additional mechanism studies on the molecular level are needed to provide persuasive rationale underlying the air pollution-GDM relationship. Moreover, other important risk factors of GDM, including maternal lifestyle and road traffic noise exposure that may modify the air pollution-GDM relationship should be considered in future epidemiological studies. More prospective cohort studies are also warranted in developing countries with high levels of air pollution.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Simin He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaipu Wu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Ren
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haotian Dong
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiangli Di
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Cunrui Huang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai 200030, China.
| |
Collapse
|