1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2025; 31:2416847. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Yildiz Gulhan P, Eroz R, Ozturk CE, Yekenkurul D, Altinsoy HB, Gulec Balbay E, Ercelik M, Davran F, Yildiz S. Determination of both the expression and serum levels of epidermal growth factor and transforming growth factor β1 genes in COVID-19. Sci Rep 2025; 15:9771. [PMID: 40118922 PMCID: PMC11928509 DOI: 10.1038/s41598-025-92304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
We aimed to evaluate the effects of both the expression and serum levels of Epidermal growth factor (EGF) and Transforming growth factor-β1 (TGF-β1) genes in patients with different degrees of cellular damage as mild, moderate, severe, and critical illness that can lead to fibrosis caused by SARS-CoV-2. Totally 45 individuals (male: 21(46.67%); female: 24(53.33%)) with COVID-19 infection were included in this study. Four groups were constituted as mild (n = 16)], moderate (n = 10), severe (n = 10), and critical (n = 9) according to the severity of the disease. Blood samples were drawn from the patients, and all of the hemograms, EGF and TGFβ1 gene expression, and serum levels were evaluated. The mean age of individuals was 57.311 ± 18.383 (min: 28, max: 94). Significant differences were found among the groups for PLT (χ2 = 9.955; p = 0.019), CRP (χ2 = 7.693; p = 0.053), Ferritin (χ2 = 22.196; p < 0.001), D-dimer (χ2 = 21.982; p = 0.000), LDH (χ2 = 21.807; p < 0.001) and all these parameters (exclude PLT in severe groups) was increased depending on the severity of the disease. Additionally, significant differences were detected for EGF (χ2 = 29.528; p < 0.001), TGFB1 (χ2 = 28.981; p < 0.001) expression (that increased depending on the disease severity), and EGF (χ2 = 7.84; p = 0.049), TGFB1 (χ2 = 17.451; p = 0.001) serum concentration levels (that decreased depending on the disease severity). This study found statistically significant differences for both EGF 2-ΔΔCt. TGFβ1 2-ΔΔCt and EGF, TGFβ1 serum concentration values among all patient groups. As disease severity increased, EGF 2-ΔΔCt. TGFβ1 2-ΔΔCt levels increased, while EGF and TGFβ1 serum concentration levels decreased. Perhaps this study will be useful in managing COVID-19 infection severity and pulmonary fibrosis cases secondary to COVID-19.
Collapse
Affiliation(s)
- Pinar Yildiz Gulhan
- Department of Chest Diseases, Faculty of Medicine, Duzce University, Konuralp Campus, 81010, Duzce, Turkey.
| | - Recep Eroz
- Department of Medical Genetics, Aksaray University Medical Faculty, Aksaray, Turkey
| | | | - Dilek Yekenkurul
- Department of Infection Diseases, Duzce University Medical Faculty, Duzce, Turkey
| | | | - Ege Gulec Balbay
- Department of Chest Diseases, Faculty of Medicine, Duzce University, Konuralp Campus, 81010, Duzce, Turkey
| | - Merve Ercelik
- Department of Chest Diseases, Faculty of Medicine, Duzce University, Konuralp Campus, 81010, Duzce, Turkey
| | - Fatih Davran
- Department of Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Seyma Yildiz
- Deparment of Hematology, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Zhang X, Yuan Z, Shi X, Yang J. Targeted therapy for idiopathic pulmonary fibrosis: a bibliometric analysis of 2004-2024. Front Med (Lausanne) 2025; 12:1543571. [PMID: 40182841 PMCID: PMC11967194 DOI: 10.3389/fmed.2025.1543571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible interstitial lung disease characterized by high mortality rates. An expanding body of evidence highlights the critical role of targeted therapies in the management of IPF. Nevertheless, there is a paucity of bibliometric studies that have comprehensively assessed this domain. This study seeks to examine global literature production and research trends related to targeted therapies for IPF. Method A literature search was conducted using the Web of Science Core Collection, encompassing publications from 2004 to 2024, focusing on targeted therapies for IPF. The bibliometric analysis utilized tools such as VOSviewer, CiteSpace, and the "bibliometrix" package in R. Results A total of 2,779 papers were included in the analysis, demonstrating a general trend of continuous growth in the number of publications over time. The United States contributed the highest number of publications, totaling 1,052, while France achieved the highest average citation rate at 75.74. The University of Michigan Medical School was the leading institution in terms of publication output, with 88 papers. Principal Investigator Naftali Kaminski was identified as the most prolific researcher in the field. The American Journal of Respiratory Cell and Molecular Biology emerged as the journal with the highest number of publications, featuring 98 articles. In recent years, the research has emerged surrounding targeted therapies for IPF, particularly focusing on agents such as TGF-β, pathogenesis, and autotaxin inhibitor. Conclusion In this bibliometric study, we systematically analyze research trends related to targeted therapies for IPF, elucidating recent research frontiers and emerging directions. The selected keywords-idiopathic pulmonary fibrosis, targeted therapy, bibliometric analysis, transforming growth factor β, and autotaxin inhibitor-capture the essential aspects of this research domain. This analysis serves as a reference point for future investigations into targeted therapies.
Collapse
Affiliation(s)
- Xinlei Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zengze Yuan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiawei Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Junchao Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
St Pierre L, Berhan A, Sung EK, Alvarez JR, Wang H, Ji Y, Liu Y, Yu H, Meier A, Afshar K, Golts EM, Lin GY, Castaldi A, Calvert BA, Ryan A, Zhou B, Offringa IA, Marconett CN, Borok Z. Integrated multiomic analysis identifies TRIP13 as a mediator of alveolar epithelial type II cell dysfunction in idiopathic pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167572. [PMID: 39547519 PMCID: PMC11951472 DOI: 10.1016/j.bbadis.2024.167572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal progressive lung disease urgently needing new therapies. Current treatments only delay disease progression, leaving lung transplant as the sole remaining option. Recent studies support a model whereby IPF arises because alveolar epithelial type II (AT2) cells, which normally mediate distal lung regeneration, acquire airway and/or mesenchymal characteristics, preventing proper repair. Mechanisms driving this abnormal differentiation remain unclear. We performed integrated transcriptomic and epigenomic analysis of purified AT2 cells which revealed genome-wide alterations in IPF lungs. The most prominent epigenetic alteration was activation of an enhancer in thyroid receptor interactor 13 (TRIP13), although TRIP13 was not the most significantly transcriptionally upregulated gene. TRIP13 is broadly implicated in epithelial-mesenchymal plasticity. In cultured human AT2 cells and lung slices, small molecule TRIP13 inhibitor DCZ0415 prevented acquisition of the mesenchymal gene signature characteristic of IPF, suggesting TRIP13 inhibition as a potential therapeutic approach to fibrotic disease.
Collapse
Affiliation(s)
- Laurence St Pierre
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Asres Berhan
- Department of Medicine, University of California San Diego, CA 92037, USA
| | - Eun K Sung
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Juan R Alvarez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Hongjun Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanbin Ji
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yixin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Haoze Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Angela Meier
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kamyar Afshar
- Department of Medicine, University of California San Diego, CA 92037, USA
| | - Eugene M Golts
- Department of Surgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Grace Y Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | | | - Ben A Calvert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amy Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Beiyun Zhou
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ite A Offringa
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Crystal N Marconett
- Department of Surgery, University of Southern California, Los Angeles, CA 90089, USA; Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | - Zea Borok
- Department of Medicine, University of California San Diego, CA 92037, USA.
| |
Collapse
|
5
|
Spagnolo P, Tonelli R, Mura M, Reisman W, Sotiropoulou V, Tzouvelekis A. Investigational gene expression inhibitors for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2025; 34:61-80. [PMID: 39916340 DOI: 10.1080/13543784.2025.2462592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/31/2025] [Indexed: 02/12/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial lung disease of unknown cause that occurs primarily in older adults and is associated with poor quality of life and substantial healthcare utilization. IPF has a dismal prognosis. Indeed, first-line therapy, which includes nintedanib and pirfenidone, does not stop disease progression and is often associated with tolerability issues. Therefore, there remains a high medical need for more efficacious and better tolerated treatments. AREAS COVERED Gene therapy is a relatively unexplored field of research in IPF that has the potential to mitigate a range of profibrotic pathways by introducing genetic material into cells. Here, we summarize and critically discuss publications that have explored the safety and efficacy of gene therapy in experimentally-induced pulmonary fibrosis in animals, as clinical studies in humans have not been published yet. EXPERT OPINION The application of gene therapy in pulmonary fibrosis requires further investigation to address several technical and biological hurdles, improve vectors' design, drug delivery, and target selection, mitigate off-target effects and develop markers of gene penetration into target cells. Long-term clinical data are needed to bring gene therapy in IPF one step closer to practice.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - William Reisman
- Division of Respirology, Western University, London, Ontario, Canada
| | | | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
6
|
Youssef AH, Mansour HH, Shousha WG, Galal SM, Abdo SM. Unprecedented Approach for Using Misoprostol Alongside Low-Dose Gamma Radiation to Alleviate Paraquat-Induced Pulmonary Injury in Rats. Dose Response 2025; 23:15593258251326707. [PMID: 40144808 PMCID: PMC11938468 DOI: 10.1177/15593258251326707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/16/2024] [Accepted: 01/23/2025] [Indexed: 03/28/2025] Open
Abstract
Background Abrupt inflammation and alveolar epithelial membrane damage, which may cause the alveolar membrane's malfunction, are related to acute lung injury (ALI). This could eventually lead to pulmonary fibrosis. While lung injury can happen in many ways, the current study will concentrate on the changes in lung pathology mediated by paraquat (PQ). Paraquat, a widely used herbicide, targets lung toxicity through inflammation and oxidative stress, which significantly contribute to lung damage. Objective The current research was to ascertain whether low-dose gamma radiation (R) and misoprostol (MP) could lessen the lung inflammatory cascade started by PQ injection in rats. Methods The ALI model was induced by I.P. injection of PQ (20 mg/kg once), and then treatment was done by MP and/or R for 14 days, and finally, the biochemical and histological parameters were measured in the lung tissues. Results Our data suggest that PQ can promote ALI through TGF-β/smad, Notch, NF-κB, and ET-1 signaling pathways, resulting in EMT. These suggestions were supported by increased levels of TGF-β, inflammatory cytokines, α-SMA, NF-κB, ET-1, CTGF protein, and LPA, whereas PPAR-γ decreased. The aforementioned results have been confirmed by lung histopathology. Conclusion We suggest that the pulmonary inflammatory cascade was hindered and all the previously described gauges improved with R and/or MP therapy.
Collapse
Affiliation(s)
- Ahmed H. Youssef
- Health Radiation Research Department, National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Heba H. Mansour
- Health Radiation Research Department, National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Wafaa Gh. Shousha
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shereen M. Galal
- Health Radiation Research Department, National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sara M. Abdo
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Hua S, Chi J, Zhang N, Yang X, Zhang P, Jiang C, Feng Y, Hong X, Feng Z, Yan Y. WHAMM Inhibits Type II Alveolar Epithelial Cell EMT by Mediating Autophagic Degradation of TGF-β1 in Bronchopulmonary Dysplasia. J Cell Physiol 2025; 240:e31486. [PMID: 39564703 DOI: 10.1002/jcp.31486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is one of the most prevalent complication in preterm infants, primarily characterized by arrested alveolar growth. The involvement of epithelial-mesenchymal transition (EMT) of AECII cells is proposed to have a crucial role in the pathogenesis of BPD; however, the underlying mechanism remains unclear. The present study reveals a significant reduction of WHAMM (WASP homolog associated with actin, membranes, and microtubules) in hyperoxia-induced BPD mice, highlighting its crucial role in suppressing the progression of BPD through the inhibition of EMT in AECIIs. We demonstrated that hyperoxia-induced downregulation of WHAMM leads to the accumulation of TGF-β1 primarily through its mediation of the autophagic degradation pathway. Mechanistically, WHAMM enhanced the autophagosomal localization of TGF-β1 and concurrently promoted the process of autophagy, thereby comprehensively facilitating the autophagic degradation of TGF-β1. These findings reveal the important role of WHAMM in the development of BPD, and the proposed WHAMM/autophagy/TGF-β1/EMT pathway may represent a potential therapeutic strategy for BPD treatment.
Collapse
Affiliation(s)
- Shaodong Hua
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Jinghan Chi
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ning Zhang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xiao Yang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Pan Zhang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Chenyang Jiang
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yao Feng
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyang Hong
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhichun Feng
- General Internal Medicine, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yurou Yan
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Colin Waldo MD, Quintero-Millán X, Negrete-García MC, Ruiz V, Sommer B, Romero-Rodríguez DP, Montes-Martínez E. Circulating MicroRNAs in Idiopathic Pulmonary Fibrosis: A Narrative Review. Curr Issues Mol Biol 2024; 46:13746-13766. [PMID: 39727949 DOI: 10.3390/cimb46120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, deathly disease with no recognized effective cure as yet. Furthermore, its diagnosis and differentiation from other diffuse interstitial diseases remain a challenge. Circulating miRNAs have been measured in IPF and have proven to be an adequate option as biomarkers for this disease. These miRNAs, released into the circulation outside the cell through exosomes and proteins, play a crucial role in the pathogenic pathways and mechanisms involved in IPF development. This review focuses on the serum/plasma miRNAs reported in IPF that have been validated by real-time PCR and the published evidence regarding the fibrotic process. First, we describe the mechanisms by which miRNAs travel through the circulation (contained in exosomes and bound to proteins), as well as the mechanism by which miRNAs perform their function within the cell. Subsequently, we summarize the evidence concerning miRNAs reported in serum/plasma, where we find contradictory functions in some miRNAs (dual functions in IPF) when comparing the findings in vitro vs. in vivo. The most relevant finding, for instance, the levels of miRNAs let-7d and miR-21 reported in the serum/plasma in IPF, correspond to those found in studies in lung fibroblasts and the murine bleomycin model, reinforcing the usefulness of these miRNAs as future biomarkers in IPF.
Collapse
Affiliation(s)
- Marisa Denisse Colin Waldo
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Xochipilzihuitl Quintero-Millán
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Maria Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Víctor Ruiz
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Bettina Sommer
- Bronchial Hyperreactivity Research Department, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Dámaris P Romero-Rodríguez
- Conahcyt National Laboratory for Research and Diagnosis by Immunocytofluorometry (LANCIDI), National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Eduardo Montes-Martínez
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
9
|
Górski P, Białas AJ, Piotrowski WJ. Aging Lung: Molecular Drivers and Impact on Respiratory Diseases-A Narrative Clinical Review. Antioxidants (Basel) 2024; 13:1480. [PMID: 39765809 PMCID: PMC11673154 DOI: 10.3390/antiox13121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The aging process significantly impacts lung physiology and is a major risk factor for chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and non-IPF interstitial lung fibrosis. This narrative clinical review explores the molecular and biochemical hallmarks of aging, such as oxidative stress, telomere attrition, genomic instability, epigenetic modifications, proteostasis loss, and impaired macroautophagy, and their roles in lung senescence. Central to this process are senescent cells, which, through the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and tissue dysfunction. The review highlights parallels between lung aging and pathophysiological changes in respiratory diseases, emphasizing the role of cellular senescence in disease onset and progression. Despite promising research into modulating aging pathways with interventions like caloric restriction, mTOR inhibitors, and SIRT1 activators, clinical evidence for efficacy in reversing or preventing age-related lung diseases remains limited. Understanding the interplay between aging-related mechanisms and environmental factors, such as smoking and pollution, is critical for developing targeted therapies. This review underscores the need for future studies focusing on therapeutic strategies to mitigate aging's detrimental effects on lung health and improve outcomes for patients with chronic respiratory conditions.
Collapse
Affiliation(s)
- Paweł Górski
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
| | - Adam J. Białas
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
- Department of Pulmonary Rehabilitation, Regional Medical Center for Lung Diseases and Rehabilitation, Blessed Rafal Chylinski Memorial Hospital for Lung Diseases, 91-520 Lodz, Poland
| | - Wojciech J. Piotrowski
- Department of Pneumology, Medical University of Lodz, 90-419 Lodz, Poland; (A.J.B.); (W.J.P.)
| |
Collapse
|
10
|
Kim B, Huang Y, Ko KP, Zhang S, Zou G, Zhang J, Kim MJ, Little D, Ellis LV, Paschini M, Jun S, Park KS, Chen J, Kim C, Park JI. PCLAF-DREAM drives alveolar cell plasticity for lung regeneration. Nat Commun 2024; 15:9169. [PMID: 39448571 PMCID: PMC11502753 DOI: 10.1038/s41467-024-53330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Cell plasticity, changes in cell fate, is crucial for tissue regeneration. In the lung, failure of regeneration leads to diseases, including fibrosis. However, the mechanisms governing alveolar cell plasticity during lung repair remain elusive. We previously showed that PCLAF remodels the DREAM complex, shifting the balance from cell quiescence towards cell proliferation. Here, we find that PCLAF expression is specific to proliferating lung progenitor cells, along with the DREAM target genes transactivated by lung injury. Genetic ablation of Pclaf impairs AT1 cell repopulation from AT2 cells, leading to lung fibrosis. Mechanistically, the PCLAF-DREAM complex transactivates CLIC4, triggering TGF-β signaling activation, which promotes AT1 cell generation from AT2 cells. Furthermore, phenelzine that mimics the PCLAF-DREAM transcriptional signature increases AT2 cell plasticity, preventing lung fibrosis in organoids and mice. Our study reveals the unexpected role of the PCLAF-DREAM axis in promoting alveolar cell plasticity, beyond cell proliferation control, proposing a potential therapeutic avenue for lung fibrosis prevention.
Collapse
Grants
- P30 CA016672 NCI NIH HHS
- CA193297, CA256207, CA278967, CA278971, CA279867, P50 CA83639, P30 CA016672, CA125123, RR024574 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- R03 CA256207 NCI NIH HHS
- R01 CA278967 NCI NIH HHS
- K99 CA286761 NCI NIH HHS
- RP200315, RP180672, RP200504 Cancer Prevention and Research Institute of Texas (Cancer Prevention Research Institute of Texas)
- R03 CA279867 NCI NIH HHS
- S10 RR024574 NCRR NIH HHS
- R01 CA278971 NCI NIH HHS
- K99CA286761 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- R01 CA193297 NCI NIH HHS
- P30 CA125123 NCI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Moon Jong Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Danielle Little
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lisandra Vila Ellis
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Margherita Paschini
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carla Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Moua T, Baqir M, Ryu JH. What Is on the Horizon for Treatments in Idiopathic Pulmonary Fibrosis? J Clin Med 2024; 13:6304. [PMID: 39518443 PMCID: PMC11546700 DOI: 10.3390/jcm13216304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal lung disease most commonly encountered in older individuals. Several decades of research have contributed to a better understanding of its pathogenesis, though only two drugs thus far have shown treatment efficacy, i.e., by slowing the decline of lung function. The pathogenesis of IPF remains incompletely understood and involves multiple complex interactions and mechanisms working in tandem or separately to result in unchecked deposition of extracellular matrix components and collagen characteristic of the disease. These mechanisms include aberrant response to injury in the alveolar epithelium, inappropriate communication between epithelial cells and mesenchymal cells, imbalances between oxidative injury and tissue repair, recruitment of inflammatory pathways that induce fibrosis, and cell senescence leading to sustained activation and proliferation of fibroblasts and myofibroblasts. Targeted approaches to each of these mechanistic pathways have led to recent clinical studies evaluating the safety and efficacy of several agents. This review highlights selected concepts in the pathogenesis of IPF as a rationale for understanding current or future therapeutic approaches, followed by a review of several selected agents and their recent or active clinical studies. Current novel therapies include approaches to attenuating or modifying specific cellular or signaling processes in the fibrotic pathway, modifying inflammatory and metabolic derangements, and minimizing inappropriate cell senescence.
Collapse
Affiliation(s)
- Teng Moua
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; (M.B.); (J.H.R.)
| | | | | |
Collapse
|
12
|
Xie Y, Shi S, Lv W, Wang X, Yue L, Deng C, Wang D, Han J, Ye T, Lin Y. Tetrahedral Framework Nucleic Acids Delivery of Pirfenidone for Anti-Inflammatory and Antioxidative Effects to Treat Idiopathic Pulmonary Fibrosis. ACS NANO 2024; 18:26704-26721. [PMID: 39276332 DOI: 10.1021/acsnano.4c06598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and irreversible lung disease, and developing an effective treatment remains a challenge. The limited therapeutic options are primarily delivered by the oral route, among which pirfenidone (PFD) improves pulmonary dysfunction and patient quality of life. However, its high dose and severe side effects (dyspepsia and systemic photosensitivity) limit its clinical value. Intratracheal aerosolization is an excellent alternative method for treating lung diseases because it increases the concentration of the drug needed to reach the focal site. Tetrahedral framework nucleic acid (tFNA) is a drug delivery system with exceptional delivery capabilities. Therefore, we synthesized a PFD-tFNA (Pt) complex using tFNA as the delivery vehicle and achieved quantitative nebulized drug delivery to the lungs via micronebulizer for lung fibrosis treatment. In vivo, Pt exhibited excellent immunomodulatory capacity and antioxidant effects. Furthermore, Pt reduced mortality, gradually restored body weight and improved lung tissue structure. Similarly, Pt also exhibited superior fibrosis inhibition in an in vitro fibrosis model, as shown by the suppression of excessive fibroblast activation and epithelial-mesenchymal transition (EMT) in epithelial cells exposed to TGF-β1. Conclusively, Pt, a complex with tFNA as a transport system, could enrich the therapeutic regimen for IPF via intratracheal aerosolization inhalation.
Collapse
Affiliation(s)
- Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, China
| | - Weitong Lv
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyu Wang
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Doudou Wang
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Han
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang 550000, China
- National Health Commission Key Laboratory for Diagnosis and Treatment of Pulmonary Immune Diseases, Guiyang 550000, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, China
| |
Collapse
|
13
|
Thomas SM, Ankley LM, Conner KN, Rapp AW, McGee AP, LeSage F, Tanner CD, Vielma TE, Scheeres EC, Obar JJ, Olive AJ. TGFβ primes alveolar-like macrophages to induce type I IFN following TLR2 activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611226. [PMID: 39282428 PMCID: PMC11398362 DOI: 10.1101/2024.09.04.611226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Alveolar macrophages (AMs) are key mediators of lung function and are potential targets for therapies during respiratory infections. TGFβ is an important regulator of AM differentiation and maintenance, but how TGFβ directly modulates the innate immune responses of AMs remains unclear. This shortcoming prevents effective targeting of AMs to improve lung function in health and disease. Here we leveraged an optimized ex vivo AM model system, fetal-liver derived alveolar-like macrophages (FLAMs), to dissect the role of TGFβ in AMs. Using transcriptional analysis, we first globally defined how TGFβ regulates gene expression of resting FLAMs. We found that TGFβ maintains the baseline metabolic state of AMs by driving lipid metabolism through oxidative phosphorylation and restricting inflammation. To better understand inflammatory regulation in FLAMs, we next directly tested how TGFβ alters the response to TLR2 agonists. While both TGFβ (+) and TGFβ (-) FLAMs robustly responded to TLR2 agonists, we found an unexpected activation of type I interferon (IFN) responses in FLAMs and primary AMs in a TGFβ-dependent manner. Surprisingly, mitochondrial antiviral signaling protein and the interferon regulator factors 3 and 7 were required for IFN production by TLR2 agonists. Together, these data suggest that TGFβ modulates AM metabolic networks and innate immune signaling cascades to control inflammatory pathways in AMs.
Collapse
Affiliation(s)
- Sean M. Thomas
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Laurisa M. Ankley
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Kayla N. Conner
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Alexander W. Rapp
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Abigail P. McGee
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Francois LeSage
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Christopher D. Tanner
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Taryn E. Vielma
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Eleanor C. Scheeres
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Joshua J. Obar
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Andrew J. Olive
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
14
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
15
|
Tabei Y, Nakajima Y. IL-1β-activated PI3K/AKT and MEK/ERK pathways coordinately promote induction of partial epithelial-mesenchymal transition. Cell Commun Signal 2024; 22:392. [PMID: 39118068 PMCID: PMC11308217 DOI: 10.1186/s12964-024-01775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process in embryonic development, wound healing, organ fibrosis, and cancer metastasis. Previously, we and others have reported that proinflammatory cytokine interleukin-1β (IL-1β) induces EMT. However, the exact mechanisms, especially the signal transduction pathways, underlying IL-1β-mediated EMT are not yet completely understood. Here, we found that IL-1β stimulation leads to the partial EMT-like phenotype in human lung epithelial A549 cells, including the gain of mesenchymal marker (vimentin) and high migratory potential, without the complete loss of epithelial marker (E-cadherin). IL-1β-mediated partial EMT induction was repressed by PI3K inhibitor LY294002, indicating that the PI3K/AKT pathway plays a significant role in the induction. In addition, ERK1/2 inhibitor FR180204 markedly inhibited the IL-1β-mediated partial EMT induction, demonstrating that the MEK/ERK pathway was also involved in the induction. Furthermore, we found that the activation of the PI3K/AKT and MEK/ERK pathways occurred downstream of the epidermal growth factor receptor (EGFR) pathway and the IL-1 receptor (IL-1R) pathway, respectively. Our findings suggest that the PI3K/AKT and MEK/ERK pathways coordinately promote the IL-1β-mediated partial EMT induction. The inhibition of not one but both pathways is expected yield clinical benefits by preventing partial EMT-related disorders such as organ fibrosis and cancer metastasis.
Collapse
Affiliation(s)
- Yosuke Tabei
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-Cho, Takamatsu, Kagawa, 761-0395, Japan.
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-Cho, Takamatsu, Kagawa, 761-0395, Japan
| |
Collapse
|
16
|
Libra A, Sciacca E, Muscato G, Sambataro G, Spicuzza L, Vancheri C. Highlights on Future Treatments of IPF: Clues and Pitfalls. Int J Mol Sci 2024; 25:8392. [PMID: 39125962 PMCID: PMC11313529 DOI: 10.3390/ijms25158392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring of lung tissue, leading to death. Despite recent advancements in understanding its pathophysiology, IPF remains elusive, and therapeutic options are limited and non-curative. This review aims to synthesize the latest research developments, focusing on the molecular mechanisms driving the disease and on the related emerging treatments. Unfortunately, several phase 2 studies showing promising preliminary results did not meet the primary endpoints in the subsequent phase 3, underlying the complexity of the disease and the need for new integrated endpoints. IPF remains a challenging condition with a complex interplay of genetic, epigenetic, and pathophysiological factors. Ongoing research into the molecular keystones of IPF is critical for the development of targeted therapies that could potentially stop the progression of the disease. Future directions include personalized medicine approaches, artificial intelligence integration, growth in genetic insights, and novel drug targets.
Collapse
Affiliation(s)
- Alessandro Libra
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Enrico Sciacca
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Giuseppe Muscato
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Gianluca Sambataro
- Artroreuma s.r.l., Rheumatology Outpatient Clinic, 95030 Mascalucia, CT, Italy;
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| |
Collapse
|
17
|
Zhao J, Jing C, Fan R, Zhang W. Prognostic model of fibroblasts in idiopathic pulmonary fibrosis by combined bulk and single-cell RNA-sequencing. Heliyon 2024; 10:e34519. [PMID: 39113997 PMCID: PMC11305307 DOI: 10.1016/j.heliyon.2024.e34519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Fibroblasts play an important role in the development of idiopathic pulmonary fibrosis (IPF). Methods We employed single-cell RNA-sequencing data obtained from the Gene Expression Omnibus database to perform cell clustering and annotation analyses. We then performed secondary clustering of fibroblasts and conducted functional enrichment and cell trajectory analyses of the two newly defined fibroblast subtypes. Bulk RNA-sequencing data were used to perform consensus clustering and weighted gene co-expression network analysis. We constructed a fibroblast-related prognostic model using least absolute shrinkage, selection operator regression, and Cox regression analysis. The prognostic model was validated using a validation dataset. Immune infiltration and functional enrichment analyses were conducted for patients in the high- and low-risk IPF groups. Results We characterized two fibroblast subtypes that are active in IPF (F3+ and ROBO2+). Using fibroblast-related genes, we identified five genes (CXCL14, TM4SF1, CYTL1, SOD3, and MMP10) for the prognostic model. The area under the curve values of our prognostic model were 0.852, 0.859, and 0.844 at one, two, and three years in the training set, and 0.837, 0.758, and 0.821 at one, two, and three years in the validation set, respectively. Conclusion This study annotates and characterizes different subtypes of fibroblasts in IPF.
Collapse
Affiliation(s)
- Jiarui Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chuanqing Jing
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rui Fan
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
18
|
Sampsonas F, Bosgana P, Bravou V, Tzouvelekis A, Dimitrakopoulos FI, Kokkotou E. Interstitial Lung Diseases and Non-Small Cell Lung Cancer: Particularities in Pathogenesis and Expression of Driver Mutations. Genes (Basel) 2024; 15:934. [PMID: 39062713 PMCID: PMC11276289 DOI: 10.3390/genes15070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Interstitial lung diseases are a varied group of diseases associated with chronic inflammation and fibrosis. With the emerging and current treatment options, survival rates have vastly improved. Having in mind that the most common type is idiopathic pulmonary fibrosis and that a significant proportion of these patients will develop lung cancer as the disease progresses, prompt diagnosis and personalized treatment of these patients are fundamental. SCOPE AND METHODS The scope of this review is to identify and characterize molecular and pathogenetic pathways that can interconnect Interstitial Lung Diseases and lung cancer, especially driver mutations in patients with NSCLC, and to highlight new and emerging treatment options in that view. RESULTS Common pathogenetic pathways have been identified in sites of chronic inflammation in patients with interstitial lung diseases and lung cancer. Of note, the expression of driver mutations in EGFR, BRAF, and KRAS G12C in patients with NSCLC with concurrent interstitial lung disease is vastly different compared to those patients with NSCLC without Interstitial Lung Disease. CONCLUSIONS NSCLC in patients with Interstitial Lung Disease is a challenging diagnostic and clinical entity, and a personalized medicine approach is fundamental to improving survival and quality of life. Newer anti-fibrotic medications have improved survival in IPF/ILD patients; thus, the incidence of lung cancer is going to vastly increase in the next 5-10 years.
Collapse
Affiliation(s)
- Fotios Sampsonas
- Department of Respiratory Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | - Pinelopi Bosgana
- Department of Pathology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Vasiliki Bravou
- Department of Anatomy, Embryology and Histology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | | | - Eleni Kokkotou
- Oncology Unit, The Third Department of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
19
|
Li Z, Jiao Y, Wu Z, Liu H, Li Y, Cai Y, Wei W, Cao F. The role of quercetin in ameliorating bleomycin-induced pulmonary fibrosis: insights into autophagy and the SIRT1/AMPK signaling pathway. Mol Biol Rep 2024; 51:795. [PMID: 39001907 DOI: 10.1007/s11033-024-09752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology characterized by a constant incidence rate. Unfortunately, effective pharmacological treatments for this condition are lacking and the identification of novel therapeutic approaches and underlying pathological mechanisms are required. This study investigated the potential of quercetin in alleviating pulmonary fibrosis by promoting autophagy and activation of the SIRT1/AMPK pathway. METHODS Mouse models of IPF were divided into four treatment groups: control, bleomycin (BLM), quercetin (Q), and quercetin + EX-527 (Q + E) treatment. Pulmonary fibrosis was induced in the mouse models through intratracheal instillation of BLM. Various indexes were identified through histological staining, Western blotting analysis, enzyme-linked immunosorbent assay, immunohistochemistry, and transmission electron microscopy. RESULTS Quercetin treatment ameliorated the pathology of BLM-induced pulmonary fibrosis of mice by reducing α-smooth muscle actin (α-SMA), collagen I (Col I), and collagen III (Col III) levels, and also improved the level of E-cadherin in lung tissue. Furthermore, Quercetin significantly enhanced LC3II/LC3I levels, decreased P62 expression, and increased the number of autophagosomes in lung tissue. These effects were accompanied by the activation of the SIRT1/AMPK pathway. Treatment with EX-527, an inhibitor for SIRT1, reversed all effects induced by quercetin. CONCLUSION This study showed that quercetin could alleviate pulmonary fibrosis and improve epithelial-mesenchymal transition by acting on the SIRT1/AMPK signaling pathway, which may be achieved by regulating the level of autophagy.
Collapse
Affiliation(s)
- Zhipeng Li
- Graduate school, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Jiao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Zhisong Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Haoge Liu
- Zhejiang Provincial Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Chinese Medicine, Hangzhou, 310006, China
| | - Yang Li
- Graduate school, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yaodong Cai
- Graduate school, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wan Wei
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Fang Cao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
20
|
Molavinia S, Dayer D, Khodayar MJ, Goudarzi G, Salehcheh M. Suspended particulate matter promotes epithelial-to-mesenchymal transition in alveolar epithelial cells via TGF-β1-mediated ROS/IL-8/SMAD3 axis. J Environ Sci (China) 2024; 141:139-150. [PMID: 38408815 DOI: 10.1016/j.jes.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 02/28/2024]
Abstract
Epidemiological evidence presents that dust storms are related to respiratory diseases, such as pulmonary fibrosis (PF). However, the precise underlying mechanisms of SPM-elicited adverse effects still need to be investigated. Epithelial-mesenchymal transition (EMT) process is a characteristic of PF. We discussed whether suspended particulate matter (SPM) is involved in EMT induction via transforming growth factor-β1 (TGF-β1). In this study, a detailed elemental analysis (55 elements), particle size, and morphology were determined. To investigate the toxicity of SPM, an MTT test was performed to detect cell viability. Next, A549 cells were exposed to selected concentrations of SPM (20 and 40 µg/mL) for single and repeated exposures. The DCFH-DA assay showed that exposure to SPM could produce reactive oxygen species (ROS). The ELISA assay demonstrated increased levels of interleukin-8 (IL-8) and TGF-β1 in the supernatant. Western blot was used to detect the expression of proteins associated with EMT and the SMAD3-dependent pathway. Results of western blot demonstrated that E-cadherin was reduced, whereas p-SMAD3, vimentin, and α-smooth muscle actin were elevated. Our findings indicated that SPM triggered EMT by induction of oxidative stress, inflammation, and the TGF-β1/SMAD3 pathway activation.
Collapse
Affiliation(s)
- Shahrzad Molavinia
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Iranian Scientific Association of Clean Air, Tehran, Iran
| | - Maryam Salehcheh
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
21
|
Yao F, Xu M, Dong L, Shen X, Shen Y, Jiang Y, Zhu T, Zhang C, Yu G. Sinomenine attenuates pulmonary fibrosis by downregulating TGF-β1/Smad3, PI3K/Akt and NF-κB signaling pathways. BMC Pulm Med 2024; 24:229. [PMID: 38730387 PMCID: PMC11088103 DOI: 10.1186/s12890-024-03050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-β1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION SIN attenuated PF by down-regulating TGF-β/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.
Collapse
Affiliation(s)
- Fuqiang Yao
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Minghao Xu
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Xiao Shen
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Yujie Shen
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Yisheng Jiang
- School of Medicine, ShaoXing University, Shaoxing, Zhejiang, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|
22
|
Gao Z, Xu M, Liu C, Gong K, Yu X, Lu K, Zhu J, Guan H, Zhu Q. Structural Modification and Optimisation of Hyperoside Oriented to Inhibit TGF-β-Induced EMT Activity in Alveolar Epithelial Cells. Pharmaceuticals (Basel) 2024; 17:584. [PMID: 38794154 PMCID: PMC11124421 DOI: 10.3390/ph17050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary fibrosis (PF) is a disease characterised by diffuse nonspecific alveolar inflammation with interstitial fibrosis, which clinically manifests as dyspnoea and a significant decline in lung function. Many studies have shown that the epithelial-mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of pulmonary fibrosis. Based on our previous findings, hypericin (Hyp) can effectively inhibit the process of the EMT to attenuate lung fibrosis. Therefore, a series of hyperoside derivatives were synthesised via modifying the structure of hyperoside, and subsequently evaluated for A549 cytotoxicity. Among these, the pre-screening of eight derivatives inhibits the EMT. In this study, we evaluated the efficacy of Z6, the most promising hyperoside derivative, in reversing TGF-β1-induced EMTs and inhibiting the EMT-associated migration of A549 cells. After the treatment of A549 cells with Z6 for 48 h, RT-qPCR and Western blot results showed that Z6 inhibited TGF-β1-induced EMTs in epithelial cells by supressing morphological changes in A549 cells, up-regulating E-cadherin (p < 0.01, p < 0.001), and down-regulating Vimentin (p < 0.01, p < 0.001). This treatment significantly reduced the mobility of transforming growth factor β1 (TGF-β1)-stimulated cells (p < 0.001) as assessed by wound closure, while increasing the adhesion rate of A549 cells (p < 0.001). In conclusion, our results suggest that hyperoside derivatives, especially compound Z6, are promising as potential lead compounds for treating pulmonary fibrosis, and therefore deserve further investigation.
Collapse
Affiliation(s)
- Ziye Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Kai Gong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Kaihui Lu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Jiang Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Haixing Guan
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
23
|
Qiu Y, Que Y, Ding Z, Zhang S, Wei R, Xia J, Lin Y. Drugs targeting CTGF in the treatment of pulmonary fibrosis. J Cell Mol Med 2024; 28:e18448. [PMID: 38774993 PMCID: PMC11109635 DOI: 10.1111/jcmm.18448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
Pulmonary fibrosis represents the final alteration seen in a wide variety of lung disorders characterized by increased fibroblast activity and the accumulation of substantial amounts of extracellular matrix, along with inflammatory damage and the breakdown of tissue architecture. This condition is marked by a significant mortality rate and a lack of effective treatments. The depositing of an excessive quantity of extracellular matrix protein follows the damage to lung capillaries and alveolar epithelial cells, leading to pulmonary fibrosis and irreversible damage to lung function. It has been proposed that the connective tissue growth factor (CTGF) plays a critical role in the advancement of pulmonary fibrosis by enhancing the accumulation of the extracellular matrix and exacerbating fibrosis. In this context, the significance of CTGF in pulmonary fibrosis is examined, and a summary of the development of drugs targeting CTGF for the treatment of pulmonary fibrosis is provided.
Collapse
Affiliation(s)
- Yudan Qiu
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yueyue Que
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Zheyu Ding
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Shanshan Zhang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Rong Wei
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Jianing Xia
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yingying Lin
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
24
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
25
|
Harrell CR, Djonov V, Volarevic A, Arsenijevic A, Volarevic V. Molecular Mechanisms Responsible for the Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in the Treatment of Lung Fibrosis. Int J Mol Sci 2024; 25:4378. [PMID: 38673961 PMCID: PMC11050301 DOI: 10.3390/ijms25084378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) are nano-sized extracellular vesicles which contain various MSC-sourced anti-fibrotic, immunoregulatory and angio-modulatory proteins (growth factors, immunoregulatory cytokines, chemokines), lipids, and nucleic acids (messenger RNA and microRNAs). Due to their lipid envelope, MSC-Exos easily by-pass all barriers in the body and deliver their cargo directly in target cells, modulating their viability, proliferation, phenotype and function. The results obtained in recently published experimental studies demonstrated beneficial effects of MSC-Exos in the treatment of lung fibrosis. MSC-Exos reduced activation of fibroblasts and prevented their differentiation in myofibroblasts. By delivering MSC-sourced immunoregulatory factors in lung-infiltrated monocytes and T cells, MSC-Exos modulate their function, alleviating on-going inflammation and fibrosis. MSC-Exos may also serve as vehicles for the target delivery of anti-fibrotic and immunomodulatory agents, enabling enhanced attenuation of lung fibrosis. Although numerous pre-clinical studies have demonstrated the therapeutic potential of MSC-Exos in the treatment of pulmonary fibrosis, there are several challenges that currently hinder their clinical implementation. Therefore, in this review article, we summarized current knowledge and we discussed future perspectives regarding molecular and cellular mechanisms which were responsible for the anti-fibrotic, anti-inflammatory and immunoregulatory properties of MSC-Exos, paving the way for their clinical use in the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Ana Volarevic
- Department of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Aleksandar Arsenijevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
- Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| |
Collapse
|
26
|
Lee YJ, Kim M, Kim HS, Kang JL. Administration of Gas6 attenuates lung fibrosis via inhibition of the epithelial-mesenchymal transition and fibroblast activation. Cell Biol Toxicol 2024; 40:20. [PMID: 38578518 PMCID: PMC10997547 DOI: 10.1007/s10565-024-09858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Minsuk Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
| |
Collapse
|
27
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
28
|
Yao L, Xu Z, Davies DE, Jones MG, Wang Y. Dysregulated bidirectional epithelial-mesenchymal crosstalk: a core determinant of lung fibrosis progression. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:27-33. [PMID: 38558961 PMCID: PMC7615773 DOI: 10.1016/j.pccm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progressive lung fibrosis is characterised by dysregulated extracellular matrix (ECM) homeostasis. Understanding of disease pathogenesis remains limited and has prevented the development of effective treatments. While an abnormal wound healing response is strongly implicated in lung fibrosis initiation, factors that determine why fibrosis progresses rather than regular tissue repair occurs are not fully explained. Within human lung fibrosis there is evidence of altered epithelial and mesenchymal lung populations as well as cells undergoing epithelial-mesenchymal transition (EMT), a dynamic and reversible biological process by which epithelial cells lose their cell polarity and down-regulate cadherin-mediated cell-cell adhesion to gain migratory properties. This review will focus upon the role of EMT and dysregulated epithelial-mesenchymal crosstalk in progressive lung fibrosis.
Collapse
Affiliation(s)
- Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Zijian Xu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Donna E. Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
29
|
Yang M, Chen Y, Huang X, Shen F, Meng Y. Lysine demethylase KDM3A alleviates hyperoxia-induced bronchopulmonary dysplasia in mice by promoting ETS1 expression. Exp Cell Res 2024; 435:113945. [PMID: 38286256 DOI: 10.1016/j.yexcr.2024.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease among neonates, with increasing morbidity and mortality. This study aims to investigate the effect and mechanism of lysine demethylase 3A (KDM3A) on hyperoxia-induced BPD. Hyperoxia-induced BPD mouse and alveolar epithelial cell models were constructed. The effects of hyperoxia on lung development were evaluated by histological and morphological analysis. The levels of KDM3A, E26 transformation specific-1 (ETS1), H3 lysine 9 dimethylation (H3K9me2), and endoplasmic reticulum (ER) stress-related indexes were quantified by RT-qPCR, Western blot, and IF staining. Cell apoptosis was assessed by flow cytometry and TUNEL staining. Transfection of oe-ETS1, oe-KDM3A, and sh-ETS1 was applied in hyperoxia-induced alveolar epithelial cells to explore the mechanism of the KDM3A/ETS1 axis in hyperoxia-induced apoptosis. KDM3A inhibitor IOX1 was applied to validate the in vivo effect of KDM3A in hyperoxia-induced BPD mice. The results displayed that hyperoxia-induced BPD mice showed reduced body weight, severe destruction of alveolar structure, decreased radial alveolar count (RAC), and increased mean linear intercept (MLI) and mean alveolar diameter (MAD). Further, hyperoxia induction down-regulated ETS1 expression, raised ER stress levels, and increased apoptosis rate in BPD mice and alveolar epithelial cells. However, transfection of oe-ETS1 improved the above changes in hyperoxia-induced alveolar epithelial cells. Moreover, transfection of oe-KDM3A up-regulated ETS1 expression, down-regulated H3K9me2 expression, inhibited ER stress, and reduced apoptosis rate in hyperoxia-induced alveolar epithelial cells. In addition, transfection of sh-ETS1 reversed the inhibitory effect of KDM3A on hyperoxia-induced apoptosis by regulating ER stress. In vivo experiments, KDM3A inhibitor IOX1 intervention further aggravated BPD in newborn mice. In a word, KDM3A alleviated hyperoxia-induced BPD in mice by promoting ETS1 expression.
Collapse
Affiliation(s)
- Min Yang
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China.
| | - Yanping Chen
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| | | | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, 410007, China
| | - Yanni Meng
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| |
Collapse
|
30
|
Markasz L, Mobini-Far H, Sindelar R. Collagen type IV alpha 1 chain (COL4A1) expression in the developing human lung. BMC Pulm Med 2024; 24:75. [PMID: 38331745 PMCID: PMC10851591 DOI: 10.1186/s12890-024-02875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Collagen type IV alpha 1 chain (COL4A1) in the basement membrane is an important component during lung development, as suggested from animal models where COL4A1 has been shown to regulate alveolarization and angiogenesis. Less is known about its role in human lung development. Our aim was to study COL4A1 expression in preterm infants with different lung maturational and clinical features. METHODS COL4A1 expression in 115 lung samples from newborn infants (21-41 weeks' gestational age; 0-228 days' postnatal age [PNA]) was studied by immunohistochemistry combined with digital image analysis. Cluster analysis was performed to find subgroups according to immunohistologic and clinical data. RESULTS Patients were automatically categorized into 4 Groups depending on their COL4A1 expression. Expression of COL4A1 was mainly extracellular in Group 1, low in Group 2, intracellular in Group 3, and both extra- and intracellular in Group 4. Intracellular/extracellular ratio of COL4A1 expression related to PNA showed a distinctive postnatal maturational pattern on days 1-7, where intracellular expression of COL4A1 was overrepresented in extremely preterm infants. CONCLUSIONS COL4A1 expression seems to be highly dynamic during the postnatal life due to a possible rapid remodeling of the basement membrane. Intracellular accumulation of COL4A1 in the lungs of extremely premature infants occurs more frequently between 1 and 7 postnatal days than during the first 24 hours. In view of the lung arrest described in extremely preterm infants, the pathological and/or developmental role of postnatally increased intracellular COL4A1 as marker for basement membrane turnover, needs to be further investigated.
Collapse
Affiliation(s)
- Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala, SE-751 85, Sweden.
| | - Hamid Mobini-Far
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, SE-751 85, Sweden
| |
Collapse
|
31
|
Toker Ç, Kuyucu Y, Şaker D, Kara S, Güzelel B, Mete UÖ. Investigation of miR-26b and miR-27b expressions and the effect of quercetin on fibrosis in experimental pulmonary fibrosis. J Mol Histol 2024; 55:25-35. [PMID: 37857923 DOI: 10.1007/s10735-023-10168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
In this study, investigation of the effects of Quercetin on Bleomycin-induced pulmonary fibrosis and fibrosis-associated molecules miR-26b and miR-27b was aimed. Control group was given 10% saline on the 0th day, and saline was administered for 21 days starting from the 8th day. Group 2 was given 50 mg/kg Quercetin for 21 days starting from the 8th day. Group 3 was given 10 mg/kg Bleomycin Sulfate on day 0, and sacrificed on the 22nd and 29th day. Group 4 was given 10 mg/kg Bleomycin Sulfate on the 0th day, and was given 50 mg/kg Quercetin for 14 days, and 21 days starting from day 8. Lung tissues were examined using light and electron microscopic, immunohistochemical and molecular biological methods. Injury groups revealed impaired alveolar structure, collagen accumulation and increased inflammatory cells in interalveolar septum. Fibrotic response was decreased and the alveolar structure was improved with Quercetin treatment. α-SMA expressions were higher in the injury groups, but lower in the treatment groups compared to the injury groups. E-cadherin expressions were decreased in the injury groups and showed stronger immunoreactivity in the treatment groups compared to the injury groups. miR-26b and miR-27b expressions were lower in the injury groups than the control groups, and higher in the treatment groups than the injury groups. Quercetin can be considered as a new treatment agent in the idiopathic pulmonary fibrosis, since it increases the expression levels of miR-26b and miR-27b which decrease in fibrosis, and has therapeutic effects on the histopathological changes.
Collapse
Affiliation(s)
- Çağrı Toker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Yurdun Kuyucu
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey.
| | - Dilek Şaker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Samet Kara
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Bilge Güzelel
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Ufuk Özgü Mete
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| |
Collapse
|
32
|
Lu X, Zhu C, Gao Y, Yu Z, Yan Q, Liu Y, Luo M, Shi X. Design, synthesis, and evaluation of pirfenidone-NSAIDs conjugates for the treatment of idiopathic pulmonary fibrosis. Bioorg Chem 2024; 143:107018. [PMID: 38071874 DOI: 10.1016/j.bioorg.2023.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal, chronic and progressive lung disease that threaten public health like many cancers. In this study, targeting the significant driving factor, inflammatory response, of the IPF, several conjugates of pirfenidone (PFD) with non-steroidal anti-inflammatory drugs (NSAIDs), along with their derivatives, were designed and synthesized to enhance the anti-IPF potency of PFD. Among these compounds, the (S)-ibuprofen-PFD conjugate 5b exhibited the most potent anti-proliferation activity against NIH3T3 cells, demonstrating up to a 343-fold improvement compared to PFD (IC50 = 0.04 mM vs IC50 = 13.72 mM). Notably, 5b exhibited superior activity in inhibiting the migration of macrophages induced by TGF-β compared to PFD. Additionally, 5b demonstrated significant suppression of TGF-β-induced migration of NIH3T3 cells and induction of apoptosis in NIH3T3 cells. Mechanistic studies revealed that 5b reduced the expression of collagen I and α-SMA by inhibiting the TGF-β/SMAD3 pathway. In a bleomycin-induced pulmonary fibrosis model, treatment with 5b (40 mg/kg/day, orally) exhibited a more pronounced effect on reducing the degree of histopathological changes in lung tissue and alleviating collagen deposition compared to PFD (100 mg/kg/day, orally). Moreover, 5b could block the expression of collagen I, α-SMA, fibronectin, and pro-inflammatory factors (IL-6, IFN-γ, and TNF-α) compared to PFD, while demonstrating low toxicity in vivo. These preliminary results indicated that the hybridization of PFD with NSAIDs represented an effective modification approach to improve the anti-IPF potency of PFD. Consequently, 5b emerged as a promising candidate for the further development of new anti-IPF agents.
Collapse
Affiliation(s)
- Xiang Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China
| | - Chaoran Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yiwen Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingjin Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiufang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
33
|
De Lorenzis E, Wasson CW, Del Galdo F. Alveolar epithelial-to-mesenchymal transition in scleroderma interstitial lung disease: Technical challenges, available evidence and therapeutic perspectives. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024; 9:7-15. [PMID: 38333528 PMCID: PMC10848925 DOI: 10.1177/23971983231181727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/27/2023] [Indexed: 02/10/2024]
Abstract
The alveolar epithelial-to-mesenchymal transition is the process of transformation of differentiated epithelial cells into mesenchymal-like cells through functional and morphological changes. A partial epithelial-to-mesenchymal transition process can indirectly contribute to lung fibrosis through a paracrine stimulation of the surrounding cells, while a finalized process could also directly enhance the pool of pulmonary fibroblasts and the extracellular matrix deposition. The direct demonstration of alveolar epithelial-to-mesenchymal transition in scleroderma-related interstitial lung disease is challenging due to technical pitfalls and the limited availability of lung tissue samples. Similarly, any inference on epithelial-to-mesenchymal transition occurrence driven from preclinical models should consider the limitations of cell cultures and animal models. Notwithstanding, while the occurrence or the relevance of this phenomenon in scleroderma-related interstitial lung disease have not been directly and conclusively demonstrated until now, pre-clinical and clinical evidence supports the potential role of epithelial-to-mesenchymal transition in the development and progression of lung fibrosis. Evidence consolidation on scleroderma-related interstitial lung disease epithelial-to-mesenchymal transition would pave the way for new therapeutic opportunities to prevent, slow or even reverse lung fibrosis, drawing lessons from current research lines in neoplastic epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
34
|
Kolanko E, Cargnoni A, Papait A, Silini AR, Czekaj P, Parolini O. The evolution of in vitro models of lung fibrosis: promising prospects for drug discovery. Eur Respir Rev 2024; 33:230127. [PMID: 38232990 DOI: 10.1183/16000617.0127-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Lung fibrosis is a complex process, with unknown underlying mechanisms, involving various triggers, diseases and stimuli. Different cell types (epithelial cells, endothelial cells, fibroblasts and macrophages) interact dynamically through multiple signalling pathways, including biochemical/molecular and mechanical signals, such as stiffness, affecting cell function and differentiation. Idiopathic pulmonary fibrosis (IPF) is the most common fibrosing interstitial lung disease (fILD), characterised by a notably high mortality. Unfortunately, effective treatments for advanced fILD, and especially IPF and non-IPF progressive fibrosing phenotype ILD, are still lacking. The development of pharmacological therapies faces challenges due to limited knowledge of fibrosis pathogenesis and the absence of pre-clinical models accurately representing the complex features of the disease. To address these challenges, new model systems have been developed to enhance the translatability of preclinical drug testing and bridge the gap to human clinical trials. The use of two- and three-dimensional in vitro cultures derived from healthy or diseased individuals allows for a better understanding of the underlying mechanisms responsible for lung fibrosis. Additionally, microfluidics systems, which replicate the respiratory system's physiology ex vivo, offer promising opportunities for the development of effective therapies, especially for IPF.
Collapse
Affiliation(s)
- Emanuel Kolanko
- Department of Cytophysiology, Katowice Medical University of Silesia in Katowice, Katowice, Poland
- These authors contributed equally
| | - Anna Cargnoni
- Fondazione Poliambulanza Istituto Ospedaliero, Centro di Ricerca E. Menni, Brescia, Italy
- These authors contributed equally
| | - Andrea Papait
- Università Cattolica del Sacro Cuore, Department Life Sciences and Public Health, Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Antonietta Rosa Silini
- Fondazione Poliambulanza Istituto Ospedaliero, Centro di Ricerca E. Menni, Brescia, Italy
| | - Piotr Czekaj
- Department of Cytophysiology, Katowice Medical University of Silesia in Katowice, Katowice, Poland
| | - Ornella Parolini
- Università Cattolica del Sacro Cuore, Department Life Sciences and Public Health, Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| |
Collapse
|
35
|
Feng R, Yu S, Qian Z, Wang Y, Xie G, Li B, Chen J, Wu YX, Tang K. A DNA octahedral amplifier for endogenous circRNA detection and bioimaging in living cells and its biomarker study. Analyst 2024; 149:807-814. [PMID: 38116839 DOI: 10.1039/d3an01803b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The discovery of reliable biomarkers is essential for early diagnosis, treatment, and prognosis assessment of diseases. Many research studies have shown that circRNA is a potential biomarker for diagnosis and prognosis of diseases. However, in situ monitoring circRNA in live cells is still a challenge at present, which brings a major limitation to the development and verification of circRNA as a disease biomarker. In this study, a catalytic hairpin assembly (CHA) reaction-based DNA octahedral amplifier (DOA) was developed for fluorescence resonance energy transfer (FRET) detection and bioimaging of circRNA in living cells. The DOA was first produced by self-assembling a DNA octahedron with six customized single-stranded DNAs, and two hairpins H1 (Cy3) and H2 (Cy5) were then hybridized to four vertices of the DNA octahedron. Idiopathic pulmonary fibrosis (IPF)-related circHIPK3 was used as the target. Once the CHA reaction from H1 and H2 on DOA was activated by a sequence-specific back-splice junction (BSJ) of circHIPK3, a significant FRET signal can be obtained from Cy3 to Cy5. The circHIPK3 was subsequently released to cause the next CHA reaction. Because the DOA has the advantages of the spatial-confinement effect, resistance to nuclease degradation and easy penetration into cells, rapid and excellent signal amplification FRET detection and bioimaging of endogenous circHIPK3 can be achieved in various cells. This study provides a high-precision assay platform to explore the possibility of using circRNA as a biomarker, and it is valuable for circRNA-related early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Rong Feng
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Shengrong Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Zhiling Qian
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yiming Wang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Gege Xie
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Bingqian Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Jingwen Chen
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yong-Xiang Wu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
36
|
Zhu JQ, Tian YY, Chan KL, Hu Z, Xu QQ, Lin ZX, Xian YF. Modified Qing-Zao-Jiu-Fei decoction attenuated pulmonary fibrosis induced by bleomycin in rats via modulating Nrf2/NF-κB and MAPKs pathways. Chin Med 2024; 19:10. [PMID: 38229198 DOI: 10.1186/s13020-024-00882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Qing-Zao-Jiu-Fei Decoction (QZJFD) is a famous herbal formula commonly prescribed for the treatment of lung-related diseases in the ancient and modern times. Trichosanthis Fructus (TF) and Fritillariae Thunbergii Bulbus (FTB) are widely used for treatment of cough and pulmonary disease. In order to identify a more effective formula for treatment of pulmonary fibrosis, we intend to add TF and FTB in QZJFD to form a modified QZJFD (MQZJFD). In this study, we aims to explore MQZJFD as an innovative therapeutic agent for pulmonary fibrosis using bleomycin (BLM)-treated rats and to unravel the underlying molecular mechanisms. METHODS BLM was given to SD rats by intra-tracheal administration of a single dose of BLM (5 mg/kg). QZJFD (3 g/kg) and MQZJFD (1, 2 and 4 g/kg) was given intragastrically daily to rats for 14 days (from day 15 to 28) after BLM administration for 14 consecutive days. RESULTS MQZJFD was found to contain 0.29% of amygdalin, 0.020% of lutin, 0.077% of glycyrrhizic acid and 0.047% of chlorogenic acid. BLM treatment could induce collagen deposition in the lung tissues of rats, indicating that the pulmonary fibrosis rat model had been successfully established. MQZJFD have better effects than the original QZJFD in reducing the pulmonary structure damage and collagen deposition of rat lung fibrosis induced by BLM. MQZJFD could reduce the hydroxyproline content in lung tissues of BLM-treated rats. The biomarkers of fibrosis such as matrix metalloproteinase 9 (MMP9), collagen I and α-smooth muscle actin (α-SMA) were remarkably reduced after treatment with MQZJFD. MQZJFD also have anti-oxidant stress effects by inhibiting the level of malondialdehyde (MDA), but enhancing the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the level of glutathione (GSH) in the lung tissues of BLM-treated rats. Moreover, the MQZJFD markedly suppressed the over expressions of p-p65/p65 and p-IκBα/IκBα, but upregulated the Nrf2. MQZJFD also suppressed the protein expressions of p-ERK1/2/ERK1/2, p-p38/p38 and p-JNK/JNK in the lung tissues of BLM-treated rats. CONCLUSIONS MQZJFD could improve the pulmonary fibrosis induced by BLM in rats via inhibiting the fibrosis and oxidative stress via suppressing the activation of NF-κB/Nrf2 and MAPKs pathways.
Collapse
Affiliation(s)
- Jia-Qian Zhu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, People's Republic of China
| | - Yuan-Yang Tian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, People's Republic of China
| | - Kam Leung Chan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, People's Republic of China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, People's Republic of China
| | - Zhen Hu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, People's Republic of China
| | - Qing-Qing Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, People's Republic of China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, People's Republic of China.
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, People's Republic of China.
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, People's Republic of China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
37
|
Lettieri S, Bertuccio FR, del Frate L, Perrotta F, Corsico AG, Stella GM. The Plastic Interplay between Lung Regeneration Phenomena and Fibrotic Evolution: Current Challenges and Novel Therapeutic Perspectives. Int J Mol Sci 2023; 25:547. [PMID: 38203718 PMCID: PMC10779349 DOI: 10.3390/ijms25010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of pulmonary disorders characterized by variable degrees of inflammation, interstitial thickening, and fibrosis leading to distortion of the pulmonary architecture and gas exchange impairment. Among them, idiopathic pulmonary fibrosis (IPF) displays the worst prognosis. The only therapeutic options consist of the two antifibrotic drugs, pirfenidone and nintedanib, which limit fibrosis progression but do not reverse the lung damage. The shift of the pathogenetic paradigm from inflammatory disease to epithelium-derived disease has definitively established the primary role of type II alveolar cells, which lose their epithelial phenotype and acquire a mesenchymal phenotype with production of collagen and extracellular matrix (EMC) deposition. Some predisposing environmental and genetic factors (e.g., smoke, pollution, gastroesophageal reflux, variants of telomere and surfactant genes) leading to accelerated senescence set a pro-fibrogentic microenvironment and contribute to the loss of regenerative properties of type II epithelial cells in response to pathogenic noxae. This review provides a complete overview of the different pathogenetic mechanisms leading to the development of IPF. Then, we summarize the currently approved therapies and the main clinical trials ongoing. Finally, we explore the potentialities offered by agents not only interfering with the processes of fibrosis but also restoring the physiological properties of alveolar regeneration, with a particular focus on potentialities and concerns about cell therapies based on mesenchymal stem cells (MSCs), whose anti-inflammatory and immunomodulant properties have been exploited in other fibrotic diseases, such as graft versus host disease (GVHD) and COVID-19-related ARDS.
Collapse
Affiliation(s)
- Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco R. Bertuccio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lucia del Frate
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, 80055 Naples, Italy;
| | - Angelo G. Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia M. Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (F.R.B.); (L.d.F.); (A.G.C.)
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
38
|
Young ON, Bourke JE, Widdop RE. Catch your breath: The protective role of the angiotensin AT 2 receptor for the treatment of idiopathic pulmonary fibrosis. Biochem Pharmacol 2023; 217:115839. [PMID: 37778444 DOI: 10.1016/j.bcp.2023.115839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease whereby excessive deposition of extracellular matrix proteins (ECM) ultimately leads to respiratory failure. While there have been advances in pharmacotherapies for pulmonary fibrosis, IPF remains an incurable and irreversible disease. There remains an unmet clinical need for treatments that reverse fibrosis, or at the very least have a more tolerable side effect profile than currently available treatments. Transforming growth factor β1(TGFβ1) is considered the main driver of fibrosis in IPF. However, as our understanding of the role of the pulmonary renin-angiotensin system (PRAS) in the pathogenesis of IPF increases, it is becoming clear that targeting angiotensin receptors represents a potential novel treatment strategy for IPF - in particular, via activation of the anti-fibrotic angiotensin type 2 receptor (AT2R). This review describes the current understanding of the pathophysiology of IPF and the mediators implicated in its pathogenesis; focusing on TGFβ1, angiotensin II and related peptides in the PRAS and their contribution to fibrotic processes in the lung. Preclinical and clinical assessment of currently available AT2R agonists and the development of novel, highly selective ligands for this receptor will also be described, with a focus on compound 21, currently in clinical trials for IPF. Collectively, this review provides evidence of the potential of AT2R as a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivia N Young
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jane E Bourke
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
39
|
Huang F, Li Y, Guan L, Hu Y, Zeng M. MiR-30a inhibits silica dust-induced epithelial-mesenchymal transition by targeting Snail. Toxicol In Vitro 2023; 92:105657. [PMID: 37543170 DOI: 10.1016/j.tiv.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
The mechanism of action of MicroRNA-30a(miR-30a) and Snail, a transcription factor, in silica(SiO2) dust-induced pulmonary EMT and secondary pulmonary fibrosis remains elusive. In this study, the cellular EMT model induced by the stimulation of A549 cells with SiO2 was established. A549 cells were transfected with miR-30a mimic and miR-30a inhibitor and the SNAIL gene was silenced to examine the mechanism of miR-30a targeting Snail to regulate silica dust-induced EMT. The results showed that 50 μg/mL SiO2 stained A549 cells for 24 h could induce EMT in A549 cells. Exposure of A549 cells to SiO2 dust decreased miR-30a expression, as well as mRNA and protein expression levels of E-cad. Conversely, SiO2 exposure increased mRNA and protein expression levels of α-SMA, vimentin, and Snail. The miR-30a mimic upregulated mRNA and protein expression levels of E-cadherin in SiO2-induced A549 cells, while downregulating mRNA and protein expression levels of α-SMA, vimentin and Snail. MiR-30a inhibitors have the opposite effect. Silencing the SNAIL gene, followed by SiO2 dust-induced stimulation of A549 cells, could enhance mRNA and protein expression levels of E-cad, whereas those of α-SMA and vimentin were reduced. Altogether, we found that miR-30a directly targeted Snail and inhibited its expression, thereby delaying silica induced pulmonary EMT.
Collapse
Affiliation(s)
- Fangcai Huang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Yupei Li
- The First Affiliated Hospital of Xi'An Jiaotong University, China
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Yuming Hu
- Hunan Provincial Center For Disease Control And Prevention, China.
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
40
|
Vats A, Chaturvedi P. The Regenerative Power of Stem Cells: Treating Bleomycin-Induced Lung Fibrosis. Stem Cells Cloning 2023; 16:43-59. [PMID: 37719787 PMCID: PMC10505024 DOI: 10.2147/sccaa.s419474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with no known cure, characterized by the formation of scar tissue in the lungs, leading to respiratory failure. Although the exact cause of IPF remains unclear, the condition is thought to result from a combination of genetic and environmental factors. One of the most widely used animal models to study IPF is the bleomycin-induced lung injury model in mice. In this model, the administration of the chemotherapeutic agent bleomycin causes pulmonary inflammation and fibrosis, which closely mimics the pathological features of human IPF. Numerous recent investigations have explored the functions of various categories of stem cells in the healing process of lung injury induced by bleomycin in mice, documenting the beneficial effects and challenges of this approach. Differentiation of stem cells into various cell types and their ability to modulate tissue microenvironment is an emerging aspect of the regenerative therapies. This review article aims to provide a comprehensive overview of the role of stem cells in repairing bleomycin-induced lung injury. It delves into the mechanisms through which various types of stem cells, including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and lung resident stem cells, exert their therapeutic effects in this specific model. We have also discussed the unique set of intermediate markers and signaling factors that can influence the proliferation and differentiation of alveolar epithelial cells both during lung repair and homeostasis. Finally, we highlight the challenges and opportunities associated with translating stem cell therapy to the clinic for IPF patients. The novelty and implications of this review extend beyond the understanding of the potential of stem cells in treating IPF to the broader field of regenerative medicine. We believe that the review paves the way for further advancements in stem cell therapies, offering hope for patients suffering from this debilitating and currently incurable disease.
Collapse
Affiliation(s)
- Amrita Vats
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
41
|
Aydin P, Aksakalli-Magden ZB, Civelek MS, Karabulut-Uzuncakmak S, Mokhtare B, Ozkaraca M, Alper F, Halici Z. The melatonin agonist ramelteon attenuates bleomycin-induced lung fibrosis by suppressing the NLRP3/TGF-Β1/HMGB1 signaling pathway. Adv Med Sci 2023; 68:322-331. [PMID: 37716182 DOI: 10.1016/j.advms.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/10/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
PURPOSE The possible effects of ramelteon, a melatonin receptor agonist on bleomycin-induced lung fibrosis were analyzed via transforming growth factor β1 (TGF-β1), the high mobility group box 1 (HMGB1) and Nod-like receptor pyrin domain-containing 3 (NLRP3) which are related to the fibrosis process. MATERIALS AND METHODS Bleomycin (0.1 mL of 5 mg/kg) was administered by intratracheal instillation to induce pulmonary fibrosis (PF). Starting 24 h after bleomycin administration, a single dose of ramelteon was administered by oral gavage to the healthy groups, i.e. PF + RM2 (pulmonary fibrosis model with bleomycin + ramelteon at 2 mg/kg) and PF + RM4 (pulmonary fibrosis model with bleomycin + ramelteon at 4 mg/kg) at 2 and 4 mg/kg doses, respectively. Real-time polymerase chain reaction (real-time PCR) analyses, histopathological, and immunohistochemical staining were performed on lung tissues. Lung tomography images of the rats were also examined. RESULTS The levels of TGF-β1, HMGB1, NLRP3, and interleukin 1 beta (IL-1β) mRNA expressions increased as a result of PF and subsequently decreased with both ramelteon doses (p < 0.0001). Both doses of ramelteon partially ameliorated the reduction in the peribronchovascular thickening, ground-glass appearances, and reticulations, and the loss of lung volume. CONCLUSIONS The severity of fibrosis decreased with ramelteon application. These effects of ramelteon may be associated with NLRP3 inflammation cascade.
Collapse
Affiliation(s)
- Pelin Aydin
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | | | - Maide S Civelek
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | | | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Cumhurıyet University, Sıvas, Turkey
| | - Fatih Alper
- Department of Radiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey; Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
| |
Collapse
|
42
|
Fukihara J, Kondoh Y. COVID-19 and interstitial lung diseases: A multifaceted look at the relationship between the two diseases. Respir Investig 2023; 61:601-617. [PMID: 37429073 PMCID: PMC10281233 DOI: 10.1016/j.resinv.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although it has been a fatal disease for many patients, the development of treatment strategies and vaccines have progressed over the past 3 years, and our society has become able to accept COVID-19 as a manageable common disease. However, as COVID-19 sometimes causes pneumonia, post-COVID pulmonary fibrosis (PCPF), and worsening of preexisting interstitial lung diseases (ILDs), it is still a concern for pulmonary physicians. In this review, we have selected several topics regarding the relationships between ILDs and COVID-19. The pathogenesis of COVID-19-induced ILD is currently assumed based mainly on the evidence of other ILDs and has not been well elucidated specifically in the context of COVID-19. We have summarized what has been clarified to date and constructed a coherent story about the establishment and progress of the disease. We have also reviewed clinical information regarding ILDs newly induced or worsened by COVID-19 or anti-SARS-CoV-2 vaccines. Inflammatory and profibrotic responses induced by COVID-19 or vaccines have been thought to be a risk for de novo induction or worsening of ILDs, and this has been supported by the evidence obtained through clinical experience over the past 3 years. Although COVID-19 has become a mild disease in most cases, it is still worth looking back on the above-reviewed information to broaden our perspectives regarding the relationship between viral infection and ILD. As a representative etiology for severe viral pneumonia, further studies in this area are expected.
Collapse
Affiliation(s)
- Jun Fukihara
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan.
| |
Collapse
|
43
|
Zhang Y, Lv N, Li M, Liu M, Wu C. Cancer-associated fibroblasts: tumor defenders in radiation therapy. Cell Death Dis 2023; 14:541. [PMID: 37607935 PMCID: PMC10444767 DOI: 10.1038/s41419-023-06060-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that are involved in multiple aspects of cancer progression and considered contributors to tumor immune escape. CAFs exhibit a unique radiation resistance phenotype, and can survive clinical radiation doses; however, ionizing radiation can induce changes in their secretions and influence tumor progression by acting on tumor and immune cells. In this review, we describe current knowledge of the effects of radiation therapies on CAFs, as well as summarizing understanding of crosstalk among CAFs, tumor cells, and immune cells. We highlight the important role of CAFs in radiotherapy resistance, and discuss current and future radiotherapy strategies for targeting CAFs.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Na Lv
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Manshi Li
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ming Liu
- Department of Clinical Epidemiology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| | - Chunli Wu
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| |
Collapse
|
44
|
Prasad C, Hahn K, Duraisamy SK, Salathe MA, Huang SK, Burris TP, Sundar IK. Rev-erbα agonists suppresses TGFβ1-induced fibroblast-to-myofibroblast transition and pro-fibrotic phenotype in human lung fibroblasts. Biochem Biophys Res Commun 2023; 669:120-127. [PMID: 37269594 PMCID: PMC11034855 DOI: 10.1016/j.bbrc.2023.05.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by excessive scarring of the lungs that can lead to respiratory failure and death. Lungs of patients with IPF demonstrate excessive deposition of extracellular matrix (ECM) and an increased presence of pro-fibrotic mediators such as transforming growth factor-beta 1 (TGFβ1), which is a major driver of fibroblast-to-myofibroblast transition (FMT). Current literature supports that circadian clock dysfunction plays an essential role in the pathophysiology of various chronic inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease, and IPF. The circadian clock transcription factor Rev-erbα is encoded by Nr1d1 that regulates daily rhythms of gene expression linked to immunity, inflammation, and metabolism. However, investigations into the potential roles of Rev-erbα in TGFβ-induced FMT and ECM accumulation are limited. In this study, we utilized several novel small molecule Rev-erbα agonists (GSK41122, SR9009, and SR9011) and a Rev-erbα antagonist (SR8278) to determine the roles of Rev-erbα in regulating TGFβ1-induced FMT and pro-fibrotic phenotypes in human lung fibroblasts. WI-38 cells were either pre-treated/co-treated with or without Rev-erbα agonist/antagonist along with TGFβ1. After 48 h, the following parameters were evaluated: secretion of COL1A1 (Slot-Blot analysis) and IL-6 (ELISA) into condition media, expressions of α-smooth muscle actin (αSMA: immunostaining and confocal microscopy), and pro-fibrotic proteins (αSMA and COL1A1 by immunoblotting), as well as gene expression of pro-fibrotic targets (qRT-PCR: Acta2, Fn1, and Col1a1). Results revealed that Rev-erbα agonists inhibited TGFβ1-induced FMT (αSMA and COL1A1), and ECM production (reduced gene expression of Acta2, Fn1, and Col1a1), and decreased pro-inflammatory cytokine IL-6 release. The Rev-erbα antagonist promoted TGFβ1-induced pro-fibrotic phenotypes. These findings support the potential of novel circadian clock-based therapeutics, such as Rev-erbα agonist, for the treatment and management of fibrotic lung diseases and disorders.
Collapse
Affiliation(s)
- Chandrashekhar Prasad
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kameron Hahn
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Santosh Kumar Duraisamy
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthias A Salathe
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven K Huang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas P Burris
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
45
|
Singh P, Ali SN, Zaheer S, Singh M. Cellular mechanisms in the pathogenesis of interstitial lung diseases. Pathol Res Pract 2023; 248:154691. [PMID: 37480596 DOI: 10.1016/j.prp.2023.154691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
The interstitial lung diseases (ILDs) are a large, heterogeneous group of several hundred generally rare pulmonary pathologies, which show injury, inflammation and/or scarring in the lung. Although the aetiology of these disorders remains largely unknown, various cellular mechanisms have an important role in pathogenesis of fibrosis on the background of occupational, environmental and genetic factors. We have tried to provide new insights into the interactions and cellular contributions, analysing the roles of various cells in the pathogenesis of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India
| | - Saba Naaz Ali
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India.
| | - Mukul Singh
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India
| |
Collapse
|
46
|
Simon KS, Coelho LC, Veloso PHDH, Melo-Silva CA, Morais JAV, Longo JPF, Figueiredo F, Viana L, Silva Pereira I, Amado VM, Mortari MR, Bocca AL. Innovative Pre-Clinical Data Using Peptides to Intervene in the Evolution of Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11049. [PMID: 37446227 DOI: 10.3390/ijms241311049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, relentless, and deadly disease. Little is known about its pathogenetic mechanisms; therefore, developing efficient pharmacological therapies is challenging. This work aimed to apply a therapeutic alternative using immunomodulatory peptides in a chronic pulmonary fibrosis murine model. BALB/c mice were intratracheally instilled with bleomycin (BLM) and followed for 30 days. The mice were treated with the immune modulatory peptides ToAP3 and ToAP4 every three days, starting on the 5th day post-BLM instillation. ELISA, qPCR, morphology, and respiratory function analyses were performed. The treatment with both peptides delayed the inflammatory process observed in the non-treated group, which showed a fibrotic process with alterations in the production of collagen I, III, and IV that were associated with significant alterations in their ventilatory mechanics. The ToAP3 and ToAP4 treatments, by lung gene modulation patterns, indicated that distinct mechanisms determine the action of peptides. Both peptides controlled the experimental IPF, maintaining the tissue characteristics and standard function properties and regulating fibrotic-associated cytokine production. Data obtained in this work show that the immune response regulation by ToAP3 and ToAP4 can control the alterations that cause the fibrotic process after BLM instillation, making both peptides potential therapeutic alternatives and/or adjuvants for IPF.
Collapse
Affiliation(s)
- Karina Smidt Simon
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Luísa Coutinho Coelho
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Cesar Augusto Melo-Silva
- Laboratory of Respiratory Physiology, Medical School, University of Brasilia, Brasilia 70910-900, Brazil
- Hospital of the University of Brasilia, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - João Paulo Figueiró Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Florencio Figueiredo
- Laboratory of Pathology, Medical School, University of Brasilia, Brasilia 70910-900, Brazil
| | - Leonora Viana
- Laboratory of Pathology, Medical School, University of Brasilia, Brasilia 70910-900, Brazil
| | - Ildinete Silva Pereira
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Veronica Moreira Amado
- Laboratory of Respiratory Physiology, Medical School, University of Brasilia, Brasilia 70910-900, Brazil
- Hospital of the University of Brasilia, University of Brasilia, Brasilia 70910-900, Brazil
| | - Marcia Renata Mortari
- Department de Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Anamelia Lorenzetti Bocca
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| |
Collapse
|
47
|
Chen Y, He Z, Zhao B, Zheng R. Downregulation of a potential therapeutic target NPAS2, regulated by p53, alleviates pulmonary fibrosis by inhibiting epithelial-mesenchymal transition via suppressing HES1. Cell Signal 2023:110795. [PMID: 37406788 DOI: 10.1016/j.cellsig.2023.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease and a severe form of pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is induced in response to epithelial injury, which leads to the accumulation of extracellular matrix in the lung parenchyma and contributes to pulmonary fibrosis. NPAS2 (neuronal PAS domain protein 2) is significantly increased in the lung tissues of IPF patients according to microarray dataset GSE10667 and NPAS2 is downregulated in differentiated human pulmonary type 2 epithelial cells in vitro based on microarray dataset GSE3306 from Gene Expression Omnibus (GEO). In this study, we demonstrated that NPAS2 was increased in bleomycin (BLM)- induced fibrotic lungs in mice. Knockdown of NPAS2 inhibited EMT in primary mouse lung alveolar type 2 epithelial (pmATII) cells and human lung alveolar type 2 epithelial cell line A549 cells under BLM challenge in vitro. Moreover, the silence of NPAS2 alleviated the BLM-induced pulmonary fibrosis in a murine model. Mechanistically, NPAS2 promotes EMT through positively regulating hairy and enhancer of split 1 (HES1) expression. In this study, we present novel findings that have not been previously reported, emphasizing that p53 transcriptionally activates NPAS2 in ATII cells and overexpression of NPAS2 weakens the effects of TP53 knockdown on EMT of pmATII and A549 cells. Our results suggest NPAS2 is a novel target gene of p53 in regulating BLM-mediated EMT in ATII cells and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhong He
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bo Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
48
|
Karetnikova ES, Jarzebska N, Rodionov RN, Rubets E, Markov AG, Spieth PM. mRNA Levels of Epithelial and Mesenchymal Markers in Lung Epithelial Cell Lines. Rep Biochem Mol Biol 2023; 12:211-219. [PMID: 38317809 PMCID: PMC10838588 DOI: 10.61186/rbmb.12.2.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/14/2023] [Indexed: 02/07/2024]
Abstract
Background Epithelial-mesenchymal transition (EMT) is an important physiologic process that determines the outcome of lung tissue healing after injury. Stimuli and molecular cascades inducing EMT lead to up-regulation of the mesenchymal-specific genes in the alveolar epithelial cells and to down-regulation of the genes coding for epithelial markers. Alveolar epithelial cell lines are commonly used as in vitro models to study processes occurring in the lung tissue. The aim of this study is to quantify and compare mRNA expression levels of epithelial and mesenchymal markers in a number of lung epithelial cell lines. Methods Lung epithelial cell lines L2, R3/1 and RLE-6TN were cultured. Repeated mRNA isolation, reverse transcription, and quantitative PCR with primers to epithelial (E-cadherin, occludin, and ZO-2) and mesenchymal (α-SMA, collagen III, and vimentin) markers were performed. Results First, our study revealed a higher level of epithelial transcripts in the RLE-6TN cell line compared to L2 and R3/1 cells. Secondly, we have found simultaneous mRNA expression of both epithelial (E-cadherin, occludin and ZO-2) and mesenchymal (α-SMA, collagen III and vimentin) markers in all cell lines studied. Conclusions Our data indicate that at the transcriptional level the L2, R3/1, and RLE-6TN cell lines are at one of the intermediate stages of EMT, which opens new possibilities for the study of EMT on cell lines. Determination of the direction of changes in epithelial and mesenchymal markers will make it possible to establish the factors responsible for both EMT and reverse mesenchymal-epithelial transition.
Collapse
Affiliation(s)
- Ekaterina Sergeevna Karetnikova
- Department of Anesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Department of General Physiology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Natalia Jarzebska
- Department of Anesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Division of Angiology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Roman Nikolaevich Rodionov
- Division of Angiology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Elena Rubets
- Department of General Physiology, Saint-Petersburg State University, Saint-Petersburg, Russia.
- Division of Angiology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Alexander Georgievich Markov
- Department of General Physiology, Saint-Petersburg State University, Saint-Petersburg, Russia.
- The first and the second authors contributed equally to this work.
| | - Peter Markus Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- The first and the second authors contributed equally to this work.
| |
Collapse
|
49
|
Thatcher TH, Freeberg MAT, Myo YPA, Sime PJ. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis? Pharmacol Ther 2023; 247:108460. [PMID: 37244406 PMCID: PMC10335230 DOI: 10.1016/j.pharmthera.2023.108460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Pulmonary fibrotic diseases are characterized by proliferation of lung fibroblasts and myofibroblasts and excessive deposition of extracellular matrix proteins. Depending on the specific form of lung fibrosis, there can be progressive scarring of the lung, leading in some cases to respiratory failure and/or death. Recent and ongoing research has demonstrated that resolution of inflammation is an active process regulated by families of small bioactive lipid mediators termed "specialized pro-resolving mediators." While there are many reports of beneficial effects of SPMs in animal and cell culture models of acute and chronic inflammatory and immune diseases, there have been fewer reports investigating SPMs and fibrosis, especially pulmonary fibrosis. Here, we will review evidence that resolution pathways are impaired in interstitial lung disease, and that SPMs and other similar bioactive lipid mediators can inhibit fibroblast proliferation, myofibroblast differentiation, and accumulation of excess extracellular matrix in cell culture and animal models of pulmonary fibrosis, and we will consider future therapeutic implications of SPMs in fibrosis.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Margaret A T Freeberg
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J Sime
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
50
|
Liu J, Gao D, Ding Q, Zhang B, Zhu W, Shi Y. Sparganii Rhizoma alleviates pulmonary fibrosis by inhibiting fibroblasts differentiation and epithelial-mesenchymal transition mediated by TGF-β1/ Smad2/3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116305. [PMID: 36878395 DOI: 10.1016/j.jep.2023.116305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF), a lethal lung disease, can lead to structural destruction of the alveoli until death. Sparganii Rhizoma (SR), primarily distributed in East Asia, has been used clinically for hundreds of years against organ fibrosis and inflammation. AIM OF THE STUDY We intended to verify the effect of SR alleviate PF and further explore mechanisms. METHODS Murine model of PF was established by endotracheal infusion of bleomycin. We detected the anti-PF effect of SR through lung coefficient, hydroxyproline content, lung function and pathological staining. Then, we used Western Blot and RT-PCR to verify the mechanism. In vitro experiments, MRC-5 and BEAS-2B were induced to phenotypic transformation by TGF-β1 and then RT-PCR, WB and IF were conducted to verify the effect of SR. RESULTS SR significantly reduced BLM-induced PF in mice, improved lung function, slowed the degree of lung tissue lesions, and reduced collagen deposition. SR alleviated PF by inhibiting fibroblasts differentiation and epithelial-mesenchymal transition. In vivo studies explored the mechanism and found that it was related to TGF-β1/Smad2/3 pathway. CONCLUSIONS Our research proved SR could effectively treat PF, providing a fresh idea and approach for the treatment of PF with traditional Chinese medicine.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongyang Gao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qi Ding
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenxiang Zhu
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| |
Collapse
|