1
|
Lamas-Paz A, Hionides-Gutiérrez A, Guo F, Jorquera G, Morán-Blanco L, Benedé-Ubieto R, Mesquita M, Estévez-Vázquez O, Zheng K, Mazariegos M, Vázquez-Ogando E, Blázquez-López E, Asensio I, Mutlu B, Gomez-Santos B, Peligros MI, Vaquero J, Bañares R, Delgado TC, Martínez-Chantar ML, Martínez-Naves E, Sanz-García C, Mohamed MR, Tesolato S, Iniesta P, Gallego-Durán R, Maya-Miles D, Ampuero J, Romero-Gómez M, Martínez-Alcocer A, Sanfeliu-Redondo D, Fernández-Iglesias A, Gracia-Sancho J, Coll M, Graupera I, Ginès P, Ciudin A, Rivera-Esteban J, Pericàs JM, Ávila MA, Frutos MD, Martínez-Cáceres CM, Ramos-Molina B, Aspichueta P, Puigserver P, Nevzorova YA, Cubero FJ. Loss of Cdkn1a protects against MASLD alone or with alcohol intake by preserving lipid homeostasis. JHEP Rep 2025; 7:101230. [PMID: 39659733 PMCID: PMC11629569 DOI: 10.1016/j.jhepr.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024] Open
Abstract
Background & Aims Expression of P21, encoded by the CDKN1A gene, has been associated with fibrosis progression in steatotic liver disease (SLD); however, the underlying mechanisms remain unknown. In the present study, we investigated the function of CDKN1A in SLD. Methods CDKN1A expression levels were evaluated in different patient cohorts with SLD, fibrosis, and advanced chronic liver disease (ACLD). Cdkn1a -/- and Cdkn1a +/+ mice were fed with either a Western diet (WD), a Lieber-DeCarli (LdC) diet plus multiple EtOH (ethanol) binges, or a DuAL diet (metabolic dysfunction-associated fatty liver disease and alcohol-related liver). Primary hepatocytes were isolated and functional assays performed. Results A significant increase in CDKN1A expression was observed in patients with steatohepatitis and fibrosis (with a positive correlation with both NAFLD Activity Score and fibrosis staging scores), cirrhosis and ACLD. Cdkn1a +/+ mice, fed a DuAL diet exhibited liver injury and cell death increased reactive oxygen species (ROS), and markers of senescence (γH2AX, β-GAL, Cdkn1a/p53) contributing to steatosis and inflammation. In contrast, Cdkn1a -/- mutant mice showed a significant decrease in senescence-associated markers as well as in markers of liver injury, hepatic steatosis and an increase in fatty acid oxidation and reduction in free fatty acid uptake as well as de novo lipogenesis. Mechanistically, activation of the AMPK-SIRT3 was observed in Cdkn1a-deleted animals. Conclusions Cdkn1a deletion protected against preclinical SLD by promoting fatty acid oxidation and preventing free fatty acid uptake and de novo lipogenesis via the AMPK-SIRT3 axis. CDKN1A expression was found to be directly correlated with increased severity of NAFLD Activity Score and fibrosis in patients with SLD. CDKN1A could be a potential theragnostic target for the treatment of metabolic dysregulation in patients with SLD, with and without alcohol consumption. Impact and implications Expression of p21, encoded by the CDKN1A gene, has been associated with fibrosis progression in steatotic liver disease (SLD), but the molecular mechanisms remain elusive. Interestingly, in this study we found that Cdkn1a deletion protected against preclinical SLD by promoting fatty acid oxidation and preventing free fatty acid uptake and de novo lipogenesis, via the AMPK-SIRT3 axis. Translationally, Cdkn1a expression was found to be directly correlated with increased severity of NAFLD Activity Score (NAS) and fibrosis in SLD patients, and therefore, CDKN1A might be used potential theragnostic target for the treatment of metabolically induced SLD, with and without alcohol consumption.
Collapse
Affiliation(s)
- Arantza Lamas-Paz
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Feifei Guo
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Department of Obstetrics and Gynaecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Gonzalo Jorquera
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
- Physiology Institute, Science Faculty, Universidad de Valparaíso, Valparaíso, Chile
| | - Laura Morán-Blanco
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Mariana Mesquita
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Olga Estévez-Vázquez
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Kang Zheng
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Department of Anesthesiology, Nanjing Pukou District Hospital of Chinese Medicine Central Laboratory Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Marina Mazariegos
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Elena Vázquez-Ogando
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Elena Blázquez-López
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Iris Asensio
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Beatriz Gomez-Santos
- Department of Physiology, Basque Country University (UPV/EHU) School of Medicine and Nursing, Bilbao, Spain
- Biobizkaia Health Institute, Barakaldo, Spain
| | - María Isabel Peligros
- Servicio de Anatomía Patológica Hospital General Universitario Gregorio Marañón Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Teresa C. Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - María Luz Martínez-Chantar
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Carlos Sanz-García
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | | | - Sofía Tesolato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
| | - Pilar Iniesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
| | - Rocío Gallego-Durán
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Douglas Maya-Miles
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Javier Ampuero
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Manuel Romero-Gómez
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ana Martínez-Alcocer
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - David Sanfeliu-Redondo
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mar Coll
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Graupera
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Pere Ginès
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Andrea Ciudin
- Endocrinology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
- Centre for Biomedical Research, Network on Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Jesús Rivera-Esteban
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
- Puerta de Hierro University Hospital, Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Juan M. Pericàs
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - Matías A. Ávila
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Hepatology Laboratory, Solid Tumors Program, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maria Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | | | - Bruno Ramos-Molina
- Laboratorio de Obesidad y Metabolismo, Instituto de Investigación Biomédica de Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Patricia Aspichueta
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of Physiology, Basque Country University (UPV/EHU) School of Medicine and Nursing, Bilbao, Spain
- Biobizkaia Health Institute, Barakaldo, Spain
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| |
Collapse
|
2
|
Wei P, Li L, Ran C, Jin M, Zhao H, Yang K, Wang Y, He H, Jia M, Pan H, Li Q, Guo J. High fat diet-induced downregulation of TRPV2 mediates hepatic steatosis via p21 signalling. J Physiol Biochem 2024; 80:113-126. [PMID: 37882938 DOI: 10.1007/s13105-023-00988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
The global prevalence and incidence of non-alcoholic fatty liver disease (NAFLD) are exhibiting an increasing trend. NAFLD is characterized by a significant accumulation of lipids, though its underlying mechanism is still unknown. Here we report that high-fat diet (HFD) feeding induced hepatic steatosis in mice, which was accompanied by a reduction in the expression and function of hepatic TRPV2. Moreover, conditional knockout of TRPV2 in hepatocytes exacerbated HFD-induced hepatic steatosis. In an in vitro model of NAFLD, TRPV2 regulated lipid accumulation in HepG2 cells, and TRPV2 activation inhibited the expression of the cellular senescence markers p21 and p16, all of which were mediated by AMPK phosphorylation. Finally, we found that administration of probenecid, a TRPV2 agonist, impaired HFD-induced hepatic steatosis and suppressed HFD-induced elevation in p21 and p16. Collectively, our findings imply that hepatic TRPV2 protects against the accumulation of lipids by modulating p21 signalling.
Collapse
Affiliation(s)
- Pengfei Wei
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Lixuan Li
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Chenqiu Ran
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Huijuan Zhao
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Kelaier Yang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Huaqiu He
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Mengyang Jia
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Hongyan Pan
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China.
| | - Jing Guo
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
3
|
Geng Y, Liu Z, Hu R, Ma W, Wu X, Dong H, Song K, Xu X, Huang Y, Li F, Song Y, Zhang M. Opportunities and challenges: interleukin-22 comprehensively regulates polycystic ovary syndrome from metabolic and immune aspects. J Ovarian Res 2023; 16:149. [PMID: 37525285 PMCID: PMC10388558 DOI: 10.1186/s13048-023-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as a prevalent but complicated gynecologic disease throughout the reproductive period. Typically, it is characterized by phenotypic manifestations of hyperandrogenism, polycystic ovary morphology, and persistent anovulation. For now, the therapeutic modality of PCOS is still a formidable challenge. Metabolic aberrations and immune challenge of chronic low-grade inflammatory state are significant in PCOS individuals. Recently, interleukin-22 (IL-22) has been shown to be therapeutically effective in immunological dysfunction and metabolic diseases, which suggests a role in the treatment of PCOS. In this review, we outline the potential mechanisms and limitations of IL-22 therapy in PCOS-related metabolic disorders including its regulation of insulin resistance, gut barrier, systemic inflammation, and hepatic steatosis to generate insights into developing novel strategies in clinical practice.
Collapse
Affiliation(s)
- Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wenwen Ma
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiao Wu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Haoxu Dong
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Kunkun Song
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiaohu Xu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
4
|
Deeb AA, Settmacher U, Ardelt M, Dondorf F, Rohland O, Rauchfuß F. Adipose tissue induces a better liver regeneration after living liver donation in normal weight donors. Hepatobiliary Surg Nutr 2023; 12:341-350. [PMID: 37351149 PMCID: PMC10282691 DOI: 10.21037/hbsn-22-442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/30/2022] [Indexed: 08/24/2024]
Abstract
Background Extrahepatic body fat could be a relevant factor affecting liver regeneration after partial hepatectomy. The aim of this study was to evaluate the potential role of body fatty tissue in liver regeneration capacity after liver resection in a cohort of living donors. Methods We observed liver regeneration in 120 patients: 70 living donors who underwent right hepatectomy and 50 recipients who got a right graft transplantation. Liver volumetry and body fat analysis were performed based on the computed tomography images with volumetry software. The gain of liver volume was calculated between three points in time considering the absolute and percentage values: before surgery and early (median 10 days, range 4-21 days) and late (median 27 weeks, range 18-40 weeks) after surgery. Pearson's correlation was used to examine the potential correlation between adipose tissue and liver regeneration. Results Pearson's correlation showed a significant correlation between the subcutaneous fat mass index (sFMI) and early (r=0.173, P=0.030), as well late (r=0.395, P=0.0004) percental liver volume gain in the whole collective. Under stratification in donor's and recipient's collectives, the effect of extrahepatic adipose tissue appears in multiple regression only in the donor's collective: early (β =0.219, T =2.137, P=0.036) and late (β =0.390, T =2.552, P=0.015) percental volume gain. Conclusions Subcutaneous adipose tissue is a positive predictive factor to estimate the goodness of liver regeneration after partial hepatectomy in normosthenic donors.
Collapse
Affiliation(s)
- Aladdin Ali Deeb
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Michael Ardelt
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Felix Dondorf
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Oliver Rohland
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Falk Rauchfuß
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Kramberger K, Barlič-Maganja D, Pražnikar ZJ, Režen T, Rozman D, Pražnikar J, Kenig S. Whole transcriptome expression array analysis of human colon fibroblasts culture treated with Helichrysum italicum supports its use in traditional medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115505. [PMID: 35764197 DOI: 10.1016/j.jep.2022.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Helichrysum italicum (HI) is a Mediterranean plant with well-reported use in traditional medicine for a wide range of applications, including digestive and liver disorders, intestinal parasitic infections, wound healing, stomach ache and asthma. However, little is known about the global mechanism behind its pleiotropic activity. AIM OF THE STUDY The aim of this study was to explain the mechanism behind the previously demonstrated effects of HI and to justify its use in traditional medicine. MATERIALS AND METHODS A microarray-based transcriptome analysis was used to discover the global transcriptional alterations in primary colon fibroblasts after exposure to HI infusion for 6 h and 24 h. In addition, quantitative real-time PCR was used to verify the microarray results. RESULTS Altogether we identified 217 differentially expressed genes compared to non-treated cells, and only 8 were common to both treatments. Gene ontology analysis revealed that 24 h treatment with HI infusion altered the expression of genes involved in cytoskeletal rearrangement and cell growth, whereas pathway analysis further showed the importance of interleukin signaling and transcriptional regulation by TP53. For the 6 h treatment only the process of hemostasis appeared in the results of both enrichment analyses. In functional assays, HI infusion increased cell migration and decreased blood clotting and prothrombin time. CONCLUSIONS With the careful evaluation of the role of individual genes, especially SERPING1, ARHGAP1, IL33 and CDKN1A, represented in the enriched pathways and processes, we propose the main mode of HI action, which is wound healing. In addition to its indirect prevention of diseases resulting from the impaired barrier integrity, HI also effects inflammation and metabolic processes directly, as it regulates genes such as LRPPRC, LIPA, ABCA12, PRKAR1A and ANXA6.
Collapse
Affiliation(s)
- Katja Kramberger
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia.
| | - Darja Barlič-Maganja
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia.
| | - Zala Jenko Pražnikar
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia.
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - Jure Pražnikar
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia.
| | - Saša Kenig
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia.
| |
Collapse
|
6
|
Cho Y, Joshi R, Lowe P, Copeland C, Ribeiro M, Morel C, Catalano D, Szabo G. Granulocyte colony-stimulating factor attenuates liver damage by M2 macrophage polarization and hepatocyte proliferation in alcoholic hepatitis in mice. Hepatol Commun 2022; 6:2322-2339. [PMID: 35997009 PMCID: PMC9426408 DOI: 10.1002/hep4.1925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Massive inflammation and liver failure are main contributors to the high mortality in alcohol-associated hepatitis (AH). In recent clinical trials, granulocyte colony-stimulating factor (G-CSF) therapy improved liver function and survival in patients with AH. However, the mechanisms of G-CSF-mediated beneficial effects in AH remain elusive. In this study, we evaluated effects of in vivo G-CSF administration, using a mouse model of AH. G-CSF treatment significantly reduced liver damage in alcohol-fed mice even though it increased the numbers of liver-infiltrating immune cells, including neutrophils and inflammatory monocytes. Moreover, G-CSF promoted macrophage polarization toward an M2-like phenotype and increased hepatocyte proliferation, which was indicated by an increased Ki67-positive signal colocalized with hepatocyte nuclear factor 4 alpha (HNF-4α) and cyclin D1 expression in hepatocytes. We found that G-CSF increased G-CSF receptor expression and resulted in reduced levels of phosphorylated β-catenin in hepatocytes. In the presence of an additional pathogen-associated molecule, lipopolysaccharide (LPS), which is significantly increased in the circulation and liver of patients with AH, the G-CSF-induced hepatoprotective effects were abolished in alcohol-fed mice. We still observed increased Ki67-positive signals in alcohol-fed mice following G-CSF treatment; however, Ki67 and HNF-4α did not colocalize in LPS-challenged mice. Conclusion: G-CSF treatment increases immune cell populations, particularly neutrophil counts, and promotes M2-like macrophage differentiation in the liver. More importantly, G-CSF treatment reduces alcohol-induced liver injury and promotes hepatocyte proliferation in alcohol-fed mice. These data provide new insights into the understanding of mechanisms mediated by G-CSF and its therapeutic effects in AH.
Collapse
Affiliation(s)
- Yeonhee Cho
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
- Department of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Radhika Joshi
- Department of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Patrick Lowe
- Emergency MedicineMassachusetts General HospitalBrigham & Women’s HospitalBostonMassachusettsUSA
| | - Christopher Copeland
- Department of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Marcelle Ribeiro
- Department of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Donna Catalano
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Gyongyi Szabo
- Department of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
7
|
Sherlock LG, Balasubramaniyan D, Zheng L, Grayck M, McCarthy WC, De Dios RC, Zarate MA, Orlicky DJ, De Dios R, Wright CJ. APAP-induced IκBβ/NFκB signaling drives hepatic IL6 expression and associated sinusoidal dilation. Toxicol Sci 2021; 185:158-169. [PMID: 34726736 DOI: 10.1093/toxsci/kfab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen (APAP) overdose results in high morbidity and mortality, with limited treatment options. Increased understanding of the cellular signaling pathways activated in response to toxic APAP exposure is needed to provide insight into novel therapeutic strategies. Toxic APAP exposure induces hepatic nuclear factor kappa B (NFκB) activation. NFκB signaling has been identified to mediate the pro-inflammatory response, but also induces a pro-survival and regenerative response. It is currently unknown whether potentiating NFkB activation would be injurious or advantageous after APAP overdose. The NFκB inhibitory protein beta (IκBβ) dictates the duration and degree of the NFκB response following exposure to oxidative injuries. Thus, we sought to determine whether IκBβ/NFκB signaling contributes to APAP-induced hepatic injury. At late time points (24 hours) following toxic APAP exposures, mice expressing only IκBβ (AKBI mice) exhibited increased serologic evidence of hepatic injury. This corresponded with increased histologic injury, specifically related to sinusoidal dilatation. Compared to wild-type (WT) mice, AKBI mice demonstrated sustained hepatic nuclear translocation of the NFκB subunits p65 and p50, and enhanced NFκB target gene expression. This included increased expression of interleukin-6 (Il-6), a known contributor to hepatic sinusoidal dilation. This transcriptional response corresponded with increased plasma protein content of Il-6, as well as increased activation of signal transducer and activator of transcription 3 (STAT3). Impact Statement: IκBβ/NFκB signaling is associated with a pro-inflammatory response, exacerbated Il-6 and STAT3 activation, and this was associated with late development of sinusoidal dilatation. Thus, targeting sustained IκBβ/NFκB signaling may represent a novel therapeutic approach to attenuate late hepatic injury following toxic APAP exposure.
Collapse
Affiliation(s)
- Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Maya Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - William C McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Robert C De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - David J Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
8
|
Tang H, Fang H, Guo W, Cao S, Guo D, Zhang H, Gao J, Zhang S. Single nucleotide polymorphisms in interleukin-6 attenuates hepatocytes injury in hypoxia/re-oxygenation via STAT3 signal pathway mediated autophagy. Mol Biol Rep 2021; 48:1687-1695. [PMID: 33484391 PMCID: PMC7925450 DOI: 10.1007/s11033-020-06090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
Ischemia-reperfusion injury (IRI) is inevitable during liver surgery, and it is an important factor affecting the prognosis of patients. IL-6 rs1800796 single nucleotide polymorphisms (SNPs) can promote synthesis and secretion of IL-6 and protect hepatocytes from IRI. In this study, we investigated the mechanisms by which IL-6 alleviates hepatic IRI. We transfected lentivirus which carries IL-6 rs1800796 to L02 cells and constructed the cell line (L02-IL6) with a high expression of IL-6. The biological function of IL-6 SNPs was explored through a cell model of hypoxia-reoxygenation (H/R). Cell viability was evaluated by CCK8 and Real-Time Cell Analysis (RTCA), and found that the viability of the L02-IL6 cells was higher than that of the control group (P < 0.01). Flow cytometry assay showed that the rate of apoptosis was significantly decreased in L02-IL6 cells. Furthermore, in comparison with the control group, the level of cleaved-caspase3, which is an important marker of apoptosis, was dramatically decreased. These differences showed that the sequence variants at rs1800796 of the IL-6 gene could improve the resistance against H/R. Moreover, the levels of autophagy-related proteins, such as LC3 and Beclin-1, were upregulated in L02-IL6 group on H/R injury, which means IL-6 could alleviate apoptosis via activating the autophagy pathway. And we also found that the STAT3 signal pathway was activated. Next, we investigated whether the exogenous treatment with IL-6 affect hepatocytes and thus play a protective role. We pre-treated the L02 cells with recombinant human IL-6 for 12 h and then made H/R treatment. We found the treatment with 100 ng/ml IL-6 alleviated the damage of L02 cells and inhibited the apoptosis. And the further study revealed the pre-treatment with IL-6 activated the STAT3 signaling pathway in the L02 cells and then caused the activation of autophagy and apoptosis inhibition. IL-6 might play a critical role in alleviating hepatic IRI, through its modulation of the STAT3 signaling pathway, and activation of autophagy. Recombinant human IL-6 might be a potential therapeutic target in hepatic IRI.
Collapse
Affiliation(s)
- Hongwei Tang
- Open and Key laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, People's Republic of China.,ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, People's Republic of China
| | - Hongbo Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Guo
- Open and Key laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, People's Republic of China.,ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, People's Republic of China
| | - Huapeng Zhang
- Open and Key laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, People's Republic of China.,ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, People's Republic of China
| | - Jie Gao
- Open and Key laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, People's Republic of China.,ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, People's Republic of China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Open and Key laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, People's Republic of China. .,ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
9
|
Zhu YX, Zhu L, Chen YF, Xu JM, Shne ZL, Liu RJ, Zou J, Yuan MQ, Ye F, Zeng QQ. Luteoloside Ameliorates Palmitic Acid-Induced in Vitro Model of Non-alcoholic Fatty Liver Disease via Activating STAT3-Triggered Hepatocyte Regeneration. Folia Biol (Praha) 2021; 67:126-133. [PMID: 35151246 DOI: 10.14712/fb2021067030126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Luteoloside (Lute), a bioactive natural ingredient, widely exists in nature and possesses hepatoprotective and hepatocyte proliferation-promoting properties. This study aimed to investigate whether Lute could counteract non-alcoholic fatty liver disease (NAFLD)-caused hepatocyte damage via its stimulation of hepatocyte regeneration efficacy and to explore the involved mechanism. LO2 cells and primary hepatocytes were used to examine the hepatocyte proliferation effects of Lute under physiological conditions and in the palmitic acid (PA)- induced in vitro model of NAFLD. STAT3 and cell cycle-related proteins (cyclin D1, c-myc and p21) were evaluated by Western blot. Under physiological conditions, LO2 cells and primary hepatocytes treated with various concentration of Lute for 12 and 24 h showed increased hepatocyte proliferation, especially with 20 μM treatment for 24 h. More notably, under the model conditions, co-incubation with 20 μM of Lute also markedly reversed PA-induced inhibition of cell proliferation and viability in primary hepatocytes. Mechanistically, Lute could activate STAT3 and subsequently increase cyclin D1 and cmyc expression, which positively regulates cell cycle progression, and decrease expression of p21, an inhibitor of cell cycle progression. Furthermore, Luteinduced hepatocyte proliferation-promoting efficacy was abolished by STAT3 inhibitor stattic. Collectively, Lute can alleviate PA-induced hepatocyte damage via activating STAT3-mediated hepatocyte regeneration.
Collapse
Affiliation(s)
- Y X Zhu
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangshu, China
| | - L Zhu
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangshu, China
| | - Y F Chen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangshu, China
| | - J M Xu
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangshu, China
| | - Z L Shne
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangshu, China
| | - R J Liu
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangshu, China
| | - J Zou
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangshu, China
| | - M Q Yuan
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangshu, China
| | - F Ye
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangshu, China
| | - Q Q Zeng
- Jiangsu Health Vocational College; Nanjing 210023, China
| |
Collapse
|
10
|
Yagi S, Hirata M, Miyachi Y, Uemoto S. Liver Regeneration after Hepatectomy and Partial Liver Transplantation. Int J Mol Sci 2020; 21:ijms21218414. [PMID: 33182515 PMCID: PMC7665117 DOI: 10.3390/ijms21218414] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a unique organ with an abundant regenerative capacity. Therefore, partial hepatectomy (PHx) or partial liver transplantation (PLTx) can be safely performed. Liver regeneration involves a complex network of numerous hepatotropic factors, cytokines, pathways, and transcriptional factors. Compared with liver regeneration after a viral- or drug-induced liver injury, that of post-PHx or -PLTx has several distinct features, such as hemodynamic changes in portal venous flow or pressure, tissue ischemia/hypoxia, and hemostasis/platelet activation. Although some of these changes also occur during liver regeneration after a viral- or drug-induced liver injury, they are more abrupt and drastic following PHx or PLTx, and can thus be the main trigger and driving force of liver regeneration. In this review, we first provide an overview of the molecular biology of liver regeneration post-PHx and -PLTx. Subsequently, we summarize some clinical conditions that negatively, or sometimes positively, interfere with liver regeneration after PHx or PLTx, such as marginal livers including aged or fatty liver and the influence of immunosuppression.
Collapse
|
11
|
Ma M, Long Q, Chen F, Zhang T, Wang W. Active vitamin D impedes the progression of non-alcoholic fatty liver disease by inhibiting cell senescence in a rat model. Clin Res Hepatol Gastroenterol 2020; 44:513-523. [PMID: 31810868 DOI: 10.1016/j.clinre.2019.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) refers to an accumulation of excess fat in liver due to causes other than alcohol use. The relationship between vitamin D (VD) and NAFLD has been previously studied. Therefore, we aimed to explore the mechanism involved active VD regulating the progression of NAFLD by inhibiting cell senescence and to provide a potential approach for further nutritional treatment of NAFLD. METHODS Following the induction with high-fat diet and intraperitoneal injection of corn oil, the successfully established NAFLD rat models were treated with 1,25(OH)2D3 at 1μg/kg, 5μg/kg or 10μg/kg. Meanwhile, the levels of factors related to oxidative stress, cell senescence, the p53-p21 signaling pathway and inflammation in liver were determined. Then, cell senescence was also measured by using senescence-associated β-galactosidase (SAβ-gal) staining. RESULTS It was also found that active VD increased the concentration of VD in serum and VDR in liver of NAFLD rats, and alleviated hepatic fibrosis. Besides, treatment of 1,25(OH)2D3 at 1μg/kg, 5μg/kg or 10μg/kg reduced oxidative stress and inflammation, inhibited the p53-p21 signaling pathway and consequent cell senescence. Furthermore, treatment of 1,25(OH)2D3 at a dosage of 5μg/kg made the most impact on these factors. CONCLUSION Collectively, the evidences from this study demonstrated that active VD could alleviate the development of NAFLD through blocking the p53-p21 signaling pathway, which provided a novel nutritional therapeutic insight for NAFLD.
Collapse
Affiliation(s)
- Ming Ma
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China.
| | - Qi Long
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| | - Fei Chen
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| | - Ting Zhang
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| | - Wenqiao Wang
- Department of Clinical Nutrition, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052 Hangzhou, P.R, China
| |
Collapse
|
12
|
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int J Mol Sci 2019; 20:ijms20205034. [PMID: 31614478 PMCID: PMC6834141 DOI: 10.3390/ijms20205034] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) permeates a variety of diseases and is a ubiquitous concern in every transplantation proceeding, from whole organs to modest grafts. Given its significance, efforts to evade the damaging effects of both ischemia and reperfusion are abundant in the literature and they consist of several strategies, such as applying pre-ischemic conditioning protocols, improving protection from preservation solutions, thus providing extended cold ischemia time and so on. In this review, we describe many of the latest pharmacological approaches that have been proven effective against IRI, while also revisiting well-established concepts and presenting recent pathophysiological findings in this ever-expanding field. A plethora of promising protocols has emerged in the last few years. They have been showing exciting results regarding protection against IRI by employing drugs that engage several strategies, such as modulating cell-surviving pathways, evading oxidative damage, physically protecting cell membrane integrity, and enhancing cell energetics.
Collapse
Affiliation(s)
| | - Daniele M Losada
- Department of Anatomic Pathology, Faculty of Medical Sciences, University of Campinas, 13083-970 Campinas, Brazil.
| | - Maria C Jordani
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Paulo Évora
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Orlando Castro-E-Silva
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| |
Collapse
|
13
|
Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F, Álvarez-Varela A, Wu P, Jin Y, Zhu J, Li B, Grompe M, Wang B, Nusse R. Inflammatory Cytokine TNFα Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture. Cell 2019; 175:1607-1619.e15. [PMID: 30500539 DOI: 10.1016/j.cell.2018.11.012] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah-/- mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Catriona Y Logan
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matt Fish
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Teni Anbarchian
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francis Aguisanda
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adrián Álvarez-Varela
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Wu
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yinhua Jin
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junjie Zhu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Bruce Wang
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Liver Regeneration after Acetaminophen Hepatotoxicity: Mechanisms and Therapeutic Opportunities. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:719-729. [PMID: 30653954 DOI: 10.1016/j.ajpath.2018.12.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Acetaminophen (N-acetyl-para-aminophenol; APAP) overdose is the most common cause of acute liver failure in the Western world, with limited treatment opportunities. For years, research on APAP overdose has been focused on investigating the mechanisms of hepatotoxicity, with limited success in advancing therapeutic strategies. Acute liver injury after any insult, including APAP overdose, is followed by compensatory liver regeneration, which promotes recovery and is a crucial determinant of the final outcome. Liver regeneration after APAP-induced liver injury is dose dependent and impaired after severe APAP overdose. Although robust regenerative response is associated with spontaneous recovery and survival, impaired regeneration results in faster progression of injury and death after APAP overdose. APAP hepatotoxicity-induced liver regeneration involves a complex time- and dose-dependent interplay of several signaling mediators, including growth factors, cytokines, angiogenic factors, and other mitogenic pathways. Compared with the liver injury, which is established before most patients seek medical attention and has proved difficult to manipulate, liver regeneration can be potentially modulated even in late-stage APAP-induced acute liver failure. Despite recent efforts to study the mechanisms of liver regeneration after APAP-induced liver injury, more comprehensive research in this area is required, especially regarding factors that contribute to impaired regenerative response, to develop novel regenerative therapies for APAP-induced acute liver failure.
Collapse
|
15
|
Jin X, Zimmers TA, Zhang Z, Koniaris LG. Resveratrol Improves Recovery and Survival of Diet-Induced Obese Mice Undergoing Extended Major (80%) Hepatectomy. Dig Dis Sci 2019; 64:93-101. [PMID: 30284135 DOI: 10.1007/s10620-018-5312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Loss of hepatic epidermal growth factor receptor (EGFR) expression is a cause for the increased perioperative risk for complications and death in patients with obesity and fatty liver undergoing liver resection. Herein, we set out to identify agents that might increase EGFR expression and improve recovery for patients with fatty liver undergoing resection. Using the diet-induced obese (DIO) mouse model of fatty liver, we examined resveratrol as a therapy to induce EGFR expression and improve outcomes following 80% partial hepatectomy (PH) in a murine model. METHODS DIO mice were fed resveratrol or carrier control by gavage. EGFR expression and the response to major (80%) PH were examined. RESULTS Based on an Illumina analysis, resveratrol was identified as increasing EGFR gene expression in A549 cells. Resveratrol was observed to also increase EGFR protein expression in A549 cells. DIO mice fed resveratrol by gavage (75 mg/kg) demonstrated an increased EGFR expression without the identified hepatic toxicity. Resveratrol and control mice subjected to 80% PH, a model of high mortality hepatectomy in DIO mice, demonstrated macroscopically decreased fatty liver and fewer liver hemorrhagic petechiae. Resveratrol pretreatment ameliorated liver injury and accelerated regeneration of the hepatic remnant after 80% PH including decreasing serum ALT and bilirubin, while increasing hepatic PCNA expression. Resveratrol increased induction of p-STAT3 and p-AKT after 80% hepatectomy. Resveratrol pretreatment significantly improved survival rates in DIO mice undergoing extended 80% PH. CONCLUSIONS Oral resveratrol restores EGFR expression in fatty liver. Resveratrol may be a promising protective agent in instances where extensive hepatic resection of fatty liver is required.
Collapse
Affiliation(s)
- Xiaoling Jin
- Department of Surgery, Thomas Jefferson University School of Medicine, Philadelphia, PA, USA
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, EH 511 SGEN, Indianapolis, IN, 46202, USA
| | - Zongxiu Zhang
- Department of Surgery, Thomas Jefferson University School of Medicine, Philadelphia, PA, USA
| | - Leonidas G Koniaris
- Department of Surgery, Indiana University School of Medicine, EH 511 SGEN, Indianapolis, IN, 46202, USA.
| |
Collapse
|
16
|
Saito Y, Kuwahara Y, Yamamoto Y, Suzuki M, Fukumoto M, Yamamoto F. ddY Mice Fed 10% Fat Diet Exhibit High p27KIP Expression and Delayed Hepatocyte DNA Synthesis During Liver Regeneration. Metab Syndr Relat Disord 2018; 16:305-313. [DOI: 10.1089/met.2017.0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yohei Saito
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshikazu Kuwahara
- Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yumi Yamamoto
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Masatoshi Suzuki
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Fumihiko Yamamoto
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. J Pineal Res 2018; 65:e12490. [PMID: 29570845 DOI: 10.1111/jpi.12490] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a pleiotropic hormone with several functions. It binds to specific receptors and to a number of cytosolic proteins, activating a vast array of signalling pathways. Its potential to protect the heart against ischaemia/reperfusion damage has attracted much attention, particularly in view of its possible clinical applications. This review will focus mainly on the possible signalling pathways involved in melatonin-induced cardioprotection. In particular, the role of the melatonin receptors and events downstream of receptor activation, for example, the reperfusion injury salvage kinase (RISK), survivor activating factor enhancement (SAFE) and Notch pathways, the sirtuins, nuclear factor E2-related factor 2 (Nrf2) and translocases in the outer membrane (TOM70) will be discussed. Particular attention is given to the role of the mitochondrion in melatonin-induced cardioprotection. In addition, a brief overview will be given regarding the status quo of the clinical application of melatonin in humans.
Collapse
Affiliation(s)
- Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Barbara Huisamen
- Biomedical Research and Innovation Platform, SA Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
18
|
Abstract
The liver has a unique ability of regenerating after injuries or partial loss of its mass. The mechanisms responsible for liver regeneration - mostly occurring when the hepatic tissue is damaged or functionally compromised by metabolic stress - have been studied in considerable detail over the last few decades, because this phenomenon has both basic-biology and clinical relevance. More specifically, recent interest has been focusing on the widespread occurrence of abnormal nutritional habits in the Western world that result in an increased prevalence of non-alcoholic fatty liver disease (NAFLD). NAFLD is closely associated with insulin resistance and dyslipidemia, and it represents a major clinical challenge. The disease may progress to steatohepatitis with persistent inflammation and progressive liver damage, both of which will compromise regeneration under conditions of partial hepatectomy in surgical oncology or in liver transplantation procedures. Here, we analyze the impact of ER stress and SIRT1 in lipid metabolism and in fatty liver pathology, and their consequences on liver regeneration. Moreover, we discuss the fine interplay between ER stress and SIRT1 functioning when contextualized to liver regeneration. An improved understanding of the cellular and molecular intricacies contributing to liver regeneration could be of great clinical relevance in areas as diverse as obesity, metabolic syndrome and type 2 diabetes, as well as oncology and transplantation.
Collapse
Affiliation(s)
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Mendes-Braz M, Martins JO. Diabetes Mellitus and Liver Surgery: The Effect of Diabetes on Oxidative Stress and Inflammation. Mediators Inflamm 2018; 2018:2456579. [PMID: 29853784 PMCID: PMC5964489 DOI: 10.1155/2018/2456579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycaemia and high morbidity worldwide. The detrimental effects of hyperglycaemia include an increase in the oxidative stress (OS) response and an enhanced inflammatory response. DM compromises the ability of the liver to regenerate and is particularly associated with poor prognosis after ischaemia-reperfusion (I/R) injury. Considering the growing need for knowledge of the impact of DM on the liver following a surgical procedure, this review aims to present recent publications addressing the effects of DM (hyperglycaemia) on OS and the inflammatory process, which play an essential role in I/R injury and impaired hepatic regeneration after liver surgery.
Collapse
Affiliation(s)
- Mariana Mendes-Braz
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| |
Collapse
|
20
|
Ozawa Y, Tamura T, Owada Y, Shimizu Y, Kemmochi A, Hisakura K, Matsuzaka T, Shimano H, Isoda H, Ohkohchi N. Evaluation of safety for hepatectomy in a novel mouse model with nonalcoholic-steatohepatitis. World J Gastroenterol 2018; 24:1622-1631. [PMID: 29686469 PMCID: PMC5910545 DOI: 10.3748/wjg.v24.i15.1622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether the liver resection volume in a newly developed nonalcoholic steatohepatitis (NASH) model influences surgical outcome.
METHODS For establishment of a NASH model, mice were fed a high-fat diet for 4 wk, administered CCl4 for the last 2 wk, and administered T0901317 for the last 5 d. We divided these mice into two groups: A 30% partial hepatectomy (PH) of NASH liver group and a 70% PH of NASH liver group. In addition, a 70% PH of normal liver group served as the control. Each group was evaluated for survival rate, regeneration, apoptosis, necrosis and DNA expression after PH.
RESULTS In the 70% PH of NASH group, the survival rate was significantly decreased compared with that in the control and 30% PH of NASH groups (P < 0.01). 10 of 32 mice in the NASH 70% PH group died within 48 h after PH. Serum aspartate aminotransferase (AST) levels and total bilirubin (T-Bil) in the NASH 70% PH group were significantly higher than the levels in the other two groups (AST: P < 0.05, T-Bil: P < 0.01). In both PH of NASH groups, signaling proteins involved in regeneration were expressed at lower levels than those in the control group (P < 0.01). The 70% PH of NASH group also exhibited a lower number of Ki-67-positive cells and higher rates of apoptosis and necrosis than the NASH 30% PH group (P < 0.01). In addition, DNA microarray assays showed differences in gene expression associated with cell cycle arrest and apoptosis.
CONCLUSION The function of the residual liver is impaired in fatty liver compared to normal liver. A larger residual volume is required to maintain liver functions in mice with NASH.
Collapse
Affiliation(s)
- Yusuke Ozawa
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takafumi Tamura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yohei Owada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshio Shimizu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Akira Kemmochi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Katsuji Hisakura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
21
|
Jin X, Zimmers TA, Jiang Y, Milgrom DP, Zhang Z, Koniaris LG. Meloxicam increases epidermal growth factor receptor expression improving survival after hepatic resection in diet-induced obese mice. Surgery 2018; 163:1264-1271. [PMID: 29361369 DOI: 10.1016/j.surg.2017.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/08/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with fatty liver have delayed regenerative responses, increased hepatocellular injury, and increased risk for perioperative mortality. Currently, no clinical therapy exists to prevent liver failure or improve regeneration in patients with fatty liver. Previously we demonstrated that obese mice have markedly reduced levels of epidermal growth factor receptor in liver. We sought to identify pharmacologic agents to increase epidermal growth factor receptor expression to improve hepatic regeneration in the setting of fatty liver resection. METHODS Lean (20% calories from fat) and diet-induced obese mice (60% calories from fat) were subjected to 70% or 80% hepatectomy. RESULTS Using the BaseSpace Correlation Engine of deposited gene arrays we identified agents that increased hepatic epidermal growth factor receptor. Meloxicam was identified as inducing epidermal growth factor receptor expression across species. Meloxicam improved hepatic steatosis in diet-induced obese mice both grossly and histologically. Immunohistochemistry and Western blot analysis demonstrated that meloxicam pretreatment of diet-induced obese mice dramatically increased epidermal growth factor receptor protein expression in hepatocytes. After 70% hepatectomy, meloxicam pretreatment ameliorated liver injury and significantly accelerated mitotic rates of hepatocytes in obese mice. Recovery of liver mass was accelerated in obese mice pretreated with meloxicam (by 26% at 24 hours and 38% at 48 hours, respectively). After 80% hepatectomy, survival was dramatically increased with meloxicam treatment. CONCLUSION Low epidermal growth factor receptor expression is a common feature of fatty liver disease. Meloxicam restores epidermal growth factor receptor expression in steatotic hepatocytes. Meloxicam pretreatment may be applied to improve outcome after fatty liver resection or transplantation with steatotic graft.
Collapse
Affiliation(s)
- Xiaoling Jin
- Department of Surgery, Thomas Jefferson University School of Medicine, Philadelphia, PA, USA
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanlin Jiang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel P Milgrom
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zongxiu Zhang
- Department of Surgery, Thomas Jefferson University School of Medicine, Philadelphia, PA, USA
| | - Leonidas G Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
22
|
Liu M, Chen P. Proliferation‑inhibiting pathways in liver regeneration (Review). Mol Med Rep 2017; 16:23-35. [PMID: 28534998 DOI: 10.3892/mmr.2017.6613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration, an orchestrated process, is the primary compensatory mechanism following liver injury caused by various factors. The process of liver regeneration consists of three stages: Initiation, proliferation and termination. Proliferation‑promoting factors, which stimulate the recovery of mitosis in quiescent hepatocytes, are essential in the initiation and proliferation steps of liver regeneration. Proliferation‑promoting factors act as the 'motor' of liver regeneration, whereas proliferation inhibitors arrest cell proliferation when the remnant liver reaches a suitable size. Certain proliferation inhibitors are also expressed and activated in the first two steps of liver regeneration. Anti‑proliferation factors, acting as a 'brake', control the speed of proliferation and determine the terminal point of liver regeneration. Furthermore, anti‑proliferation factors function as a 'steering‑wheel', ensuring that the regeneration process proceeds in the right direction by preventing proliferation in the wrong direction, as occurs in oncogenesis. Therefore, proliferation inhibitors to ensure safe and stable liver regeneration are as important as proliferation‑promoting factors. Cytokines, including transforming growth factor‑β and interleukin‑1, and tumor suppressor genes, including p53 and p21, are important members of the proliferation inhibitor family in liver regeneration. Certain anti‑proliferation factors are involved in the process of gene expression and protein modification. The suppression of liver regeneration led by metabolism, hormone activity and pathological performance have been reviewed previously. However, less is known regarding the proliferation inhibitors of liver regeneration and further investigations are required. Detailed information regarding the majority of known anti‑proliferation signaling pathways also remains fragmented. The present review aimed to understand the signalling pathways that inhbit proliferation in the process of liver regeneration.
Collapse
Affiliation(s)
- Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
23
|
Min JS, DeAngelis RA, Reis ES, Gupta S, Maurya MR, Evans C, Das A, Burant C, Lambris JD, Subramaniam S. Systems Analysis of the Complement-Induced Priming Phase of Liver Regeneration. THE JOURNAL OF IMMUNOLOGY 2016; 197:2500-8. [PMID: 27511733 DOI: 10.4049/jimmunol.1600628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
Liver regeneration is a well-orchestrated process in the liver that allows mature hepatocytes to reenter the cell cycle to proliferate and replace lost or damaged cells. This process is often impaired in fatty or diseased livers, leading to cirrhosis and other deleterious phenotypes. Prior research has established the role of the complement system and its effector proteins in the progression of liver regeneration; however, a detailed mechanistic understanding of the involvement of complement in regeneration is yet to be established. In this study, we have examined the role of the complement system during the priming phase of liver regeneration through a systems level analysis using a combination of transcriptomic and metabolomic measurements. More specifically, we have performed partial hepatectomy on mice with genetic deficiency in C3, the major component of the complement cascade, and collected their livers at various time points. Based on our analysis, we show that the C3 cascade activates c-fos and promotes the TNF-α signaling pathway, which then activates acute-phase genes such as serum amyloid proteins and orosomucoids. The complement activation also regulates the efflux and the metabolism of cholesterol, an important metabolite for cell cycle and proliferation. Based on our systems level analysis, we provide an integrated model for the complement-induced priming phase of liver regeneration.
Collapse
Affiliation(s)
- Jun S Min
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Robert A DeAngelis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Mano R Maurya
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Charles Evans
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Arun Das
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Charles Burant
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| | - Shankar Subramaniam
- Graduate Program in Bioinformatics, Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093; Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093; Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093; and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
24
|
STAT3 modulates β-cell cycling in injured mouse pancreas and protects against DNA damage. Cell Death Dis 2016; 7:e2272. [PMID: 27336716 PMCID: PMC5143397 DOI: 10.1038/cddis.2016.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Partial pancreatic duct ligation (PDL) of mouse pancreas induces a doubling of the β-cell mass mainly through proliferation of pre-existing and newly formed β-cells. The molecular mechanism governing this process is still largely unknown. Given the inflammatory nature of PDL and inflammation-induced signaling via the signal transducer and activator of transcription 3 (STAT3), the activation and the role of STAT3 in PDL-induced β-cell proliferation were investigated. Duct ligation stimulates the expression of several cytokines that can act as ligands inducing STAT3 signaling and phosphorylation in β-cells. β-Cell cycling increased by conditional β-cell-specific Stat3 knockout and decreased by STAT3 activation through administration of interleukin-6. In addition, the level of DNA damage in β-cells of PDL pancreas increased after deletion of Stat3. These data indicate a role for STAT3 in maintaining a steady state in the β-cell, by modulating its cell cycle and protection from DNA damage.
Collapse
|
25
|
Studer P, da Silva CG, Revuelta Cervantes JM, Mele A, Csizmadia E, Siracuse JJ, Damrauer SM, Peterson CR, Candinas D, Stroka DM, Ma A, Bhasin M, Ferran C. Significant lethality following liver resection in A20 heterozygous knockout mice uncovers a key role for A20 in liver regeneration. Cell Death Differ 2015; 22:2068-77. [PMID: 25976305 PMCID: PMC4816110 DOI: 10.1038/cdd.2015.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatic expression of A20, including in hepatocytes, increases in response to injury, inflammation and resection. This increase likely serves a hepatoprotective purpose. The characteristic unfettered liver inflammation and necrosis in A20 knockout mice established physiologic upregulation of A20 as integral to the anti-inflammatory and anti-apoptotic armamentarium of hepatocytes. However, the implication of physiologic upregulation of A20 in modulating hepatocytes' proliferative responses following liver resection remains controversial. To resolve the impact of A20 on hepatocyte proliferation and the liver's regenerative capacity, we examined whether decreased A20 expression, as in A20 heterozygous knockout mice, affects outcome following two-third partial hepatectomy. A20 heterozygous mice do not demonstrate a striking liver phenotype, indicating that their A20 expression levels are still sufficient to contain inflammation and cell death at baseline. However, usually benign partial hepatectomy provoked a staggering lethality (>40%) in these mice, uncovering an unsuspected phenotype. Heightened lethality in A20 heterozygous mice following partial hepatectomy resulted from impaired hepatocyte proliferation due to heightened levels of cyclin-dependent kinase inhibitor, p21, and deficient upregulation of cyclins D1, E and A, in the context of worsened liver steatosis. A20 heterozygous knockout minimally affected baseline liver transcriptome, mostly circadian rhythm genes. Nevertheless, this caused differential expression of >1000 genes post hepatectomy, hindering lipid metabolism, bile acid biosynthesis, insulin signaling and cell cycle, all critical cellular processes for liver regeneration. These results demonstrate that mere reduction of A20 levels causes worse outcome post hepatectomy than full knockout of bona fide liver pro-regenerative players such as IL-6, clearly ascertaining A20's primordial role in enabling liver regeneration. Clinical implications of these data are of utmost importance as they caution safety of extensive hepatectomy for donation or tumor in carriers of A20/TNFAIP3 single nucleotide polymorphisms alleles that decrease A20 expression or function, and prompt the development of A20-based liver pro-regenerative therapies.
Collapse
Affiliation(s)
- P Studer
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - C G da Silva
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J M Revuelta Cervantes
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - A Mele
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - E Csizmadia
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J J Siracuse
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S M Damrauer
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C R Peterson
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D Candinas
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - D M Stroka
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - A Ma
- Division of Interdisciplinary Medicine and Biotechnology, Bioinformatics core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Bhasin
- Division of Gastroenterology, Department of Medicine, University of California in San Francisco, San Fransisco, CA, USA
| | - C Ferran
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Haga S, Ozawa T, Yamada Y, Morita N, Nagashima I, Inoue H, Inaba Y, Noda N, Abe R, Umezawa K, Ozaki M. p62/SQSTM1 plays a protective role in oxidative injury of steatotic liver in a mouse hepatectomy model. Antioxid Redox Signal 2014; 21:2515-30. [PMID: 24925527 PMCID: PMC4245881 DOI: 10.1089/ars.2013.5391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS Liver injury and regeneration involve complicated processes and are affected by various physio-pathological factors. We investigated the mechanisms of steatosis-associated liver injury and delayed regeneration in a mouse model of partial hepatectomy. RESULTS Initial regeneration of the steatotic liver was significantly delayed after hepatectomy. Although hepatocyte proliferation was not significantly suppressed, severe liver injury with oxidative stress (OS) occurred immediately after hepatectomy in the steatotic liver. Fas-ligand (FasL)/Fas expression was upregulated in the steatotic liver, whereas the expression of antioxidant and anti-apoptotic molecules (catalase/MnSOD/Ref-1 and Bcl-2/Bcl-xL/FLIP, respectively) and p62/SQSTM1, a steatosis-associated protein, was downregulated. Interestingly, pro-survival Akt was not activated in response to hepatectomy, although it was sufficiently expressed even before hepatectomy. Suppression of p62/SQSTM1 increased FasL/Fas expression and reduced nuclear factor erythroid 2-related factor-2 (Nrf-2)-dependent antioxidant response elements activity and antioxidant responses in steatotic and nonsteatotic hepatocytes. Exogenously added FasL induced severe cellular OS and necrosis/apoptosis in steatotic hepatocytes, with only the necrosis being inhibited by pretreatment with antioxidants, suggesting that FasL/Fas-induced OS mainly leads to necrosis. Furthermore, p62/SQSTM1 re-expression in the steatotic liver markedly reduced liver injury and improved liver regeneration. INNOVATION This study is the first which demonstrates that reduced expression of p62/SQSTM1 plays a crucial role in posthepatectomy acute injury and delayed regeneration of steatotic liver, mainly via redox-dependent mechanisms. CONCLUSION In the steatotic liver, reduced expression of p62/SQSTM1 induced FasL/Fas overexpression and suppressed antioxidant genes, mainly through Nrf-2 inactivation, which, along with the hypo-responsiveness of Akt, caused posthepatectomy necrotic/apoptotic liver injury and delayed regeneration, both mainly via a redox-dependent mechanism.
Collapse
Affiliation(s)
- Sanae Haga
- 1 Laboratory of Molecular and Functional Bio-imaging, Faculty of Health Sciences, Hokkaido University , Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wei W, Dirsch O, Mclean AL, Zafarnia S, Schwier M, Dahmen U. Rodent models and imaging techniques to study liver regeneration. Eur Surg Res 2014; 54:97-113. [PMID: 25402256 DOI: 10.1159/000368573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/19/2014] [Indexed: 12/16/2022]
Abstract
The liver has the unique capability of regeneration from various injuries. Different animal models and in vitro methods are used for studying the processes and mechanisms of liver regeneration. Animal models were established either by administration of hepatotoxic chemicals or by surgical approach. The administration of hepatotoxic chemicals results in the death of liver cells and in subsequent hepatic regeneration and tissue repair. Surgery includes partial hepatectomy and portal vein occlusion or diversion: hepatectomy leads to compensatory regeneration of the remnant liver lobe, whereas portal vein occlusion leads to atrophy of the ipsilateral lobe and to compensatory regeneration of the contralateral lobe. Adaptation of modern radiological imaging technologies to the small size of rodents made the visualization of rodent intrahepatic vascular anatomy possible. Advanced knowledge of the detailed intrahepatic 3D anatomy enabled the establishment of refined surgical techniques. The same technology allows the visualization of hepatic vascular regeneration. The development of modern histological image analysis tools improved the quantitative assessment of hepatic regeneration. Novel image analysis tools enable us to quantify reliably and reproducibly the proliferative rate of hepatocytes using whole-slide scans, thus reducing the sampling error. In this review, the refined rodent models and the newly developed imaging technology to study liver regeneration are summarized. This summary helps to integrate the current knowledge of liver regeneration and promises an enormous increase in hepatological knowledge in the near future.
Collapse
Affiliation(s)
- Weiwei Wei
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Bhushan B, Walesky C, Manley M, Gallagher T, Borude P, Edwards G, Monga SPS, Apte U. Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3013-25. [PMID: 25193591 DOI: 10.1016/j.ajpath.2014.07.019] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/23/2014] [Accepted: 07/15/2014] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) overdose results in acute liver failure and has limited treatment options. Previous studies show that stimulating liver regeneration is critical for survival after APAP overdose, but the mechanisms remain unclear. In this study, we identified major signaling pathways involved in liver regeneration after APAP-induced acute liver injury using a novel incremental dose model. Liver injury and regeneration were studied in C57BL/6 mice treated with either 300 mg/kg (APAP300) or 600 mg/kg (APAP600) APAP. Mice treated with APAP300 developed extensive liver injury and robust liver regeneration. In contrast, APAP600-treated mice exhibited significant liver injury but substantial inhibition of liver regeneration, resulting in sustained injury and decreased survival. The inhibition of liver regeneration in the APAP600 group was associated with cell cycle arrest and decreased cyclin D1 expression. Several known regenerative pathways, including the IL-6/STAT-3 and epidermal growth factor receptor/c-Met/mitogen-activated protein kinase pathways, were activated, even at APAP600, where regeneration was inhibited. However, canonical Wnt/β-catenin and NF-κB pathways were activated only in APAP300-treated mice, where liver regeneration was stimulated. Furthermore, overexpression of a stable form of β-catenin, where serine 45 is mutated to aspartic acid, in mice resulted in improved liver regeneration after APAP overdose. Taken together, our incremental dose model has identified a differential role of several signaling pathways in liver regeneration after APAP overdose and highlighted canonical Wnt signaling as a potential target for regenerative therapies for APAP-induced acute liver failure.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Chad Walesky
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael Manley
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Tara Gallagher
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Prachi Borude
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Genea Edwards
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Satdarshan P S Monga
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
29
|
Collin de l'Hortet A, Zerrad-Saadi A, Prip-Buus C, Fauveau V, Helmy N, Ziol M, Vons C, Billot K, Baud V, Gilgenkrantz H, Guidotti JE. GH administration rescues fatty liver regeneration impairment by restoring GH/EGFR pathway deficiency. Endocrinology 2014; 155:2545-54. [PMID: 24708244 DOI: 10.1210/en.2014-1010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
GH pathway has been shown to play a major role in liver regeneration through the control of epidermal growth factor receptor (EGFR) activation. This pathway is down-regulated in nonalcoholic fatty liver disease. Because regeneration is known to be impaired in fatty livers, we wondered whether a deregulation of the GH/EGFR pathway could explain this deficiency. Hepatic EGFR expression and triglyceride levels were quantified in liver biopsies of 32 obese patients with different degrees of steatosis. We showed a significant inverse correlation between liver EGFR expression and the level of hepatic steatosis. GH/EGFR down-regulation was also demonstrated in 2 steatosis mouse models, a genetic (ob/ob) and a methionine and choline-deficient diet mouse model, in correlation with liver regeneration defect. ob/ob mice exhibited a more severe liver regeneration defect after partial hepatectomy (PH) than methionine and choline-deficient diet-fed mice, a difference that could be explained by a decrease in signal transducer and activator of transcription 3 phosphorylation 32 hours after PH. Having checked that GH deficiency accounted for the GH signaling pathway down-regulation in the liver of ob/ob mice, we showed that GH administration in these mice led to a partial rescue in hepatocyte proliferation after PH associated with a concomitant restoration of liver EGFR expression and signal transducer and activator of trnascription 3 activation. In conclusion, we propose that the GH/EGFR pathway down-regulation is a general mechanism responsible for liver regeneration deficiency associated with steatosis, which could be partially rescued by GH administration.
Collapse
Affiliation(s)
- A Collin de l'Hortet
- Inserm (A.C.H., A.Z.-S., C.P.-B., V.F., N.H., C.V., K.B., V.B., H.G., J.-E.G.), U1016, Institut Cochin, 75014, Paris, France; CNRS (A.C.H., A.Z.-S., C.P.-B., V.F., N.H., C.V., K.B., V.B., H.G., J.-E.G.), UMR8104, 75014, Paris, France; Université Paris Descartes (A.C.H., A.Z.-S., C.P.-B., V.F., N.H., C.V., K.B., V.B., H.G., J.-E.G.), Sorbonne Paris Cité, Faculté de Médecine 75006, Paris, France; and Service de Chirurgie Digestive et Métabolique (N.H., M.Z., C.V.), Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Seine-St-Denis, Hôpital Jean Verdier, 93140, Bondy, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang JW, Wan XY, Zhu HT, Lu C, Yu WL, Yu CH, Shen Z, Li YM. Lipotoxic effect of p21 on free fatty acid-induced steatosis in L02 cells. PLoS One 2014; 9:e96124. [PMID: 24788149 PMCID: PMC4005739 DOI: 10.1371/journal.pone.0096124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/02/2014] [Indexed: 01/19/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly regarded as a hepatic manifestation of metabolic syndrome. Though with high prevalence, the mechanism is poorly understood. This study aimed to investigate the effects of p21 on free fatty acid (FFA)-induced steatosis in L02 cells. We therefore analyzed the L02 cells with MG132 and siRNA treatment for different expression of p21 related to lipid accumulation and lipotoxicity. Cellular total lipid was stained by Oil Red O, while triglyceride content, cytotoxicity assays, lipid peroxidation markers and anti-oxidation levels were measured by enzymatic kits. Treatment with 1 mM FFA for 48 hr induced magnificent intracellular lipid accumulation and increased oxidative stress in p21 overload L02 cells compared to that in p21 knockdown L02 cells. By increasing oxidative stress and peroxidation, p21 accelerates FFA-induced lipotoxic effect in L02 cells and might provide information about potentially new targets for drug development and treatments of NAFLD.
Collapse
Affiliation(s)
- Jie-wei Wang
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xing-yong Wan
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua-tuo Zhu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Lu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei-lai Yu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chao-hui Yu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - You-ming Li
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Tachibana S, Zhang X, Ito K, Ota Y, Cameron AM, Williams GM, Sun Z. Interleukin-6 is required for cell cycle arrest and activation of DNA repair enzymes after partial hepatectomy in mice. Cell Biosci 2014; 4:6. [PMID: 24484634 PMCID: PMC3922598 DOI: 10.1186/2045-3701-4-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022] Open
Abstract
Background Interleukin-6 (IL-6) has been shown to be vital for liver regeneration, however the specific mechanisms and factors involved remain incompletely defined. The present study aimed to investigate whether IL-6 exerts its protective effects via arresting the cell cycle allowing base excision and repair of oxidized DNA after hepatectomy. Results Following seventy percent partial hepatectomy (PH) in wild type (WT) mice IL-6 serum levels increased reaching peak levels at 3 hours. This was associated with markers of cell cycle arrest as p21 expression was increased and cyclin D1 and proliferating cell nuclear antigen (PCNA) expression decreased. In the absence of IL-6, markers of cell cycle arrest were absent and the number of bromodeoxyuridine (BrdU) positive cells was significantly higher at 28, 32 and 36 hours after PH. The mRNAs for DNA repair enzymes, including Neil-1, 8-oxodGTPase, OGG1, Apex1, and UDG (DNA glycosylase) were increased 2 to 4 fold in WT mice at 6 and/or 12 hours after PH compared to IL-6 knockout (KO) mice. The protein levels of Neil1 and OGG1 were also significantly increased in WT mice compared to KO mice. Pathological changes were far greater and survival was less in IL-6 KO mice than in WT mice. Administration of IL-6 in KO mice restored p21 and DNA repair enzyme expression to wild-type levels and survival was improved. Conclusions IL-6 caused cell cycle arrest and delayed proliferation during the first day after PH. This delay was associated with the activation of DNA repair enzymes resulting in accurate replication and restoration of hepatic mass.
Collapse
Affiliation(s)
- Shingo Tachibana
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA.,Department of Surgery, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Xiuying Zhang
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA.,School of Life Science, Tianjin University, Tianjin, China
| | - Kazushige Ito
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA.,Department of Surgery, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Yoshihiro Ota
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA
| | - George Melville Williams
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Singh KK, Panda SK, Shalimar, Acharya SK. Patients with Diabetes Mellitus are Prone to Develop Severe Hepatitis and Liver Failure due to Hepatitis Virus Infection. J Clin Exp Hepatol 2013; 3:275-80. [PMID: 25755514 PMCID: PMC3940282 DOI: 10.1016/j.jceh.2013.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/04/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute viral hepatitis (AVH) is usually a self-limiting illness. Diabetics are prone to develop liver diseases and liver regeneration is impaired in them. Natural course of AVH in diabetics has not been assessed and may be severe. DESIGN Observational prospective study to evaluate natural course of AVH in patients with and without diabetes mellitus. Consecutive patients with AVH were included and categorized in to those with or without diabetes. Etiology, complications, mortality and recovery parameters of AVH were identified and compared between two groups. RESULTS 131 consecutive AVH between March 2007 and March 2009 were evaluated; 12 diabetics and 83 non-diabetics (n = 95) were included for analysis. Hepatitis E was the commonest cause (n = 55, 57.89%) in the whole cohort. However, Hepatitis B virus (HBV) as the etiology was significantly higher among diabetics than in non-diabetics (58.33% vs. 25.3%, P = 0.02). In contrast, hepatitis E was the etiology in 61.44% of non-diabetics. Frequency of severe hepatitis was significantly higher in diabetics than in non-diabetics (5/12; 41.67% vs. 9/83; 10.64%, P < 0.005). 5 of 14 (36%) with severe hepatitis were diabetics. Liver failure and death occurred in 2 (16%) diabetics, while none among the non-diabetics had liver failure. Multiple variable logistic regression analysis revealed that acute hepatitis B (OR 4.7 (95% CI 1.34-16.47)) and diabetes (OR 4.0 (95% CI 0.96-16.47)) were associated with severe hepatitis. CONCLUSION Patients with diabetes are at risk to contact HBV infection and severe hepatitis.
Collapse
Affiliation(s)
- Kumar K. Singh
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Subrat K. Panda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Subrat K. Acharya
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
33
|
Abstract
NAFLD affects a large proportion of the US population and its incidence and prevalence are increasing to epidemic proportions around the world. As with other liver diseases that cause cirrhosis, NAFLD increases the risk of liver cancer, a disease with poor outcomes and limited therapeutic options. The incidences of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma are also rising, and HCC is now the leading cause of obesity-related cancer deaths in middle-aged men in the USA. In this Review, we summarize the correlations between liver cancer and NAFLD-related cirrhosis, and the role of the metabolic syndrome in the development of liver cancer from diverse aetiologies, including HCV-mediated cirrhosis. Recent advances in understanding the progression of NAFLD to HCC from preclinical models will also be discussed. Targeted genetic manipulation of certain metabolic or stress-response pathways, including one-carbon metabolism, NF-κB, PTEN and microRNAs, has been valuable in elucidating the pathways that regulate carcinogenesis in NAFLD. Although tremendous advances have occurred in the identification of diagnostic and therapeutic opportunities to reduce the progression of NAFLD, considerable gaps in our knowledge remain with regard to the mechanisms by which NAFLD and its risk factors promote liver cancer.
Collapse
Affiliation(s)
- Gregory A Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 595 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710, USA
| | | | | |
Collapse
|
34
|
Abshagen K, Mertens F, Eipel C, Vollmar B. Limited therapeutic efficacy of thrombopoietin on the regeneration of steatotic livers. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1759-1769. [PMID: 24040440 PMCID: PMC3759482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/23/2013] [Indexed: 06/02/2023]
Abstract
Liver regeneration after partial hepatectomy is impaired in steatotic livers of leptin-deficient ob/ob mice. Previous studies have shown that thrombopoietin (TPO) promotes liver regeneration and improves liver cirrhosis by an increase of platelet counts and the expansion of hepatic progenitor cells. Herein we studied whether TPO exerts pro-proliferative and hepatoprotective effects and thereby improves the regenerative capacity of steatotic livers. For this purpose, we studied hepatic regeneration at day 2, 3, 7 and 10 in a model of 55% hepatectomy in obese (ob/ob) and non-obese (C57BL/6J) mice. Liver function and injury, platelet counts, weight of the regenerated liver, proliferating liver cells as well as the number of hepatic (CK19-positive) oval cells were quantified by biochemical and immunohistochemical analysis. As expected, obese mice had a markedly decreased regenerative capacity of livers compared with lean animals. Pretreatment of mice with recombinant TPO (12.5 μg/kg) had no evident effect on regeneration of fatty livers, but ameliorated acute liver damage in obese mice, as indicated by decreased liver enzyme release early after resection. TPO was unable to enhance hepatocyte proliferation, but increased proliferation of non-parenchymal cells, including CK19-positive oval cells, at later observation time points after resection. Interestingly, TPO completely inhibited the resection-induced increase of plasma triglycerides immediately after resection in non-obese mice. In conclusion, TPO slightly prevents acute liver damage after resection in obese mice, but fails to significantly enhance regeneration of fatty livers.
Collapse
Affiliation(s)
- Kerstin Abshagen
- Institute for Experimental Surgery, Rostock University Medical School 18057 Rostock, Germany
| | | | | | | |
Collapse
|
35
|
Aravinthan A, Scarpini C, Tachtatzis P, Verma S, Penrhyn-Lowe S, Harvey R, Davies SE, Allison M, Coleman N, Alexander G. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol 2013; 58:549-56. [PMID: 23142622 DOI: 10.1016/j.jhep.2012.10.031] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Models of non-alcohol-related fatty liver disease (NAFLD) reveal features of accelerated ageing, such as impaired regeneration, and an increased risk of hepatocellular carcinoma. The relation between accelerated ageing, disease progression and clinical outcome has not been previously investigated and is the subject of the current study. METHODS Liver sections from 70 patients with NAFLD (105 biopsies) and 60 controls were studied for telomere length, nuclear area, DNA damage and cell cycle phase markers, using quantitative fluorescent in situ hybridization and immunohistochemistry. RESULTS Hepatocyte telomeres were shorter in NAFLD than controls (p <0.0001). Hepatocytes in NAFLD demonstrated lack of cell cycle progression beyond G1/S phase and high-level expression of p21, the universal cell cycle inhibitor (p=0.001). γ-H(2)AX expression increased with steatosis (p=0.01), indicating DNA damage, and was associated with shorter hepatocyte telomeres (p <0.0001). Hepatocyte p21 expression correlated with fibrosis stage and diabetes mellitus, independently (p <0.001 and p=0.002, respectively). Further analysis revealed that an adverse liver-related outcome was strongly associated with higher hepatocyte p21 expression and greater hepatocyte nuclear area (p=0.02 and p=0.006), but not with telomere length. In paired biopsies, changes in hepatocyte p21 expression and nuclear area mirrored changes in fibrosis stage (p=0.01 and p=0.006, respectively). CONCLUSIONS These findings are consistent with hepatocyte senescence and permanent cell cycle arrest in NAFLD. Hepatocyte senescence correlated closely with fibrosis stage, diabetes mellitus, and clinical outcome. Hepatocyte p21 expression could be used as a prognostic marker and for stratification in clinical studies.
Collapse
Affiliation(s)
- Aloysious Aravinthan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hosoya S, Ikejima K, Takeda K, Arai K, Ishikawa S, Yamagata H, Aoyama T, Kon K, Yamashina S, Watanabe S. Innate immune responses involving natural killer and natural killer T cells promote liver regeneration after partial hepatectomy in mice. Am J Physiol Gastrointest Liver Physiol 2013; 304:G293-G299. [PMID: 23086918 DOI: 10.1152/ajpgi.00083.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To clarify the roles of innate immune cells in liver regeneration, here, we investigated the alteration in regenerative responses after partial hepatectomy (PH) under selective depletion of natural killer (NK) and/or NKT cells. Male, wild-type (WT; C57Bl/6), and CD1d-knockout (KO) mice were injected with anti-NK1.1 or anti-asialo ganglio-N-tetraosylceramide (GM1) antibody and then underwent the 70% PH. Regenerative responses after PH were evaluated, and hepatic expression levels of cytokines and growth factors were measured by real-time RT-PCR and ELISA. Phosphorylation of STAT3 was detected by Western blotting. Depletion of both NK and NKT cells with an anti-NK1.1 antibody in WT mice caused drastic decreases in bromodeoxyuridine uptake, expression of proliferating cell nuclear antigen, and cyclin D1, 48 h after PH. In mice given NK1.1 antibody, increases in hepatic TNF-α, IL-6/phospho-STAT3, and hepatocyte growth factor (HGF) levels following PH were also blunted significantly, whereas IFN-γ mRNA levels were not different. CD1d-KO mice per se showed normal liver regeneration; however, pretreatment with an antiasialo GM1 antibody to CD1d-KO mice, resulting in depletion of both NK and NKT cells, also blunted regenerative responses. Collectively, these observations clearly indicated that depletion of both NK and NKT cells by two different ways results in impaired liver regeneration. NK and NKT cells most likely upregulate TNF-α, IL-6/STAT3, and HGF in a coordinate fashion, thus promoting normal regenerative responses in the liver.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Antigens, CD1d/genetics
- Antigens, CD1d/immunology
- Antigens, Ly/immunology
- Blotting, Western
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay
- G(M1) Ganglioside/immunology
- Hepatectomy
- Immunity, Innate/drug effects
- Immunity, Innate/physiology
- Immunohistochemistry
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/physiology
- Liver Regeneration/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily B/immunology
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/physiology
- Rats
- Real-Time Polymerase Chain Reaction
- STAT3 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Satoko Hosoya
- Dept. of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish. [corrected]. J Neurosci 2012; 32:10662-73. [PMID: 22855815 DOI: 10.1523/jneurosci.5785-10.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
All nonmammalian vertebrates studied can regenerate inner ear mechanosensory receptors (i.e., hair cells) (Corwin and Cotanche, 1988; Lombarte et al., 1993; Baird et al., 1996), but mammals possess only a very limited capacity for regeneration after birth (Roberson and Rubel, 1994). As a result, mammals experience permanent deficiencies in hearing and balance once their inner ear hair cells are lost. The mechanisms of hair cell regeneration are poorly understood. Because the inner ear sensory epithelium is highly conserved in all vertebrates (Fritzsch et al., 2007), we chose to study hair cell regeneration mechanism in adult zebrafish, hoping the results would be transferrable to inducing hair cell regeneration in mammals. We defined the comprehensive network of genes involved in hair cell regeneration in the inner ear of adult zebrafish with the powerful transcriptional profiling technique digital gene expression, which leverages the power of next-generation sequencing ('t Hoen et al., 2008). We also identified a key pathway, stat3/socs3, and demonstrated its role in promoting hair cell regeneration through stem cell activation, cell division, and differentiation. In addition, transient pharmacological inhibition of stat3 signaling accelerated hair cell regeneration without overproducing cells. Taking other published datasets into account (Sano et al., 1999; Schebesta et al., 2006; Dierssen et al., 2008; Riehle et al., 2008; Zhu et al., 2008; Qin et al., 2009), we propose that the stat3/socs3 pathway is a key response in all tissue regeneration and thus an important therapeutic target for a broad application in tissue repair and injury healing.
Collapse
|
38
|
Tomita K, Teratani T, Suzuki T, Oshikawa T, Yokoyama H, Shimamura K, Nishiyama K, Mataki N, Irie R, Minamino T, Okada Y, Kurihara C, Ebinuma H, Saito H, Shimizu I, Yoshida Y, Hokari R, Sugiyama K, Hatsuse K, Yamamoto J, Kanai T, Miura S, Hibi T. p53/p66Shc-mediated signaling contributes to the progression of non-alcoholic steatohepatitis in humans and mice. J Hepatol 2012; 57:837-43. [PMID: 22641095 DOI: 10.1016/j.jhep.2012.05.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS The tumor suppressor p53 is a primary sensor of stressful stimuli, controlling a number of biologic processes. The aim of our study was to examine the roles of p53 in non-alcoholic steatohepatitis (NASH). METHODS Male wild type and p53-deficient mice were fed a methionine- and choline-deficient diet for 8 weeks to induce nutritional steatohepatitis. mRNA expression profiles in normal liver samples and liver samples from patients with non-alcoholic liver disease (NAFLD) were also evaluated. RESULTS Hepatic p53 and p66Shc signaling was enhanced in the mouse NASH model. p53 deficiency suppressed the enhanced p66Shc signaling, decreased hepatic lipid peroxidation and the number of apoptotic hepatocytes, and ameliorated progression of nutritional steatohepatitis. In primary cultured hepatocytes, transforming growth factor (TGF)-β treatment increased p53 and p66Shc signaling, leading to exaggerated reactive oxygen species (ROS) accumulation and apoptosis. Deficient p53 signaling inhibited TGF-β-induced p66Shc signaling, ROS accumulation, and hepatocyte apoptosis. Furthermore, expression levels of p53, p21, and p66Shc were significantly elevated in human NAFLD liver samples, compared with results obtained with normal liver samples. Among NAFLD patients, those with NASH had significantly higher hepatic expression levels of p53, p21, and p66Shc compared with the group with simple steatosis. A significant correlation between expression levels of p53 and p66Shc was observed. CONCLUSIONS p53 in hepatocytes regulates steatohepatitis progression by controlling p66Shc signaling, ROS levels, and apoptosis, all of which may be regulated by TGF-β. Moreover, p53/p66Shc signaling in the liver appears to be a promising target for the treatment of NASH.
Collapse
Affiliation(s)
- Kengo Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gazit V, Huang J, Weymann A, Rudnick DA. Analysis of the role of hepatic PPARγ expression during mouse liver regeneration. Hepatology 2012; 56:1489-98. [PMID: 22707117 PMCID: PMC3465497 DOI: 10.1002/hep.25880] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED Mice subjected to partial hepatectomy (PH) develop hypoglycemia, followed by increased systemic lipolysis and hepatic fat accumulation, prior to onset of hepatocellular proliferation. Strategies that disrupt these metabolic events inhibit regeneration. These observations suggest that alterations in metabolism in response to hepatic insufficiency promote liver regeneration. Hepatic expression of the peroxisome proliferator-activated receptor gamma (PPARγ) influences fat accumulation in the liver. Therefore, the studies reported here were undertaken to assess the effects of disruption of hepatic PPARγ expression on hepatic fat accumulation and hepatocellular proliferation during liver regeneration. The results showed that liver regeneration was not suppressed, but rather modestly augmented in liver-specific PPARγ null mice maintained on a normal diet. These animals also exhibited accelerated hepatic cyclin D1 expression. Because hepatic PPARγ expression is increased in experimental models of fatty liver disease in which liver regeneration is impaired, regeneration in liver-specific PPARγ null mice with chronic hepatic steatosis was also examined. In contrast to the results described above, disruption of hepatic PPARγ expression in mice with diet-induced hepatic steatosis resulted in significant suppression of hepatic regeneration. CONCLUSION The metabolic and hepatocellular proliferative responses to PH are modestly augmented in liver-specific PPARγ null mice, thus providing additional support for a metabolic model of liver regeneration. Furthermore, regeneration is significantly impaired in liver-specific PPARγ null mice in the setting of diet-induced chronic steatosis, suggesting that pharmacological strategies to augment hepatic PPARγ activity might improve regeneration of the fatty liver.
Collapse
Affiliation(s)
- Vered Gazit
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Jiansheng Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Alexander Weymann
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - David A. Rudnick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
40
|
Functional Relationships between Lipid Metabolism and Liver Regeneration. Int J Hepatol 2012; 2012:549241. [PMID: 22319652 PMCID: PMC3272806 DOI: 10.1155/2012/549241] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/27/2011] [Accepted: 10/24/2011] [Indexed: 12/30/2022] Open
Abstract
The regenerative capacity of the liver is well known, and the mechanisms that regulate this process have been extensively studied using experimental model systems including surgical resection and hepatotoxin exposure. The response to primary mitogens has also been used to investigate the regulation of hepatocellular proliferation. Such analyses have identified many specific cytokines and growth factors, intracellular signaling events, and transcription factors that are regulated during and necessary for normal liver regeneration. Nevertheless, the nature and identities of the most proximal events that initiate hepatic regeneration as well as those distal signals that terminate this process remain unknown. Here, we review the data implicating acute alterations in lipid metabolism as important determinants of experimental liver regeneration and propose a novel metabolic model of regeneration based on these data. We also discuss the association between chronic hepatic steatosis and impaired regeneration in animal models and humans and consider important areas for future research.
Collapse
|
41
|
Singh P, Goode T, Dean A, Awad SS, Darlington GJ. Elevated interferon gamma signaling contributes to impaired regeneration in the aged liver. J Gerontol A Biol Sci Med Sci 2011; 66:944-56. [PMID: 21719609 DOI: 10.1093/gerona/glr094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our previous study on immune-related changes in the aged liver described immune cell infiltration and elevation of inflammation with age. Levels of interferon (IFN)-γ, a known cell cycle inhibitor, were elevated in the aging liver. Here, we determine the role played by IFN-γ in the delayed regenerative response observed in the aged livers. We observed elevated IFN signaling in both aged hepatocytes and regenerating livers post-partial hepatectomy. In vivo deletion of the major IFN-γ producers-the macrophages and the natural killer cells, leads to a reduction in the IFN-γ levels accompanied with the restoration of the DNA synthesis kinetics in the aged livers. Eighteen-month-old IFN-γ-/- mice livers, upon resection, exhibited an earlier entry into the cell cycle compared with age-matched controls. Thus, our study strongly suggests that an age-related elevation in inflammatory conditions in the liver often dubbed as "inflammaging" has a detrimental effect on the regenerative response.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Dermatology, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
The MRL (Murphy Roths Large) mouse has provided a unique model of adult mammalian regeneration as multiple tissues show this important phenotype. Furthermore, the healing employs a blastema-like structure similar to that seen in amphibian regenerating tissue. Cells from the MRL mouse display DNA damage, cell cycle G2/M arrest, and a reduced level of p21CIP1/WAF. A functional role for p21 was confirmed when tissue injury in an adult p21-/- mouse showed a healing phenotype that matched the MRL mouse, with the replacement of tissues, including cartilage, and with hair follicle formation and a lack of scarring. Since the major canonical function of p21 is part of the p53/p21 axis, we explored the consequences of p53 deletion. A regenerative response was not seen in a p53-/- mouse and the elimination of p53 from the MRL background had no negative effect on the regeneration of the MRL.p53-/- mouse. An exploration of other knockout mice to identify p21-dependent, p53-independent regulatory pathways involved in the regenerative response revealed another significant finding showing that elimination of transforming growth factor-β1 displayed a healing response as well. These results are discussed in terms of their effect on senescence and differentiation.
Collapse
|
43
|
Fujiyoshi M, Ozaki M. Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2011; 18:13-22. [PMID: 20607568 DOI: 10.1007/s00534-010-0304-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver regeneration is a necessary process that most liver damage depends on for recovery. Regeneration is achieved by a complex interactive network consisting of liver cells (hepatocytes, Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells, and stem cells) and extrahepatic organs (thyroid gland, adrenal gland, pancreas, duodenum, and autonomous nervous system). The restoration of liver volume depends on hepatocyte proliferation, which includes initiation, proliferation, and termination phases. Hepatocytes are "primed" mainly by Kupffer cells via cytokines (IL-6 and TNF-alpha) and then "proliferation" and "cell growth" of hepatocytes are induced by the stimulations of cytokines and growth factors (HGF and TGF-alpha). Liver regeneration is achieved by cell proliferation and cell growth, where the IL-6/STAT3 and PI3-K/PDK1/Akt pathways play pivotal roles, respectively. IL-6/STAT3 pathway regulates hepatocyte proliferation via cyclin D1/p21 and protects against cell death by upregulating FLIP, Bcl-2, Bcl-xL, Ref1, and MnSOD. PI3-K/PDK1/Akt is known to be responsible for regulation of cell size via its downstream molecules such as mTOR in addition to being known for its survival, anti-apoptotic and anti-oxidative properties. Although the molecular mechanisms of liver regeneration have been actively studied, the mechanisms of liver regeneration must be elucidated and leveraged for the sufficient treatment of liver diseases.
Collapse
Affiliation(s)
- Masato Fujiyoshi
- Department of General Surgery, Hokkaido University School of Medicine, N-15, W-7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | | |
Collapse
|
44
|
Yang L, Zhang Y, Wang L, Fan F, Zhu L, Li Z, Ruan X, Huang H, Wang Z, Huang Z, Huang Y, Yan X, Chen Y. Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. J Hepatol 2010; 53:339-47. [PMID: 20452699 DOI: 10.1016/j.jhep.2010.03.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Interleukin-22 (IL-22) is a Th17-related cytokine within the IL-10 family and plays an important role in host defense and inflammatory responses in orchestration with other Th17 cytokines. IL-22 exerts its functions in non-immune cells as its functional receptor IL-22R1 is restricted in peripheral tissues but not in immune cells. It was recently found that IL-22 serves as a protective molecule to counteract the destructive nature of the T cell-mediated immune response to liver damage. However, it is currently unknown whether IL-22 has an effect on lipid metabolism in the liver. METHODS In this study, we demonstrate that IL-22 alleviates hepatic steatosis induced by high fat diet (HFD). RESULTS Administration of recombinant murine IL-22 (rmIL-22) was able to stimulate STAT3 phosphorylation in HepG2 cells and mouse liver. The activation of STAT3 by rmIL-22 was reduced by the over-expression of a dominant negative IL-22R1. Within hours after rmIL-22 treatment, the expression of lipogenesis-related genes including critical transcription factors and enzymes for lipid synthesis in the liver was significantly down-regulated. The levels of triglyceride and cholesterol in the liver were significantly reduced by long-term treatment of rmIL-22 in C57BL/6 and ob/ob mice fed with HFD. The HFD-induced increases of ALT and AST in ob/ob mice were ameliorated by rmIL-22 treatment. In addition, the expression of fatty acid synthase and TNF-alpha in the liver was decreased by long-term rmIL-22 administration. CONCLUSIONS Collectively, these data indicate that IL-22, in addition to its known functions in host defense and inflammation, has a protective role in HFD-induced hepatic steatosis via its regulation on lipid metabolism in the liver.
Collapse
Affiliation(s)
- Ling Yang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aoyama T, Ikejima K, Kon K, Okumura K, Arai K, Watanabe S. Pioglitazone promotes survival and prevents hepatic regeneration failure after partial hepatectomy in obese and diabetic KK-A(y) mice. Hepatology 2009; 49:1636-44. [PMID: 19205029 DOI: 10.1002/hep.22828] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED Pathogenesis of metabolic syndrome-related nonalcoholic steatohepatitis (NASH) involves abnormal tissue-repairing responses in the liver. We investigated the effect of pioglitazone, a thiazolidinedione derivative (TZD), on hepatic regenerative responses in obese, diabetic KK-A(y) mice. Male KK-A(y) mice 9 weeks after birth underwent two-thirds partial hepatectomy (PH) after repeated intragastric injections of pioglitazone (25 mg/kg) for 5 days. Almost half of the KK-A(y) mice died within 48 hours of PH;however, mortality was completely prevented in mice pretreated with pioglitazone. In KK-A(y) mice, bromodeoxyuridine (BrdU) incorporation to hepatocyte nuclei 48 hours after PH reached only 1%; however, pioglitazone pretreatment significantly increased BrdU-positive cells to 8%. Cyclin D1 was barely detectable in KK-A(y) mice within 48 hours after PH. In contrast, overt expression of cyclin D1 was observed 24 hours after PH in KK-A(y) mice pretreated with pioglitazone. Hepatic tumor necrosis factor alpha (TNF-alpha) messenger RNA (mRNA) was tremendously increased 1 hour after PH in KK-A(y) mice, the levels reaching ninefold over C57Bl/6 given PH, whereas pioglitazone blunted this increase by almost three-fourths. Pioglitazone normalized hypoadiponectinemia in KK-A(y) mice almost completely. Serum interleukin (IL)-6 and leptin levels were elevated extensively 24 hours after PH in KK-A(y) mice, whereas the levels were largely decreased in KK-A(y) mice given pioglitazone. Indeed, pioglitazone prevented aberrant increases in signal transducers and activators of transcription (STAT)3 phosphorylation and suppressor of cytokine signaling (SOCS)-3 mRNA in the liver in KK-A(y) mice. CONCLUSION These findings indicated that pioglitazone improved hepatic regeneration failure in KK-A(y) mice. The mechanism underlying the effect of pioglitazone on regeneration failure most likely involves normalization of expression pattern of adipokines and subsequent cytokine responses during the early stage of PH.
Collapse
Affiliation(s)
- Tomonori Aoyama
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Lecour S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J Mol Cell Cardiol 2009; 47:32-40. [PMID: 19344728 DOI: 10.1016/j.yjmcc.2009.03.019] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 12/11/2022]
Abstract
Lethal reperfusion injury is now recognized as a major limitation of current reperfusion therapy by primary percutaneous coronary intervention for acute myocardial infarction. Interestingly, the heart itself is capable of activating an intrinsic protective signaling programme to limit cell death during reperfusion. Tumor necrosis factor alpha (TNFalpha) is a cytokine generally thought to contribute to myocardial dysfunction in ischemia/reperfusion or heart failure. We review evidence that TNFalpha can paradoxically initiate the activation of a novel protective pathway against reperfusion injuries that we have named the Survivor Activating Factor Enhancement (SAFE) pathway. This path requires the activation of the signal transducer and activator of transcription 3 (STAT-3) and it can successfully lessen cardiomyocyte death at the time of reperfusion, independently of the activation of the already well-described Reperfusion Injury Salvage Kinase (RISK) pathway (which includes activation of Akt and Erk 1/2). Emerging knowledge on this novel protective path is presented here with the aim of unravelling its interaction with the RISK pathway and its potential human application to protect against lethal reperfusion injury.
Collapse
Affiliation(s)
- Sandrine Lecour
- Cardioprotection Group, Hatter Cardiovascular Research Institute, Department of Medicine, Chris Barnard Building, Faculty of Health Sciences, University of Cape Town, 7925 Observatory, South Africa
| |
Collapse
|
47
|
Tiberio GAM, Tiberio L, Benetti A, Cervi E, Montani N, Dreano M, Garotta G, Cerea K, Steimberg N, Pandolfo G, Ferrari-Bravo A, Mazzoleni G, Giulini SM, Schiaffonati L. IL-6 Promotes compensatory liver regeneration in cirrhotic rat after partial hepatectomy. Cytokine 2008; 42:372-378. [PMID: 18455423 DOI: 10.1016/j.cyto.2008.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/13/2008] [Accepted: 03/23/2008] [Indexed: 12/18/2022]
Abstract
Major hepatic resection in cirrhotic patients is associated with impaired liver regeneration and failure, leading to high peri-operative mortality. In this work, the causes of defective regeneration in cirrhotic liver and the utility of IL-6 treatment were investigated in an experimental model combining cirrhosis and partial hepatectomy in the rat. Relative to normal controls, decompensated cirrhotic animals showed decreased survival, while compensated cirrhotic animals showed similar survival but reduced hepatic DNA synthesis and newly regenerated liver mass amount. Defective liver regeneration was associated with a decrease in STAT3 and NF-kB activation, consistent with an increased accumulation of their respective inhibitors PIAS3 and IkBalpha, and with a decreased induction of Bcl-xL. Treatment with recombinant IL-6 enhanced survival of decompensated cirrhotic animals, while it did not affect survival of compensated cirrhotic animals but sustained liver regeneration, by restoring STAT3 and NF-kB activation and Bcl-xL induction to the levels found in normal controls. The pro-growth effects exerted by IL-6 treatment in cirrhotic liver were attained also at low, pharmacologically acceptable doses. In conclusion, our results suggest that IL-6 treatment may be therapeutic in major resection of cirrhotic liver.
Collapse
Affiliation(s)
- Guido A M Tiberio
- Università Campus Bio-Medico, Roma and Surgical Clinic, Department of Medical and Surgical Sciences, Brescia University, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shen B, Yu J, Wang S, Chu ESH, Wong VWS, Zhou X, Lin G, Sung JJY, Chan HLY. Phyllanthus urinaria ameliorates the severity of nutritional steatohepatitis both in vitro and in vivo. Hepatology 2008; 47:473-83. [PMID: 18157836 DOI: 10.1002/hep.22039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatic oxidative stress plays a critical role in metabolic forms of steatohepatitis. Phyllanthus urinaria, an herbal medicine, has been reported to have potential antioxidant properties. We tested the effects of P. urinaria on nutritional steatohepatitis both in vitro and in vivo. Immortalized normal hepatocytes (AML-12) or primary hepatocytes were exposed to control, the methionine-and-choline-deficient (MCD) culture medium, in the presence or absence of P. urinaria for 24 hours. Hepatocyte triglyceride, release of alanine aminotransferase, lipoperoxides, and reactive oxygen species production were determined. Age-matched C57BL/6 and db/db mice were fed control or MCD diet for 10 days with or without P. urinaria. Hepatic steatosis, necroinflammation, triglycerides, and lipid peroxide levels were determined. Hepatic expression of inflammatory factors and lipid regulatory mediators were assayed. P. urinaria reduced steatosis and alanine aminotransferase (ALT) levels in culture of hepatocytes in a dose-dependent manner. Phyllanthus prevented MCD-induced hepatic fat accumulation and steatohepatitis in mice. This effect was associated with repressed levels of hepatic lipid peroxides, reduced expression of cytochrome P450-2E1, pro-inflammatory tumor necrosis factor alpha, interleukin-6, dampened activation of inflammatory c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-kappaB), increased expression of lipolytic cytochrome P450 (Cyp4a10), and suppressed transcriptional activity of lipogenic CCAAT/enhancer binding protein beta (C/EBPbeta). Hepatic acyl co-enzyme A oxidase that regulated hepatic beta-oxidation of fatty acid and other lipid regulators were not affected by P. urinaria. In conclusion, P. urinaria effectively alleviated the steatohepatitis induced by the MCD, probably through dampening oxidative stress, ameliorating inflammation, and decreasing lipid accumulation.
Collapse
Affiliation(s)
- Bo Shen
- Institute of Digestive Disease, Department of Medicine and Therapeutics, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Arteel GE, Guo L, Schlierf T, Beier JI, Kaiser JP, Chen TS, Liu M, Conklin DJ, Miller HL, von Montfort C, States JC. Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice. Toxicol Appl Pharmacol 2008; 226:128-39. [PMID: 17919673 PMCID: PMC2246049 DOI: 10.1016/j.taap.2007.08.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 02/07/2023]
Abstract
Exposure to arsenic via drinking water is a serious health concern in the US. Whereas studies have identified arsenic alone as an independent risk factor for liver disease, concentrations of arsenic required to damage this organ are generally higher than found in the US water supply. The purpose of the current study was to test the hypothesis that arsenic (at subhepatotoxic doses) may also sensitize the liver to a second hepatotoxin. To test this hypothesis, the effect of chronic exposure to arsenic on liver damage caused by acute lipopolysaccharide (LPS) was determined in mice. Male C57Bl/6J mice (4-6 weeks) were exposed to arsenic (49 ppm as sodium arsenite in drinking water). After 7 months of exposure, animals were injected with LPS (10 mg/kg i.p.) and sacrificed 24 h later. Arsenic alone caused no overt hepatotoxicity, as determined by plasma enzymes and histology. In contrast, arsenic exposure dramatically enhanced liver damage caused by LPS, increasing the number and size of necroinflammatory foci. This effect of arsenic was coupled with increases in indices of oxidative stress (4-HNE adducts, depletion of GSH and methionine pools). The number of apoptotic (TUNEL) hepatocytes was similar in the LPS and arsenic/LPS groups. In contrast, arsenic pre-exposure blunted the increase in proliferating (PCNA) hepatocytes caused by LPS; this change in the balance between cell death and proliferation was coupled with a robust loss of liver weight in the arsenic/LPS compared to the LPS alone group. The impairment of proliferation after LPS caused by arsenic was also coupled with alterations in the expression of key mediators of cell cycle progression (p27, p21, CDK6 and Cyclin D1). Taken together, these results suggest that arsenic, at doses that are not overtly hepatotoxic per se, significantly enhances LPS-induced liver injury. These results further suggest that arsenic levels in the drinking water may be a risk modifier for the development of chronic liver diseases.
Collapse
Affiliation(s)
- Gavin E Arteel
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA. <>
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|