1
|
He W, Xi Q, Cui H, Zhang P, Huang R, Wang T, Wang D. Liang-Ge Decoction Ameliorates Coagulation Dysfunction in Cecal Ligation and Puncture-Induced Sepsis Model Rats through Inhibiting PAD4-Dependent Neutrophil Extracellular Trap Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5042953. [PMID: 37159591 PMCID: PMC10163969 DOI: 10.1155/2023/5042953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 05/11/2023]
Abstract
Liang-Ge (LG) decoction could ameliorate coagulation dysfunction in septic model rats. However, the mechanism of LG in treating sepsis still needs to be clarified. Our current study established a septic rat model to evaluate the effect of LG on coagulation dysfunction in septic rats first. Second, we investigated the effect of LG on NET formation in septic rats. Finally, NETs and PAD4 inhibitors were further used to clarify if LG could improve the mechanism of sepsis coagulation dysfunction by inhibiting NET formation. Our findings indicated that treatment with LG improved the survival rate, reduced inflammatory factor levels, enhanced hepatic and renal function, and reduced pathological changes in rats with sepsis. LG could also alleviate coagulation dysfunction in septic model rats. Besides, LG treatment reduced NETs formation and decreased PAD4 expression in neutrophiles. In addition, LG treatment showed a similar result in comparison to the treatment with either NET inhibitors or PAD4 inhibitors alone. In conclusion, this study confirmed that LG has therapeutic effects on septic rats. Furthermore, the improvement of coagulation dysfunction in septic rats by LG was achieved through inhibiting PAD4-mediated NET formation.
Collapse
Affiliation(s)
- Wenju He
- Department of Integration of Traditional Chinese and Western Medicine, First Central Hospital Affiliated to Nankai University, Tianjin First Central Hospital, Tianjin, China
| | - Qiang Xi
- Department of Practice and Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Pingping Zhang
- Department of Integration of Traditional Chinese and Western Medicine, First Central Hospital Affiliated to Nankai University, Tianjin First Central Hospital, Tianjin, China
| | - Rui Huang
- Department of Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Taihuan Wang
- Department of Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongqiang Wang
- Department of Integration of Traditional Chinese and Western Medicine, First Central Hospital Affiliated to Nankai University, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
2
|
Urbanczyk M, Zbinden A, Schenke-Layland K. Organ-specific endothelial cell heterogenicity and its impact on regenerative medicine and biomedical engineering applications. Adv Drug Deliv Rev 2022; 186:114323. [PMID: 35568103 DOI: 10.1016/j.addr.2022.114323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) are a key cellular component of the vascular system as they form the inner lining of the blood vessels. Recent findings highlight that ECs express extensive phenotypic heterogenicity when following the vascular tree from the major vasculature down to the organ capillaries. However, in vitro models, used for drug development and testing, or to study the role of ECs in health and disease, rarely acknowledge this EC heterogenicity. In this review, we highlight the main differences between different EC types, briefly summarize their different characteristics and focus on the use of ECs in in vitro models. We introduce different approaches on how ECs can be utilized in co-culture test systems in the field of brain, pancreas, and liver research to study the role of the endothelium in health and disease. Finally, we discuss potential improvements to current state-of-the-art in vitro models and future directions.
Collapse
|
3
|
Phytoceuticals in Acute Pancreatitis: Targeting the Balance between Apoptosis and Necrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5264592. [PMID: 29686719 PMCID: PMC5857302 DOI: 10.1155/2018/5264592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Despite recent advances in understanding the complex pathogenesis of pancreatitis, the management of the disease remains suboptimal. The use of phytoceuticals (plant-derived pleiotropic multitarget molecules) represents a new research trend in pancreatology. The purpose of this review is to discuss the phytoceuticals with pancreatoprotective potential in acute pancreatitis and whose efficacy is based, at least in part, on their capacity to modulate the acinar cell death. The phytochemicals selected, belonging to such diverse classes as polyphenols, flavonoids, lignans, anthraquinones, sesquiterpene lactones, nitriles, and alkaloids, target the balance between apoptosis and necrosis. Activation of apoptosis via various mechanisms (e.g., inhibition of X-linked inhibitor of apoptosis proteins by embelin, upregulation of FasL gene expression by resveratrol) and/or inhibition of necrosis seem to represent the essential key for decreasing the severity of the disease. Apart from targeting the apoptosis/necrosis balance, the phytochemicals displayed other specific protective activities: inhibition of inflammasome (e.g., rutin), suppression of neutrophil infiltration (e.g., ligustrazine, resveratrol), and antioxidant activity. Even though many of the selected phytoceuticals represent a promising therapeutic alternative, there is a shortage of human evidence, and further studies are required to provide solid basis to justify their use in the treatment of pancreatitis.
Collapse
|
4
|
Narayanan S, Loganathan G, Dhanasekaran M, Tucker W, Patel A, Subhashree V, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN. Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation. World J Transplant 2017; 7:117-128. [PMID: 28507914 PMCID: PMC5409911 DOI: 10.5500/wjt.v7.i2.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/28/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
The intra-islet microvasculature is a critical interface between the blood and islet endocrine cells governing a number of cellular and pathophysiological processes associated with the pancreatic tissue. A growing body of evidence indicates a strong functional and physical interdependency of β-cells with endothelial cells (ECs), the building blocks of islet microvasculature. Intra-islet ECs, actively regulate vascular permeability and appear to play a role in fine-tuning blood glucose sensing and regulation. These cells also tend to behave as “guardians”, controlling the expression and movement of a number of important immune mediators, thereby strongly contributing to the physiology of islets. This review will focus on the molecular signalling and crosstalk between the intra-islet ECs and β-cells and how their relationship can be a potential target for intervention strategies in islet pathology and islet transplantation.
Collapse
|
5
|
Xia SH, Xiang XH, Chen K, Xu W. Roles of BN52021 in platelet-activating factor pathway in inflammatory MS1 cells. World J Gastroenterol 2013; 19:3969-3979. [PMID: 23840141 PMCID: PMC3703183 DOI: 10.3748/wjg.v19.i25.3969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 05/13/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the effects of BN52021 on platelet-activating factor receptor (PAFR) signaling molecules under lipopolysaccharide (LPS)-induced inflammatory conditions in MS1 cells.
METHODS: MS1 cells (a mouse pancreatic islet endothelial cell line) were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 2 mmol/L glutamine and 100 μg/mL penicillin/streptomycin in 5% CO2 at 37 °C. After growth to confluency in media, the cells were processed for subsequent studies. The MS1 cells received 0, 0.1, 1 and 10 μg/mL LPS in this experiment. The viability/proliferation of the cells induced by LPS was observed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Apoptosis and necrosis of the cells under the inflammatory condition described previously were observed using Hoechst 33342-propidium iodide staining. Adenylate cyclase (AC), phospholipase A2 (PLA2), phospholipase Cβ (PLCβ), protein tyrosine kinase (PTK), G protein-coupled receptor kinases (GRK) and p38-mitogen-activated protein kinase (p38 MAPK) mRNA in the PAFR signaling pathway were measured by real-time polymerase chain reaction. The protein expression level of phosphorylated AC (p-AC), phosphorylated PLA2 (p-PLA2), phosphorylated PTK (p-PTK), phosphorylated p38 MAPK (p-p38 MAPK), PLCβ and GRK was measured using Western blotting analysis.
RESULTS: The activity of MS1 cells incubated with different concentrations of LPS for 6 h decreased significantly in the 1 μg/mL LPS group (0.49 ± 0.10 vs 0.67 ± 0.13, P < 0.05) and 10 μg/mL LPS group (0.44 ± 0.10 vs 0.67 ± 0.13, P < 0.001), but not in 0.1 μg/mL group. When the incubation time was extended to 12 h (0.33 ± 0.05, 0.32 ± 0.03 and 0.25 ± 0.03 vs 0.69 ± 0.01) and 24 h (0.31 ± 0.01, 0.29 ± 0.03 and 0.25 ± 0.01 vs 0.63 ± 0.01), MS1 cell activity decreased in all LPS concentration groups compared with the blank control (P < 0.001). BN52021 significantly improved the cell activity when its concentration reached 50 μmol/L compared with the group that received LPS treatment alone, which was consistent with the results obtained from fluorescence staining. The mRNAs levels of AC (4.02 ± 0.14 vs 1.00 ± 0.13), GRK (2.63 ± 0.03 vs 1.00 ± 0.12), p38 MAPK (3.87 ± 0.07 vs 1.00 ± 0.17), PLA2 (3.31 ± 0.12 vs 1.00 ± 0.12), PLCβ (2.09 ± 0.08 vs 1.00 ± 0.06) and PTK (1.85 ± 0.07 vs 1.00 ± 0.11) were up-regulated after LPS stimulation as compared with the blank control (P < 0.05). The up-regulated mRNAs including AC (2.35 ± 0.13 vs 3.87 ± 0.08), GRK (1.17 ± 0.14 vs 2.65 ± 0.12), p38 MAPK (1.48 ± 0.18 vs 4.30 ± 0.07), PLCβ (1.69 ± 0.10 vs 2.41 ± 0.13) and PLA2 (1.87 ± 0.11 vs 2.96 ± 0.08) were significantly suppressed by BN52021 except for that of PTK. The level of p-AC (1.11 ± 0.12 vs 0.65 ± 0.08), GRK (0.83 ± 0.07 vs 0.50 ± 0.03), PLCβ (0.83 ± 0.16 vs 0.50 ± 0.10) and p-p38 MAPK (0.74 ± 0.10 vs 0.38 ± 0.05) was up-regulated after LPS stimulation as compared with the blank control (P < 0.05). The up-regulated proteins, including p-AC (0.65 ± 0.15 vs 1.06 ± 0.14), GRK (0.47 ± 0.10 vs 0.80 ± 0.06), PLCβ (0.47 ± 0.04 vs 0.80 ± 0.19) and p-p38 MAPK (0.30 ± 0.10 vs 0.97 ± 0.05), was significantly suppressed by BN52021, but p-PLA2 and p-PTK protein level were not suppressed.
CONCLUSION: BN52021 could effectively inhibit LPS-induced inflammation by down-regulating the mRNA and protein levels of AC, GRK, p38 MAPK, PLA2 and PLCβ in the PAFR signaling pathway.
Collapse
|
6
|
Ji RL, Xia SH, Di Y, Xu W. Mechanism and dose-effect of Ginkgolide B on severe acute pancreatitis of rats. World J Gastroenterol 2011; 17:2241-7. [PMID: 21633536 PMCID: PMC3092878 DOI: 10.3748/wjg.v17.i17.2241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 03/24/2011] [Accepted: 03/31/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the optimal dosage and mechanism of Ginkgolide B (BN52021) on severe acute pancreatitis (SAP) of rats.
METHODS: Seventy male Wistar rats were randomly divided into seven groups (10 for each group). Sham-operation group (SO), SAP model group (SAP), dimethyl sulfoxide (DMSO) contrast group (DMSO), and groups treated with 2.5 mg/kg BN52021 (BN1), 5 mg/kg BN52021 (BN2), 10 mg/kg BN52021 (BN3), and 20 μg/kg Sandostatin (SS). The SAP model was established in Wistar rats by injecting 5% sodium taurocholate retrogradely into the common bilio-pancreatic duct. The rats of SO, DMSO and BN52021 were injected with 0.9% NaCl, 0.5% DMSO and BN52021 through femoral vein 15 min after the operation. The SS group was injected with Sandostatin subcutaneously. All rats were anaesthetized at 6 h after operation, and venous blood was collected to determine the levels of serum amylase and phospholipase A2 (PLA2), and pancreas tissue was harvested and stained.
RESULTS: There was no significant difference between the SAP and DMSO groups in serum amylase level, PLA2, ascites and pathologic score, but significant difference was found in SAP/DMSO groups compared with those in SO group (P < 0.05) and the levels of serum amylase, PLA2, ascites, and pathologic score were lower in the BN1, BN2, BN3 and SS groups than in the SAP and DMSO groups (P < 0.05). However, among BN1, BN2, BN3 and SS groups, BN2 had the best effect in decreasing the levels of serum amylase and PLA2 (P < 0.05). Expression of platelet activating factor (PAF) receptor (PAFR) mRNA and protein showed no significant difference between the SAP and DMSO groups, or among BN1, BN2, BN3 and SS groups, but there was remarkable difference between SAP/DMSO group and SO group (P < 0.05), and expression of PAFR mRNA and protein was higher in the BN1, BN2, BN3 and SS groups than in the SAP and DMSO groups (P < 0.05). PAFR expression was observed in the nucleus and cytoplasm of pancreatic islet cells in Wistar rats by immunohistochemistry.
CONCLUSION: By iv injection, 5 mg/kg of BN52021 is the optimal dosage for SAP rats. BN52021 may inhibit the interaction/binding of PAF with PAFR.
Collapse
|
7
|
Abstract
Pancreatic islets are highly vascularized micro-organs. Approximately 10% of an islet consists of blood vessels. The induction and maintenance of the islet vascular system depend on VEGF secreted from β-cells. VEGF is also critical for the phenotype of the islet vasculature by induction of a vast number of fenestrae. The islet vasculature serves the role of supplying the endocrine cells with oxygen and nutrients, but may also be important for proper glucose sensing of the cells, for paracrine support of endocrine function and growth, and for drainage of metabolites and secreted islet hormones into the systemic circulation. Emerging evidence suggests an important role of islet endothelial cells to maintain β-cell function and growth by secretion of molecules such as hepatocyte growth factor, thrombospondin-1 and laminins, thereby forming a vascular niche for the endocrine cells.
Collapse
Affiliation(s)
- Johan Olerud
- a Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Åsa Johansson
- a Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- b Department of Medical Sciences, Section for Endocrinology and Diabetology, Uppsala University Hospital, Uppsala, Sweden and Department of Medical Cell Biology, Husargatan 3, Box 571, SE-75123, Uppsala, Sweden.
| |
Collapse
|
8
|
Effect of platelet-activating factor antagonist WEB 2086 on microcirculatory disorders in acute experimental pancreatitis of graded severity. Pancreas 2009; 38:58-64. [PMID: 18695628 DOI: 10.1097/mpa.0b013e3181841845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Platelet-activating factor (PAF) is an important mediator of inflammation and postulated to be involved in the pathogenesis of acute pancreatitis. In this study, we evaluated the therapeutic effect of PAF antagonist WEB 2086 in acute experimental pancreatitis of graded severity in rats. METHODS According to a block design, 64 animals were randomly allocated to 8 groups. Severe necrotizing pancreatitis was induced by intraductal infusion of taurocholic acid (4%, 0.4 mL), and the combination of glycodeoxycholic acid (10 mmol/L, 1.0 mL/kg, intraductal infusion) and cerulein (5 microg/kg per hour, intravenous) was applied to induce intermediate pancreatitis, or cerulein alone (5 microg/kg per hour, intravenous) to establish edematous pancreatitis. WEB 2086 was given 15 minutes after beginning the induction of pancreatitis. Pancreatic microcirculation was analyzed in vivo with an epiluminescent microscope. Histopathology was evaluated by a validated score. Trypsinogen-activating peptide and serum amylase were analyzed sequentially. RESULTS WEB 2086 had no significant influence on the breakdown of microcirculation, leukocyte adherence, histopathological damage, and amylase levels in severe necrotizing pancreatitis, intermediate pancreatitis, and edematous pancreatitis. Only in intermediate pancreatitis was there a significant reduction of trypsinogen-activating peptide levels. CONCLUSIONS In our study, PAF antagonist WEB 2086 had no beneficial effect on microcirculation in acute experimental pancreatitis.
Collapse
|
9
|
G[alpha]i2 and G[alpha]q expression change in pancreatic tissues and BN52021 effects in rats with severe acute pancreatitis. Pancreas 2008; 37:170-5. [PMID: 18665079 DOI: 10.1097/mpa.0b013e3181661b07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate change of G[alpha]i2, G[alpha]q mRNA, and their proteins in severe acute pancreatitis (SAP) and BN52021 effects. METHODS Rats were assigned into negative-controlled group (NC), SAP-modeled group (SAP), and BN52051-remedial group (BN). Each group was assigned into 6 subgroups at different time points. G[alpha]i2, G[alpha]q mRNA, and their proteins were determined. RESULTS In the SAP group, G[alpha]i2 at 12 and 24 hours and G[alpha]q at 1 and 6 hours were remarkably higher than those in the NC group; in the BN Group, G[alpha]i2 is not remarkably different from that in the SAP group, but G[alpha]q at 1 and 6 hours was lower than those in the SAP group (P < 0.01), and G[alpha]i2 at 12 hours was higher than that in the NC group (P < 0.05), but G[alpha]q was not remarkably different from that in the NC group; in the SAP group, G[alpha]i2 and G[alpha]q proteins were higher than those in the NC group (P < 0.05); in the BN group, G[alpha]i2 proteins at 6, 12, and 24 hours and G[alpha]q proteins were lower than those in the SAP group (P < 0.05), and G[alpha]i2 and G[alpha]q proteins at each time phase point except 24 hours were higher than those in the NC group (P < 0.05). CONCLUSIONS G[alpha]i2, G[alpha]q mRNA, and their proteins in SAP increase. BN52021 decreases G[alpha]i2 and G[alpha]q.
Collapse
|
10
|
Xia SH, Hu CX, Zhao ZL, Xia GD, Di Y. Significance of platelet activating factor receptor expression in pancreatic tissues of rats with severe acute pancreatitis and effects of BN52021. World J Gastroenterol 2007; 13:2992-8. [PMID: 17589953 PMCID: PMC4171155 DOI: 10.3748/wjg.v13.i21.2992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the dynamic changes and signi-ficance of platelet activating factor receptor (PAF-R) mRNA and protein in pancreatic tissues of rats with severe acute pancreatitis (SAP) and effects of BN52021 (Ginkgolide B).
METHODS: Wistar male rats were randomly assigned to the negative control group (NC group), SAP model group (SAP group), and BN52051-remedy group (BN group), and each of the groups was divided into 6 subgroups at different time points after operation (1 h, 2 h, 3 h, 6 h, 12 h, and 24 h) (n = 10 in each). PT-PCR and Western blot methods were used to detect PAF-RmRNA and protein expression in pancreatic tissues of rats respectively. Pathological examination of pancreatic tissues was performed and the serum amylase change was detected.
RESULTS: Serum amylase and pathological results showed the that SAP model was successfully prepared, BN52021 was able to decrease serum amylase, and the pathological ratings in BN group at 3 h, 6 h, and 12 h significantly decreased compared with those in the SAP group (8.85 ± 0.39 vs 5.95 ± 0.19, 9.15 ± 0.55 vs 5.55 ± 0.36, 10.10 ± 0.65 vs 6.72 ± 0.30, P < 0.05). The result of PAF-mRNA showed dynamic changes in SAP and BN groups, which increased gradually in early stage, reached a peak at 3 h (0.71 ± 0.14 vs 0.54 ± 0.14, 0.69 ± 0.13 vs 0.59 ± 0.04, P < 0.05), and decreased gradually later. There were significant differences at each time point except 1 h and 2 h, when compared with those in the NC group (0.71 ± 0.14 or 0.69 ± 0.13 vs 0.47 ± 0.10, 0.38 ± 0.08 or 0.59 ± 0.04 vs 0.47 ± 0.09, 0.25 ± 0.07 or 0.29 ± 0.05 vs 0.46 ± 0.10, 0.20 ± 0.06 or 0.20 ± 0.04 vs 0.43 ± 0.09, P < 0.05), whereas there was no significant difference between BN and SAP groups at each time point. The result of PAF-R protein showed that the change of PAF-R protein in the SAP group and the BN group was consistent with that of PAF-R mRNA. There were significant differences at each time point except 1 h, when compared with those in the NC group (0.90 ± 0.02 or 0.80 ± 0.05 vs 0.48 ± 0.02, 1.69 ± 0.06 or 1.58 ± 0.02 vs 0.48 ± 0.03, 1.12 ± 0.10 or 0.98 ± 0.03 vs 0.49 ± 0.09, 1.04 ± 0.14 or 0.87 ± 0.02 vs 0.52 ± 0.08, 0.97 ± 0.16 or 0.90 ± 0.05 vs 0.49 ± 0.10, P < 0.05), whereas there was no significant difference between the BN group and the SAP group.
CONCLUSION: PAF-R plays an important role in occurrence and development of SAP. BN52021 exerts biological effects through competitively inhibiting the binding of increased both PAF and PAF-R expression rather than through decreasing PAF-R expression in pancreatic tissues.
Collapse
Affiliation(s)
- Shi-Hai Xia
- Department of Gastroenterology, Pancreas Center of Affiliated Hospital of Medical College of the Chinese People's Armed Police Forces, Chenglinzhuang Road, Tianjin 300162, China.
| | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Severe acute pancreatitis is characterized by pancreatic necrosis, resulting in local and systemic inflammation. Pancreatitis affects both the systemic and pancreatic vasculature. This review focuses on the underlying processes involved in the changes of microvascular anatomy following acute pancreatitis. METHODS A Medline/PubMed search (January 1966 to December 2005) with manual cross-referencing was conducted. All relevant articles investigating the pancreatic microcirculatory anatomy and the effect of pancreatitis on the microcirculation were included. RESULTS The pancreas is susceptible to ischaemic insult, which can exacerbate acute pancreatitis. There is also increasing evidence of pancreatic and systemic microvascular disturbances in the pathogenesis of pancreatitis, including vasoconstriction, shunting, inadequate perfusion, and increased blood viscosity and coagulation. These processes may be caused or exacerbated by ischaemia-reperfusion injury and the development of oxygen-derived free radicals. CONCLUSION Acute pancreatitis impairs the pancreatic and systemic microcirculation, which is a key pathological process in the development of severe necrotizing disease.
Collapse
Affiliation(s)
- C M Cuthbertson
- Department of Surgery, University of Melbourne, Austin Hospital, Lance Townsend Building Level 8, Heidelberg, Victoria 3084, Australia.
| | | |
Collapse
|
12
|
Biancone L, Cantaluppi V, Romanazzi GM, Russo S, Figliolini F, Beltramo S, Scalabrino E, Deregibus MC, Romagnoli R, Franchello A, Salizzoni M, Perin PC, Ricordi C, Segoloni GP, Camussi G. Platelet-Activating Factor Synthesis and Response on Pancreatic Islet Endothelial Cells: Relevance for Islet Transplantation. Transplantation 2006; 81:511-8. [PMID: 16495796 DOI: 10.1097/01.tp.0000200306.51689.f2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent data suggest that donor intraislet endothelial cells may survive islet transplantation and participate to the events that influence islet engraftment. However, the mechanisms that regulate islet endothelial behavior in this setting are poorly known. METHODS We obtained immortalized human (hIECs) and mouse (mIECs) islet endothelial cells by transfection with SV40-T-large antigen and studied the synthesis and response to Platelet-activating factor (PAF), a multipotent phospholipid that acts as endothelial mediator of both inflammation and angiogenesis. RESULTS HIECs showed typical endothelial markers such as expression of vWF, CD31, and CD105, uptake of acetylated-LDL and binding to ULE-A lectin. Moreover, they expressed nestin, the PAF-receptor and possess surface fenestrations and in vitro angiogenic ability of forming tubular structures on Matrigel. Likewise, mIECs showed expression of vWF, CD31, nestin, PAF-receptor and CD105, and uptake of acetylated-LDL. HIECs and mIECs rapidly produced PAF under stimulation with thrombin in a dose-dependent way. Exogenous PAF or thrombin-induced PAF synthesis increased leukocyte adhesion to hIECS and mIECs and cell motility of both endothelial cell lines. Moreover, PAF or thrombin-induced PAF synthesis accelerated in vitro formation of vessel-like tubular structures when hIECs are seeded on Matrigel. Notably, gene-microarray analysis detected up-regulation of beta3 integrin gene on hIECs stimulated with PAF, that was confirmed at the protein level. CONCLUSIONS Based on the novel development of immortalized islet endothelium, these results suggest that PAF may have a dual role that links inflammation to angiogenesis in the early events of islet transplantation.
Collapse
Affiliation(s)
- Luigi Biancone
- Department of Internal Medicine and Research Center for Experimental Medicine (CeRMS), University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Platelet-activating factor (PAF) is a potent proinflammatory phospholipid mediator that belongs to a family of biologically active, structurally related alkyl phosphoglycerides with diverse pathological and physiological effects. This bioactive phospholipid mediates processes as diverse as wound healing, physiological inflammation, angiogenesis, apoptosis, reproduction and long-term potentiation. PAF acts by binding to a specific G protein-coupled receptor to activate multiple intracellular signaling pathways. Since most cells both synthesize and release PAF and express PAF receptors, PAF has potent biological actions in a broad range of cell types and tissues. Inappropriate activation of this signaling pathway is associated with many diseases in which inflammation is thought to be one of the underlying features. Acute pancreatitis (AP) is a common inflammatory disease. The onset of AP is pancreatic autodigestion mediated by abnormal activation of pancreatic enzyme caused by multiple agents, which subsequently induce pancreatic and systemic inflammatory reactions. A number of experimental pancreatitis and clinical trials indicate that PAF does play a critical role in the pathogenesis of AP. Administration of PAF receptor antagonist can significantly reduce local and systemic events that occur in AP. This review focuses on the aspects that are more relevant to the pathogenesis of AP.
Collapse
Affiliation(s)
- Li-Rong Liu
- Department of Gastroenterology, Pancreas Center, Affiliated Hospital of Medical College of the Chinese People's Armed Police Forces, Chenglinzhuang Road, Tianjin 300162, China
| | | |
Collapse
|
14
|
Park EJ, Suh M, Thomson B, Thomson ABR, Ramanujam KS, Clandinin MT. Dietary ganglioside decreases cholesterol content, caveolin expression and inflammatory mediators in rat intestinal microdomains. Glycobiology 2005; 15:935-42. [PMID: 15917432 DOI: 10.1093/glycob/cwi078] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Membrane microdomains rich in cholesterol and sphingolipids, including gangliosides (GGs), are known to be important regions for cell signaling and binding sites for various pathogens. Cholesterol depletion inhibits the cellular entry of pathogens and also reduces inflammatory signals by disrupting microdomain structure. Our previous study showed that dietary gangliosides increased total ganglioside incorporation while decreasing cholesterol in the intestinal mucosa. We hypothesized that diet-induced reduction in cholesterol content in the intestinal mucosa disrupts microdomain structure resulting in reduced pro-inflammatory signals. Male weanling Sprague-Dawley rats were fed semipurified diets for 2 weeks. Experimental diets were formulated to include either ganglioside-enriched lipid (GG diet, 0.02% gangliosides [w/w of diet] ) or polyunsaturated fatty acid (PUFA diet, 1% arachidonic acid and 0.5% docosahexaenoic acid, w/w of total fat), in a control diet containing 20% fat. Levels of cholesterol, GG, caveolin, platelet activating factor (PAF), and diglyceride (DG) were measured in the microdomain isolated from the intestinal brush border. The GG diet increased total gangliosides by 50% with a relative increase in GD3 and a relative decrease in GM3. Cholesterol content was also reduced by 23% in the intestinal microdomain. These changes resulted in a significant decrease in the ratio of cholesterol to ganglioside. The GG diet and the PUFA diet were both associated with reduction in caveolin, PAF, and DG content in microdomains, whereas no change occurred in the ganglioside profile of animals fed the PUFA diet. Dietary gangliosides decrease the cholesterol/ganglioside ratio, caveolin, PAF and DG content in microdomains thus exerting a potential anti-inflammatory effect during gut development.
Collapse
Affiliation(s)
- Eek Joong Park
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | | | | | | | | | |
Collapse
|
15
|
Farmer PJ, Girardot D, Lepage A, Regoli D, Sirois P. Inhibition of prostaglandin G/H synthase unveils a potent effect of platelet activating factor on the permeability of bovine aortic endothelial cells to albumin. Inflammation 2002; 26:253-8. [PMID: 12546134 DOI: 10.1023/a:1021477316559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Platelet Activating Factor (PAF) is a very potent stimulant of various cell functions but little is known about the mechanisms responsible for its marked effect on endothelial permeability. An in vitro assay system was used to assess the direct effect of PAF on the permeability of a bovine aortic endothelial cell (BAEC) monolayer to albumin. PAF produced a small but not significant increase of the permeability of BAEC monolayer to albumin. However, pre-treatment of the monolayer with indomethacin (10 microM) resulted in a significant increase of BAEC permeability following PAF administration. This increase was concentration-dependent up to a maximal effect of 105% above basal value (for 0.1 microM PAF). Addition of the PAF antagonist SRI 63 441ZI (5 microM) abolished this effect. Exogenous administration of PGE2 (10(-7) M) inhibited the effect of PAF on the BAEC permeability suggesting that prostaglandins synthesized by the endothelium behave as a negative autoregulatory factor. Compound SRI 63 441ZI also partially inhibited bradykinin-induced permeability to albumin but did not significantly modify the activity of thrombin. These findings show that PAF can increase endothelial permeability to albumin when the synthesis of prostaglandins is inhibited. Our results also show that PAF might have an autocrine activity by mediating part of BK-induced permeability.
Collapse
Affiliation(s)
- Pierre J Farmer
- lnstitute of Pharmacology of Sherbrooke, Medical School, Université de Sherbrooke, Sherbrooke, PQ, Canada
| | | | | | | | | |
Collapse
|
16
|
Mattsson G, Carlsson PO, Olausson K, Jansson L. Histological markers for endothelial cells in endogenous and transplanted rodent pancreatic islets. Pancreatology 2002; 2:155-62. [PMID: 12123096 DOI: 10.1159/000055906] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS To obtain a selective marker to identify endothelial cells is difficult, due to the heterogeneity of these cells. Most described markers perform well in some applications, but fail in others. The aim of this study was to identify a selective and specific marker for rodent microvascular endothelial cells, especially for use in studies on the vascular system of pancreatic islets. METHODS A biotin-labelled form of the lectin Bandeiraea or Griffonia simplicifolia in combination with a streptAB-Complex with alkaline phosphatase was used to stain endothelium in paraffin-embedded tissue sections from C57BL/6 mice, Sprague-Dawley or Wistar-Furth rats. RESULTS We were consistently able to selectively stain microvascular endothelial cells in lungs, small intestines, white and brown adipose tissue, pancreas and islets of Langerhans with the lectin Bandeiraea simplicifolia. Furthermore, we were able to visualise the vasculature in syngenically transplanted islets of Langerhans in Wistar-Furth rats and C57BL/6 mice. Attempts to stain rodent endothelial cells with antibodies against CD34, CD31, CD200, Ox43, von Willebrand factor and the lectin Ulex europaeus were not uniformly successful. CONCLUSION The lectin Bandeiraea simplicifolia is a versatile marker for rodent endothelial cells, and may be used to study revascularisation after transplantation of pancreatic islet in rodents.
Collapse
Affiliation(s)
- Göran Mattsson
- Department of Medical Cell Biology, Biomedical Centre, Box 571, Uppsala University, SE-751 23 Uppsala, Sweden.
| | | | | | | |
Collapse
|
17
|
Abstract
Pancreatic microcirculatory disturbance plays an important role in the pathogenesis of acute pancreatitis, and it involves a series of changes including vasoconstriction, ischaemia, increased vascular permeability, impairment of nutritive tissue perfusion, ischaemia/reperfusion, leukocyte adherence, hemorrheological changes and impaired lymphatic drainage. Ischaemia possibly acts as an initiating factor of pancreatic microcirculatory injury in acute pancreatitis, or as an aggravating/continuing mechanism. The end-artery feature of the intralobular arterioles suggests that the pancreatic microcirculation is highly susceptible to ischaemia. Various vasoactive mediators, as bradykinin, platelet activating factor, endothelin and nitric oxide participate in the development of microcirculatory failure.
Collapse
Affiliation(s)
- Zong-Guang Zhou
- Department of Hepato-bilio-pancreatic Surgery & Institute of Microcirculation, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | | |
Collapse
|
18
|
Qin RY, Zou SQ, Wu ZD, Qiu FZ. Influence of splanchnic vascular infusion on the content of endotoxins in plasma and the translocation of intestinal bacteria in rats with acute hemorrhage necrosis pancreatitis. World J Gastroenterol 2000; 6:577-580. [PMID: 11819651 PMCID: PMC4723561 DOI: 10.3748/wjg.v6.i4.577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|